root/drivers/infiniband/hw/hfi1/driver.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hfi1_caps_set
  2. hfi1_caps_get
  3. get_pci_dev
  4. hfi1_count_active_units
  5. get_egrbuf
  6. hfi1_get_header
  7. hfi1_get_msgheader
  8. hfi1_get_16B_header
  9. hfi1_rcvbuf_validate
  10. rcv_hdrerr
  11. init_packet
  12. hfi1_process_ecn_slowpath
  13. init_ps_mdata
  14. ps_done
  15. ps_skip
  16. update_ps_mdata
  17. __prescan_rxq
  18. process_rcv_qp_work
  19. max_packet_exceeded
  20. check_max_packet
  21. skip_rcv_packet
  22. process_rcv_packet
  23. process_rcv_update
  24. finish_packet
  25. handle_receive_interrupt_nodma_rtail
  26. handle_receive_interrupt_dma_rtail
  27. set_nodma_rtail
  28. set_dma_rtail
  29. set_all_slowpath
  30. set_armed_to_active
  31. handle_receive_interrupt
  32. receive_interrupt_work
  33. mtu_to_enum
  34. enum_to_mtu
  35. set_mtu
  36. hfi1_set_lid
  37. shutdown_led_override
  38. run_led_override
  39. hfi1_start_led_override
  40. hfi1_reset_device
  41. hfi1_setup_ib_header
  42. hfi1_bypass_ingress_pkt_check
  43. hfi1_setup_9B_packet
  44. hfi1_setup_bypass_packet
  45. show_eflags_errs
  46. handle_eflags
  47. process_receive_ib
  48. hfi1_is_vnic_packet
  49. process_receive_bypass
  50. process_receive_error
  51. kdeth_process_expected
  52. kdeth_process_eager
  53. process_receive_invalid
  54. seqfile_dump_rcd

   1 /*
   2  * Copyright(c) 2015-2018 Intel Corporation.
   3  *
   4  * This file is provided under a dual BSD/GPLv2 license.  When using or
   5  * redistributing this file, you may do so under either license.
   6  *
   7  * GPL LICENSE SUMMARY
   8  *
   9  * This program is free software; you can redistribute it and/or modify
  10  * it under the terms of version 2 of the GNU General Public License as
  11  * published by the Free Software Foundation.
  12  *
  13  * This program is distributed in the hope that it will be useful, but
  14  * WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  * General Public License for more details.
  17  *
  18  * BSD LICENSE
  19  *
  20  * Redistribution and use in source and binary forms, with or without
  21  * modification, are permitted provided that the following conditions
  22  * are met:
  23  *
  24  *  - Redistributions of source code must retain the above copyright
  25  *    notice, this list of conditions and the following disclaimer.
  26  *  - Redistributions in binary form must reproduce the above copyright
  27  *    notice, this list of conditions and the following disclaimer in
  28  *    the documentation and/or other materials provided with the
  29  *    distribution.
  30  *  - Neither the name of Intel Corporation nor the names of its
  31  *    contributors may be used to endorse or promote products derived
  32  *    from this software without specific prior written permission.
  33  *
  34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45  *
  46  */
  47 
  48 #include <linux/spinlock.h>
  49 #include <linux/pci.h>
  50 #include <linux/io.h>
  51 #include <linux/delay.h>
  52 #include <linux/netdevice.h>
  53 #include <linux/vmalloc.h>
  54 #include <linux/module.h>
  55 #include <linux/prefetch.h>
  56 #include <rdma/ib_verbs.h>
  57 
  58 #include "hfi.h"
  59 #include "trace.h"
  60 #include "qp.h"
  61 #include "sdma.h"
  62 #include "debugfs.h"
  63 #include "vnic.h"
  64 #include "fault.h"
  65 
  66 #undef pr_fmt
  67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
  68 
  69 /*
  70  * The size has to be longer than this string, so we can append
  71  * board/chip information to it in the initialization code.
  72  */
  73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
  74 
  75 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
  76 
  77 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
  78 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
  79 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
  80                  HFI1_DEFAULT_MAX_MTU));
  81 
  82 unsigned int hfi1_cu = 1;
  83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
  84 MODULE_PARM_DESC(cu, "Credit return units");
  85 
  86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
  87 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
  88 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
  89 static const struct kernel_param_ops cap_ops = {
  90         .set = hfi1_caps_set,
  91         .get = hfi1_caps_get
  92 };
  93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
  94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
  95 
  96 MODULE_LICENSE("Dual BSD/GPL");
  97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
  98 
  99 /*
 100  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
 101  */
 102 #define MAX_PKT_RECV 64
 103 /*
 104  * MAX_PKT_THREAD_RCV is the max # of packets processed before
 105  * the qp_wait_list queue is flushed.
 106  */
 107 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
 108 #define EGR_HEAD_UPDATE_THRESHOLD 16
 109 
 110 struct hfi1_ib_stats hfi1_stats;
 111 
 112 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
 113 {
 114         int ret = 0;
 115         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
 116                 cap_mask = *cap_mask_ptr, value, diff,
 117                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
 118                               HFI1_CAP_WRITABLE_MASK);
 119 
 120         ret = kstrtoul(val, 0, &value);
 121         if (ret) {
 122                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
 123                 goto done;
 124         }
 125         /* Get the changed bits (except the locked bit) */
 126         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
 127 
 128         /* Remove any bits that are not allowed to change after driver load */
 129         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
 130                 pr_warn("Ignoring non-writable capability bits %#lx\n",
 131                         diff & ~write_mask);
 132                 diff &= write_mask;
 133         }
 134 
 135         /* Mask off any reserved bits */
 136         diff &= ~HFI1_CAP_RESERVED_MASK;
 137         /* Clear any previously set and changing bits */
 138         cap_mask &= ~diff;
 139         /* Update the bits with the new capability */
 140         cap_mask |= (value & diff);
 141         /* Check for any kernel/user restrictions */
 142         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
 143                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
 144         cap_mask &= ~diff;
 145         /* Set the bitmask to the final set */
 146         *cap_mask_ptr = cap_mask;
 147 done:
 148         return ret;
 149 }
 150 
 151 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
 152 {
 153         unsigned long cap_mask = *(unsigned long *)kp->arg;
 154 
 155         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
 156         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
 157 
 158         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
 159 }
 160 
 161 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
 162 {
 163         struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
 164         struct hfi1_devdata *dd = container_of(ibdev,
 165                                                struct hfi1_devdata, verbs_dev);
 166         return dd->pcidev;
 167 }
 168 
 169 /*
 170  * Return count of units with at least one port ACTIVE.
 171  */
 172 int hfi1_count_active_units(void)
 173 {
 174         struct hfi1_devdata *dd;
 175         struct hfi1_pportdata *ppd;
 176         unsigned long index, flags;
 177         int pidx, nunits_active = 0;
 178 
 179         xa_lock_irqsave(&hfi1_dev_table, flags);
 180         xa_for_each(&hfi1_dev_table, index, dd) {
 181                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
 182                         continue;
 183                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 184                         ppd = dd->pport + pidx;
 185                         if (ppd->lid && ppd->linkup) {
 186                                 nunits_active++;
 187                                 break;
 188                         }
 189                 }
 190         }
 191         xa_unlock_irqrestore(&hfi1_dev_table, flags);
 192         return nunits_active;
 193 }
 194 
 195 /*
 196  * Get address of eager buffer from it's index (allocated in chunks, not
 197  * contiguous).
