root/drivers/infiniband/hw/hfi1/firmware.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __read_8051_data
  2. read_8051_data
  3. write_8051
  4. invalid_header
  5. verify_css_header
  6. payload_check
  7. obtain_one_firmware
  8. dispose_one_firmware
  9. __obtain_firmware
  10. obtain_firmware
  11. dispose_firmware
  12. retry_firmware
  13. write_rsa_data
  14. write_streamed_rsa_data
  15. run_rsa
  16. load_security_variables
  17. get_firmware_state
  18. wait_fm_ready
  19. load_8051_firmware
  20. sbus_request
  21. sbus_read
  22. turn_off_spicos
  23. fabric_serdes_reset
  24. sbus_request_slow
  25. load_fabric_serdes_firmware
  26. load_sbus_firmware
  27. load_pcie_serdes_firmware
  28. set_serdes_broadcast
  29. acquire_hw_mutex
  30. release_hw_mutex
  31. resource_mask
  32. fail_mutex_acquire_message
  33. __acquire_chip_resource
  34. acquire_chip_resource
  35. release_chip_resource
  36. check_chip_resource
  37. clear_chip_resources
  38. init_chip_resources
  39. finish_chip_resources
  40. set_sbus_fast_mode
  41. clear_sbus_fast_mode
  42. load_firmware
  43. hfi1_firmware_init
  44. check_meta_version
  45. parse_platform_config
  46. get_integrated_platform_config_field
  47. get_platform_fw_field_metadata
  48. get_platform_config_field
  49. load_pcie_firmware
  50. read_guid
  51. dump_fw_version

   1 /*
   2  * Copyright(c) 2015 - 2017 Intel Corporation.
   3  *
   4  * This file is provided under a dual BSD/GPLv2 license.  When using or
   5  * redistributing this file, you may do so under either license.
   6  *
   7  * GPL LICENSE SUMMARY
   8  *
   9  * This program is free software; you can redistribute it and/or modify
  10  * it under the terms of version 2 of the GNU General Public License as
  11  * published by the Free Software Foundation.
  12  *
  13  * This program is distributed in the hope that it will be useful, but
  14  * WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  * General Public License for more details.
  17  *
  18  * BSD LICENSE
  19  *
  20  * Redistribution and use in source and binary forms, with or without
  21  * modification, are permitted provided that the following conditions
  22  * are met:
  23  *
  24  *  - Redistributions of source code must retain the above copyright
  25  *    notice, this list of conditions and the following disclaimer.
  26  *  - Redistributions in binary form must reproduce the above copyright
  27  *    notice, this list of conditions and the following disclaimer in
  28  *    the documentation and/or other materials provided with the
  29  *    distribution.
  30  *  - Neither the name of Intel Corporation nor the names of its
  31  *    contributors may be used to endorse or promote products derived
  32  *    from this software without specific prior written permission.
  33  *
  34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45  *
  46  */
  47 
  48 #include <linux/firmware.h>
  49 #include <linux/mutex.h>
  50 #include <linux/module.h>
  51 #include <linux/delay.h>
  52 #include <linux/crc32.h>
  53 
  54 #include "hfi.h"
  55 #include "trace.h"
  56 
  57 /*
  58  * Make it easy to toggle firmware file name and if it gets loaded by
  59  * editing the following. This may be something we do while in development
  60  * but not necessarily something a user would ever need to use.
  61  */
  62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
  63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
  64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
  65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
  66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
  67 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
  68 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
  69 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
  70 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
  71 
  72 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
  73 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
  74 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
  75 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
  76 
  77 static uint fw_8051_load = 1;
  78 static uint fw_fabric_serdes_load = 1;
  79 static uint fw_pcie_serdes_load = 1;
  80 static uint fw_sbus_load = 1;
  81 
  82 /* Firmware file names get set in hfi1_firmware_init() based on the above */
  83 static char *fw_8051_name;
  84 static char *fw_fabric_serdes_name;
  85 static char *fw_sbus_name;
  86 static char *fw_pcie_serdes_name;
  87 
  88 #define SBUS_MAX_POLL_COUNT 100
  89 #define SBUS_COUNTER(reg, name) \
  90         (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
  91          ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
  92 
  93 /*
  94  * Firmware security header.
