root/drivers/infiniband/hw/hfi1/verbs.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qp_ok
  2. hfi1_fault_tx
  3. tid_qp_ok
  4. hfi1_kdeth_eager_rcv
  5. hfi1_kdeth_expected_rcv
  6. hfi1_do_pkey_check
  7. hfi1_handle_packet
  8. hfi1_ib_rcv
  9. hfi1_16B_rcv
  10. mem_timer
  11. verbs_sdma_complete
  12. hfi1_wait_kmem
  13. wait_kmem
  14. build_verbs_ulp_payload
  15. update_tx_opstats
  16. build_verbs_tx_desc
  17. update_hcrc
  18. hfi1_verbs_send_dma
  19. pio_wait
  20. verbs_pio_complete
  21. hfi1_verbs_send_pio
  22. egress_pkey_matches_entry
  23. egress_pkey_check
  24. get_send_routine
  25. hfi1_verbs_send
  26. hfi1_fill_device_attr
  27. opa_speed_to_ib
  28. opa_width_to_ib
  29. query_port
  30. modify_device
  31. shut_down_port
  32. hfi1_get_guid_be
  33. ah_to_sc
  34. hfi1_check_ah
  35. hfi1_notify_new_ah
  36. hfi1_get_npkeys
  37. init_ibport
  38. hfi1_get_dev_fw_str
  39. init_cntr_names
  40. alloc_hw_stats
  41. hfi1_sps_ints
  42. get_hw_stats
  43. hfi1_register_ib_device
  44. hfi1_unregister_ib_device
  45. hfi1_cnp_rcv

   1 /*
   2  * Copyright(c) 2015 - 2018 Intel Corporation.
   3  *
   4  * This file is provided under a dual BSD/GPLv2 license.  When using or
   5  * redistributing this file, you may do so under either license.
   6  *
   7  * GPL LICENSE SUMMARY
   8  *
   9  * This program is free software; you can redistribute it and/or modify
  10  * it under the terms of version 2 of the GNU General Public License as
  11  * published by the Free Software Foundation.
  12  *
  13  * This program is distributed in the hope that it will be useful, but
  14  * WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  * General Public License for more details.
  17  *
  18  * BSD LICENSE
  19  *
  20  * Redistribution and use in source and binary forms, with or without
  21  * modification, are permitted provided that the following conditions
  22  * are met:
  23  *
  24  *  - Redistributions of source code must retain the above copyright
  25  *    notice, this list of conditions and the following disclaimer.
  26  *  - Redistributions in binary form must reproduce the above copyright
  27  *    notice, this list of conditions and the following disclaimer in
  28  *    the documentation and/or other materials provided with the
  29  *    distribution.
  30  *  - Neither the name of Intel Corporation nor the names of its
  31  *    contributors may be used to endorse or promote products derived
  32  *    from this software without specific prior written permission.
  33  *
  34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45  *
  46  */
  47 
  48 #include <rdma/ib_mad.h>
  49 #include <rdma/ib_user_verbs.h>
  50 #include <linux/io.h>
  51 #include <linux/module.h>
  52 #include <linux/utsname.h>
  53 #include <linux/rculist.h>
  54 #include <linux/mm.h>
  55 #include <linux/vmalloc.h>
  56 #include <rdma/opa_addr.h>
  57 #include <linux/nospec.h>
  58 
  59 #include "hfi.h"
  60 #include "common.h"
  61 #include "device.h"
  62 #include "trace.h"
  63 #include "qp.h"
  64 #include "verbs_txreq.h"
  65 #include "debugfs.h"
  66 #include "vnic.h"
  67 #include "fault.h"
  68 #include "affinity.h"
  69 
  70 static unsigned int hfi1_lkey_table_size = 16;
  71 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  72                    S_IRUGO);
  73 MODULE_PARM_DESC(lkey_table_size,
  74                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
  75 
  76 static unsigned int hfi1_max_pds = 0xFFFF;
  77 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  78 MODULE_PARM_DESC(max_pds,
  79                  "Maximum number of protection domains to support");
  80 
  81 static unsigned int hfi1_max_ahs = 0xFFFF;
  82 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  83 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  84 
  85 unsigned int hfi1_max_cqes = 0x2FFFFF;
  86 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  87 MODULE_PARM_DESC(max_cqes,
  88                  "Maximum number of completion queue entries to support");
  89 
  90 unsigned int hfi1_max_cqs = 0x1FFFF;
  91 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  92 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  93 
  94 unsigned int hfi1_max_qp_wrs = 0x3FFF;
  95 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  96 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  97 
  98 unsigned int hfi1_max_qps = 32768;
  99 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
 100 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
 101 
 102 unsigned int hfi1_max_sges = 0x60;
 103 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
 104 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
 105 
 106 unsigned int hfi1_max_mcast_grps = 16384;
 107 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
 108 MODULE_PARM_DESC(max_mcast_grps,
 109                  "Maximum number of multicast groups to support");
 110 
 111 unsigned int hfi1_max_mcast_qp_attached = 16;
 112 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
 113                    uint, S_IRUGO);
 114 MODULE_PARM_DESC(max_mcast_qp_attached,
 115                  "Maximum number of attached QPs to support");
 116 
 117 unsigned int hfi1_max_srqs = 1024;
 118 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
 119 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
 120 
 121 unsigned int hfi1_max_srq_sges = 128;
 122 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
 123 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
 124 
 125 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
 126 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
 127 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
 128 
 129 unsigned short piothreshold = 256;
 130 module_param(piothreshold, ushort, S_IRUGO);
 131 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
 132 
 133 static unsigned int sge_copy_mode;
 134 module_param(sge_copy_mode, uint, S_IRUGO);
 135 MODULE_PARM_DESC(sge_copy_mode,
 136                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
 137 
 138 static void verbs_sdma_complete(
 139         struct sdma_txreq *cookie,
 140         int status);
 141 
 142 static int pio_wait(struct rvt_qp *qp,
 143                     struct send_context *sc,
 144                     struct hfi1_pkt_state *ps,
 145                     u32 flag);
 146 
 147 /* Length of buffer to create verbs txreq cache name */
 148 #define TXREQ_NAME_LEN 24
 149 
 150 static uint wss_threshold = 80;
 151 module_param(wss_threshold, uint, S_IRUGO);
 152 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 153 static uint wss_clean_period = 256;
 154 module_param(wss_clean_period, uint, S_IRUGO);
 155 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 156 
 157 /*
 158  * Translate ib_wr_opcode into ib_wc_opcode.
 159  */
 160 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
 161         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 162         [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 163         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
 164         [IB_WR_SEND] = IB_WC_SEND,
 165         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
 166         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
 167         [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
 168         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
 169         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
 170         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
 171         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
 172         [IB_WR_REG_MR] = IB_WC_REG_MR
 173 };
 174 
 175 /*
 176  * Length of header by opcode, 0 --> not supported
 177  */
 178 const u8 hdr_len_by_opcode[256] = {
 179         /* RC */
 180         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 181         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 182         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 183         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 184         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 185         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 186         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 187         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 188         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 189         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 190         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 191         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 192         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 193         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 194         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 197         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 198         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
 199         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 200         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 201         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
 202         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
 203         [IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
 204         [IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
 205         [IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
 206         [IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
 207         [IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
 208         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
 209         [IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
 210         [IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
 211         /* UC */
 212         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 213         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 214         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 215         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 216         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 217         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 218         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 219         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 220         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 221         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 222         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 223         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 224         /* UD */
 225         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 226         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 227 };
 228 
 229 static const opcode_handler opcode_handler_tbl[256] = {
 230         /* RC */
 231         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 232         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 233         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 234         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 235         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 236         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 237         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 238         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 239         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 240         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 241         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 242         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 243         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 244         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 245         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 246         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 247         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 248         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 249         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 250         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 251         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 252         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 253         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 254 
 255         /* TID RDMA has separate handlers for different opcodes.*/
 256         [IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
 257         [IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
 258         [IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
 259         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
 260         [IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
 261         [IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
 262         [IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
 263         [IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
 264 
 265         /* UC */
 266         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 267         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 268         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 269         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 270         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 271         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 272         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 273         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 274         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 275         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 276         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 277         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 278         /* UD */
 279         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 280         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 281         /* CNP */
 282         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
 283 };
 284 
 285 #define OPMASK 0x1f
 286 
 287 static const u32 pio_opmask[BIT(3)] = {
 288         /* RC */
 289         [IB_OPCODE_RC >> 5] =
 290                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
 291                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 292                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 293                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
 294                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
 295                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
 296                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
 297                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
 298                 BIT(RC_OP(FETCH_ADD) & OPMASK),
 299         /* UC */
 300         [IB_OPCODE_UC >> 5] =
 301                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
 302                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 303                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 304                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
 305 };
 306 
 307 /*
 308  * System image GUID.