 198  */
 199 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
 200                                u8 *update)
 201 {
 202         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
 203 
 204         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
 205         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
 206                         (offset * RCV_BUF_BLOCK_SIZE));
 207 }
 208 
 209 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
 210                                     __le32 *rhf_addr)
 211 {
 212         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
 213 
 214         return (void *)(rhf_addr - rcd->rhf_offset + offset);
 215 }
 216 
 217 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
 218                                                    __le32 *rhf_addr)
 219 {
 220         return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
 221 }
 222 
 223 static inline struct hfi1_16b_header
 224                 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
 225                                      __le32 *rhf_addr)
 226 {
 227         return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
 228 }
 229 
 230 /*
 231  * Validate and encode the a given RcvArray Buffer size.
 232  * The function will check whether the given size falls within
 233  * allowed size ranges for the respective type and, optionally,
 234  * return the proper encoding.
 235  */
 236 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
 237 {
 238         if (unlikely(!PAGE_ALIGNED(size)))
 239                 return 0;
 240         if (unlikely(size < MIN_EAGER_BUFFER))
 241                 return 0;
 242         if (size >
 243             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
 244                 return 0;
 245         if (encoded)
 246                 *encoded = ilog2(size / PAGE_SIZE) + 1;
 247         return 1;
 248 }
 249 
 250 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
 251                        struct hfi1_packet *packet)
 252 {
 253         struct ib_header *rhdr = packet->hdr;
 254         u32 rte = rhf_rcv_type_err(packet->rhf);
 255         u32 mlid_base;
 256         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 257         struct hfi1_devdata *dd = ppd->dd;
 258         struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
 259         struct rvt_dev_info *rdi = &verbs_dev->rdi;
 260 
 261         if ((packet->rhf & RHF_DC_ERR) &&
 262             hfi1_dbg_fault_suppress_err(verbs_dev))
 263                 return;
 264 
 265         if (packet->rhf & RHF_ICRC_ERR)
 266                 return;
 267 
 268         if (packet->etype == RHF_RCV_TYPE_BYPASS) {
 269                 goto drop;
 270         } else {
 271                 u8 lnh = ib_get_lnh(rhdr);
 272 
 273                 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
 274                 if (lnh == HFI1_LRH_BTH) {
 275                         packet->ohdr = &rhdr->u.oth;
 276                 } else if (lnh == HFI1_LRH_GRH) {
 277                         packet->ohdr = &rhdr->u.l.oth;
 278                         packet->grh = &rhdr->u.l.grh;
 279                 } else {
 280                         goto drop;
 281                 }
 282         }
 283 
 284         if (packet->rhf & RHF_TID_ERR) {
 285                 /* For TIDERR and RC QPs preemptively schedule a NAK */
 286                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 287                 u32 dlid = ib_get_dlid(rhdr);
 288                 u32 qp_num;
 289 
 290                 /* Sanity check packet */
 291                 if (tlen < 24)
 292                         goto drop;
 293 
 294                 /* Check for GRH */
 295                 if (packet->grh) {
 296                         u32 vtf;
 297                         struct ib_grh *grh = packet->grh;
 298 
 299                         if (grh->next_hdr != IB_GRH_NEXT_HDR)
 300                                 goto drop;
 301                         vtf = be32_to_cpu(grh->version_tclass_flow);
 302                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 303                                 goto drop;
 304                 }
 305 
 306                 /* Get the destination QP number. */
 307                 qp_num = ib_bth_get_qpn(packet->ohdr);
 308                 if (dlid < mlid_base) {
 309                         struct rvt_qp *qp;
 310                         unsigned long flags;
 311 
 312                         rcu_read_lock();
 313                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 314                         if (!qp) {
 315                                 rcu_read_unlock();
 316                                 goto drop;
 317                         }
 318 
 319                         /*
 320                          * Handle only RC QPs - for other QP types drop error
 321                          * packet.
 322                          */
 323                         spin_lock_irqsave(&qp->r_lock, flags);
 324 
 325                         /* Check for valid receive state. */
 326                         if (!(ib_rvt_state_ops[qp->state] &
 327                               RVT_PROCESS_RECV_OK)) {
 328                                 ibp->rvp.n_pkt_drops++;
 329                         }
 330 
 331                         switch (qp->ibqp.qp_type) {
 332                         case IB_QPT_RC:
 333                                 hfi1_rc_hdrerr(rcd, packet, qp);
 334                                 break;
 335                         default:
 336                                 /* For now don't handle any other QP types */
 337                                 break;
 338                         }
 339 
 340                         spin_unlock_irqrestore(&qp->r_lock, flags);
 341                         rcu_read_unlock();
 342                 } /* Unicast QP */
 343         } /* Valid packet with TIDErr */
 344 
 345         /* handle "RcvTypeErr" flags */
 346         switch (rte) {
 347         case RHF_RTE_ERROR_OP_CODE_ERR:
 348         {
 349                 void *ebuf = NULL;
 350                 u8 opcode;
 351 
 352                 if (rhf_use_egr_bfr(packet->rhf))
 353                         ebuf = packet->ebuf;
 354 
 355                 if (!ebuf)
 356                         goto drop; /* this should never happen */
 357 
 358                 opcode = ib_bth_get_opcode(packet->ohdr);
 359                 if (opcode == IB_OPCODE_CNP) {
 360                         /*
 361                          * Only in pre-B0 h/w is the CNP_OPCODE handled
 362                          * via this code path.
 363                          */
 364                         struct rvt_qp *qp = NULL;
 365                         u32 lqpn, rqpn;
 366                         u16 rlid;
 367                         u8 svc_type, sl, sc5;
 368 
 369                         sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
 370                         sl = ibp->sc_to_sl[sc5];
 371 
 372                         lqpn = ib_bth_get_qpn(packet->ohdr);
 373                         rcu_read_lock();
 374                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
 375                         if (!qp) {
 376                                 rcu_read_unlock();
 377                                 goto drop;
 378                         }
 379 
 380                         switch (qp->ibqp.qp_type) {
 381                         case IB_QPT_UD:
 382                                 rlid = 0;
 383                                 rqpn = 0;
 384                                 svc_type = IB_CC_SVCTYPE_UD;
 385                                 break;
 386                         case IB_QPT_UC:
 387                                 rlid = ib_get_slid(rhdr);
 388                                 rqpn = qp->remote_qpn;
 389                                 svc_type = IB_CC_SVCTYPE_UC;
 390                                 break;
 391                         default:
 392                                 rcu_read_unlock();
 393                                 goto drop;
 394                         }
 395 
 396                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 397                         rcu_read_unlock();
 398                 }
 399 
 400                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
 401                 break;
 402         }
 403         default:
 404                 break;
 405         }
 406 
 407 drop:
 408         return;
 409 }
 410 
 411 static inline void init_packet(struct hfi1_ctxtdata *rcd,
 412                                struct hfi1_packet *packet)
 413 {
 414         packet->rsize = rcd->rcvhdrqentsize; /* words */
 415         packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
 416         packet->rcd = rcd;
 417         packet->updegr = 0;
 418         packet->etail = -1;
 419         packet->rhf_addr = get_rhf_addr(rcd);
 420         packet->rhf = rhf_to_cpu(packet->rhf_addr);
 421         packet->rhqoff = rcd->head;
 422         packet->numpkt = 0;
 423 }
 424 
 425 /* We support only two types - 9B and 16B for now */
 426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
 427         [HFI1_PKT_TYPE_9B] = &return_cnp,
 428         [HFI1_PKT_TYPE_16B] = &return_cnp_16B
 429 };
 430 
 431 /**
 432  * hfi1_process_ecn_slowpath - Process FECN or BECN bits
 433  * @qp: The packet's destination QP
 434  * @pkt: The packet itself.
 435  * @prescan: Is the caller the RXQ prescan
 436  *
 437  * Process the packet's FECN or BECN bits. By now, the packet
 438  * has already been evaluated whether processing of those bit should
 439  * be done.
