root/drivers/infiniband/hw/hfi1/init.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hfi1_create_kctxt
  2. hfi1_create_kctxts
  3. hfi1_rcd_init
  4. hfi1_rcd_free
  5. hfi1_rcd_put
  6. hfi1_rcd_get
  7. allocate_rcd_index
  8. hfi1_rcd_get_by_index_safe
  9. hfi1_rcd_get_by_index
  10. hfi1_create_ctxtdata
  11. hfi1_free_ctxt
  12. encode_rcv_header_entry_size
  13. set_link_ipg
  14. cca_timer_fn
  15. hfi1_init_pportdata
  16. loadtime_init
  17. init_after_reset
  18. enable_chip
  19. create_workqueues
  20. enable_general_intr
  21. hfi1_init
  22. hfi1_lookup
  23. stop_timers
  24. shutdown_device
  25. hfi1_free_ctxtdata
  26. release_asic_data
  27. finalize_asic_data
  28. hfi1_clean_devdata
  29. __hfi1_free_devdata
  30. hfi1_free_devdata
  31. hfi1_alloc_devdata
  32. hfi1_disable_after_error
  33. compute_krcvqs
  34. hfi1_mod_init
  35. hfi1_mod_cleanup
  36. cleanup_device_data
  37. postinit_cleanup
  38. init_validate_rcvhdrcnt
  39. init_one
  40. wait_for_clients
  41. remove_one
  42. shutdown_one
  43. hfi1_create_rcvhdrq
  44. hfi1_setup_eagerbufs

   1 /*
   2  * Copyright(c) 2015 - 2018 Intel Corporation.
   3  *
   4  * This file is provided under a dual BSD/GPLv2 license.  When using or
   5  * redistributing this file, you may do so under either license.
   6  *
   7  * GPL LICENSE SUMMARY
   8  *
   9  * This program is free software; you can redistribute it and/or modify
  10  * it under the terms of version 2 of the GNU General Public License as
  11  * published by the Free Software Foundation.
  12  *
  13  * This program is distributed in the hope that it will be useful, but
  14  * WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  * General Public License for more details.
  17  *
  18  * BSD LICENSE
  19  *
  20  * Redistribution and use in source and binary forms, with or without
  21  * modification, are permitted provided that the following conditions
  22  * are met:
  23  *
  24  *  - Redistributions of source code must retain the above copyright
  25  *    notice, this list of conditions and the following disclaimer.
  26  *  - Redistributions in binary form must reproduce the above copyright
  27  *    notice, this list of conditions and the following disclaimer in
  28  *    the documentation and/or other materials provided with the
  29  *    distribution.
  30  *  - Neither the name of Intel Corporation nor the names of its
  31  *    contributors may be used to endorse or promote products derived
  32  *    from this software without specific prior written permission.
  33  *
  34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45  *
  46  */
  47 
  48 #include <linux/pci.h>
  49 #include <linux/netdevice.h>
  50 #include <linux/vmalloc.h>
  51 #include <linux/delay.h>
  52 #include <linux/xarray.h>
  53 #include <linux/module.h>
  54 #include <linux/printk.h>
  55 #include <linux/hrtimer.h>
  56 #include <linux/bitmap.h>
  57 #include <linux/numa.h>
  58 #include <rdma/rdma_vt.h>
  59 
  60 #include "hfi.h"
  61 #include "device.h"
  62 #include "common.h"
  63 #include "trace.h"
  64 #include "mad.h"
  65 #include "sdma.h"
  66 #include "debugfs.h"
  67 #include "verbs.h"
  68 #include "aspm.h"
  69 #include "affinity.h"
  70 #include "vnic.h"
  71 #include "exp_rcv.h"
  72 
  73 #undef pr_fmt
  74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
  75 
  76 /*
  77  * min buffers we want to have per context, after driver
  78  */
  79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
  80 
  81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
  82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
  83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
  84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
  85 
  86 #define NUM_IB_PORTS 1
  87 
  88 /*
  89  * Number of user receive contexts we are configured to use (to allow for more
  90  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
  91  */
  92 int num_user_contexts = -1;
  93 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
  94 MODULE_PARM_DESC(
  95         num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
  96 
  97 uint krcvqs[RXE_NUM_DATA_VL];
  98 int krcvqsset;
  99 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
 100 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
 101 
 102 /* computed based on above array */
 103 unsigned long n_krcvqs;
 104 
 105 static unsigned hfi1_rcvarr_split = 25;
 106 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
 107 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
 108 
 109 static uint eager_buffer_size = (8 << 20); /* 8MB */
 110 module_param(eager_buffer_size, uint, S_IRUGO);
 111 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
 112 
 113 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
 114 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
 115 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
 116 
 117 static uint hfi1_hdrq_entsize = 32;
 118 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
 119 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
 120 
 121 unsigned int user_credit_return_threshold = 33; /* default is 33% */
 122 module_param(user_credit_return_threshold, uint, S_IRUGO);
 123 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
 124 
 125 static inline u64 encode_rcv_header_entry_size(u16 size);
 126 
 127 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
 128 
 129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
 130                              struct hfi1_pportdata *ppd)
 131 {
 132         struct hfi1_ctxtdata *rcd;
 133         int ret;
 134 
 135         /* Control context has to be always 0 */
 136         BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
 137 
 138         ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
 139         if (ret < 0) {
 140                 dd_dev_err(dd, "Kernel receive context allocation failed\n");
 141                 return ret;
 142         }
 143 
 144         /*
 145          * Set up the kernel context flags here and now because they use
 146          * default values for all receive side memories.  User contexts will
 147          * be handled as they are created.
 148          */
 149         rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
 150                 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
 151                 HFI1_CAP_KGET(NODROP_EGR_FULL) |
 152                 HFI1_CAP_KGET(DMA_RTAIL);
 153 
 154         /* Control context must use DMA_RTAIL */
 155         if (rcd->ctxt == HFI1_CTRL_CTXT)
 156                 rcd->flags |= HFI1_CAP_DMA_RTAIL;
 157         rcd->seq_cnt = 1;
 158 
 159         rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
 160         if (!rcd->sc) {
 161                 dd_dev_err(dd, "Kernel send context allocation failed\n");
 162                 return -ENOMEM;
 163         }
 164         hfi1_init_ctxt(rcd->sc);
 165 
 166         return 0;
 167 }
 168 
 169 /*
 170  * Create the receive context array and one or more kernel contexts
 171  */
 172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
 173 {
 174         u16 i;
 175         int ret;
 176 
 177         dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
 178                                GFP_KERNEL, dd->node);
 179         if (!dd->rcd)
 180                 return -ENOMEM;
 181 
 182         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 183                 ret = hfi1_create_kctxt(dd, dd->pport);
 184                 if (ret)
 185                         goto bail;
 186         }
 187 
 188         return 0;
 189 bail:
 190         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
 191                 hfi1_free_ctxt(dd->rcd[i]);
 192 
 193         /* All the contexts should be freed, free the array */
 194         kfree(dd->rcd);
 195         dd->rcd = NULL;
 196         return ret;
 197 }
 198 
 199 /*
 200  * Helper routines for the receive context reference count (rcd and uctxt).
 201  */
 202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
 203 {
 204         kref_init(&rcd->kref);
 205 }
 206 
 207 /**
 208  * hfi1_rcd_free - When reference is zero clean up.
 209  * @kref: pointer to an initialized rcd data structure
 210  *
 211  */
 212 static void hfi1_rcd_free(struct kref *kref)
 213 {
 214         unsigned long flags;
 215         struct hfi1_ctxtdata *rcd =
 216                 container_of(kref, struct hfi1_ctxtdata, kref);
 217 
 218         spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
 219         rcd->dd->rcd[rcd->ctxt] = NULL;
 220         spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
 221 
 222         hfi1_free_ctxtdata(rcd->dd, rcd);
 223 
 224         kfree(rcd);
 225 }
 226 
 227 /**
 228  * hfi1_rcd_put - decrement reference for rcd
 229  * @rcd: pointer to an initialized rcd data structure
 230  *
 231  * Use this to put a reference after the init.
 232  */
 233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
 234 {
 235         if (rcd)
 236                 return kref_put(&rcd->kref, hfi1_rcd_free);
 237 
 238         return 0;
 239 }
 240 
 241 /**
 242  * hfi1_rcd_get - increment reference for rcd
 243  * @rcd: pointer to an initialized rcd data structure
 244  *
 245  * Use this to get a reference after the init.
 246  *
 247  * Return : reflect kref_get_unless_zero(), which returns non-zero on
 248  * increment, otherwise 0.