 309  */
 310 __be64 ib_hfi1_sys_image_guid;
 311 
 312 /*
 313  * Make sure the QP is ready and able to accept the given opcode.
 314  */
 315 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
 316 {
 317         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 318                 return NULL;
 319         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
 320              packet->qp->allowed_ops) ||
 321             (packet->opcode == IB_OPCODE_CNP))
 322                 return opcode_handler_tbl[packet->opcode];
 323 
 324         return NULL;
 325 }
 326 
 327 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
 328 {
 329 #ifdef CONFIG_FAULT_INJECTION
 330         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
 331                 /*
 332                  * In order to drop non-IB traffic we
 333                  * set PbcInsertHrc to NONE (0x2).
 334                  * The packet will still be delivered
 335                  * to the receiving node but a
 336                  * KHdrHCRCErr (KDETH packet with a bad
 337                  * HCRC) will be triggered and the
 338                  * packet will not be delivered to the
 339                  * correct context.
 340                  */
 341                 pbc &= ~PBC_INSERT_HCRC_SMASK;
 342                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
 343         } else {
 344                 /*
 345                  * In order to drop regular verbs
 346                  * traffic we set the PbcTestEbp
 347                  * flag. The packet will still be
 348                  * delivered to the receiving node but
 349                  * a 'late ebp error' will be
 350                  * triggered and will be dropped.
 351                  */
 352                 pbc |= PBC_TEST_EBP;
 353         }
 354 #endif
 355         return pbc;
 356 }
 357 
 358 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
 359 {
 360         if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
 361             !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 362                 return NULL;
 363         if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
 364                 return opcode_handler_tbl[opcode];
 365         return NULL;
 366 }
 367 
 368 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
 369 {
 370         struct hfi1_ctxtdata *rcd = packet->rcd;
 371         struct ib_header *hdr = packet->hdr;
 372         u32 tlen = packet->tlen;
 373         struct hfi1_pportdata *ppd = rcd->ppd;
 374         struct hfi1_ibport *ibp = &ppd->ibport_data;
 375         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 376         opcode_handler opcode_handler;
 377         unsigned long flags;
 378         u32 qp_num;
 379         int lnh;
 380         u8 opcode;
 381 
 382         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
 383         if (unlikely(tlen < 15 * sizeof(u32)))
 384                 goto drop;
 385 
 386         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 387         if (lnh != HFI1_LRH_BTH)
 388                 goto drop;
 389 
 390         packet->ohdr = &hdr->u.oth;
 391         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 392 
 393         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 394         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 395 
 396         /* verbs_qp can be picked up from any tid_rdma header struct */
 397         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
 398                 RVT_QPN_MASK;
 399 
 400         rcu_read_lock();
 401         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 402         if (!packet->qp)
 403                 goto drop_rcu;
 404         spin_lock_irqsave(&packet->qp->r_lock, flags);
 405         opcode_handler = tid_qp_ok(opcode, packet);
 406         if (likely(opcode_handler))
 407                 opcode_handler(packet);
 408         else
 409                 goto drop_unlock;
 410         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 411         rcu_read_unlock();
 412 
 413         return;
 414 drop_unlock:
 415         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 416 drop_rcu:
 417         rcu_read_unlock();
 418 drop:
 419         ibp->rvp.n_pkt_drops++;
 420 }
 421 
 422 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
 423 {
 424         struct hfi1_ctxtdata *rcd = packet->rcd;
 425         struct ib_header *hdr = packet->hdr;
 426         u32 tlen = packet->tlen;
 427         struct hfi1_pportdata *ppd = rcd->ppd;
 428         struct hfi1_ibport *ibp = &ppd->ibport_data;
 429         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 430         opcode_handler opcode_handler;
 431         unsigned long flags;
 432         u32 qp_num;
 433         int lnh;
 434         u8 opcode;
 435 
 436         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
 437         if (unlikely(tlen < 15 * sizeof(u32)))
 438                 goto drop;
 439 
 440         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 441         if (lnh != HFI1_LRH_BTH)
 442                 goto drop;
 443 
 444         packet->ohdr = &hdr->u.oth;
 445         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 446 
 447         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 448         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 449 
 450         /* verbs_qp can be picked up from any tid_rdma header struct */
 451         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
 452                 RVT_QPN_MASK;
 453 
 454         rcu_read_lock();
 455         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 456         if (!packet->qp)
 457                 goto drop_rcu;
 458         spin_lock_irqsave(&packet->qp->r_lock, flags);
 459         opcode_handler = tid_qp_ok(opcode, packet);
 460         if (likely(opcode_handler))
 461                 opcode_handler(packet);
 462         else
 463                 goto drop_unlock;
 464         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 465         rcu_read_unlock();
 466 
 467         return;
 468 drop_unlock:
 469         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 470 drop_rcu:
 471         rcu_read_unlock();
 472 drop:
 473         ibp->rvp.n_pkt_drops++;
 474 }
 475 
 476 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
 477 {
 478         struct hfi1_ctxtdata *rcd = packet->rcd;
 479         struct hfi1_pportdata *ppd = rcd->ppd;
 480         struct hfi1_16b_header *hdr = packet->hdr;
 481         u16 pkey;
 482 
 483         /* Pkey check needed only for bypass packets */
 484         if (packet->etype != RHF_RCV_TYPE_BYPASS)
 485                 return 0;
 486 
 487         /* Perform pkey check */
 488         pkey = hfi1_16B_get_pkey(hdr);
 489         return ingress_pkey_check(ppd, pkey, packet->sc,
 490                                   packet->qp->s_pkey_index,
 491                                   packet->slid, true);
 492 }
 493 
 494 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
 495                                       bool is_mcast)
 496 {
 497         u32 qp_num;
 498         struct hfi1_ctxtdata *rcd = packet->rcd;
 499         struct hfi1_pportdata *ppd = rcd->ppd;
 500         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 501         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 502         opcode_handler packet_handler;
 503         unsigned long flags;
 504 
 505         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
 506 
 507         if (unlikely(is_mcast)) {
 508                 struct rvt_mcast *mcast;
 509                 struct rvt_mcast_qp *p;
 510 
 511                 if (!packet->grh)
 512                         goto drop;
 513                 mcast = rvt_mcast_find(&ibp->rvp,
 514                                        &packet->grh->dgid,
 515                                        opa_get_lid(packet->dlid, 9B));
 516                 if (!mcast)
 517                         goto drop;
 518                 rcu_read_lock();
 519                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 520                         packet->qp = p->qp;
 521                         if (hfi1_do_pkey_check(packet))
 522                                 goto unlock_drop;
 523                         spin_lock_irqsave(&packet->qp->r_lock, flags);
 524                         packet_handler = qp_ok(packet);
 525                         if (likely(packet_handler))
 526                                 packet_handler(packet);
 527                         else
 528                                 ibp->rvp.n_pkt_drops++;
 529                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 530                 }
 531                 rcu_read_unlock();
 532                 /*
 533                  * Notify rvt_multicast_detach() if it is waiting for us
 534                  * to finish.