 440  * The significance of the @prescan argument is that if the caller
 441  * is the RXQ prescan, a CNP will be send out instead of waiting for the
 442  * normal packet processing to send an ACK with BECN set (or a CNP).
 443  */
 444 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
 445                                bool prescan)
 446 {
 447         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
 448         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
 449         struct ib_other_headers *ohdr = pkt->ohdr;
 450         struct ib_grh *grh = pkt->grh;
 451         u32 rqpn = 0;
 452         u16 pkey;
 453         u32 rlid, slid, dlid = 0;
 454         u8 hdr_type, sc, svc_type, opcode;
 455         bool is_mcast = false, ignore_fecn = false, do_cnp = false,
 456                 fecn, becn;
 457 
 458         /* can be called from prescan */
 459         if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
 460                 pkey = hfi1_16B_get_pkey(pkt->hdr);
 461                 sc = hfi1_16B_get_sc(pkt->hdr);
 462                 dlid = hfi1_16B_get_dlid(pkt->hdr);
 463                 slid = hfi1_16B_get_slid(pkt->hdr);
 464                 is_mcast = hfi1_is_16B_mcast(dlid);
 465                 opcode = ib_bth_get_opcode(ohdr);
 466                 hdr_type = HFI1_PKT_TYPE_16B;
 467                 fecn = hfi1_16B_get_fecn(pkt->hdr);
 468                 becn = hfi1_16B_get_becn(pkt->hdr);
 469         } else {
 470                 pkey = ib_bth_get_pkey(ohdr);
 471                 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
 472                 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
 473                         ppd->lid;
 474                 slid = ib_get_slid(pkt->hdr);
 475                 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 476                            (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
 477                 opcode = ib_bth_get_opcode(ohdr);
 478                 hdr_type = HFI1_PKT_TYPE_9B;
 479                 fecn = ib_bth_get_fecn(ohdr);
 480                 becn = ib_bth_get_becn(ohdr);
 481         }
 482 
 483         switch (qp->ibqp.qp_type) {
 484         case IB_QPT_UD:
 485                 rlid = slid;
 486                 rqpn = ib_get_sqpn(pkt->ohdr);
 487                 svc_type = IB_CC_SVCTYPE_UD;
 488                 break;
 489         case IB_QPT_SMI:
 490         case IB_QPT_GSI:
 491                 rlid = slid;
 492                 rqpn = ib_get_sqpn(pkt->ohdr);
 493                 svc_type = IB_CC_SVCTYPE_UD;
 494                 break;
 495         case IB_QPT_UC:
 496                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
 497                 rqpn = qp->remote_qpn;
 498                 svc_type = IB_CC_SVCTYPE_UC;
 499                 break;
 500         case IB_QPT_RC:
 501                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
 502                 rqpn = qp->remote_qpn;
 503                 svc_type = IB_CC_SVCTYPE_RC;
 504                 break;
 505         default:
 506                 return false;
 507         }
 508 
 509         ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
 510                 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
 511         /*
 512          * ACKNOWLEDGE packets do not get a CNP but this will be
 513          * guarded by ignore_fecn above.
 514          */
 515         do_cnp = prescan ||
 516                 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
 517                  opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
 518                 opcode == TID_OP(READ_RESP) ||
 519                 opcode == TID_OP(ACK);
 520 
 521         /* Call appropriate CNP handler */
 522         if (!ignore_fecn && do_cnp && fecn)
 523                 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
 524                                               dlid, rlid, sc, grh);
 525 
 526         if (becn) {
 527                 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
 528                 u8 sl = ibp->sc_to_sl[sc];
 529 
 530                 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 531         }
 532         return !ignore_fecn && fecn;
 533 }
 534 
 535 struct ps_mdata {
 536         struct hfi1_ctxtdata *rcd;
 537         u32 rsize;
 538         u32 maxcnt;
 539         u32 ps_head;
 540         u32 ps_tail;
 541         u32 ps_seq;
 542 };
 543 
 544 static inline void init_ps_mdata(struct ps_mdata *mdata,
 545                                  struct hfi1_packet *packet)
 546 {
 547         struct hfi1_ctxtdata *rcd = packet->rcd;
 548 
 549         mdata->rcd = rcd;
 550         mdata->rsize = packet->rsize;
 551         mdata->maxcnt = packet->maxcnt;
 552         mdata->ps_head = packet->rhqoff;
 553 
 554         if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
 555                 mdata->ps_tail = get_rcvhdrtail(rcd);
 556                 if (rcd->ctxt == HFI1_CTRL_CTXT)
 557                         mdata->ps_seq = rcd->seq_cnt;
 558                 else
 559                         mdata->ps_seq = 0; /* not used with DMA_RTAIL */
 560         } else {
 561                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
 562                 mdata->ps_seq = rcd->seq_cnt;
 563         }
 564 }
 565 
 566 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
 567                           struct hfi1_ctxtdata *rcd)
 568 {
 569         if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
 570                 return mdata->ps_head == mdata->ps_tail;
 571         return mdata->ps_seq != rhf_rcv_seq(rhf);
 572 }
 573 
 574 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
 575                           struct hfi1_ctxtdata *rcd)
 576 {
 577         /*
 578          * Control context can potentially receive an invalid rhf.
 579          * Drop such packets.
 580          */
 581         if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
 582                 return mdata->ps_seq != rhf_rcv_seq(rhf);
 583 
 584         return 0;
 585 }
 586 
 587 static inline void update_ps_mdata(struct ps_mdata *mdata,
 588                                    struct hfi1_ctxtdata *rcd)
 589 {
 590         mdata->ps_head += mdata->rsize;
 591         if (mdata->ps_head >= mdata->maxcnt)
 592                 mdata->ps_head = 0;
 593 
 594         /* Control context must do seq counting */
 595         if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
 596             (rcd->ctxt == HFI1_CTRL_CTXT)) {
 597                 if (++mdata->ps_seq > 13)
 598                         mdata->ps_seq = 1;
 599         }
 600 }
 601 
 602 /*
 603  * prescan_rxq - search through the receive queue looking for packets
 604  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
 605  * When an ECN is found, process the Congestion Notification, and toggle
 606  * it off.
 607  * This is declared as a macro to allow quick checking of the port to avoid
 608  * the overhead of a function call if not enabled.
 609  */
 610 #define prescan_rxq(rcd, packet) \
 611         do { \
 612                 if (rcd->ppd->cc_prescan) \
 613                         __prescan_rxq(packet); \
 614         } while (0)
 615 static void __prescan_rxq(struct hfi1_packet *packet)
 616 {
 617         struct hfi1_ctxtdata *rcd = packet->rcd;
 618         struct ps_mdata mdata;
 619 
 620         init_ps_mdata(&mdata, packet);
 621 
 622         while (1) {
 623                 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 624                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
 625                                          packet->rcd->rhf_offset;
 626                 struct rvt_qp *qp;
 627                 struct ib_header *hdr;
 628                 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
 629                 u64 rhf = rhf_to_cpu(rhf_addr);
 630                 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
 631                 u8 lnh;
 632 
 633                 if (ps_done(&mdata, rhf, rcd))
 634                         break;
 635 
 636                 if (ps_skip(&mdata, rhf, rcd))
 637                         goto next;
 638 
 639                 if (etype != RHF_RCV_TYPE_IB)
 640                         goto next;
 641 
 642                 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
 643                 hdr = packet->hdr;
 644                 lnh = ib_get_lnh(hdr);
 645 
 646                 if (lnh == HFI1_LRH_BTH) {
 647                         packet->ohdr = &hdr->u.oth;
 648                         packet->grh = NULL;
 649                 } else if (lnh == HFI1_LRH_GRH) {
 650                         packet->ohdr = &hdr->u.l.oth;
 651                         packet->grh = &hdr->u.l.grh;
 652                 } else {
 653                         goto next; /* just in case */
 654                 }
 655 
 656                 if (!hfi1_may_ecn(packet))
 657                         goto next;
 658 
 659                 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
 660                 qpn = bth1 & RVT_QPN_MASK;
 661                 rcu_read_lock();
 662                 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
 663 
 664                 if (!qp) {
 665                         rcu_read_unlock();
 666                         goto next;
 667                 }
 668 
 669                 hfi1_process_ecn_slowpath(qp, packet, true);
 670                 rcu_read_unlock();
 671 
 672                 /* turn off BECN, FECN */
 673                 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
 674                 packet->ohdr->bth[1] = cpu_to_be32(bth1);
 675 next:
 676                 update_ps_mdata(&mdata, rcd);
 677         }
 678 }
 679 
 680 static void process_rcv_qp_work(struct hfi1_packet *packet)
 681 {
 682         struct rvt_qp *qp, *nqp;
 683         struct hfi1_ctxtdata *rcd = packet->rcd;
 684 
 685         /*
 686          * Iterate over all QPs waiting to respond.