 249  */
 250 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
 251 {
 252         return kref_get_unless_zero(&rcd->kref);
 253 }
 254 
 255 /**
 256  * allocate_rcd_index - allocate an rcd index from the rcd array
 257  * @dd: pointer to a valid devdata structure
 258  * @rcd: rcd data structure to assign
 259  * @index: pointer to index that is allocated
 260  *
 261  * Find an empty index in the rcd array, and assign the given rcd to it.
 262  * If the array is full, we are EBUSY.
 263  *
 264  */
 265 static int allocate_rcd_index(struct hfi1_devdata *dd,
 266                               struct hfi1_ctxtdata *rcd, u16 *index)
 267 {
 268         unsigned long flags;
 269         u16 ctxt;
 270 
 271         spin_lock_irqsave(&dd->uctxt_lock, flags);
 272         for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
 273                 if (!dd->rcd[ctxt])
 274                         break;
 275 
 276         if (ctxt < dd->num_rcv_contexts) {
 277                 rcd->ctxt = ctxt;
 278                 dd->rcd[ctxt] = rcd;
 279                 hfi1_rcd_init(rcd);
 280         }
 281         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 282 
 283         if (ctxt >= dd->num_rcv_contexts)
 284                 return -EBUSY;
 285 
 286         *index = ctxt;
 287 
 288         return 0;
 289 }
 290 
 291 /**
 292  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
 293  * array
 294  * @dd: pointer to a valid devdata structure
 295  * @ctxt: the index of an possilbe rcd
 296  *
 297  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
 298  * ctxt index is valid.
 299  *
 300  * The caller is responsible for making the _put().
 301  *
 302  */
 303 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
 304                                                  u16 ctxt)
 305 {
 306         if (ctxt < dd->num_rcv_contexts)
 307                 return hfi1_rcd_get_by_index(dd, ctxt);
 308 
 309         return NULL;
 310 }
 311 
 312 /**
 313  * hfi1_rcd_get_by_index
 314  * @dd: pointer to a valid devdata structure
 315  * @ctxt: the index of an possilbe rcd
 316  *
 317  * We need to protect access to the rcd array.  If access is needed to
 318  * one or more index, get the protecting spinlock and then increment the
 319  * kref.
 320  *
 321  * The caller is responsible for making the _put().
 322  *
 323  */
 324 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
 325 {
 326         unsigned long flags;
 327         struct hfi1_ctxtdata *rcd = NULL;
 328 
 329         spin_lock_irqsave(&dd->uctxt_lock, flags);
 330         if (dd->rcd[ctxt]) {
 331                 rcd = dd->rcd[ctxt];
 332                 if (!hfi1_rcd_get(rcd))
 333                         rcd = NULL;
 334         }
 335         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 336 
 337         return rcd;
 338 }
 339 
 340 /*
 341  * Common code for user and kernel context create and setup.
 342  * NOTE: the initial kref is done here (hf1_rcd_init()).
 343  */
 344 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
 345                          struct hfi1_ctxtdata **context)
 346 {
 347         struct hfi1_devdata *dd = ppd->dd;
 348         struct hfi1_ctxtdata *rcd;
 349         unsigned kctxt_ngroups = 0;
 350         u32 base;
 351 
 352         if (dd->rcv_entries.nctxt_extra >
 353             dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
 354                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
 355                          (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
 356         rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
 357         if (rcd) {
 358                 u32 rcvtids, max_entries;
 359                 u16 ctxt;
 360                 int ret;
 361 
 362                 ret = allocate_rcd_index(dd, rcd, &ctxt);
 363                 if (ret) {
 364                         *context = NULL;
 365                         kfree(rcd);
 366                         return ret;
 367                 }
 368 
 369                 INIT_LIST_HEAD(&rcd->qp_wait_list);
 370                 hfi1_exp_tid_group_init(rcd);
 371                 rcd->ppd = ppd;
 372                 rcd->dd = dd;
 373                 rcd->numa_id = numa;
 374                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
 375                 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
 376 
 377                 mutex_init(&rcd->exp_mutex);
 378                 spin_lock_init(&rcd->exp_lock);
 379                 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
 380                 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
 381 
 382                 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
 383 
 384                 /*
 385                  * Calculate the context's RcvArray entry starting point.
 386                  * We do this here because we have to take into account all
 387                  * the RcvArray entries that previous context would have
 388                  * taken and we have to account for any extra groups assigned
 389                  * to the static (kernel) or dynamic (vnic/user) contexts.
 390                  */
 391                 if (ctxt < dd->first_dyn_alloc_ctxt) {
 392                         if (ctxt < kctxt_ngroups) {
 393                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
 394                                 rcd->rcv_array_groups++;
 395                         } else {
 396                                 base = kctxt_ngroups +
 397                                         (ctxt * dd->rcv_entries.ngroups);
 398                         }
 399                 } else {
 400                         u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
 401 
 402                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
 403                                 kctxt_ngroups);
 404                         if (ct < dd->rcv_entries.nctxt_extra) {
 405                                 base += ct * (dd->rcv_entries.ngroups + 1);
 406                                 rcd->rcv_array_groups++;
 407                         } else {
 408                                 base += dd->rcv_entries.nctxt_extra +
 409                                         (ct * dd->rcv_entries.ngroups);
 410                         }
 411                 }
 412                 rcd->eager_base = base * dd->rcv_entries.group_size;
 413 
 414                 rcd->rcvhdrq_cnt = rcvhdrcnt;
 415                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
 416                 rcd->rhf_offset =
 417                         rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
 418                 /*
 419                  * Simple Eager buffer allocation: we have already pre-allocated
 420                  * the number of RcvArray entry groups. Each ctxtdata structure
 421                  * holds the number of groups for that context.
 422                  *
 423                  * To follow CSR requirements and maintain cacheline alignment,
 424                  * make sure all sizes and bases are multiples of group_size.
 425                  *
 426                  * The expected entry count is what is left after assigning
 427                  * eager.
 428                  */
 429                 max_entries = rcd->rcv_array_groups *
 430                         dd->rcv_entries.group_size;
 431                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
 432                 rcd->egrbufs.count = round_down(rcvtids,
 433                                                 dd->rcv_entries.group_size);
 434                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
 435                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
 436                                    rcd->ctxt);
 437                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
 438                 }
 439                 hfi1_cdbg(PROC,
 440                           "ctxt%u: max Eager buffer RcvArray entries: %u\n",
 441                           rcd->ctxt, rcd->egrbufs.count);
 442 
 443                 /*
 444                  * Allocate array that will hold the eager buffer accounting
 445                  * data.
 446                  * This will allocate the maximum possible buffer count based
 447                  * on the value of the RcvArray split parameter.
 448                  * The resulting value will be rounded down to the closest
 449                  * multiple of dd->rcv_entries.group_size.
 450                  */
 451                 rcd->egrbufs.buffers =
 452                         kcalloc_node(rcd->egrbufs.count,
 453                                      sizeof(*rcd->egrbufs.buffers),
 454                                      GFP_KERNEL, numa);
 455                 if (!rcd->egrbufs.buffers)
 456                         goto bail;
 457                 rcd->egrbufs.rcvtids =
 458                         kcalloc_node(rcd->egrbufs.count,
 459                                      sizeof(*rcd->egrbufs.rcvtids),
 460                                      GFP_KERNEL, numa);
 461                 if (!rcd->egrbufs.rcvtids)
 462                         goto bail;
 463                 rcd->egrbufs.size = eager_buffer_size;
 464                 /*
 465                  * The size of the buffers programmed into the RcvArray
 466                  * entries needs to be big enough to handle the highest
 467                  * MTU supported.
 468                  */
 469                 if (rcd->egrbufs.size < hfi1_max_mtu) {
 470                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
 471                         hfi1_cdbg(PROC,
 472                                   "ctxt%u: eager bufs size too small. Adjusting to %u\n",
 473                                     rcd->ctxt, rcd->egrbufs.size);
 474                 }
 475                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
 476 
 477                 /* Applicable only for statically created kernel contexts */
 478                 if (ctxt < dd->first_dyn_alloc_ctxt) {
 479                         rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
 480                                                     GFP_KERNEL, numa);
 481                         if (!rcd->opstats)
 482                                 goto bail;
 483 
 484                         /* Initialize TID flow generations for the context */
 485                         hfi1_kern_init_ctxt_generations(rcd);
 486                 }
 487 
 488                 *context = rcd;
 489                 return 0;
 490         }
 491 
 492 bail:
 493         *context = NULL;
 494         hfi1_free_ctxt(rcd);
 495         return -ENOMEM;
 496 }
 497 
 498 /**
 499  * hfi1_free_ctxt
 500  * @rcd: pointer to an initialized rcd data structure
 501  *
 502  * This wrapper is the free function that matches hfi1_create_ctxtdata().