 535                  */
 536                 if (atomic_dec_return(&mcast->refcount) <= 1)
 537                         wake_up(&mcast->wait);
 538         } else {
 539                 /* Get the destination QP number. */
 540                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
 541                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
 542                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
 543                 else
 544                         qp_num = ib_bth_get_qpn(packet->ohdr);
 545 
 546                 rcu_read_lock();
 547                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 548                 if (!packet->qp)
 549                         goto unlock_drop;
 550 
 551                 if (hfi1_do_pkey_check(packet))
 552                         goto unlock_drop;
 553 
 554                 spin_lock_irqsave(&packet->qp->r_lock, flags);
 555                 packet_handler = qp_ok(packet);
 556                 if (likely(packet_handler))
 557                         packet_handler(packet);
 558                 else
 559                         ibp->rvp.n_pkt_drops++;
 560                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 561                 rcu_read_unlock();
 562         }
 563         return;
 564 unlock_drop:
 565         rcu_read_unlock();
 566 drop:
 567         ibp->rvp.n_pkt_drops++;
 568 }
 569 
 570 /**
 571  * hfi1_ib_rcv - process an incoming packet
 572  * @packet: data packet information
 573  *
 574  * This is called to process an incoming packet at interrupt level.
 575  */
 576 void hfi1_ib_rcv(struct hfi1_packet *packet)
 577 {
 578         struct hfi1_ctxtdata *rcd = packet->rcd;
 579 
 580         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 581         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
 582 }
 583 
 584 void hfi1_16B_rcv(struct hfi1_packet *packet)
 585 {
 586         struct hfi1_ctxtdata *rcd = packet->rcd;
 587 
 588         trace_input_ibhdr(rcd->dd, packet, false);
 589         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
 590 }
 591 
 592 /*
 593  * This is called from a timer to check for QPs
 594  * which need kernel memory in order to send a packet.
 595  */
 596 static void mem_timer(struct timer_list *t)
 597 {
 598         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
 599         struct list_head *list = &dev->memwait;
 600         struct rvt_qp *qp = NULL;
 601         struct iowait *wait;
 602         unsigned long flags;
 603         struct hfi1_qp_priv *priv;
 604 
 605         write_seqlock_irqsave(&dev->iowait_lock, flags);
 606         if (!list_empty(list)) {
 607                 wait = list_first_entry(list, struct iowait, list);
 608                 qp = iowait_to_qp(wait);
 609                 priv = qp->priv;
 610                 list_del_init(&priv->s_iowait.list);
 611                 priv->s_iowait.lock = NULL;
 612                 /* refcount held until actual wake up */
 613                 if (!list_empty(list))
 614                         mod_timer(&dev->mem_timer, jiffies + 1);
 615         }
 616         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 617 
 618         if (qp)
 619                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 620 }
 621 
 622 /*
 623  * This is called with progress side lock held.
 624  */
 625 /* New API */
 626 static void verbs_sdma_complete(
 627         struct sdma_txreq *cookie,
 628         int status)
 629 {
 630         struct verbs_txreq *tx =
 631                 container_of(cookie, struct verbs_txreq, txreq);
 632         struct rvt_qp *qp = tx->qp;
 633 
 634         spin_lock(&qp->s_lock);
 635         if (tx->wqe) {
 636                 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 637         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
 638                 struct hfi1_opa_header *hdr;
 639 
 640                 hdr = &tx->phdr.hdr;
 641                 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
 642                         hfi1_rc_verbs_aborted(qp, hdr);
 643                 hfi1_rc_send_complete(qp, hdr);
 644         }
 645         spin_unlock(&qp->s_lock);
 646 
 647         hfi1_put_txreq(tx);
 648 }
 649 
 650 void hfi1_wait_kmem(struct rvt_qp *qp)
 651 {
 652         struct hfi1_qp_priv *priv = qp->priv;
 653         struct ib_qp *ibqp = &qp->ibqp;
 654         struct ib_device *ibdev = ibqp->device;
 655         struct hfi1_ibdev *dev = to_idev(ibdev);
 656 
 657         if (list_empty(&priv->s_iowait.list)) {
 658                 if (list_empty(&dev->memwait))
 659                         mod_timer(&dev->mem_timer, jiffies + 1);
 660                 qp->s_flags |= RVT_S_WAIT_KMEM;
 661                 list_add_tail(&priv->s_iowait.list, &dev->memwait);
 662                 priv->s_iowait.lock = &dev->iowait_lock;
 663                 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 664                 rvt_get_qp(qp);
 665         }
 666 }
 667 
 668 static int wait_kmem(struct hfi1_ibdev *dev,
 669                      struct rvt_qp *qp,
 670                      struct hfi1_pkt_state *ps)
 671 {
 672         unsigned long flags;
 673         int ret = 0;
 674 
 675         spin_lock_irqsave(&qp->s_lock, flags);
 676         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 677                 write_seqlock(&dev->iowait_lock);
 678                 list_add_tail(&ps->s_txreq->txreq.list,
 679                               &ps->wait->tx_head);
 680                 hfi1_wait_kmem(qp);
 681                 write_sequnlock(&dev->iowait_lock);
 682                 hfi1_qp_unbusy(qp, ps->wait);
 683                 ret = -EBUSY;
 684         }
 685         spin_unlock_irqrestore(&qp->s_lock, flags);
 686 
 687         return ret;
 688 }
 689 
 690 /*
 691  * This routine calls txadds for each sg entry.
 692  *
 693  * Add failures will revert the sge cursor
 694  */
 695 static noinline int build_verbs_ulp_payload(
 696         struct sdma_engine *sde,
 697         u32 length,
 698         struct verbs_txreq *tx)
 699 {
 700         struct rvt_sge_state *ss = tx->ss;
 701         struct rvt_sge *sg_list = ss->sg_list;
 702         struct rvt_sge sge = ss->sge;
 703         u8 num_sge = ss->num_sge;
 704         u32 len;
 705         int ret = 0;
 706 
 707         while (length) {
 708                 len = rvt_get_sge_length(&ss->sge, length);
 709                 WARN_ON_ONCE(len == 0);
 710                 ret = sdma_txadd_kvaddr(
 711                         sde->dd,
 712                         &tx->txreq,
 713                         ss->sge.vaddr,
 714                         len);
 715                 if (ret)
 716                         goto bail_txadd;
 717                 rvt_update_sge(ss, len, false);
 718                 length -= len;
 719         }
 720         return ret;
 721 bail_txadd:
 722         /* unwind cursor */
 723         ss->sge = sge;
 724         ss->num_sge = num_sge;
 725         ss->sg_list = sg_list;
 726         return ret;
 727 }
 728 
 729 /**
 730  * update_tx_opstats - record stats by opcode
 731  * @qp; the qp
 732  * @ps: transmit packet state
 733  * @plen: the plen in dwords
 734  *
 735  * This is a routine to record the tx opstats after a
 736  * packet has been presented to the egress mechanism.
 737  */
 738 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 739                               u32 plen)
 740 {
 741 #ifdef CONFIG_DEBUG_FS
 742         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
 743         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
 744 
 745         inc_opstats(plen * 4, &s->stats[ps->opcode]);
 746         put_cpu_ptr(s);
 747 #endif
 748 }
 749 
 750 /*
 751  * Build the number of DMA descriptors needed to send length bytes of data.
 752  *
 753  * NOTE: DMA mapping is held in the tx until completed in the ring or
 754  *       the tx desc is freed without having been submitted to the ring
 755  *
 756  * This routine ensures all the helper routine calls succeed.