 687          * The list won't change since the IRQ is only run on one CPU.
 688          */
 689         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
 690                 list_del_init(&qp->rspwait);
 691                 if (qp->r_flags & RVT_R_RSP_NAK) {
 692                         qp->r_flags &= ~RVT_R_RSP_NAK;
 693                         packet->qp = qp;
 694                         hfi1_send_rc_ack(packet, 0);
 695                 }
 696                 if (qp->r_flags & RVT_R_RSP_SEND) {
 697                         unsigned long flags;
 698 
 699                         qp->r_flags &= ~RVT_R_RSP_SEND;
 700                         spin_lock_irqsave(&qp->s_lock, flags);
 701                         if (ib_rvt_state_ops[qp->state] &
 702                                         RVT_PROCESS_OR_FLUSH_SEND)
 703                                 hfi1_schedule_send(qp);
 704                         spin_unlock_irqrestore(&qp->s_lock, flags);
 705                 }
 706                 rvt_put_qp(qp);
 707         }
 708 }
 709 
 710 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
 711 {
 712         if (thread) {
 713                 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
 714                         /* allow defered processing */
 715                         process_rcv_qp_work(packet);
 716                 cond_resched();
 717                 return RCV_PKT_OK;
 718         } else {
 719                 this_cpu_inc(*packet->rcd->dd->rcv_limit);
 720                 return RCV_PKT_LIMIT;
 721         }
 722 }
 723 
 724 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
 725 {
 726         int ret = RCV_PKT_OK;
 727 
 728         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
 729                 ret = max_packet_exceeded(packet, thread);
 730         return ret;
 731 }
 732 
 733 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
 734 {
 735         int ret;
 736 
 737         packet->rcd->dd->ctx0_seq_drop++;
 738         /* Set up for the next packet */
 739         packet->rhqoff += packet->rsize;
 740         if (packet->rhqoff >= packet->maxcnt)
 741                 packet->rhqoff = 0;
 742 
 743         packet->numpkt++;
 744         ret = check_max_packet(packet, thread);
 745 
 746         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 747                                      packet->rcd->rhf_offset;
 748         packet->rhf = rhf_to_cpu(packet->rhf_addr);
 749 
 750         return ret;
 751 }
 752 
 753 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
 754 {
 755         int ret;
 756 
 757         packet->etype = rhf_rcv_type(packet->rhf);
 758 
 759         /* total length */
 760         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 761         /* retrieve eager buffer details */
 762         packet->ebuf = NULL;
 763         if (rhf_use_egr_bfr(packet->rhf)) {
 764                 packet->etail = rhf_egr_index(packet->rhf);
 765                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
 766                                  &packet->updegr);
 767                 /*
 768                  * Prefetch the contents of the eager buffer.  It is
 769                  * OK to send a negative length to prefetch_range().
 770                  * The +2 is the size of the RHF.
 771                  */
 772                 prefetch_range(packet->ebuf,
 773                                packet->tlen - ((packet->rcd->rcvhdrqentsize -
 774                                                (rhf_hdrq_offset(packet->rhf)
 775                                                 + 2)) * 4));
 776         }
 777 
 778         /*
 779          * Call a type specific handler for the packet. We
 780          * should be able to trust that etype won't be beyond
 781          * the range of valid indexes. If so something is really
 782          * wrong and we can probably just let things come
 783          * crashing down. There is no need to eat another
 784          * comparison in this performance critical code.
 785          */
 786         packet->rcd->rhf_rcv_function_map[packet->etype](packet);
 787         packet->numpkt++;
 788 
 789         /* Set up for the next packet */
 790         packet->rhqoff += packet->rsize;
 791         if (packet->rhqoff >= packet->maxcnt)
 792                 packet->rhqoff = 0;
 793 
 794         ret = check_max_packet(packet, thread);
 795 
 796         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 797                                       packet->rcd->rhf_offset;
 798         packet->rhf = rhf_to_cpu(packet->rhf_addr);
 799 
 800         return ret;
 801 }
 802 
 803 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
 804 {
 805         /*
 806          * Update head regs etc., every 16 packets, if not last pkt,
 807          * to help prevent rcvhdrq overflows, when many packets
 808          * are processed and queue is nearly full.
 809          * Don't request an interrupt for intermediate updates.
 810          */
 811         if (!last && !(packet->numpkt & 0xf)) {
 812                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
 813                                packet->etail, 0, 0);
 814                 packet->updegr = 0;
 815         }
 816         packet->grh = NULL;
 817 }
 818 
 819 static inline void finish_packet(struct hfi1_packet *packet)
 820 {
 821         /*
 822          * Nothing we need to free for the packet.
 823          *
 824          * The only thing we need to do is a final update and call for an
 825          * interrupt
 826          */
 827         update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
 828                        packet->etail, rcv_intr_dynamic, packet->numpkt);
 829 }
 830 
 831 /*
 832  * Handle receive interrupts when using the no dma rtail option.
 833  */
 834 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 835 {
 836         u32 seq;
 837         int last = RCV_PKT_OK;
 838         struct hfi1_packet packet;
 839 
 840         init_packet(rcd, &packet);
 841         seq = rhf_rcv_seq(packet.rhf);
 842         if (seq != rcd->seq_cnt) {
 843                 last = RCV_PKT_DONE;
 844                 goto bail;
 845         }
 846 
 847         prescan_rxq(rcd, &packet);
 848 
 849         while (last == RCV_PKT_OK) {
 850                 last = process_rcv_packet(&packet, thread);
 851                 seq = rhf_rcv_seq(packet.rhf);
 852                 if (++rcd->seq_cnt > 13)
 853                         rcd->seq_cnt = 1;
 854                 if (seq != rcd->seq_cnt)
 855                         last = RCV_PKT_DONE;
 856                 process_rcv_update(last, &packet);
 857         }
 858         process_rcv_qp_work(&packet);
 859         rcd->head = packet.rhqoff;
 860 bail:
 861         finish_packet(&packet);
 862         return last;
 863 }
 864 
 865 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 866 {
 867         u32 hdrqtail;
 868         int last = RCV_PKT_OK;
 869         struct hfi1_packet packet;
 870 
 871         init_packet(rcd, &packet);
 872         hdrqtail = get_rcvhdrtail(rcd);
 873         if (packet.rhqoff == hdrqtail) {
 874                 last = RCV_PKT_DONE;
 875                 goto bail;
 876         }
 877         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
 878 
 879         prescan_rxq(rcd, &packet);
 880 
 881         while (last == RCV_PKT_OK) {
 882                 last = process_rcv_packet(&packet, thread);
 883                 if (packet.rhqoff == hdrqtail)
 884                         last = RCV_PKT_DONE;
 885                 process_rcv_update(last, &packet);
 886         }
 887         process_rcv_qp_work(&packet);
 888         rcd->head = packet.rhqoff;
 889 bail:
 890         finish_packet(&packet);
 891         return last;
 892 }
 893 
 894 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
 895 {
 896         struct hfi1_ctxtdata *rcd;
 897         u16 i;
 898 
 899         /*
 900          * For dynamically allocated kernel contexts (like vnic) switch
 901          * interrupt handler only for that context. Otherwise, switch
 902          * interrupt handler for all statically allocated kernel contexts.