 503  * When a context is done being used (kernel or user), this function is called
 504  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
 505  * Other users of the context do a get/put sequence to make sure that the
 506  * structure isn't removed while in use.
 507  */
 508 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
 509 {
 510         hfi1_rcd_put(rcd);
 511 }
 512 
 513 /*
 514  * Convert a receive header entry size that to the encoding used in the CSR.
 515  *
 516  * Return a zero if the given size is invalid.
 517  */
 518 static inline u64 encode_rcv_header_entry_size(u16 size)
 519 {
 520         /* there are only 3 valid receive header entry sizes */
 521         if (size == 2)
 522                 return 1;
 523         if (size == 16)
 524                 return 2;
 525         else if (size == 32)
 526                 return 4;
 527         return 0; /* invalid */
 528 }
 529 
 530 /*
 531  * Select the largest ccti value over all SLs to determine the intra-
 532  * packet gap for the link.
 533  *
 534  * called with cca_timer_lock held (to protect access to cca_timer
 535  * array), and rcu_read_lock() (to protect access to cc_state).
 536  */
 537 void set_link_ipg(struct hfi1_pportdata *ppd)
 538 {
 539         struct hfi1_devdata *dd = ppd->dd;
 540         struct cc_state *cc_state;
 541         int i;
 542         u16 cce, ccti_limit, max_ccti = 0;
 543         u16 shift, mult;
 544         u64 src;
 545         u32 current_egress_rate; /* Mbits /sec */
 546         u32 max_pkt_time;
 547         /*
 548          * max_pkt_time is the maximum packet egress time in units
 549          * of the fabric clock period 1/(805 MHz).
 550          */
 551 
 552         cc_state = get_cc_state(ppd);
 553 
 554         if (!cc_state)
 555                 /*
 556                  * This should _never_ happen - rcu_read_lock() is held,
 557                  * and set_link_ipg() should not be called if cc_state
 558                  * is NULL.
 559                  */
 560                 return;
 561 
 562         for (i = 0; i < OPA_MAX_SLS; i++) {
 563                 u16 ccti = ppd->cca_timer[i].ccti;
 564 
 565                 if (ccti > max_ccti)
 566                         max_ccti = ccti;
 567         }
 568 
 569         ccti_limit = cc_state->cct.ccti_limit;
 570         if (max_ccti > ccti_limit)
 571                 max_ccti = ccti_limit;
 572 
 573         cce = cc_state->cct.entries[max_ccti].entry;
 574         shift = (cce & 0xc000) >> 14;
 575         mult = (cce & 0x3fff);
 576 
 577         current_egress_rate = active_egress_rate(ppd);
 578 
 579         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
 580 
 581         src = (max_pkt_time >> shift) * mult;
 582 
 583         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
 584         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
 585 
 586         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
 587 }
 588 
 589 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
 590 {
 591         struct cca_timer *cca_timer;
 592         struct hfi1_pportdata *ppd;
 593         int sl;
 594         u16 ccti_timer, ccti_min;
 595         struct cc_state *cc_state;
 596         unsigned long flags;
 597         enum hrtimer_restart ret = HRTIMER_NORESTART;
 598 
 599         cca_timer = container_of(t, struct cca_timer, hrtimer);
 600         ppd = cca_timer->ppd;
 601         sl = cca_timer->sl;
 602 
 603         rcu_read_lock();
 604 
 605         cc_state = get_cc_state(ppd);
 606 
 607         if (!cc_state) {
 608                 rcu_read_unlock();
 609                 return HRTIMER_NORESTART;
 610         }
 611 
 612         /*
 613          * 1) decrement ccti for SL
 614          * 2) calculate IPG for link (set_link_ipg())
 615          * 3) restart timer, unless ccti is at min value
 616          */
 617 
 618         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
 619         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
 620 
 621         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
 622 
 623         if (cca_timer->ccti > ccti_min) {
 624                 cca_timer->ccti--;
 625                 set_link_ipg(ppd);
 626         }
 627 
 628         if (cca_timer->ccti > ccti_min) {
 629                 unsigned long nsec = 1024 * ccti_timer;
 630                 /* ccti_timer is in units of 1.024 usec */
 631                 hrtimer_forward_now(t, ns_to_ktime(nsec));
 632                 ret = HRTIMER_RESTART;
 633         }
 634 
 635         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
 636         rcu_read_unlock();
 637         return ret;
 638 }
 639 
 640 /*
 641  * Common code for initializing the physical port structure.
 642  */
 643 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
 644                          struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
 645 {
 646         int i;
 647         uint default_pkey_idx;
 648         struct cc_state *cc_state;
 649 
 650         ppd->dd = dd;
 651         ppd->hw_pidx = hw_pidx;
 652         ppd->port = port; /* IB port number, not index */
 653         ppd->prev_link_width = LINK_WIDTH_DEFAULT;
 654         /*
 655          * There are C_VL_COUNT number of PortVLXmitWait counters.
 656          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
 657          */
 658         for (i = 0; i < C_VL_COUNT + 1; i++) {
 659                 ppd->port_vl_xmit_wait_last[i] = 0;
 660                 ppd->vl_xmit_flit_cnt[i] = 0;
 661         }
 662 
 663         default_pkey_idx = 1;
 664 
 665         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
 666         ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
 667 
 668         if (loopback) {
 669                 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
 670                            !default_pkey_idx);
 671                 ppd->pkeys[!default_pkey_idx] = 0x8001;
 672         }
 673 
 674         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
 675         INIT_WORK(&ppd->link_up_work, handle_link_up);
 676         INIT_WORK(&ppd->link_down_work, handle_link_down);
 677         INIT_WORK(&ppd->freeze_work, handle_freeze);
 678         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
 679         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
 680         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
 681         INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
 682         INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
 683         INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
 684 
 685         mutex_init(&ppd->hls_lock);
 686         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
 687 
 688         ppd->qsfp_info.ppd = ppd;
 689         ppd->sm_trap_qp = 0x0;
 690         ppd->sa_qp = 0x1;
 691 
 692         ppd->hfi1_wq = NULL;
 693 
 694         spin_lock_init(&ppd->cca_timer_lock);
 695 
 696         for (i = 0; i < OPA_MAX_SLS; i++) {
 697                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
 698                              HRTIMER_MODE_REL);
 699                 ppd->cca_timer[i].ppd = ppd;
 700                 ppd->cca_timer[i].sl = i;
 701                 ppd->cca_timer[i].ccti = 0;
 702                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
 703         }
 704 
 705         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
 706 
 707         spin_lock_init(&ppd->cc_state_lock);
 708         spin_lock_init(&ppd->cc_log_lock);
 709         cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
 710         RCU_INIT_POINTER(ppd->cc_state, cc_state);
 711         if (!cc_state)
 712                 goto bail;
 713         return;
 714 
 715 bail:
 716         dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
 717 }
 718 
 719 /*
 720  * Do initialization for device that is only needed on
 721  * first detect, not on resets.
 722  */
 723 static int loadtime_init(struct hfi1_devdata *dd)
 724 {
 725         return 0;
 726 }
 727 
 728 /**
 729  * init_after_reset - re-initialize after a reset
 730  * @dd: the hfi1_ib device
 731  *
 732  * sanity check at least some of the values after reset, and
 733  * ensure no receive or transmit (explicitly, in case reset
 734  * failed
 735  */
 736 static int init_after_reset(struct hfi1_devdata *dd)
 737 {
 738         int i;
 739         struct hfi1_ctxtdata *rcd;
 740         /*
 741          * Ensure chip does no sends or receives, tail updates, or
 742          * pioavail updates while we re-initialize.  This is mostly
 743          * for the driver data structures, not chip registers.
 744          */
 745         for (i = 0; i < dd->num_rcv_contexts; i++) {
 746                 rcd = hfi1_rcd_get_by_index(dd, i);
 747                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 748                              HFI1_RCVCTRL_INTRAVAIL_DIS |
 749                              HFI1_RCVCTRL_TAILUPD_DIS, rcd);
 750                 hfi1_rcd_put(rcd);
 751         }
 752         pio_send_control(dd, PSC_GLOBAL_DISABLE);
 753         for (i = 0; i < dd->num_send_contexts; i++)
 754                 sc_disable(dd->send_contexts[i].sc);
 755 
 756         return 0;
 757 }
 758 
 759 static void enable_chip(struct hfi1_devdata *dd)
 760 {
 761         struct hfi1_ctxtdata *rcd;
 762         u32 rcvmask;
 763         u16 i;
 764 
 765         /* enable PIO send */
 766         pio_send_control(dd, PSC_GLOBAL_ENABLE);
 767 
 768         /*
 769          * Enable kernel ctxts' receive and receive interrupt.