 757  */
 758 /* New API */
 759 static int build_verbs_tx_desc(
 760         struct sdma_engine *sde,
 761         u32 length,
 762         struct verbs_txreq *tx,
 763         struct hfi1_ahg_info *ahg_info,
 764         u64 pbc)
 765 {
 766         int ret = 0;
 767         struct hfi1_sdma_header *phdr = &tx->phdr;
 768         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
 769         u8 extra_bytes = 0;
 770 
 771         if (tx->phdr.hdr.hdr_type) {
 772                 /*
 773                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
 774                  * before calculating padding.
 775                  */
 776                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
 777                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
 778         }
 779         if (!ahg_info->ahgcount) {
 780                 ret = sdma_txinit_ahg(
 781                         &tx->txreq,
 782                         ahg_info->tx_flags,
 783                         hdrbytes + length +
 784                         extra_bytes,
 785                         ahg_info->ahgidx,
 786                         0,
 787                         NULL,
 788                         0,
 789                         verbs_sdma_complete);
 790                 if (ret)
 791                         goto bail_txadd;
 792                 phdr->pbc = cpu_to_le64(pbc);
 793                 ret = sdma_txadd_kvaddr(
 794                         sde->dd,
 795                         &tx->txreq,
 796                         phdr,
 797                         hdrbytes);
 798                 if (ret)
 799                         goto bail_txadd;
 800         } else {
 801                 ret = sdma_txinit_ahg(
 802                         &tx->txreq,
 803                         ahg_info->tx_flags,
 804                         length,
 805                         ahg_info->ahgidx,
 806                         ahg_info->ahgcount,
 807                         ahg_info->ahgdesc,
 808                         hdrbytes,
 809                         verbs_sdma_complete);
 810                 if (ret)
 811                         goto bail_txadd;
 812         }
 813         /* add the ulp payload - if any. tx->ss can be NULL for acks */
 814         if (tx->ss) {
 815                 ret = build_verbs_ulp_payload(sde, length, tx);
 816                 if (ret)
 817                         goto bail_txadd;
 818         }
 819 
 820         /* add icrc, lt byte, and padding to flit */
 821         if (extra_bytes)
 822                 ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
 823                                        sde->dd->sdma_pad_phys, extra_bytes);
 824 
 825 bail_txadd:
 826         return ret;
 827 }
 828 
 829 static u64 update_hcrc(u8 opcode, u64 pbc)
 830 {
 831         if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
 832                 pbc &= ~PBC_INSERT_HCRC_SMASK;
 833                 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
 834         }
 835         return pbc;
 836 }
 837 
 838 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 839                         u64 pbc)
 840 {
 841         struct hfi1_qp_priv *priv = qp->priv;
 842         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
 843         u32 hdrwords = ps->s_txreq->hdr_dwords;
 844         u32 len = ps->s_txreq->s_cur_size;
 845         u32 plen;
 846         struct hfi1_ibdev *dev = ps->dev;
 847         struct hfi1_pportdata *ppd = ps->ppd;
 848         struct verbs_txreq *tx;
 849         u8 sc5 = priv->s_sc;
 850         int ret;
 851         u32 dwords;
 852 
 853         if (ps->s_txreq->phdr.hdr.hdr_type) {
 854                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
 855 
 856                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
 857                           SIZE_OF_LT) >> 2;
 858         } else {
 859                 dwords = (len + 3) >> 2;
 860         }
 861         plen = hdrwords + dwords + sizeof(pbc) / 4;
 862 
 863         tx = ps->s_txreq;
 864         if (!sdma_txreq_built(&tx->txreq)) {
 865                 if (likely(pbc == 0)) {
 866                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 867 
 868                         /* No vl15 here */
 869                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
 870                         if (ps->s_txreq->phdr.hdr.hdr_type)
 871                                 pbc |= PBC_PACKET_BYPASS |
 872                                        PBC_INSERT_BYPASS_ICRC;
 873                         else
 874                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
 875 
 876                         pbc = create_pbc(ppd,
 877                                          pbc,
 878                                          qp->srate_mbps,
 879                                          vl,
 880                                          plen);
 881 
 882                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
 883                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
 884                         else
 885                                 /* Update HCRC based on packet opcode */
 886                                 pbc = update_hcrc(ps->opcode, pbc);
 887                 }
 888                 tx->wqe = qp->s_wqe;
 889                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
 890                 if (unlikely(ret))
 891                         goto bail_build;
 892         }
 893         ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
 894         if (unlikely(ret < 0)) {
 895                 if (ret == -ECOMM)
 896                         goto bail_ecomm;
 897                 return ret;
 898         }
 899 
 900         update_tx_opstats(qp, ps, plen);
 901         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 902                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
 903         return ret;
 904 
 905 bail_ecomm:
 906         /* The current one got "sent" */
 907         return 0;
 908 bail_build:
 909         ret = wait_kmem(dev, qp, ps);
 910         if (!ret) {
 911                 /* free txreq - bad state */
 912                 hfi1_put_txreq(ps->s_txreq);
 913                 ps->s_txreq = NULL;
 914         }
 915         return ret;
 916 }
 917 
 918 /*
 919  * If we are now in the error state, return zero to flush the
 920  * send work request.
 921  */
 922 static int pio_wait(struct rvt_qp *qp,
 923                     struct send_context *sc,
 924                     struct hfi1_pkt_state *ps,
 925                     u32 flag)
 926 {
 927         struct hfi1_qp_priv *priv = qp->priv;
 928         struct hfi1_devdata *dd = sc->dd;
 929         unsigned long flags;
 930         int ret = 0;
 931 
 932         /*
 933          * Note that as soon as want_buffer() is called and
 934          * possibly before it returns, sc_piobufavail()
 935          * could be called. Therefore, put QP on the I/O wait list before
 936          * enabling the PIO avail interrupt.