 903          */
 904         if (ctxt >= dd->first_dyn_alloc_ctxt) {
 905                 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
 906                 if (rcd) {
 907                         rcd->do_interrupt =
 908                                 &handle_receive_interrupt_nodma_rtail;
 909                         hfi1_rcd_put(rcd);
 910                 }
 911                 return;
 912         }
 913 
 914         for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
 915                 rcd = hfi1_rcd_get_by_index(dd, i);
 916                 if (rcd)
 917                         rcd->do_interrupt =
 918                                 &handle_receive_interrupt_nodma_rtail;
 919                 hfi1_rcd_put(rcd);
 920         }
 921 }
 922 
 923 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
 924 {
 925         struct hfi1_ctxtdata *rcd;
 926         u16 i;
 927 
 928         /*
 929          * For dynamically allocated kernel contexts (like vnic) switch
 930          * interrupt handler only for that context. Otherwise, switch
 931          * interrupt handler for all statically allocated kernel contexts.
 932          */
 933         if (ctxt >= dd->first_dyn_alloc_ctxt) {
 934                 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
 935                 if (rcd) {
 936                         rcd->do_interrupt =
 937                                 &handle_receive_interrupt_dma_rtail;
 938                         hfi1_rcd_put(rcd);
 939                 }
 940                 return;
 941         }
 942 
 943         for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
 944                 rcd = hfi1_rcd_get_by_index(dd, i);
 945                 if (rcd)
 946                         rcd->do_interrupt =
 947                                 &handle_receive_interrupt_dma_rtail;
 948                 hfi1_rcd_put(rcd);
 949         }
 950 }
 951 
 952 void set_all_slowpath(struct hfi1_devdata *dd)
 953 {
 954         struct hfi1_ctxtdata *rcd;
 955         u16 i;
 956 
 957         /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
 958         for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
 959                 rcd = hfi1_rcd_get_by_index(dd, i);
 960                 if (!rcd)
 961                         continue;
 962                 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
 963                         rcd->do_interrupt = &handle_receive_interrupt;
 964 
 965                 hfi1_rcd_put(rcd);
 966         }
 967 }
 968 
 969 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
 970                                       struct hfi1_packet *packet,
 971                                       struct hfi1_devdata *dd)
 972 {
 973         struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
 974         u8 etype = rhf_rcv_type(packet->rhf);
 975         u8 sc = SC15_PACKET;
 976 
 977         if (etype == RHF_RCV_TYPE_IB) {
 978                 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
 979                                                            packet->rhf_addr);
 980                 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
 981         } else if (etype == RHF_RCV_TYPE_BYPASS) {
 982                 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
 983                                                 packet->rcd,
 984                                                 packet->rhf_addr);
 985                 sc = hfi1_16B_get_sc(hdr);
 986         }
 987         if (sc != SC15_PACKET) {
 988                 int hwstate = driver_lstate(rcd->ppd);
 989 
 990                 if (hwstate != IB_PORT_ACTIVE) {
 991                         dd_dev_info(dd,
 992                                     "Unexpected link state %s\n",
 993                                     opa_lstate_name(hwstate));
 994                         return 0;
 995                 }
 996 
 997                 queue_work(rcd->ppd->link_wq, lsaw);
 998                 return 1;
 999         }
1000         return 0;
1001 }
1002 
1003 /*
1004  * handle_receive_interrupt - receive a packet
1005  * @rcd: the context
1006  *
1007  * Called from interrupt handler for errors or receive interrupt.
1008  * This is the slow path interrupt handler.
1009  */
1010 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1011 {
1012         struct hfi1_devdata *dd = rcd->dd;
1013         u32 hdrqtail;
1014         int needset, last = RCV_PKT_OK;
1015         struct hfi1_packet packet;
1016         int skip_pkt = 0;
1017 
1018         /* Control context will always use the slow path interrupt handler */
1019         needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1020 
1021         init_packet(rcd, &packet);
1022 
1023         if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1024                 u32 seq = rhf_rcv_seq(packet.rhf);
1025 
1026                 if (seq != rcd->seq_cnt) {
1027                         last = RCV_PKT_DONE;
1028                         goto bail;
1029                 }
1030                 hdrqtail = 0;
1031         } else {
1032                 hdrqtail = get_rcvhdrtail(rcd);
1033                 if (packet.rhqoff == hdrqtail) {
1034                         last = RCV_PKT_DONE;
1035                         goto bail;
1036                 }
1037                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1038 
1039                 /*
1040                  * Control context can potentially receive an invalid
1041                  * rhf. Drop such packets.
1042                  */
1043                 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1044                         u32 seq = rhf_rcv_seq(packet.rhf);
1045 
1046                         if (seq != rcd->seq_cnt)
1047                                 skip_pkt = 1;
1048                 }
1049         }
1050 
1051         prescan_rxq(rcd, &packet);
1052 
1053         while (last == RCV_PKT_OK) {
1054                 if (unlikely(dd->do_drop &&
1055                              atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1056                              DROP_PACKET_ON)) {
1057                         dd->do_drop = 0;
1058 
1059                         /* On to the next packet */
1060                         packet.rhqoff += packet.rsize;
1061                         packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1062                                           packet.rhqoff +
1063                                           rcd->rhf_offset;
1064                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
1065 
1066                 } else if (skip_pkt) {
1067                         last = skip_rcv_packet(&packet, thread);
1068                         skip_pkt = 0;
1069                 } else {
1070                         /* Auto activate link on non-SC15 packet receive */
1071                         if (unlikely(rcd->ppd->host_link_state ==
1072                                      HLS_UP_ARMED) &&
1073                             set_armed_to_active(rcd, &packet, dd))
1074                                 goto bail;
1075                         last = process_rcv_packet(&packet, thread);
1076                 }
1077 
1078                 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1079                         u32 seq = rhf_rcv_seq(packet.rhf);
1080 
1081                         if (++rcd->seq_cnt > 13)
1082                                 rcd->seq_cnt = 1;
1083                         if (seq != rcd->seq_cnt)
1084                                 last = RCV_PKT_DONE;
1085                         if (needset) {
1086                                 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1087                                 set_nodma_rtail(dd, rcd->ctxt);
1088                                 needset = 0;
1089                         }
1090                 } else {
1091                         if (packet.rhqoff == hdrqtail)
1092                                 last = RCV_PKT_DONE;
1093                         /*
1094                          * Control context can potentially receive an invalid
1095                          * rhf. Drop such packets.
1096                          */
1097                         if (rcd->ctxt == HFI1_CTRL_CTXT) {
1098                                 u32 seq = rhf_rcv_seq(packet.rhf);
1099 
1100                                 if (++rcd->seq_cnt > 13)
1101                                         rcd->seq_cnt = 1;
1102                                 if (!last && (seq != rcd->seq_cnt))
1103                                         skip_pkt = 1;
1104                         }
1105 
1106                         if (needset) {
1107                                 dd_dev_info(dd,
1108                                             "Switching to DMA_RTAIL\n");
1109                                 set_dma_rtail(dd, rcd->ctxt);
1110                                 needset = 0;
1111                         }
1112                 }
1113 
1114                 process_rcv_update(last, &packet);
1115         }
1116 
1117         process_rcv_qp_work(&packet);
1118         rcd->head = packet.rhqoff;
1119 
1120 bail:
1121         /*
1122          * Always write head at end, and setup rcv interrupt, even
1123          * if no packets were processed.