 770          * Other ctxts done as user opens and initializes them.
 771          */
 772         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 773                 rcd = hfi1_rcd_get_by_index(dd, i);
 774                 if (!rcd)
 775                         continue;
 776                 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
 777                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
 778                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
 779                 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
 780                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
 781                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
 782                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
 783                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
 784                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
 785                 if (HFI1_CAP_IS_KSET(TID_RDMA))
 786                         rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
 787                 hfi1_rcvctrl(dd, rcvmask, rcd);
 788                 sc_enable(rcd->sc);
 789                 hfi1_rcd_put(rcd);
 790         }
 791 }
 792 
 793 /**
 794  * create_workqueues - create per port workqueues
 795  * @dd: the hfi1_ib device
 796  */
 797 static int create_workqueues(struct hfi1_devdata *dd)
 798 {
 799         int pidx;
 800         struct hfi1_pportdata *ppd;
 801 
 802         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 803                 ppd = dd->pport + pidx;
 804                 if (!ppd->hfi1_wq) {
 805                         ppd->hfi1_wq =
 806                                 alloc_workqueue(
 807                                     "hfi%d_%d",
 808                                     WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
 809                                     WQ_MEM_RECLAIM,
 810                                     HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
 811                                     dd->unit, pidx);
 812                         if (!ppd->hfi1_wq)
 813                                 goto wq_error;
 814                 }
 815                 if (!ppd->link_wq) {
 816                         /*
 817                          * Make the link workqueue single-threaded to enforce
 818                          * serialization.
 819                          */
 820                         ppd->link_wq =
 821                                 alloc_workqueue(
 822                                     "hfi_link_%d_%d",
 823                                     WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
 824                                     1, /* max_active */
 825                                     dd->unit, pidx);
 826                         if (!ppd->link_wq)
 827                                 goto wq_error;
 828                 }
 829         }
 830         return 0;
 831 wq_error:
 832         pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
 833         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 834                 ppd = dd->pport + pidx;
 835                 if (ppd->hfi1_wq) {
 836                         destroy_workqueue(ppd->hfi1_wq);
 837                         ppd->hfi1_wq = NULL;
 838                 }
 839                 if (ppd->link_wq) {
 840                         destroy_workqueue(ppd->link_wq);
 841                         ppd->link_wq = NULL;
 842                 }
 843         }
 844         return -ENOMEM;
 845 }
 846 
 847 /**
 848  * enable_general_intr() - Enable the IRQs that will be handled by the
 849  * general interrupt handler.
 850  * @dd: valid devdata
 851  *
 852  */
 853 static void enable_general_intr(struct hfi1_devdata *dd)
 854 {
 855         set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
 856         set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
 857         set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
 858         set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
 859         set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
 860         set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
 861         set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
 862 }
 863 
 864 /**
 865  * hfi1_init - do the actual initialization sequence on the chip
 866  * @dd: the hfi1_ib device
 867  * @reinit: re-initializing, so don't allocate new memory
 868  *
 869  * Do the actual initialization sequence on the chip.  This is done
 870  * both from the init routine called from the PCI infrastructure, and
 871  * when we reset the chip, or detect that it was reset internally,
 872  * or it's administratively re-enabled.
 873  *
 874  * Memory allocation here and in called routines is only done in
 875  * the first case (reinit == 0).  We have to be careful, because even
 876  * without memory allocation, we need to re-write all the chip registers
 877  * TIDs, etc. after the reset or enable has completed.
 878  */
 879 int hfi1_init(struct hfi1_devdata *dd, int reinit)
 880 {
 881         int ret = 0, pidx, lastfail = 0;
 882         unsigned long len;
 883         u16 i;
 884         struct hfi1_ctxtdata *rcd;
 885         struct hfi1_pportdata *ppd;
 886 
 887         /* Set up send low level handlers */
 888         dd->process_pio_send = hfi1_verbs_send_pio;
 889         dd->process_dma_send = hfi1_verbs_send_dma;
 890         dd->pio_inline_send = pio_copy;
 891         dd->process_vnic_dma_send = hfi1_vnic_send_dma;
 892 
 893         if (is_ax(dd)) {
 894                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
 895                 dd->do_drop = 1;
 896         } else {
 897                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
 898                 dd->do_drop = 0;
 899         }
 900 
 901         /* make sure the link is not "up" */
 902         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 903                 ppd = dd->pport + pidx;
 904                 ppd->linkup = 0;
 905         }
 906 
 907         if (reinit)
 908                 ret = init_after_reset(dd);
 909         else
 910                 ret = loadtime_init(dd);
 911         if (ret)
 912                 goto done;
 913 
 914         /* allocate dummy tail memory for all receive contexts */
 915         dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
 916                                                          sizeof(u64),
 917                                                          &dd->rcvhdrtail_dummy_dma,
 918                                                          GFP_KERNEL);
 919 
 920         if (!dd->rcvhdrtail_dummy_kvaddr) {
 921                 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
 922                 ret = -ENOMEM;
 923                 goto done;
 924         }
 925 
 926         /* dd->rcd can be NULL if early initialization failed */
 927         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
 928                 /*
 929                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
 930                  * re-init, the simplest way to handle this is to free
 931                  * existing, and re-allocate.
 932                  * Need to re-create rest of ctxt 0 ctxtdata as well.
 933                  */
 934                 rcd = hfi1_rcd_get_by_index(dd, i);
 935                 if (!rcd)
 936                         continue;
 937 
 938                 rcd->do_interrupt = &handle_receive_interrupt;
 939 
 940                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
 941                 if (!lastfail)
 942                         lastfail = hfi1_setup_eagerbufs(rcd);
 943                 if (!lastfail)
 944                         lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
 945                 if (lastfail) {
 946                         dd_dev_err(dd,
 947                                    "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
 948                         ret = lastfail;
 949                 }
 950                 /* enable IRQ */
 951                 hfi1_rcd_put(rcd);
 952         }
 953 
 954         /* Allocate enough memory for user event notification. */
 955         len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
 956                          sizeof(*dd->events));
 957         dd->events = vmalloc_user(len);
 958         if (!dd->events)
 959                 dd_dev_err(dd, "Failed to allocate user events page\n");
 960         /*
 961          * Allocate a page for device and port status.
 962          * Page will be shared amongst all user processes.
 963          */
 964         dd->status = vmalloc_user(PAGE_SIZE);
 965         if (!dd->status)
 966                 dd_dev_err(dd, "Failed to allocate dev status page\n");
 967         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 968                 ppd = dd->pport + pidx;
 969                 if (dd->status)
 970                         /* Currently, we only have one port */
 971                         ppd->statusp = &dd->status->port;
 972 
 973                 set_mtu(ppd);
 974         }
 975 
 976         /* enable chip even if we have an error, so we can debug cause */
 977         enable_chip(dd);
 978 
 979 done:
 980         /*
 981          * Set status even if port serdes is not initialized
 982          * so that diags will work.
 983          */
 984         if (dd->status)
 985                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
 986                         HFI1_STATUS_INITTED;
 987         if (!ret) {
 988                 /* enable all interrupts from the chip */
 989                 enable_general_intr(dd);
 990                 init_qsfp_int(dd);
 991 
 992                 /* chip is OK for user apps; mark it as initialized */
 993                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 994                         ppd = dd->pport + pidx;
 995 
 996                         /*
 997                          * start the serdes - must be after interrupts are
 998                          * enabled so we are notified when the link goes up
 999                          */
1000                         lastfail = bringup_serdes(ppd);
1001                         if (lastfail)
1002                                 dd_dev_info(dd,
1003                                             "Failed to bring up port %u\n",
1004                                             ppd->port);
1005 
1006                         /*
1007                          * Set status even if port serdes is not initialized
1008                          * so that diags will work.
1009                          */
1010                         if (ppd->statusp)
1011                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1012                                                         HFI1_STATUS_INITTED;
1013                         if (!ppd->link_speed_enabled)
1014                                 continue;
1015                 }
1016         }
1017 
1018         /* if ret is non-zero, we probably should do some cleanup here... */
1019         return ret;
1020 }
1021 
1022 struct hfi1_devdata *hfi1_lookup(int unit)
1023 {
1024         return xa_load(&hfi1_dev_table, unit);
1025 }
1026 
1027 /*
1028  * Stop the timers during unit shutdown, or after an error late
1029  * in initialization.
1030  */
1031 static void stop_timers(struct hfi1_devdata *dd)
1032 {
1033         struct hfi1_pportdata *ppd;
1034         int pidx;
1035 
1036         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1037                 ppd = dd->pport + pidx;
1038                 if (ppd->led_override_timer.function) {
1039                         del_timer_sync(&ppd->led_override_timer);
1040                         atomic_set(&ppd->led_override_timer_active, 0);
1041                 }
1042         }
1043 }
1044 
1045 /**
1046  * shutdown_device - shut down a device
1047  * @dd: the hfi1_ib device
1048  *
1049  * This is called to make the device quiet when we are about to
1050  * unload the driver, and also when the device is administratively
1051  * disabled.   It does not free any data structures.