 937          */
 938         spin_lock_irqsave(&qp->s_lock, flags);
 939         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 940                 write_seqlock(&sc->waitlock);
 941                 list_add_tail(&ps->s_txreq->txreq.list,
 942                               &ps->wait->tx_head);
 943                 if (list_empty(&priv->s_iowait.list)) {
 944                         struct hfi1_ibdev *dev = &dd->verbs_dev;
 945                         int was_empty;
 946 
 947                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 948                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
 949                         qp->s_flags |= flag;
 950                         was_empty = list_empty(&sc->piowait);
 951                         iowait_get_priority(&priv->s_iowait);
 952                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
 953                                      &sc->piowait);
 954                         priv->s_iowait.lock = &sc->waitlock;
 955                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 956                         rvt_get_qp(qp);
 957                         /* counting: only call wantpiobuf_intr if first user */
 958                         if (was_empty)
 959                                 hfi1_sc_wantpiobuf_intr(sc, 1);
 960                 }
 961                 write_sequnlock(&sc->waitlock);
 962                 hfi1_qp_unbusy(qp, ps->wait);
 963                 ret = -EBUSY;
 964         }
 965         spin_unlock_irqrestore(&qp->s_lock, flags);
 966         return ret;
 967 }
 968 
 969 static void verbs_pio_complete(void *arg, int code)
 970 {
 971         struct rvt_qp *qp = (struct rvt_qp *)arg;
 972         struct hfi1_qp_priv *priv = qp->priv;
 973 
 974         if (iowait_pio_dec(&priv->s_iowait))
 975                 iowait_drain_wakeup(&priv->s_iowait);
 976 }
 977 
 978 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 979                         u64 pbc)
 980 {
 981         struct hfi1_qp_priv *priv = qp->priv;
 982         u32 hdrwords = ps->s_txreq->hdr_dwords;
 983         struct rvt_sge_state *ss = ps->s_txreq->ss;
 984         u32 len = ps->s_txreq->s_cur_size;
 985         u32 dwords;
 986         u32 plen;
 987         struct hfi1_pportdata *ppd = ps->ppd;
 988         u32 *hdr;
 989         u8 sc5;
 990         unsigned long flags = 0;
 991         struct send_context *sc;
 992         struct pio_buf *pbuf;
 993         int wc_status = IB_WC_SUCCESS;
 994         int ret = 0;
 995         pio_release_cb cb = NULL;
 996         u8 extra_bytes = 0;
 997 
 998         if (ps->s_txreq->phdr.hdr.hdr_type) {
 999                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1000 
1001                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1002                 dwords = (len + extra_bytes) >> 2;
1003                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1004         } else {
1005                 dwords = (len + 3) >> 2;
1006                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1007         }
1008         plen = hdrwords + dwords + sizeof(pbc) / 4;
1009 
1010         /* only RC/UC use complete */
1011         switch (qp->ibqp.qp_type) {
1012         case IB_QPT_RC:
1013         case IB_QPT_UC:
1014                 cb = verbs_pio_complete;
1015                 break;
1016         default:
1017                 break;
1018         }
1019 
1020         /* vl15 special case taken care of in ud.c */
1021         sc5 = priv->s_sc;
1022         sc = ps->s_txreq->psc;
1023 
1024         if (likely(pbc == 0)) {
1025                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1026 
1027                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1028                 if (ps->s_txreq->phdr.hdr.hdr_type)
1029                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1030                 else
1031                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1032 
1033                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1034                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1035                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1036                 else
1037                         /* Update HCRC based on packet opcode */
1038                         pbc = update_hcrc(ps->opcode, pbc);
1039         }
1040         if (cb)
1041                 iowait_pio_inc(&priv->s_iowait);
1042         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1043         if (IS_ERR_OR_NULL(pbuf)) {
1044                 if (cb)
1045                         verbs_pio_complete(qp, 0);
1046                 if (IS_ERR(pbuf)) {
1047                         /*
1048                          * If we have filled the PIO buffers to capacity and are
1049                          * not in an active state this request is not going to
1050                          * go out to so just complete it with an error or else a
1051                          * ULP or the core may be stuck waiting.
1052                          */
1053                         hfi1_cdbg(
1054                                 PIO,
1055                                 "alloc failed. state not active, completing");
1056                         wc_status = IB_WC_GENERAL_ERR;
1057                         goto pio_bail;
1058                 } else {
1059                         /*
1060                          * This is a normal occurrence. The PIO buffs are full
1061                          * up but we are still happily sending, well we could be
1062                          * so lets continue to queue the request.
1063                          */
1064                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1065                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1066                         if (!ret)
1067                                 /* txreq not queued - free */
1068                                 goto bail;
1069                         /* tx consumed in wait */
1070                         return ret;
1071                 }
1072         }
1073 
1074         if (dwords == 0) {
1075                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1076         } else {
1077                 seg_pio_copy_start(pbuf, pbc,
1078                                    hdr, hdrwords * 4);
1079                 if (ss) {
1080                         while (len) {
1081                                 void *addr = ss->sge.vaddr;
1082                                 u32 slen = rvt_get_sge_length(&ss->sge, len);
1083 
1084                                 rvt_update_sge(ss, slen, false);
1085                                 seg_pio_copy_mid(pbuf, addr, slen);
1086                                 len -= slen;
1087                         }
1088                 }
1089                 /* add icrc, lt byte, and padding to flit */
1090                 if (extra_bytes)
1091                         seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1092                                          extra_bytes);
1093 
1094                 seg_pio_copy_end(pbuf);
1095         }
1096 
1097         update_tx_opstats(qp, ps, plen);
1098         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1099                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1100 
1101 pio_bail:
1102         spin_lock_irqsave(&qp->s_lock, flags);
1103         if (qp->s_wqe) {
1104                 rvt_send_complete(qp, qp->s_wqe, wc_status);
1105         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1106                 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1107                         hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1108                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1109         }
1110         spin_unlock_irqrestore(&qp->s_lock, flags);
1111 
1112         ret = 0;
1113 
1114 bail:
1115         hfi1_put_txreq(ps->s_txreq);
1116         return ret;
1117 }
1118 
1119 /*
1120  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1121  * being an entry from the partition key table), return 0
1122  * otherwise. Use the matching criteria for egress partition keys
1123  * specified in the OPAv1 spec., section 9.1l.7.
1124  */
1125 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1126 {
1127         u16 mkey = pkey & PKEY_LOW_15_MASK;
1128         u16 mentry = ent & PKEY_LOW_15_MASK;
1129 
1130         if (mkey == mentry) {
1131                 /*
1132                  * If pkey[15] is set (full partition member),
1133                  * is bit 15 in the corresponding table element
1134                  * clear (limited member)?
1135                  */
1136                 if (pkey & PKEY_MEMBER_MASK)
1137                         return !!(ent & PKEY_MEMBER_MASK);
1138                 return 1;
1139         }
1140         return 0;
1141 }
1142 
1143 /**
1144  * egress_pkey_check - check P_KEY of a packet
1145  * @ppd:  Physical IB port data
1146  * @slid: SLID for packet
1147  * @bkey: PKEY for header
1148  * @sc5:  SC for packet
1149  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1150  * only. If it is negative value, then it means user contexts is calling this
1151  * function.
1152  *
1153  * It checks if hdr's pkey is valid.
1154  *
1155  * Return: 0 on success, otherwise, 1
1156  */
1157 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1158                       u8 sc5, int8_t s_pkey_index)
1159 {
1160         struct hfi1_devdata *dd;
1161         int i;
1162         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1163 
1164         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1165                 return 0;
1166 
1167         /* If SC15, pkey[0:14] must be 0x7fff */
1168         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1169                 goto bad;
1170 
1171         /* Is the pkey = 0x0, or 0x8000? */
1172         if ((pkey & PKEY_LOW_15_MASK) == 0)
1173                 goto bad;
1174 
1175         /*
1176          * For the kernel contexts only, if a qp is passed into the function,
1177          * the most likely matching pkey has index qp->s_pkey_index
1178          */
1179         if (!is_user_ctxt_mechanism &&
1180             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1181                 return 0;
1182         }
1183 
1184         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1185                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1186                         return 0;
1187         }
1188 bad:
1189         /*
1190          * For the user-context mechanism, the P_KEY check would only happen
1191          * once per SDMA request, not once per packet.  Therefore, there's no
1192          * need to increment the counter for the user-context mechanism.
1193          */
1194         if (!is_user_ctxt_mechanism) {
1195                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1196                 dd = ppd->dd;
1197                 if (!(dd->err_info_xmit_constraint.status &
1198                       OPA_EI_STATUS_SMASK)) {
1199                         dd->err_info_xmit_constraint.status |=
1200                                 OPA_EI_STATUS_SMASK;
1201                         dd->err_info_xmit_constraint.slid = slid;
1202                         dd->err_info_xmit_constraint.pkey = pkey;
1203                 }
1204         }
1205         return 1;
1206 }
1207 
1208 /**
1209  * get_send_routine - choose an egress routine
1210  *
1211  * Choose an egress routine based on QP type
1212  * and size
1213  */
1214 static inline send_routine get_send_routine(struct rvt_qp *qp,
1215                                             struct hfi1_pkt_state *ps)
1216 {
1217         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1218         struct hfi1_qp_priv *priv = qp->priv;
1219         struct verbs_txreq *tx = ps->s_txreq;
1220 
1221         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1222                 return dd->process_pio_send;
1223         switch (qp->ibqp.qp_type) {
1224         case IB_QPT_SMI:
1225                 return dd->process_pio_send;
1226         case IB_QPT_GSI:
1227         case IB_QPT_UD:
1228                 break;
1229         case IB_QPT_UC:
1230         case IB_QPT_RC:
1231                 priv->s_running_pkt_size =
1232                         (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1233                 if (piothreshold &&
1234                     priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1235                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1236                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1237                     !sdma_txreq_built(&tx->txreq))
1238                         return dd->process_pio_send;
1239                 break;
1240         default:
1241                 break;
1242         }
1243         return dd->process_dma_send;
1244 }
1245 
1246 /**
1247  * hfi1_verbs_send - send a packet
1248  * @qp: the QP to send on
1249  * @ps: the state of the packet to send
1250  *
1251  * Return zero if packet is sent or queued OK.