1124          */
1125         finish_packet(&packet);
1126         return last;
1127 }
1128 
1129 /*
1130  * We may discover in the interrupt that the hardware link state has
1131  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1132  * and we need to update the driver's notion of the link state.  We cannot
1133  * run set_link_state from interrupt context, so we queue this function on
1134  * a workqueue.
1135  *
1136  * We delay the regular interrupt processing until after the state changes
1137  * so that the link will be in the correct state by the time any application
1138  * we wake up attempts to send a reply to any message it received.
1139  * (Subsequent receive interrupts may possibly force the wakeup before we
1140  * update the link state.)
1141  *
1142  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1143  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1144  * so we're safe from use-after-free of the rcd.
1145  */
1146 void receive_interrupt_work(struct work_struct *work)
1147 {
1148         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1149                                                   linkstate_active_work);
1150         struct hfi1_devdata *dd = ppd->dd;
1151         struct hfi1_ctxtdata *rcd;
1152         u16 i;
1153 
1154         /* Received non-SC15 packet implies neighbor_normal */
1155         ppd->neighbor_normal = 1;
1156         set_link_state(ppd, HLS_UP_ACTIVE);
1157 
1158         /*
1159          * Interrupt all statically allocated kernel contexts that could
1160          * have had an interrupt during auto activation.
1161          */
1162         for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1163                 rcd = hfi1_rcd_get_by_index(dd, i);
1164                 if (rcd)
1165                         force_recv_intr(rcd);
1166                 hfi1_rcd_put(rcd);
1167         }
1168 }
1169 
1170 /*
1171  * Convert a given MTU size to the on-wire MAD packet enumeration.
1172  * Return -1 if the size is invalid.
1173  */
1174 int mtu_to_enum(u32 mtu, int default_if_bad)
1175 {
1176         switch (mtu) {
1177         case     0: return OPA_MTU_0;
1178         case   256: return OPA_MTU_256;
1179         case   512: return OPA_MTU_512;
1180         case  1024: return OPA_MTU_1024;
1181         case  2048: return OPA_MTU_2048;
1182         case  4096: return OPA_MTU_4096;
1183         case  8192: return OPA_MTU_8192;
1184         case 10240: return OPA_MTU_10240;
1185         }
1186         return default_if_bad;
1187 }
1188 
1189 u16 enum_to_mtu(int mtu)
1190 {
1191         switch (mtu) {
1192         case OPA_MTU_0:     return 0;
1193         case OPA_MTU_256:   return 256;
1194         case OPA_MTU_512:   return 512;
1195         case OPA_MTU_1024:  return 1024;
1196         case OPA_MTU_2048:  return 2048;
1197         case OPA_MTU_4096:  return 4096;
1198         case OPA_MTU_8192:  return 8192;
1199         case OPA_MTU_10240: return 10240;
1200         default: return 0xffff;
1201         }
1202 }
1203 
1204 /*
1205  * set_mtu - set the MTU
1206  * @ppd: the per port data
1207  *
1208  * We can handle "any" incoming size, the issue here is whether we
1209  * need to restrict our outgoing size.  We do not deal with what happens
1210  * to programs that are already running when the size changes.
1211  */
1212 int set_mtu(struct hfi1_pportdata *ppd)
1213 {
1214         struct hfi1_devdata *dd = ppd->dd;
1215         int i, drain, ret = 0, is_up = 0;
1216 
1217         ppd->ibmtu = 0;
1218         for (i = 0; i < ppd->vls_supported; i++)
1219                 if (ppd->ibmtu < dd->vld[i].mtu)
1220                         ppd->ibmtu = dd->vld[i].mtu;
1221         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1222 
1223         mutex_lock(&ppd->hls_lock);
1224         if (ppd->host_link_state == HLS_UP_INIT ||
1225             ppd->host_link_state == HLS_UP_ARMED ||
1226             ppd->host_link_state == HLS_UP_ACTIVE)
1227                 is_up = 1;
1228 
1229         drain = !is_ax(dd) && is_up;
1230 
1231         if (drain)
1232                 /*
1233                  * MTU is specified per-VL. To ensure that no packet gets
1234                  * stuck (due, e.g., to the MTU for the packet's VL being
1235                  * reduced), empty the per-VL FIFOs before adjusting MTU.
1236                  */
1237                 ret = stop_drain_data_vls(dd);
1238 
1239         if (ret) {
1240                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1241                            __func__);
1242                 goto err;
1243         }
1244 
1245         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1246 
1247         if (drain)
1248                 open_fill_data_vls(dd); /* reopen all VLs */
1249 
1250 err:
1251         mutex_unlock(&ppd->hls_lock);
1252 
1253         return ret;
1254 }
1255 
1256 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1257 {
1258         struct hfi1_devdata *dd = ppd->dd;
1259 
1260         ppd->lid = lid;
1261         ppd->lmc = lmc;
1262         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1263 
1264         dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1265 
1266         return 0;
1267 }
1268 
1269 void shutdown_led_override(struct hfi1_pportdata *ppd)
1270 {
1271         struct hfi1_devdata *dd = ppd->dd;
1272 
1273         /*
1274          * This pairs with the memory barrier in hfi1_start_led_override to
1275          * ensure that we read the correct state of LED beaconing represented
1276          * by led_override_timer_active
1277          */
1278         smp_rmb();
1279         if (atomic_read(&ppd->led_override_timer_active)) {
1280                 del_timer_sync(&ppd->led_override_timer);
1281                 atomic_set(&ppd->led_override_timer_active, 0);
1282                 /* Ensure the atomic_set is visible to all CPUs */
1283                 smp_wmb();
1284         }
1285 
1286         /* Hand control of the LED to the DC for normal operation */
1287         write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1288 }
1289 
1290 static void run_led_override(struct timer_list *t)
1291 {
1292         struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1293         struct hfi1_devdata *dd = ppd->dd;
1294         unsigned long timeout;
1295         int phase_idx;
1296 
1297         if (!(dd->flags & HFI1_INITTED))
1298                 return;
1299 
1300         phase_idx = ppd->led_override_phase & 1;
1301 
1302         setextled(dd, phase_idx);
1303 
1304         timeout = ppd->led_override_vals[phase_idx];
1305 
1306         /* Set up for next phase */
1307         ppd->led_override_phase = !ppd->led_override_phase;
1308 
1309         mod_timer(&ppd->led_override_timer, jiffies + timeout);
1310 }
1311 
1312 /*
1313  * To have the LED blink in a particular pattern, provide timeon and timeoff
1314  * in milliseconds.
1315  * To turn off custom blinking and return to normal operation, use
1316  * shutdown_led_override()
1317  */
1318 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1319                              unsigned int timeoff)
1320 {
1321         if (!(ppd->dd->flags & HFI1_INITTED))
1322                 return;
1323 
1324         /* Convert to jiffies for direct use in timer */
1325         ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1326         ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1327 
1328         /* Arbitrarily start from LED on phase */
1329         ppd->led_override_phase = 1;
1330 
1331         /*
1332          * If the timer has not already been started, do so. Use a "quick"
1333          * timeout so the handler will be called soon to look at our request.