1052  * Everything it does has to be setup again by hfi1_init(dd, 1)
1053  */
1054 static void shutdown_device(struct hfi1_devdata *dd)
1055 {
1056         struct hfi1_pportdata *ppd;
1057         struct hfi1_ctxtdata *rcd;
1058         unsigned pidx;
1059         int i;
1060 
1061         if (dd->flags & HFI1_SHUTDOWN)
1062                 return;
1063         dd->flags |= HFI1_SHUTDOWN;
1064 
1065         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1066                 ppd = dd->pport + pidx;
1067 
1068                 ppd->linkup = 0;
1069                 if (ppd->statusp)
1070                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1071                                            HFI1_STATUS_IB_READY);
1072         }
1073         dd->flags &= ~HFI1_INITTED;
1074 
1075         /* mask and clean up interrupts */
1076         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1077         msix_clean_up_interrupts(dd);
1078 
1079         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1080                 ppd = dd->pport + pidx;
1081                 for (i = 0; i < dd->num_rcv_contexts; i++) {
1082                         rcd = hfi1_rcd_get_by_index(dd, i);
1083                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1084                                      HFI1_RCVCTRL_CTXT_DIS |
1085                                      HFI1_RCVCTRL_INTRAVAIL_DIS |
1086                                      HFI1_RCVCTRL_PKEY_DIS |
1087                                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1088                         hfi1_rcd_put(rcd);
1089                 }
1090                 /*
1091                  * Gracefully stop all sends allowing any in progress to
1092                  * trickle out first.
1093                  */
1094                 for (i = 0; i < dd->num_send_contexts; i++)
1095                         sc_flush(dd->send_contexts[i].sc);
1096         }
1097 
1098         /*
1099          * Enough for anything that's going to trickle out to have actually
1100          * done so.
1101          */
1102         udelay(20);
1103 
1104         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1105                 ppd = dd->pport + pidx;
1106 
1107                 /* disable all contexts */
1108                 for (i = 0; i < dd->num_send_contexts; i++)
1109                         sc_disable(dd->send_contexts[i].sc);
1110                 /* disable the send device */
1111                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1112 
1113                 shutdown_led_override(ppd);
1114 
1115                 /*
1116                  * Clear SerdesEnable.
1117                  * We can't count on interrupts since we are stopping.
1118                  */
1119                 hfi1_quiet_serdes(ppd);
1120 
1121                 if (ppd->hfi1_wq) {
1122                         destroy_workqueue(ppd->hfi1_wq);
1123                         ppd->hfi1_wq = NULL;
1124                 }
1125                 if (ppd->link_wq) {
1126                         destroy_workqueue(ppd->link_wq);
1127                         ppd->link_wq = NULL;
1128                 }
1129         }
1130         sdma_exit(dd);
1131 }
1132 
1133 /**
1134  * hfi1_free_ctxtdata - free a context's allocated data
1135  * @dd: the hfi1_ib device
1136  * @rcd: the ctxtdata structure
1137  *
1138  * free up any allocated data for a context
1139  * It should never change any chip state, or global driver state.
1140  */
1141 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1142 {
1143         u32 e;
1144 
1145         if (!rcd)
1146                 return;
1147 
1148         if (rcd->rcvhdrq) {
1149                 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1150                                   rcd->rcvhdrq, rcd->rcvhdrq_dma);
1151                 rcd->rcvhdrq = NULL;
1152                 if (rcd->rcvhdrtail_kvaddr) {
1153                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1154                                           (void *)rcd->rcvhdrtail_kvaddr,
1155                                           rcd->rcvhdrqtailaddr_dma);
1156                         rcd->rcvhdrtail_kvaddr = NULL;
1157                 }
1158         }
1159 
1160         /* all the RcvArray entries should have been cleared by now */
1161         kfree(rcd->egrbufs.rcvtids);
1162         rcd->egrbufs.rcvtids = NULL;
1163 
1164         for (e = 0; e < rcd->egrbufs.alloced; e++) {
1165                 if (rcd->egrbufs.buffers[e].dma)
1166                         dma_free_coherent(&dd->pcidev->dev,
1167                                           rcd->egrbufs.buffers[e].len,
1168                                           rcd->egrbufs.buffers[e].addr,
1169                                           rcd->egrbufs.buffers[e].dma);
1170         }
1171         kfree(rcd->egrbufs.buffers);
1172         rcd->egrbufs.alloced = 0;
1173         rcd->egrbufs.buffers = NULL;
1174 
1175         sc_free(rcd->sc);
1176         rcd->sc = NULL;
1177 
1178         vfree(rcd->subctxt_uregbase);
1179         vfree(rcd->subctxt_rcvegrbuf);
1180         vfree(rcd->subctxt_rcvhdr_base);
1181         kfree(rcd->opstats);
1182 
1183         rcd->subctxt_uregbase = NULL;
1184         rcd->subctxt_rcvegrbuf = NULL;
1185         rcd->subctxt_rcvhdr_base = NULL;
1186         rcd->opstats = NULL;
1187 }
1188 
1189 /*
1190  * Release our hold on the shared asic data.  If we are the last one,
1191  * return the structure to be finalized outside the lock.  Must be
1192  * holding hfi1_dev_table lock.
1193  */
1194 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1195 {
1196         struct hfi1_asic_data *ad;
1197         int other;
1198 
1199         if (!dd->asic_data)
1200                 return NULL;
1201         dd->asic_data->dds[dd->hfi1_id] = NULL;
1202         other = dd->hfi1_id ? 0 : 1;
1203         ad = dd->asic_data;
1204         dd->asic_data = NULL;
1205         /* return NULL if the other dd still has a link */
1206         return ad->dds[other] ? NULL : ad;
1207 }
1208 
1209 static void finalize_asic_data(struct hfi1_devdata *dd,
1210                                struct hfi1_asic_data *ad)
1211 {
1212         clean_up_i2c(dd, ad);
1213         kfree(ad);
1214 }
1215 
1216 /**
1217  * hfi1_clean_devdata - cleans up per-unit data structure
1218  * @dd: pointer to a valid devdata structure
1219  *
1220  * It cleans up all data structures set up by
1221  * by hfi1_alloc_devdata().
1222  */
1223 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1224 {
1225         struct hfi1_asic_data *ad;
1226         unsigned long flags;
1227 
1228         xa_lock_irqsave(&hfi1_dev_table, flags);
1229         __xa_erase(&hfi1_dev_table, dd->unit);
1230         ad = release_asic_data(dd);
1231         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1232 
1233         finalize_asic_data(dd, ad);
1234         free_platform_config(dd);
1235         rcu_barrier(); /* wait for rcu callbacks to complete */
1236         free_percpu(dd->int_counter);
1237         free_percpu(dd->rcv_limit);
1238         free_percpu(dd->send_schedule);
1239         free_percpu(dd->tx_opstats);
1240         dd->int_counter   = NULL;
1241         dd->rcv_limit     = NULL;
1242         dd->send_schedule = NULL;
1243         dd->tx_opstats    = NULL;
1244         kfree(dd->comp_vect);
1245         dd->comp_vect = NULL;
1246         sdma_clean(dd, dd->num_sdma);
1247         rvt_dealloc_device(&dd->verbs_dev.rdi);
1248 }
1249 
1250 static void __hfi1_free_devdata(struct kobject *kobj)
1251 {
1252         struct hfi1_devdata *dd =
1253                 container_of(kobj, struct hfi1_devdata, kobj);
1254 
1255         hfi1_clean_devdata(dd);
1256 }
1257 
1258 static struct kobj_type hfi1_devdata_type = {
1259         .release = __hfi1_free_devdata,
1260 };
1261 
1262 void hfi1_free_devdata(struct hfi1_devdata *dd)
1263 {
1264         kobject_put(&dd->kobj);
1265 }
1266 
1267 /**
1268  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1269  * @pdev: Valid PCI device
1270  * @extra: How many bytes to alloc past the default
1271  *
1272  * Must be done via verbs allocator, because the verbs cleanup process
1273  * both does cleanup and free of the data structure.
1274  * "extra" is for chip-specific data.