1252  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1253  */
1254 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1255 {
1256         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1257         struct hfi1_qp_priv *priv = qp->priv;
1258         struct ib_other_headers *ohdr = NULL;
1259         send_routine sr;
1260         int ret;
1261         u16 pkey;
1262         u32 slid;
1263         u8 l4 = 0;
1264 
1265         /* locate the pkey within the headers */
1266         if (ps->s_txreq->phdr.hdr.hdr_type) {
1267                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1268 
1269                 l4 = hfi1_16B_get_l4(hdr);
1270                 if (l4 == OPA_16B_L4_IB_LOCAL)
1271                         ohdr = &hdr->u.oth;
1272                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1273                         ohdr = &hdr->u.l.oth;
1274 
1275                 slid = hfi1_16B_get_slid(hdr);
1276                 pkey = hfi1_16B_get_pkey(hdr);
1277         } else {
1278                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1279                 u8 lnh = ib_get_lnh(hdr);
1280 
1281                 if (lnh == HFI1_LRH_GRH)
1282                         ohdr = &hdr->u.l.oth;
1283                 else
1284                         ohdr = &hdr->u.oth;
1285                 slid = ib_get_slid(hdr);
1286                 pkey = ib_bth_get_pkey(ohdr);
1287         }
1288 
1289         if (likely(l4 != OPA_16B_L4_FM))
1290                 ps->opcode = ib_bth_get_opcode(ohdr);
1291         else
1292                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1293 
1294         sr = get_send_routine(qp, ps);
1295         ret = egress_pkey_check(dd->pport, slid, pkey,
1296                                 priv->s_sc, qp->s_pkey_index);
1297         if (unlikely(ret)) {
1298                 /*
1299                  * The value we are returning here does not get propagated to
1300                  * the verbs caller. Thus we need to complete the request with
1301                  * error otherwise the caller could be sitting waiting on the
1302                  * completion event. Only do this for PIO. SDMA has its own
1303                  * mechanism for handling the errors. So for SDMA we can just
1304                  * return.
1305                  */
1306                 if (sr == dd->process_pio_send) {
1307                         unsigned long flags;
1308 
1309                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1310                                   __func__);
1311                         spin_lock_irqsave(&qp->s_lock, flags);
1312                         rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1313                         spin_unlock_irqrestore(&qp->s_lock, flags);
1314                 }
1315                 return -EINVAL;
1316         }
1317         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1318                 return pio_wait(qp,
1319                                 ps->s_txreq->psc,
1320                                 ps,
1321                                 HFI1_S_WAIT_PIO_DRAIN);
1322         return sr(qp, ps, 0);
1323 }
1324 
1325 /**
1326  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1327  * @dd: the device data structure
1328  */
1329 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1330 {
1331         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1332         u32 ver = dd->dc8051_ver;
1333 
1334         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1335 
1336         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1337                 ((u64)(dc8051_ver_min(ver)) << 16) |
1338                 (u64)dc8051_ver_patch(ver);
1339 
1340         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1341                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1342                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1343                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1344                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1345                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1346         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1347         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1348         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1349         rdi->dparms.props.hw_ver = dd->minrev;
1350         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1351         rdi->dparms.props.max_mr_size = U64_MAX;
1352         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1353         rdi->dparms.props.max_qp = hfi1_max_qps;
1354         rdi->dparms.props.max_qp_wr =
1355                 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1356                  HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1357         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1358         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1359         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1360         rdi->dparms.props.max_cq = hfi1_max_cqs;
1361         rdi->dparms.props.max_ah = hfi1_max_ahs;
1362         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1363         rdi->dparms.props.max_map_per_fmr = 32767;
1364         rdi->dparms.props.max_pd = hfi1_max_pds;
1365         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1366         rdi->dparms.props.max_qp_init_rd_atom = 255;
1367         rdi->dparms.props.max_srq = hfi1_max_srqs;
1368         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1369         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1370         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1371         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1372         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1373         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1374         rdi->dparms.props.max_total_mcast_qp_attach =
1375                                         rdi->dparms.props.max_mcast_qp_attach *
1376                                         rdi->dparms.props.max_mcast_grp;
1377 }
1378 
1379 static inline u16 opa_speed_to_ib(u16 in)
1380 {
1381         u16 out = 0;
1382 
1383         if (in & OPA_LINK_SPEED_25G)
1384                 out |= IB_SPEED_EDR;
1385         if (in & OPA_LINK_SPEED_12_5G)
1386                 out |= IB_SPEED_FDR;
1387 
1388         return out;
1389 }
1390 
1391 /*
1392  * Convert a single OPA link width (no multiple flags) to an IB value.
1393  * A zero OPA link width means link down, which means the IB width value
1394  * is a don't care.
1395  */
1396 static inline u16 opa_width_to_ib(u16 in)
1397 {
1398         switch (in) {
1399         case OPA_LINK_WIDTH_1X:
1400         /* map 2x and 3x to 1x as they don't exist in IB */
1401         case OPA_LINK_WIDTH_2X:
1402         case OPA_LINK_WIDTH_3X:
1403                 return IB_WIDTH_1X;
1404         default: /* link down or unknown, return our largest width */
1405         case OPA_LINK_WIDTH_4X:
1406                 return IB_WIDTH_4X;
1407         }
1408 }
1409 
1410 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1411                       struct ib_port_attr *props)
1412 {
1413         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1414         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1415         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1416         u32 lid = ppd->lid;
1417 
1418         /* props being zeroed by the caller, avoid zeroing it here */
1419         props->lid = lid ? lid : 0;
1420         props->lmc = ppd->lmc;
1421         /* OPA logical states match IB logical states */
1422         props->state = driver_lstate(ppd);
1423         props->phys_state = driver_pstate(ppd);
1424         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1425         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1426         /* see rate_show() in ib core/sysfs.c */
1427         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1428         props->max_vl_num = ppd->vls_supported;
1429 
1430         /* Once we are a "first class" citizen and have added the OPA MTUs to
1431          * the core we can advertise the larger MTU enum to the ULPs, for now
1432          * advertise only 4K.
1433          *
1434          * Those applications which are either OPA aware or pass the MTU enum
1435          * from the Path Records to us will get the new 8k MTU.  Those that
1436          * attempt to process the MTU enum may fail in various ways.