  95  */
  96 struct css_header {
  97         u32 module_type;
  98         u32 header_len;
  99         u32 header_version;
 100         u32 module_id;
 101         u32 module_vendor;
 102         u32 date;               /* BCD yyyymmdd */
 103         u32 size;               /* in DWORDs */
 104         u32 key_size;           /* in DWORDs */
 105         u32 modulus_size;       /* in DWORDs */
 106         u32 exponent_size;      /* in DWORDs */
 107         u32 reserved[22];
 108 };
 109 
 110 /* expected field values */
 111 #define CSS_MODULE_TYPE    0x00000006
 112 #define CSS_HEADER_LEN     0x000000a1
 113 #define CSS_HEADER_VERSION 0x00010000
 114 #define CSS_MODULE_VENDOR  0x00008086
 115 
 116 #define KEY_SIZE      256
 117 #define MU_SIZE         8
 118 #define EXPONENT_SIZE   4
 119 
 120 /* size of platform configuration partition */
 121 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
 122 
 123 /* size of file of plaform configuration encoded in format version 4 */
 124 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
 125 
 126 /* the file itself */
 127 struct firmware_file {
 128         struct css_header css_header;
 129         u8 modulus[KEY_SIZE];
 130         u8 exponent[EXPONENT_SIZE];
 131         u8 signature[KEY_SIZE];
 132         u8 firmware[];
 133 };
 134 
 135 struct augmented_firmware_file {
 136         struct css_header css_header;
 137         u8 modulus[KEY_SIZE];
 138         u8 exponent[EXPONENT_SIZE];
 139         u8 signature[KEY_SIZE];
 140         u8 r2[KEY_SIZE];
 141         u8 mu[MU_SIZE];
 142         u8 firmware[];
 143 };
 144 
 145 /* augmented file size difference */
 146 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
 147                                                 sizeof(struct firmware_file))
 148 
 149 struct firmware_details {
 150         /* Linux core piece */
 151         const struct firmware *fw;
 152 
 153         struct css_header *css_header;
 154         u8 *firmware_ptr;               /* pointer to binary data */
 155         u32 firmware_len;               /* length in bytes */
 156         u8 *modulus;                    /* pointer to the modulus */
 157         u8 *exponent;                   /* pointer to the exponent */
 158         u8 *signature;                  /* pointer to the signature */
 159         u8 *r2;                         /* pointer to r2 */
 160         u8 *mu;                         /* pointer to mu */
 161         struct augmented_firmware_file dummy_header;
 162 };
 163 
 164 /*
 165  * The mutex protects fw_state, fw_err, and all of the firmware_details
 166  * variables.
 167  */
 168 static DEFINE_MUTEX(fw_mutex);
 169 enum fw_state {
 170         FW_EMPTY,
 171         FW_TRY,
 172         FW_FINAL,
 173         FW_ERR
 174 };
 175 
 176 static enum fw_state fw_state = FW_EMPTY;
 177 static int fw_err;
 178 static struct firmware_details fw_8051;
 179 static struct firmware_details fw_fabric;
 180 static struct firmware_details fw_pcie;
 181 static struct firmware_details fw_sbus;
 182 
 183 /* flags for turn_off_spicos() */
 184 #define SPICO_SBUS   0x1
 185 #define SPICO_FABRIC 0x2
 186 #define ENABLE_SPICO_SMASK 0x1
 187 
 188 /* security block commands */
 189 #define RSA_CMD_INIT  0x1
 190 #define RSA_CMD_START 0x2
 191 
 192 /* security block status */
 193 #define RSA_STATUS_IDLE   0x0
 194 #define RSA_STATUS_ACTIVE 0x1
 195 #define RSA_STATUS_DONE   0x2
 196 #define RSA_STATUS_FAILED 0x3
 197 
 198 /* RSA engine timeout, in ms */
 199 #define RSA_ENGINE_TIMEOUT 100 /* ms */
 200 
 201 /* hardware mutex timeout, in ms */
 202 #define HM_TIMEOUT 10 /* ms */
 203 
 204 /* 8051 memory access timeout, in us */
 205 #define DC8051_ACCESS_TIMEOUT 100 /* us */
 206 
 207 /* the number of fabric SerDes on the SBus */
 208 #define NUM_FABRIC_SERDES 4
 209 
 210 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
 211 #define SBUS_READ_COMPLETE 0x4
 212 
 213 /* SBus fabric SerDes addresses, one set per HFI */
 214 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
 215         { 0x01, 0x02, 0x03, 0x04 },
 216         { 0x28, 0x29, 0x2a, 0x2b }
 217 };
 218 
 219 /* SBus PCIe SerDes addresses, one set per HFI */
 220 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
 221         { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
 222           0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
 223         { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
 224           0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
 225 };
 226 
 227 /* SBus PCIe PCS addresses, one set per HFI */
 228 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
 229         { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
 230           0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
 231         { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
 232           0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
 233 };
 234 
 235 /* SBus fabric SerDes broadcast addresses, one per HFI */
 236 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
 237 static const u8 all_fabric_serdes_broadcast = 0xe1;
 238 
 239 /* SBus PCIe SerDes broadcast addresses, one per HFI */
 240 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
 241 static const u8 all_pcie_serdes_broadcast = 0xe0;
 242 
 243 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
 244         0,
 245         SYSTEM_TABLE_MAX,
 246         PORT_TABLE_MAX,
 247         RX_PRESET_TABLE_MAX,
 248         TX_PRESET_TABLE_MAX,
 249         QSFP_ATTEN_TABLE_MAX,
 250         VARIABLE_SETTINGS_TABLE_MAX
 251 };
 252 
 253 /* forwards */
 254 static void dispose_one_firmware(struct firmware_details *fdet);
 255 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
 256                                        struct firmware_details *fdet);
 257 static void dump_fw_version(struct hfi1_devdata *dd);
 258 
 259 /*
 260  * Read a single 64-bit value from 8051 data memory.