1275  */
1276 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1277                                                size_t extra)
1278 {
1279         struct hfi1_devdata *dd;
1280         int ret, nports;
1281 
1282         /* extra is * number of ports */
1283         nports = extra / sizeof(struct hfi1_pportdata);
1284 
1285         dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1286                                                      nports);
1287         if (!dd)
1288                 return ERR_PTR(-ENOMEM);
1289         dd->num_pports = nports;
1290         dd->pport = (struct hfi1_pportdata *)(dd + 1);
1291         dd->pcidev = pdev;
1292         pci_set_drvdata(pdev, dd);
1293         dd->node = NUMA_NO_NODE;
1294 
1295         ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1296                         GFP_KERNEL);
1297         if (ret < 0) {
1298                 dev_err(&pdev->dev,
1299                         "Could not allocate unit ID: error %d\n", -ret);
1300                 goto bail;
1301         }
1302         rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1303 
1304         /*
1305          * Initialize all locks for the device. This needs to be as early as
1306          * possible so locks are usable.
1307          */
1308         spin_lock_init(&dd->sc_lock);
1309         spin_lock_init(&dd->sendctrl_lock);
1310         spin_lock_init(&dd->rcvctrl_lock);
1311         spin_lock_init(&dd->uctxt_lock);
1312         spin_lock_init(&dd->hfi1_diag_trans_lock);
1313         spin_lock_init(&dd->sc_init_lock);
1314         spin_lock_init(&dd->dc8051_memlock);
1315         seqlock_init(&dd->sc2vl_lock);
1316         spin_lock_init(&dd->sde_map_lock);
1317         spin_lock_init(&dd->pio_map_lock);
1318         mutex_init(&dd->dc8051_lock);
1319         init_waitqueue_head(&dd->event_queue);
1320         spin_lock_init(&dd->irq_src_lock);
1321 
1322         dd->int_counter = alloc_percpu(u64);
1323         if (!dd->int_counter) {
1324                 ret = -ENOMEM;
1325                 goto bail;
1326         }
1327 
1328         dd->rcv_limit = alloc_percpu(u64);
1329         if (!dd->rcv_limit) {
1330                 ret = -ENOMEM;
1331                 goto bail;
1332         }
1333 
1334         dd->send_schedule = alloc_percpu(u64);
1335         if (!dd->send_schedule) {
1336                 ret = -ENOMEM;
1337                 goto bail;
1338         }
1339 
1340         dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1341         if (!dd->tx_opstats) {
1342                 ret = -ENOMEM;
1343                 goto bail;
1344         }
1345 
1346         dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1347         if (!dd->comp_vect) {
1348                 ret = -ENOMEM;
1349                 goto bail;
1350         }
1351 
1352         kobject_init(&dd->kobj, &hfi1_devdata_type);
1353         return dd;
1354 
1355 bail:
1356         hfi1_clean_devdata(dd);
1357         return ERR_PTR(ret);
1358 }
1359 
1360 /*
1361  * Called from freeze mode handlers, and from PCI error
1362  * reporting code.  Should be paranoid about state of
1363  * system and data structures.
1364  */
1365 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1366 {
1367         if (dd->flags & HFI1_INITTED) {
1368                 u32 pidx;
1369 
1370                 dd->flags &= ~HFI1_INITTED;
1371                 if (dd->pport)
1372                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1373                                 struct hfi1_pportdata *ppd;
1374 
1375                                 ppd = dd->pport + pidx;
1376                                 if (dd->flags & HFI1_PRESENT)
1377                                         set_link_state(ppd, HLS_DN_DISABLE);
1378 
1379                                 if (ppd->statusp)
1380                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1381                         }
1382         }
1383 
1384         /*
1385          * Mark as having had an error for driver, and also
1386          * for /sys and status word mapped to user programs.
1387          * This marks unit as not usable, until reset.
1388          */
1389         if (dd->status)
1390                 dd->status->dev |= HFI1_STATUS_HWERROR;
1391 }
1392 
1393 static void remove_one(struct pci_dev *);
1394 static int init_one(struct pci_dev *, const struct pci_device_id *);
1395 static void shutdown_one(struct pci_dev *);
1396 
1397 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1398 #define PFX DRIVER_NAME ": "
1399 
1400 const struct pci_device_id hfi1_pci_tbl[] = {
1401         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1402         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1403         { 0, }
1404 };
1405 
1406 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1407 
1408 static struct pci_driver hfi1_pci_driver = {
1409         .name = DRIVER_NAME,
1410         .probe = init_one,
1411         .remove = remove_one,
1412         .shutdown = shutdown_one,
1413         .id_table = hfi1_pci_tbl,
1414         .err_handler = &hfi1_pci_err_handler,
1415 };
1416 
1417 static void __init compute_krcvqs(void)
1418 {
1419         int i;
1420 
1421         for (i = 0; i < krcvqsset; i++)
1422                 n_krcvqs += krcvqs[i];
1423 }
1424 
1425 /*
1426  * Do all the generic driver unit- and chip-independent memory
1427  * allocation and initialization.
1428  */
1429 static int __init hfi1_mod_init(void)
1430 {
1431         int ret;
1432 
1433         ret = dev_init();
1434         if (ret)
1435                 goto bail;
1436 
1437         ret = node_affinity_init();
1438         if (ret)
1439                 goto bail;
1440 
1441         /* validate max MTU before any devices start */
1442         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1443                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1444                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1445                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1446         }
1447         /* valid CUs run from 1-128 in powers of 2 */
1448         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1449                 hfi1_cu = 1;
1450         /* valid credit return threshold is 0-100, variable is unsigned */
1451         if (user_credit_return_threshold > 100)
1452                 user_credit_return_threshold = 100;
1453 
1454         compute_krcvqs();
1455         /*
1456          * sanitize receive interrupt count, time must wait until after
1457          * the hardware type is known
1458          */
1459         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1460                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1461         /* reject invalid combinations */
1462         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1463                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1464                 rcv_intr_count = 1;
1465         }
1466         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1467                 /*
1468                  * Avoid indefinite packet delivery by requiring a timeout
1469                  * if count is > 1.
1470                  */
1471                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1472                 rcv_intr_timeout = 1;
1473         }
1474         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1475                 /*
1476                  * The dynamic algorithm expects a non-zero timeout
1477                  * and a count > 1.
1478                  */
1479                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1480                 rcv_intr_dynamic = 0;
1481         }
1482 
1483         /* sanitize link CRC options */
1484         link_crc_mask &= SUPPORTED_CRCS;
1485 
1486         ret = opfn_init();
1487         if (ret < 0) {
1488                 pr_err("Failed to allocate opfn_wq");
1489                 goto bail_dev;
1490         }
1491 
1492         /*
1493          * These must be called before the driver is registered with
1494          * the PCI subsystem.
1495          */
1496         hfi1_dbg_init();
1497         ret = pci_register_driver(&hfi1_pci_driver);
1498         if (ret < 0) {
1499                 pr_err("Unable to register driver: error %d\n", -ret);
1500                 goto bail_dev;
1501         }
1502         goto bail; /* all OK */
1503 
1504 bail_dev:
1505         hfi1_dbg_exit();
1506         dev_cleanup();
1507 bail:
1508         return ret;
1509 }
1510 
1511 module_init(hfi1_mod_init);
1512 
1513 /*
1514  * Do the non-unit driver cleanup, memory free, etc. at unload.
1515  */
1516 static void __exit hfi1_mod_cleanup(void)
1517 {
1518         pci_unregister_driver(&hfi1_pci_driver);
1519         opfn_exit();
1520         node_affinity_destroy_all();
1521         hfi1_dbg_exit();
1522 
1523         WARN_ON(!xa_empty(&hfi1_dev_table));
1524         dispose_firmware();     /* asymmetric with obtain_firmware() */
1525         dev_cleanup();
1526 }
1527 
1528 module_exit(hfi1_mod_cleanup);
1529 
1530 /* this can only be called after a successful initialization */
1531 static void cleanup_device_data(struct hfi1_devdata *dd)
1532 {
1533         int ctxt;
1534         int pidx;
1535 
1536         /* users can't do anything more with chip */
1537         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1538                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1539                 struct cc_state *cc_state;
1540                 int i;
1541 
1542                 if (ppd->statusp)
1543                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1544 
1545                 for (i = 0; i < OPA_MAX_SLS; i++)
1546                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1547 
1548                 spin_lock(&ppd->cc_state_lock);
1549                 cc_state = get_cc_state_protected(ppd);
1550                 RCU_INIT_POINTER(ppd->cc_state, NULL);
1551                 spin_unlock(&ppd->cc_state_lock);
1552 
1553                 if (cc_state)
1554                         kfree_rcu(cc_state, rcu);
1555         }
1556 
1557         free_credit_return(dd);
1558 
1559         if (dd->rcvhdrtail_dummy_kvaddr) {
1560                 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1561                                   (void *)dd->rcvhdrtail_dummy_kvaddr,
1562                                   dd->rcvhdrtail_dummy_dma);
1563                 dd->rcvhdrtail_dummy_kvaddr = NULL;
1564         }
1565 
1566         /*
1567          * Free any resources still in use (usually just kernel contexts)
1568          * at unload; we do for ctxtcnt, because that's what we allocate.