1334          */
1335         if (!timer_pending(&ppd->led_override_timer)) {
1336                 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1337                 ppd->led_override_timer.expires = jiffies + 1;
1338                 add_timer(&ppd->led_override_timer);
1339                 atomic_set(&ppd->led_override_timer_active, 1);
1340                 /* Ensure the atomic_set is visible to all CPUs */
1341                 smp_wmb();
1342         }
1343 }
1344 
1345 /**
1346  * hfi1_reset_device - reset the chip if possible
1347  * @unit: the device to reset
1348  *
1349  * Whether or not reset is successful, we attempt to re-initialize the chip
1350  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1351  * so that the various entry points will fail until we reinitialize.  For
1352  * now, we only allow this if no user contexts are open that use chip resources
1353  */
1354 int hfi1_reset_device(int unit)
1355 {
1356         int ret;
1357         struct hfi1_devdata *dd = hfi1_lookup(unit);
1358         struct hfi1_pportdata *ppd;
1359         int pidx;
1360 
1361         if (!dd) {
1362                 ret = -ENODEV;
1363                 goto bail;
1364         }
1365 
1366         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1367 
1368         if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1369                 dd_dev_info(dd,
1370                             "Invalid unit number %u or not initialized or not present\n",
1371                             unit);
1372                 ret = -ENXIO;
1373                 goto bail;
1374         }
1375 
1376         /* If there are any user/vnic contexts, we cannot reset */
1377         mutex_lock(&hfi1_mutex);
1378         if (dd->rcd)
1379                 if (hfi1_stats.sps_ctxts) {
1380                         mutex_unlock(&hfi1_mutex);
1381                         ret = -EBUSY;
1382                         goto bail;
1383                 }
1384         mutex_unlock(&hfi1_mutex);
1385 
1386         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1387                 ppd = dd->pport + pidx;
1388 
1389                 shutdown_led_override(ppd);
1390         }
1391         if (dd->flags & HFI1_HAS_SEND_DMA)
1392                 sdma_exit(dd);
1393 
1394         hfi1_reset_cpu_counters(dd);
1395 
1396         ret = hfi1_init(dd, 1);
1397 
1398         if (ret)
1399                 dd_dev_err(dd,
1400                            "Reinitialize unit %u after reset failed with %d\n",
1401                            unit, ret);
1402         else
1403                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1404                             unit);
1405 
1406 bail:
1407         return ret;
1408 }
1409 
1410 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1411 {
1412         packet->hdr = (struct hfi1_ib_message_header *)
1413                         hfi1_get_msgheader(packet->rcd,
1414                                            packet->rhf_addr);
1415         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1416 }
1417 
1418 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1419 {
1420         struct hfi1_pportdata *ppd = packet->rcd->ppd;
1421 
1422         /* slid and dlid cannot be 0 */
1423         if ((!packet->slid) || (!packet->dlid))
1424                 return -EINVAL;
1425 
1426         /* Compare port lid with incoming packet dlid */
1427         if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1428             (packet->dlid !=
1429                 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1430                 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1431                         return -EINVAL;
1432         }
1433 
1434         /* No multicast packets with SC15 */
1435         if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1436                 return -EINVAL;
1437 
1438         /* Packets with permissive DLID always on SC15 */
1439         if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1440                                          16B)) &&
1441             (packet->sc != 0xF))
1442                 return -EINVAL;
1443 
1444         return 0;
1445 }
1446 
1447 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1448 {
1449         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1450         struct ib_header *hdr;
1451         u8 lnh;
1452 
1453         hfi1_setup_ib_header(packet);
1454         hdr = packet->hdr;
1455 
1456         lnh = ib_get_lnh(hdr);
1457         if (lnh == HFI1_LRH_BTH) {
1458                 packet->ohdr = &hdr->u.oth;
1459                 packet->grh = NULL;
1460         } else if (lnh == HFI1_LRH_GRH) {
1461                 u32 vtf;
1462 
1463                 packet->ohdr = &hdr->u.l.oth;
1464                 packet->grh = &hdr->u.l.grh;
1465                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1466                         goto drop;
1467                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1468                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1469                         goto drop;
1470         } else {
1471                 goto drop;
1472         }
1473 
1474         /* Query commonly used fields from packet header */
1475         packet->payload = packet->ebuf;
1476         packet->opcode = ib_bth_get_opcode(packet->ohdr);
1477         packet->slid = ib_get_slid(hdr);
1478         packet->dlid = ib_get_dlid(hdr);
1479         if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1480                      (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1481                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1482                                 be16_to_cpu(IB_MULTICAST_LID_BASE);
1483         packet->sl = ib_get_sl(hdr);
1484         packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1485         packet->pad = ib_bth_get_pad(packet->ohdr);
1486         packet->extra_byte = 0;
1487         packet->pkey = ib_bth_get_pkey(packet->ohdr);
1488         packet->migrated = ib_bth_is_migration(packet->ohdr);
1489 
1490         return 0;
1491 drop:
1492         ibp->rvp.n_pkt_drops++;
1493         return -EINVAL;
1494 }
1495 
1496 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1497 {
1498         /*
1499          * Bypass packets have a different header/payload split
1500          * compared to an IB packet.
1501          * Current split is set such that 16 bytes of the actual
1502          * header is in the header buffer and the remining is in
1503          * the eager buffer. We chose 16 since hfi1 driver only
1504          * supports 16B bypass packets and we will be able to
1505          * receive the entire LRH with such a split.
1506          */
1507 
1508         struct hfi1_ctxtdata *rcd = packet->rcd;
1509         struct hfi1_pportdata *ppd = rcd->ppd;
1510         struct hfi1_ibport *ibp = &ppd->ibport_data;
1511         u8 l4;
1512 
1513         packet->hdr = (struct hfi1_16b_header *)
1514                         hfi1_get_16B_header(packet->rcd,
1515                                             packet->rhf_addr);
1516         l4 = hfi1_16B_get_l4(packet->hdr);
1517         if (l4 == OPA_16B_L4_IB_LOCAL) {
1518                 packet->ohdr = packet->ebuf;
1519                 packet->grh = NULL;
1520                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1521                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1522                 /* hdr_len_by_opcode already has an IB LRH factored in */
1523                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1524                         (LRH_16B_BYTES - LRH_9B_BYTES);
1525                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1526         } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1527                 u32 vtf;
1528                 u8 grh_len = sizeof(struct ib_grh);
1529 
1530                 packet->ohdr = packet->ebuf + grh_len;
1531                 packet->grh = packet->ebuf;
1532                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1533                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1534                 /* hdr_len_by_opcode already has an IB LRH factored in */
1535                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1536                         (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1537                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1538 
1539                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1540                         goto drop;
1541                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1542                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1543                         goto drop;
1544         } else if (l4 == OPA_16B_L4_FM) {
1545                 packet->mgmt = packet->ebuf;
1546                 packet->ohdr = NULL;
1547                 packet->grh = NULL;
1548                 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1549                 packet->pad = OPA_16B_L4_FM_PAD;
1550                 packet->hlen = OPA_16B_L4_FM_HLEN;
1551                 packet->migrated = false;
1552         } else {
1553                 goto drop;
1554         }
1555 
1556         /* Query commonly used fields from packet header */
1557         packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1558         packet->slid = hfi1_16B_get_slid(packet->hdr);
1559         packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1560         if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1561                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1562                                 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1563                                             16B);
1564         packet->sc = hfi1_16B_get_sc(packet->hdr);
1565         packet->sl = ibp->sc_to_sl[packet->sc];
1566         packet->extra_byte = SIZE_OF_LT;
1567         packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1568 
1569         if (hfi1_bypass_ingress_pkt_check(packet))
1570                 goto drop;
1571 
1572         return 0;
1573 drop:
1574         hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1575         ibp->rvp.n_pkt_drops++;
1576         return -EINVAL;
1577 }
1578 
1579 static void show_eflags_errs(struct hfi1_packet *packet)
1580 {
1581         struct hfi1_ctxtdata *rcd = packet->rcd;
1582         u32 rte = rhf_rcv_type_err(packet->rhf);
1583 
1584         dd_dev_err(rcd->dd,
1585                    "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1586                    rcd->ctxt, packet->rhf,
1587                    packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1588                    packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1589                    packet->rhf & RHF_DC_ERR ? "dc " : "",
1590                    packet->rhf & RHF_TID_ERR ? "tid " : "",
1591                    packet->rhf & RHF_LEN_ERR ? "len " : "",
1592                    packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1593                    packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1594                    rte);
1595 }
1596 
1597 void handle_eflags(struct hfi1_packet *packet)
1598 {
1599         struct hfi1_ctxtdata *rcd = packet->rcd;
1600 
1601         rcv_hdrerr(rcd, rcd->ppd, packet);
1602         if (rhf_err_flags(packet->rhf))
1603                 show_eflags_errs(packet);
1604 }
1605 
1606 /*
1607  * The following functions are called by the interrupt handler. They are type
1608  * specific handlers for each packet type.