1437          */
1438         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1439                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1440         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1441                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1442 
1443         return 0;
1444 }
1445 
1446 static int modify_device(struct ib_device *device,
1447                          int device_modify_mask,
1448                          struct ib_device_modify *device_modify)
1449 {
1450         struct hfi1_devdata *dd = dd_from_ibdev(device);
1451         unsigned i;
1452         int ret;
1453 
1454         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1455                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1456                 ret = -EOPNOTSUPP;
1457                 goto bail;
1458         }
1459 
1460         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1461                 memcpy(device->node_desc, device_modify->node_desc,
1462                        IB_DEVICE_NODE_DESC_MAX);
1463                 for (i = 0; i < dd->num_pports; i++) {
1464                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1465 
1466                         hfi1_node_desc_chg(ibp);
1467                 }
1468         }
1469 
1470         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1471                 ib_hfi1_sys_image_guid =
1472                         cpu_to_be64(device_modify->sys_image_guid);
1473                 for (i = 0; i < dd->num_pports; i++) {
1474                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1475 
1476                         hfi1_sys_guid_chg(ibp);
1477                 }
1478         }
1479 
1480         ret = 0;
1481 
1482 bail:
1483         return ret;
1484 }
1485 
1486 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1487 {
1488         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1489         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1490         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1491         int ret;
1492 
1493         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1494                              OPA_LINKDOWN_REASON_UNKNOWN);
1495         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1496         return ret;
1497 }
1498 
1499 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1500                             int guid_index, __be64 *guid)
1501 {
1502         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1503 
1504         if (guid_index >= HFI1_GUIDS_PER_PORT)
1505                 return -EINVAL;
1506 
1507         *guid = get_sguid(ibp, guid_index);
1508         return 0;
1509 }
1510 
1511 /*
1512  * convert ah port,sl to sc
1513  */
1514 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1515 {
1516         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1517 
1518         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1519 }
1520 
1521 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1522 {
1523         struct hfi1_ibport *ibp;
1524         struct hfi1_pportdata *ppd;
1525         struct hfi1_devdata *dd;
1526         u8 sc5;
1527         u8 sl;
1528 
1529         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1530             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1531                 return -EINVAL;
1532 
1533         /* test the mapping for validity */
1534         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1535         ppd = ppd_from_ibp(ibp);
1536         dd = dd_from_ppd(ppd);
1537 
1538         sl = rdma_ah_get_sl(ah_attr);
1539         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1540                 return -EINVAL;
1541         sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1542 
1543         sc5 = ibp->sl_to_sc[sl];
1544         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1545                 return -EINVAL;
1546         return 0;
1547 }
1548 
1549 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1550                                struct rdma_ah_attr *ah_attr,
1551                                struct rvt_ah *ah)
1552 {
1553         struct hfi1_ibport *ibp;
1554         struct hfi1_pportdata *ppd;
1555         struct hfi1_devdata *dd;
1556         u8 sc5;
1557         struct rdma_ah_attr *attr = &ah->attr;
1558 
1559         /*
1560          * Do not trust reading anything from rvt_ah at this point as it is not
1561          * done being setup. We can however modify things which we need to set.
1562          */
1563 
1564         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1565         ppd = ppd_from_ibp(ibp);
1566         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1567         hfi1_update_ah_attr(ibdev, attr);
1568         hfi1_make_opa_lid(attr);
1569         dd = dd_from_ppd(ppd);
1570         ah->vl = sc_to_vlt(dd, sc5);
1571         if (ah->vl < num_vls || ah->vl == 15)
1572                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1573 }
1574 
1575 /**
1576  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1577  * @dd: the hfi1_ib device
1578  */
1579 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1580 {
1581         return ARRAY_SIZE(dd->pport[0].pkeys);
1582 }
1583 
1584 static void init_ibport(struct hfi1_pportdata *ppd)
1585 {
1586         struct hfi1_ibport *ibp = &ppd->ibport_data;
1587         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1588         int i;
1589 
1590         for (i = 0; i < sz; i++) {
1591                 ibp->sl_to_sc[i] = i;
1592                 ibp->sc_to_sl[i] = i;
1593         }
1594 
1595         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1596                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1597         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1598 
1599         spin_lock_init(&ibp->rvp.lock);
1600         /* Set the prefix to the default value (see ch. 4.1.1) */
1601         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1602         ibp->rvp.sm_lid = 0;
1603         /*
1604          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1605          * and PortInfo.CapabilityMask3
1606          */
1607         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1608                 IB_PORT_CAP_MASK_NOTICE_SUP;
1609         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1610         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1611         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1612         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1613         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1614         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1615 
1616         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1617         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1618 }
1619 
1620 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1621 {
1622         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1623         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1624         u32 ver = dd_from_dev(dev)->dc8051_ver;
1625 
1626         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1627                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1628 }
1629 
1630 static const char * const driver_cntr_names[] = {
1631         /* must be element 0*/
1632         "DRIVER_KernIntr",
1633         "DRIVER_ErrorIntr",
1634         "DRIVER_Tx_Errs",
1635         "DRIVER_Rcv_Errs",
1636         "DRIVER_HW_Errs",
1637         "DRIVER_NoPIOBufs",
1638         "DRIVER_CtxtsOpen",
1639         "DRIVER_RcvLen_Errs",
1640         "DRIVER_EgrBufFull",
1641         "DRIVER_EgrHdrFull"
1642 };
1643 
1644 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1645 static const char **dev_cntr_names;
1646 static const char **port_cntr_names;
1647 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1648 static int num_dev_cntrs;
1649 static int num_port_cntrs;
1650 static int cntr_names_initialized;
1651 
1652 /*
1653  * Convert a list of names separated by '\n' into an array of NULL terminated
1654  * strings. Optionally some entries can be reserved in the array to hold extra
1655  * external strings.
1656  */
1657 static int init_cntr_names(const char *names_in,
1658                            const size_t names_len,
1659                            int num_extra_names,
1660                            int *num_cntrs,
1661                            const char ***cntr_names)
1662 {
1663         char *names_out, *p, **q;
1664         int i, n;
1665 
1666         n = 0;
1667         for (i = 0; i < names_len; i++)
1668                 if (names_in[i] == '\n')
1669                         n++;
1670 
1671         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1672                             GFP_KERNEL);
1673         if (!names_out) {
1674                 *num_cntrs = 0;
1675                 *cntr_names = NULL;
1676                 return -ENOMEM;
1677         }
1678 
1679         p = names_out + (n + num_extra_names) * sizeof(char *);
1680         memcpy(p, names_in, names_len);
1681 
1682         q = (char **)names_out;
1683         for (i = 0; i < n; i++) {
1684                 q[i] = p;
1685                 p = strchr(p, '\n');
1686                 *p++ = '\0';
1687         }
1688 
1689         *num_cntrs = n;
1690         *cntr_names = (const char **)names_out;
1691         return 0;
1692 }
1693 
1694 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1695                                             u8 port_num)
1696 {
1697         int i, err;
1698 
1699         mutex_lock(&cntr_names_lock);
1700         if (!cntr_names_initialized) {
1701                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1702 
1703                 err = init_cntr_names(dd->cntrnames,
1704                                       dd->cntrnameslen,
1705                                       num_driver_cntrs,
1706                                       &num_dev_cntrs,
1707                                       &dev_cntr_names);
1708                 if (err) {
1709                         mutex_unlock(&cntr_names_lock);
1710                         return NULL;
1711                 }
1712 
1713                 for (i = 0; i < num_driver_cntrs; i++)
1714                         dev_cntr_names[num_dev_cntrs + i] =
1715                                 driver_cntr_names[i];
1716 
1717                 err = init_cntr_names(dd->portcntrnames,
1718                                       dd->portcntrnameslen,
1719                                       0,
1720                                       &num_port_cntrs,
1721                                       &port_cntr_names);
1722                 if (err) {
1723                         kfree(dev_cntr_names);
1724                         dev_cntr_names = NULL;
1725                         mutex_unlock(&cntr_names_lock);
1726                         return NULL;
1727                 }
1728                 cntr_names_initialized = 1;
1729         }
1730         mutex_unlock(&cntr_names_lock);
1731 
1732         if (!port_num)
1733                 return rdma_alloc_hw_stats_struct(
1734                                 dev_cntr_names,
1735                                 num_dev_cntrs + num_driver_cntrs,
1736                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1737         else
1738                 return rdma_alloc_hw_stats_struct(
1739                                 port_cntr_names,
1740                                 num_port_cntrs,
1741                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1742 }
1743 
1744 static u64 hfi1_sps_ints(void)
1745 {
1746         unsigned long index, flags;
1747         struct hfi1_devdata *dd;
1748         u64 sps_ints = 0;
1749 
1750         xa_lock_irqsave(&hfi1_dev_table, flags);
1751         xa_for_each(&hfi1_dev_table, index, dd) {
1752                 sps_ints += get_all_cpu_total(dd->int_counter);
1753         }
1754         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1755         return sps_ints;
1756 }
1757 
1758 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1759                         u8 port, int index)
1760 {
1761         u64 *values;
1762         int count;
1763 
1764         if (!port) {
1765                 u64 *stats = (u64 *)&hfi1_stats;
1766                 int i;
1767 
1768                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1769                 values[num_dev_cntrs] = hfi1_sps_ints();
1770                 for (i = 1; i < num_driver_cntrs; i++)
1771                         values[num_dev_cntrs + i] = stats[i];
1772                 count = num_dev_cntrs + num_driver_cntrs;
1773         } else {
1774                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1775 
1776                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1777                 count = num_port_cntrs;
1778         }
1779 
1780         memcpy(stats->value, values, count * sizeof(u64));
1781         return count;
1782 }
1783 
1784 static const struct ib_device_ops hfi1_dev_ops = {
1785         .owner = THIS_MODULE,
1786         .driver_id = RDMA_DRIVER_HFI1,
1787 
1788         .alloc_hw_stats = alloc_hw_stats,
1789         .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1790         .get_dev_fw_str = hfi1_get_dev_fw_str,
1791         .get_hw_stats = get_hw_stats,
1792         .init_port = hfi1_create_port_files,
1793         .modify_device = modify_device,
1794         /* keep process mad in the driver */
1795         .process_mad = hfi1_process_mad,
1796 };
1797 
1798 /**
1799  * hfi1_register_ib_device - register our device with the infiniband core
1800  * @dd: the device data structure
1801  * Return 0 if successful, errno if unsuccessful.