1569          */
1570         for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1571                 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1572 
1573                 if (rcd) {
1574                         hfi1_free_ctxt_rcv_groups(rcd);
1575                         hfi1_free_ctxt(rcd);
1576                 }
1577         }
1578 
1579         kfree(dd->rcd);
1580         dd->rcd = NULL;
1581 
1582         free_pio_map(dd);
1583         /* must follow rcv context free - need to remove rcv's hooks */
1584         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1585                 sc_free(dd->send_contexts[ctxt].sc);
1586         dd->num_send_contexts = 0;
1587         kfree(dd->send_contexts);
1588         dd->send_contexts = NULL;
1589         kfree(dd->hw_to_sw);
1590         dd->hw_to_sw = NULL;
1591         kfree(dd->boardname);
1592         vfree(dd->events);
1593         vfree(dd->status);
1594 }
1595 
1596 /*
1597  * Clean up on unit shutdown, or error during unit load after
1598  * successful initialization.
1599  */
1600 static void postinit_cleanup(struct hfi1_devdata *dd)
1601 {
1602         hfi1_start_cleanup(dd);
1603         hfi1_comp_vectors_clean_up(dd);
1604         hfi1_dev_affinity_clean_up(dd);
1605 
1606         hfi1_pcie_ddcleanup(dd);
1607         hfi1_pcie_cleanup(dd->pcidev);
1608 
1609         cleanup_device_data(dd);
1610 
1611         hfi1_free_devdata(dd);
1612 }
1613 
1614 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1615 {
1616         if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1617                 dd_dev_err(dd, "Receive header queue count too small\n");
1618                 return -EINVAL;
1619         }
1620 
1621         if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1622                 dd_dev_err(dd,
1623                            "Receive header queue count cannot be greater than %u\n",
1624                            HFI1_MAX_HDRQ_EGRBUF_CNT);
1625                 return -EINVAL;
1626         }
1627 
1628         if (thecnt % HDRQ_INCREMENT) {
1629                 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1630                            thecnt, HDRQ_INCREMENT);
1631                 return -EINVAL;
1632         }
1633 
1634         return 0;
1635 }
1636 
1637 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1638 {
1639         int ret = 0, j, pidx, initfail;
1640         struct hfi1_devdata *dd;
1641         struct hfi1_pportdata *ppd;
1642 
1643         /* First, lock the non-writable module parameters */
1644         HFI1_CAP_LOCK();
1645 
1646         /* Validate dev ids */
1647         if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1648               ent->device == PCI_DEVICE_ID_INTEL1)) {
1649                 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1650                         ent->device);
1651                 ret = -ENODEV;
1652                 goto bail;
1653         }
1654 
1655         /* Allocate the dd so we can get to work */
1656         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1657                                 sizeof(struct hfi1_pportdata));
1658         if (IS_ERR(dd)) {
1659                 ret = PTR_ERR(dd);
1660                 goto bail;
1661         }
1662 
1663         /* Validate some global module parameters */
1664         ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1665         if (ret)
1666                 goto bail;
1667 
1668         /* use the encoding function as a sanitization check */
1669         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1670                 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1671                            hfi1_hdrq_entsize);
1672                 ret = -EINVAL;
1673                 goto bail;
1674         }
1675 
1676         /* The receive eager buffer size must be set before the receive
1677          * contexts are created.
1678          *
1679          * Set the eager buffer size.  Validate that it falls in a range
1680          * allowed by the hardware - all powers of 2 between the min and
1681          * max.  The maximum valid MTU is within the eager buffer range
1682          * so we do not need to cap the max_mtu by an eager buffer size
1683          * setting.
1684          */
1685         if (eager_buffer_size) {
1686                 if (!is_power_of_2(eager_buffer_size))
1687                         eager_buffer_size =
1688                                 roundup_pow_of_two(eager_buffer_size);
1689                 eager_buffer_size =
1690                         clamp_val(eager_buffer_size,
1691                                   MIN_EAGER_BUFFER * 8,
1692                                   MAX_EAGER_BUFFER_TOTAL);
1693                 dd_dev_info(dd, "Eager buffer size %u\n",
1694                             eager_buffer_size);
1695         } else {
1696                 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1697                 ret = -EINVAL;
1698                 goto bail;
1699         }
1700 
1701         /* restrict value of hfi1_rcvarr_split */
1702         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1703 
1704         ret = hfi1_pcie_init(dd);
1705         if (ret)
1706                 goto bail;
1707 
1708         /*
1709          * Do device-specific initialization, function table setup, dd
1710          * allocation, etc.
1711          */
1712         ret = hfi1_init_dd(dd);
1713         if (ret)
1714                 goto clean_bail; /* error already printed */
1715 
1716         ret = create_workqueues(dd);
1717         if (ret)
1718                 goto clean_bail;
1719 
1720         /* do the generic initialization */
1721         initfail = hfi1_init(dd, 0);
1722 
1723         /* setup vnic */
1724         hfi1_vnic_setup(dd);
1725 
1726         ret = hfi1_register_ib_device(dd);
1727 
1728         /*
1729          * Now ready for use.  this should be cleared whenever we
1730          * detect a reset, or initiate one.  If earlier failure,
1731          * we still create devices, so diags, etc. can be used
1732          * to determine cause of problem.
1733          */
1734         if (!initfail && !ret) {
1735                 dd->flags |= HFI1_INITTED;
1736                 /* create debufs files after init and ib register */
1737                 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1738         }
1739 
1740         j = hfi1_device_create(dd);
1741         if (j)
1742                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1743 
1744         if (initfail || ret) {
1745                 msix_clean_up_interrupts(dd);
1746                 stop_timers(dd);
1747                 flush_workqueue(ib_wq);
1748                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1749                         hfi1_quiet_serdes(dd->pport + pidx);
1750                         ppd = dd->pport + pidx;
1751                         if (ppd->hfi1_wq) {
1752                                 destroy_workqueue(ppd->hfi1_wq);
1753                                 ppd->hfi1_wq = NULL;
1754                         }
1755                         if (ppd->link_wq) {
1756                                 destroy_workqueue(ppd->link_wq);
1757                                 ppd->link_wq = NULL;
1758                         }
1759                 }
1760                 if (!j)
1761                         hfi1_device_remove(dd);
1762                 if (!ret)
1763                         hfi1_unregister_ib_device(dd);
1764                 hfi1_vnic_cleanup(dd);
1765                 postinit_cleanup(dd);
1766                 if (initfail)
1767                         ret = initfail;
1768                 goto bail;      /* everything already cleaned */
1769         }
1770 
1771         sdma_start(dd);
1772 
1773         return 0;
1774 
1775 clean_bail:
1776         hfi1_pcie_cleanup(pdev);
1777 bail:
1778         return ret;
1779 }
1780 
1781 static void wait_for_clients(struct hfi1_devdata *dd)
1782 {
1783         /*
1784          * Remove the device init value and complete the device if there is
1785          * no clients or wait for active clients to finish.
1786          */
1787         if (atomic_dec_and_test(&dd->user_refcount))
1788                 complete(&dd->user_comp);
1789 
1790         wait_for_completion(&dd->user_comp);
1791 }
1792 
1793 static void remove_one(struct pci_dev *pdev)
1794 {
1795         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1796 
1797         /* close debugfs files before ib unregister */
1798         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1799 
1800         /* remove the /dev hfi1 interface */
1801         hfi1_device_remove(dd);
1802 
1803         /* wait for existing user space clients to finish */
1804         wait_for_clients(dd);
1805 
1806         /* unregister from IB core */
1807         hfi1_unregister_ib_device(dd);
1808 
1809         /* cleanup vnic */
1810         hfi1_vnic_cleanup(dd);
1811 
1812         /*
1813          * Disable the IB link, disable interrupts on the device,
1814          * clear dma engines, etc.
1815          */
1816         shutdown_device(dd);
1817 
1818         stop_timers(dd);
1819 
1820         /* wait until all of our (qsfp) queue_work() calls complete */
1821         flush_workqueue(ib_wq);
1822 
1823         postinit_cleanup(dd);
1824 }
1825 
1826 static void shutdown_one(struct pci_dev *pdev)
1827 {
1828         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1829 
1830         shutdown_device(dd);
1831 }
1832 
1833 /**
1834  * hfi1_create_rcvhdrq - create a receive header queue
1835  * @dd: the hfi1_ib device
1836  * @rcd: the context data
1837  *
1838  * This must be contiguous memory (from an i/o perspective), and must be
1839  * DMA'able (which means for some systems, it will go through an IOMMU,
1840  * or be forced into a low address range).