1609  */
1610 static int process_receive_ib(struct hfi1_packet *packet)
1611 {
1612         if (hfi1_setup_9B_packet(packet))
1613                 return RHF_RCV_CONTINUE;
1614 
1615         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1616                 return RHF_RCV_CONTINUE;
1617 
1618         trace_hfi1_rcvhdr(packet);
1619 
1620         if (unlikely(rhf_err_flags(packet->rhf))) {
1621                 handle_eflags(packet);
1622                 return RHF_RCV_CONTINUE;
1623         }
1624 
1625         hfi1_ib_rcv(packet);
1626         return RHF_RCV_CONTINUE;
1627 }
1628 
1629 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1630 {
1631         /* Packet received in VNIC context via RSM */
1632         if (packet->rcd->is_vnic)
1633                 return true;
1634 
1635         if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1636             (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1637                 return true;
1638 
1639         return false;
1640 }
1641 
1642 static int process_receive_bypass(struct hfi1_packet *packet)
1643 {
1644         struct hfi1_devdata *dd = packet->rcd->dd;
1645 
1646         if (hfi1_is_vnic_packet(packet)) {
1647                 hfi1_vnic_bypass_rcv(packet);
1648                 return RHF_RCV_CONTINUE;
1649         }
1650 
1651         if (hfi1_setup_bypass_packet(packet))
1652                 return RHF_RCV_CONTINUE;
1653 
1654         trace_hfi1_rcvhdr(packet);
1655 
1656         if (unlikely(rhf_err_flags(packet->rhf))) {
1657                 handle_eflags(packet);
1658                 return RHF_RCV_CONTINUE;
1659         }
1660 
1661         if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1662                 hfi1_16B_rcv(packet);
1663         } else {
1664                 dd_dev_err(dd,
1665                            "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1666                 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1667                 if (!(dd->err_info_rcvport.status_and_code &
1668                       OPA_EI_STATUS_SMASK)) {
1669                         u64 *flits = packet->ebuf;
1670 
1671                         if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1672                                 dd->err_info_rcvport.packet_flit1 = flits[0];
1673                                 dd->err_info_rcvport.packet_flit2 =
1674                                         packet->tlen > sizeof(flits[0]) ?
1675                                         flits[1] : 0;
1676                         }
1677                         dd->err_info_rcvport.status_and_code |=
1678                                 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1679                 }
1680         }
1681         return RHF_RCV_CONTINUE;
1682 }
1683 
1684 static int process_receive_error(struct hfi1_packet *packet)
1685 {
1686         /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1687         if (unlikely(
1688                  hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1689                  (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1690                   packet->rhf & RHF_DC_ERR)))
1691                 return RHF_RCV_CONTINUE;
1692 
1693         hfi1_setup_ib_header(packet);
1694         handle_eflags(packet);
1695 
1696         if (unlikely(rhf_err_flags(packet->rhf)))
1697                 dd_dev_err(packet->rcd->dd,
1698                            "Unhandled error packet received. Dropping.\n");
1699 
1700         return RHF_RCV_CONTINUE;
1701 }
1702 
1703 static int kdeth_process_expected(struct hfi1_packet *packet)
1704 {
1705         hfi1_setup_9B_packet(packet);
1706         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1707                 return RHF_RCV_CONTINUE;
1708 
1709         if (unlikely(rhf_err_flags(packet->rhf))) {
1710                 struct hfi1_ctxtdata *rcd = packet->rcd;
1711 
1712                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1713                         return RHF_RCV_CONTINUE;
1714         }
1715 
1716         hfi1_kdeth_expected_rcv(packet);
1717         return RHF_RCV_CONTINUE;
1718 }
1719 
1720 static int kdeth_process_eager(struct hfi1_packet *packet)
1721 {
1722         hfi1_setup_9B_packet(packet);
1723         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1724                 return RHF_RCV_CONTINUE;
1725 
1726         trace_hfi1_rcvhdr(packet);
1727         if (unlikely(rhf_err_flags(packet->rhf))) {
1728                 struct hfi1_ctxtdata *rcd = packet->rcd;
1729 
1730                 show_eflags_errs(packet);
1731                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1732                         return RHF_RCV_CONTINUE;
1733         }
1734 
1735         hfi1_kdeth_eager_rcv(packet);
1736         return RHF_RCV_CONTINUE;
1737 }
1738 
1739 static int process_receive_invalid(struct hfi1_packet *packet)
1740 {
1741         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1742                    rhf_rcv_type(packet->rhf));
1743         return RHF_RCV_CONTINUE;
1744 }
1745 
1746 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1747 {
1748         struct hfi1_packet packet;
1749         struct ps_mdata mdata;
1750 
1751         seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1752                    rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1753                    HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1754                    "dma_rtail" : "nodma_rtail",
1755                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1756                    RCV_HDR_HEAD_HEAD_MASK,
1757                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1758 
1759         init_packet(rcd, &packet);
1760         init_ps_mdata(&mdata, &packet);
1761 
1762         while (1) {
1763                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1764                                          rcd->rhf_offset;
1765                 struct ib_header *hdr;
1766                 u64 rhf = rhf_to_cpu(rhf_addr);
1767                 u32 etype = rhf_rcv_type(rhf), qpn;
1768                 u8 opcode;
1769                 u32 psn;
1770                 u8 lnh;
1771 
1772                 if (ps_done(&mdata, rhf, rcd))
1773                         break;
1774 
1775                 if (ps_skip(&mdata, rhf, rcd))
1776                         goto next;
1777 
1778                 if (etype > RHF_RCV_TYPE_IB)
1779                         goto next;
1780 
1781                 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1782                 hdr = packet.hdr;
1783 
1784                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1785 
1786                 if (lnh == HFI1_LRH_BTH)
1787                         packet.ohdr = &hdr->u.oth;
1788                 else if (lnh == HFI1_LRH_GRH)
1789                         packet.ohdr = &hdr->u.l.oth;
1790                 else
1791                         goto next; /* just in case */
1792 
1793                 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1794                 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1795                 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1796 
1797                 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1798                            mdata.ps_head, opcode, qpn, psn);
1799 next:
1800                 update_ps_mdata(&mdata, rcd);
1801         }
1802 }
1803 
1804 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1805         [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1806         [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1807         [RHF_RCV_TYPE_IB] = process_receive_ib,
1808         [RHF_RCV_TYPE_ERROR] = process_receive_error,
1809         [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1810         [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1811         [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1812         [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1813 };

/* [<][>][^][v][top][bottom][index][help] */