1802  */
1803 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1804 {
1805         struct hfi1_ibdev *dev = &dd->verbs_dev;
1806         struct ib_device *ibdev = &dev->rdi.ibdev;
1807         struct hfi1_pportdata *ppd = dd->pport;
1808         struct hfi1_ibport *ibp = &ppd->ibport_data;
1809         unsigned i;
1810         int ret;
1811 
1812         for (i = 0; i < dd->num_pports; i++)
1813                 init_ibport(ppd + i);
1814 
1815         /* Only need to initialize non-zero fields. */
1816 
1817         timer_setup(&dev->mem_timer, mem_timer, 0);
1818 
1819         seqlock_init(&dev->iowait_lock);
1820         seqlock_init(&dev->txwait_lock);
1821         INIT_LIST_HEAD(&dev->txwait);
1822         INIT_LIST_HEAD(&dev->memwait);
1823 
1824         ret = verbs_txreq_init(dev);
1825         if (ret)
1826                 goto err_verbs_txreq;
1827 
1828         /* Use first-port GUID as node guid */
1829         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1830 
1831         /*
1832          * The system image GUID is supposed to be the same for all
1833          * HFIs in a single system but since there can be other
1834          * device types in the system, we can't be sure this is unique.
1835          */
1836         if (!ib_hfi1_sys_image_guid)
1837                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1838         ibdev->phys_port_cnt = dd->num_pports;
1839         ibdev->dev.parent = &dd->pcidev->dev;
1840 
1841         ib_set_device_ops(ibdev, &hfi1_dev_ops);
1842 
1843         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1844                 sizeof(ibdev->node_desc));
1845 
1846         /*
1847          * Fill in rvt info object.
1848          */
1849         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1850         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1851         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1852         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1853         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1854         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1855         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1856         /*
1857          * Fill in rvt info device attributes.
1858          */
1859         hfi1_fill_device_attr(dd);
1860 
1861         /* queue pair */
1862         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1863         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1864         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1865         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1866         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1867         dd->verbs_dev.rdi.dparms.qpn_res_end =
1868         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1869         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1870         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1871         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1872         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1873         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1874                                                 RDMA_CORE_CAP_OPA_AH;
1875         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1876 
1877         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1878         dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1879         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1880         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1881         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1882         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1883         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1884         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1885         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1886         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1887         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1888         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1889         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1890         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1891         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1892         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1893         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1894         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1895         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1896         dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1897         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1898                                                 hfi1_comp_vect_mappings_lookup;
1899 
1900         /* completeion queue */
1901         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1902         dd->verbs_dev.rdi.dparms.node = dd->node;
1903 
1904         /* misc settings */
1905         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1906         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1907         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1908         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1909         dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1910         dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1911         dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1912         dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1913         dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1914 
1915         /* post send table */
1916         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1917 
1918         /* opcode translation table */
1919         dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1920 
1921         ppd = dd->pport;
1922         for (i = 0; i < dd->num_pports; i++, ppd++)
1923                 rvt_init_port(&dd->verbs_dev.rdi,
1924                               &ppd->ibport_data.rvp,
1925                               i,
1926                               ppd->pkeys);
1927 
1928         rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1929                                     &ib_hfi1_attr_group);
1930 
1931         ret = rvt_register_device(&dd->verbs_dev.rdi);
1932         if (ret)
1933                 goto err_verbs_txreq;
1934 
1935         ret = hfi1_verbs_register_sysfs(dd);
1936         if (ret)
1937                 goto err_class;
1938 
1939         return ret;
1940 
1941 err_class:
1942         rvt_unregister_device(&dd->verbs_dev.rdi);
1943 err_verbs_txreq:
1944         verbs_txreq_exit(dev);
1945         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1946         return ret;
1947 }
1948 
1949 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1950 {
1951         struct hfi1_ibdev *dev = &dd->verbs_dev;
1952 
1953         hfi1_verbs_unregister_sysfs(dd);
1954 
1955         rvt_unregister_device(&dd->verbs_dev.rdi);
1956 
1957         if (!list_empty(&dev->txwait))
1958                 dd_dev_err(dd, "txwait list not empty!\n");
1959         if (!list_empty(&dev->memwait))
1960                 dd_dev_err(dd, "memwait list not empty!\n");
1961 
1962         del_timer_sync(&dev->mem_timer);
1963         verbs_txreq_exit(dev);
1964 
1965         mutex_lock(&cntr_names_lock);
1966         kfree(dev_cntr_names);
1967         kfree(port_cntr_names);
1968         dev_cntr_names = NULL;
1969         port_cntr_names = NULL;
1970         cntr_names_initialized = 0;
1971         mutex_unlock(&cntr_names_lock);
1972 }
1973 
1974 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1975 {
1976         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1977         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1978         struct ib_header *hdr = packet->hdr;
1979         struct rvt_qp *qp = packet->qp;
1980         u32 lqpn, rqpn = 0;
1981         u16 rlid = 0;
1982         u8 sl, sc5, svc_type;
1983 
1984         switch (packet->qp->ibqp.qp_type) {
1985         case IB_QPT_UC:
1986                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1987                 rqpn = qp->remote_qpn;
1988                 svc_type = IB_CC_SVCTYPE_UC;
1989                 break;
1990         case IB_QPT_RC:
1991                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1992                 rqpn = qp->remote_qpn;
1993                 svc_type = IB_CC_SVCTYPE_RC;
1994                 break;
1995         case IB_QPT_SMI:
1996         case IB_QPT_GSI:
1997         case IB_QPT_UD:
1998                 svc_type = IB_CC_SVCTYPE_UD;
1999                 break;
2000         default:
2001                 ibp->rvp.n_pkt_drops++;
2002                 return;
2003         }
2004 
2005         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2006         sl = ibp->sc_to_sl[sc5];
2007         lqpn = qp->ibqp.qp_num;
2008 
2009         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2010 }

/* [<][>][^][v][top][bottom][index][help] */