1841  */
1842 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1843 {
1844         unsigned amt;
1845         u64 reg;
1846 
1847         if (!rcd->rcvhdrq) {
1848                 gfp_t gfp_flags;
1849 
1850                 amt = rcvhdrq_size(rcd);
1851 
1852                 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1853                         gfp_flags = GFP_KERNEL;
1854                 else
1855                         gfp_flags = GFP_USER;
1856                 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1857                                                   &rcd->rcvhdrq_dma,
1858                                                   gfp_flags | __GFP_COMP);
1859 
1860                 if (!rcd->rcvhdrq) {
1861                         dd_dev_err(dd,
1862                                    "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1863                                    amt, rcd->ctxt);
1864                         goto bail;
1865                 }
1866 
1867                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1868                     HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1869                         rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1870                                                                     PAGE_SIZE,
1871                                                                     &rcd->rcvhdrqtailaddr_dma,
1872                                                                     gfp_flags);
1873                         if (!rcd->rcvhdrtail_kvaddr)
1874                                 goto bail_free;
1875                 }
1876         }
1877         /*
1878          * These values are per-context:
1879          *      RcvHdrCnt
1880          *      RcvHdrEntSize
1881          *      RcvHdrSize
1882          */
1883         reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1884                         & RCV_HDR_CNT_CNT_MASK)
1885                 << RCV_HDR_CNT_CNT_SHIFT;
1886         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1887         reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1888                         & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1889                 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1890         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1891         reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1892                 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1893         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1894 
1895         /*
1896          * Program dummy tail address for every receive context
1897          * before enabling any receive context
1898          */
1899         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1900                         dd->rcvhdrtail_dummy_dma);
1901 
1902         return 0;
1903 
1904 bail_free:
1905         dd_dev_err(dd,
1906                    "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1907                    rcd->ctxt);
1908         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1909                           rcd->rcvhdrq_dma);
1910         rcd->rcvhdrq = NULL;
1911 bail:
1912         return -ENOMEM;
1913 }
1914 
1915 /**
1916  * allocate eager buffers, both kernel and user contexts.
1917  * @rcd: the context we are setting up.
1918  *
1919  * Allocate the eager TID buffers and program them into hip.
1920  * They are no longer completely contiguous, we do multiple allocation
1921  * calls.  Otherwise we get the OOM code involved, by asking for too
1922  * much per call, with disastrous results on some kernels.
1923  */
1924 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1925 {
1926         struct hfi1_devdata *dd = rcd->dd;
1927         u32 max_entries, egrtop, alloced_bytes = 0;
1928         gfp_t gfp_flags;
1929         u16 order, idx = 0;
1930         int ret = 0;
1931         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1932 
1933         /*
1934          * GFP_USER, but without GFP_FS, so buffer cache can be
1935          * coalesced (we hope); otherwise, even at order 4,
1936          * heavy filesystem activity makes these fail, and we can
1937          * use compound pages.
1938          */
1939         gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1940 
1941         /*
1942          * The minimum size of the eager buffers is a groups of MTU-sized
1943          * buffers.
1944          * The global eager_buffer_size parameter is checked against the
1945          * theoretical lower limit of the value. Here, we check against the
1946          * MTU.
1947          */
1948         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1949                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1950         /*
1951          * If using one-pkt-per-egr-buffer, lower the eager buffer
1952          * size to the max MTU (page-aligned).
1953          */
1954         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1955                 rcd->egrbufs.rcvtid_size = round_mtu;
1956 
1957         /*
1958          * Eager buffers sizes of 1MB or less require smaller TID sizes
1959          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1960          */
1961         if (rcd->egrbufs.size <= (1 << 20))
1962                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1963                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1964 
1965         while (alloced_bytes < rcd->egrbufs.size &&
1966                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1967                 rcd->egrbufs.buffers[idx].addr =
1968                         dma_alloc_coherent(&dd->pcidev->dev,
1969                                            rcd->egrbufs.rcvtid_size,
1970                                            &rcd->egrbufs.buffers[idx].dma,
1971                                            gfp_flags);
1972                 if (rcd->egrbufs.buffers[idx].addr) {
1973                         rcd->egrbufs.buffers[idx].len =
1974                                 rcd->egrbufs.rcvtid_size;
1975                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1976                                 rcd->egrbufs.buffers[idx].addr;
1977                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1978                                 rcd->egrbufs.buffers[idx].dma;
1979                         rcd->egrbufs.alloced++;
1980                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1981                         idx++;
1982                 } else {
1983                         u32 new_size, i, j;
1984                         u64 offset = 0;
1985 
1986                         /*
1987                          * Fail the eager buffer allocation if:
1988                          *   - we are already using the lowest acceptable size
1989                          *   - we are using one-pkt-per-egr-buffer (this implies
1990                          *     that we are accepting only one size)
1991                          */
1992                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1993                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1994                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1995                                            rcd->ctxt);
1996                                 ret = -ENOMEM;
1997                                 goto bail_rcvegrbuf_phys;
1998                         }
1999 
2000                         new_size = rcd->egrbufs.rcvtid_size / 2;
2001 
2002                         /*
2003                          * If the first attempt to allocate memory failed, don't
2004                          * fail everything but continue with the next lower
2005                          * size.
2006                          */
2007                         if (idx == 0) {
2008                                 rcd->egrbufs.rcvtid_size = new_size;
2009                                 continue;
2010                         }
2011 
2012                         /*
2013                          * Re-partition already allocated buffers to a smaller
2014                          * size.
2015                          */
2016                         rcd->egrbufs.alloced = 0;
2017                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
2018                                 if (i >= rcd->egrbufs.count)
2019                                         break;
2020                                 rcd->egrbufs.rcvtids[i].dma =
2021                                         rcd->egrbufs.buffers[j].dma + offset;
2022                                 rcd->egrbufs.rcvtids[i].addr =
2023                                         rcd->egrbufs.buffers[j].addr + offset;
2024                                 rcd->egrbufs.alloced++;
2025                                 if ((rcd->egrbufs.buffers[j].dma + offset +
2026                                      new_size) ==
2027                                     (rcd->egrbufs.buffers[j].dma +
2028                                      rcd->egrbufs.buffers[j].len)) {
2029                                         j++;
2030                                         offset = 0;
2031                                 } else {
2032                                         offset += new_size;
2033                                 }
2034                         }
2035                         rcd->egrbufs.rcvtid_size = new_size;
2036                 }
2037         }
2038         rcd->egrbufs.numbufs = idx;
2039         rcd->egrbufs.size = alloced_bytes;
2040 
2041         hfi1_cdbg(PROC,
2042                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
2043                   rcd->ctxt, rcd->egrbufs.alloced,
2044                   rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2045 
2046         /*
2047          * Set the contexts rcv array head update threshold to the closest
2048          * power of 2 (so we can use a mask instead of modulo) below half
2049          * the allocated entries.
2050          */
2051         rcd->egrbufs.threshold =
2052                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2053         /*
2054          * Compute the expected RcvArray entry base. This is done after
2055          * allocating the eager buffers in order to maximize the
2056          * expected RcvArray entries for the context.
2057          */
2058         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2059         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2060         rcd->expected_count = max_entries - egrtop;
2061         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2062                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2063 
2064         rcd->expected_base = rcd->eager_base + egrtop;
2065         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2066                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2067                   rcd->eager_base, rcd->expected_base);
2068 
2069         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2070                 hfi1_cdbg(PROC,
2071                           "ctxt%u: current Eager buffer size is invalid %u\n",
2072                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
2073                 ret = -EINVAL;
2074                 goto bail_rcvegrbuf_phys;
2075         }
2076 
2077         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2078                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2079                              rcd->egrbufs.rcvtids[idx].dma, order);
2080                 cond_resched();
2081         }
2082 
2083         return 0;
2084 
2085 bail_rcvegrbuf_phys:
2086         for (idx = 0; idx < rcd->egrbufs.alloced &&
2087              rcd->egrbufs.buffers[idx].addr;
2088              idx++) {
2089                 dma_free_coherent(&dd->pcidev->dev,
2090                                   rcd->egrbufs.buffers[idx].len,
2091                                   rcd->egrbufs.buffers[idx].addr,
2092                                   rcd->egrbufs.buffers[idx].dma);
2093                 rcd->egrbufs.buffers[idx].addr = NULL;
2094                 rcd->egrbufs.buffers[idx].dma = 0;
2095                 rcd->egrbufs.buffers[idx].len = 0;
2096         }
2097 
2098         return ret;
2099 }

/* [<][>][^][v][top][bottom][index][help] */