 261  *
 262  * Expects:
 263  * o caller to have already set up data read, no auto increment
 264  * o caller to turn off read enable when finished
 265  *
 266  * The address argument is a byte offset.  Bits 0:2 in the address are
 267  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
 268  * the lower bits are zero.
 269  *
 270  * Return 0 on success, -ENXIO on a read error (timeout).
 271  */
 272 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
 273 {
 274         u64 reg;
 275         int count;
 276 
 277         /* step 1: set the address, clear enable */
 278         reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 279                         << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
 280         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 281         /* step 2: enable */
 282         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
 283                   reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
 284 
 285         /* wait until ACCESS_COMPLETED is set */
 286         count = 0;
 287         while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 288                     & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 289                     == 0) {
 290                 count++;
 291                 if (count > DC8051_ACCESS_TIMEOUT) {
 292                         dd_dev_err(dd, "timeout reading 8051 data\n");
 293                         return -ENXIO;
 294                 }
 295                 ndelay(10);
 296         }
 297 
 298         /* gather the data */
 299         *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
 300 
 301         return 0;
 302 }
 303 
 304 /*
 305  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
 306  * Return 0 on success, -errno on error.
 307  */
 308 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
 309 {
 310         unsigned long flags;
 311         u32 done;
 312         int ret = 0;
 313 
 314         spin_lock_irqsave(&dd->dc8051_memlock, flags);
 315 
 316         /* data read set-up, no auto-increment */
 317         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 318 
 319         for (done = 0; done < len; addr += 8, done += 8, result++) {
 320                 ret = __read_8051_data(dd, addr, result);
 321                 if (ret)
 322                         break;
 323         }
 324 
 325         /* turn off read enable */
 326         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 327 
 328         spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
 329 
 330         return ret;
 331 }
 332 
 333 /*
 334  * Write data or code to the 8051 code or data RAM.
 335  */
 336 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
 337                       const u8 *data, u32 len)
 338 {
 339         u64 reg;
 340         u32 offset;
 341         int aligned, count;
 342 
 343         /* check alignment */
 344         aligned = ((unsigned long)data & 0x7) == 0;
 345 
 346         /* write set-up */
 347         reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
 348                 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
 349         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
 350 
 351         reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 352                         << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
 353                 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
 354         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 355 
 356         /* write */
 357         for (offset = 0; offset < len; offset += 8) {
 358                 int bytes = len - offset;
 359 
 360                 if (bytes < 8) {
 361                         reg = 0;
 362                         memcpy(&reg, &data[offset], bytes);
 363                 } else if (aligned) {
 364                         reg = *(u64 *)&data[offset];
 365                 } else {
 366                         memcpy(&reg, &data[offset], 8);
 367                 }
 368                 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
 369 
 370                 /* wait until ACCESS_COMPLETED is set */
 371                 count = 0;
 372                 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 373                     & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 374                     == 0) {
 375                         count++;
 376                         if (count > DC8051_ACCESS_TIMEOUT) {
 377                                 dd_dev_err(dd, "timeout writing 8051 data\n");
 378                                 return -ENXIO;
 379                         }
 380                         udelay(1);
 381                 }
 382         }
 383 
 384         /* turn off write access, auto increment (also sets to data access) */
 385         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 386         write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 387 
 388         return 0;
 389 }
 390 
 391 /* return 0 if values match, non-zero and complain otherwise */
 392 static int invalid_header(struct hfi1_devdata *dd, const char *what,
 393                           u32 actual, u32 expected)
 394 {
 395         if (actual == expected)
 396                 return 0;
 397 
 398         dd_dev_err(dd,
 399                    "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
 400                    what, expected, actual);
 401         return 1;
 402 }
 403 
 404 /*
 405  * Verify that the static fields in the CSS header match.
 406  */
 407 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
 408 {
 409         /* verify CSS header fields (most sizes are in DW, so add /4) */
 410         if (invalid_header(dd, "module_type", css->module_type,
 411                            CSS_MODULE_TYPE) ||
 412             invalid_header(dd, "header_len", css->header_len,
 413                            (sizeof(struct firmware_file) / 4)) ||
 414             invalid_header(dd, "header_version", css->header_version,
 415                            CSS_HEADER_VERSION) ||
 416             invalid_header(dd, "module_vendor", css->module_vendor,
 417                            CSS_MODULE_VENDOR) ||
 418             invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
 419             invalid_header(dd, "modulus_size", css->modulus_size,
 420                            KEY_SIZE / 4) ||
 421             invalid_header(dd, "exponent_size", css->exponent_size,
 422                            EXPONENT_SIZE / 4)) {
 423                 return -EINVAL;
 424         }
 425         return 0;
 426 }
 427 
 428 /*
 429  * Make sure there are at least some bytes after the prefix.
 430  */
 431 static int payload_check(struct hfi1_devdata *dd, const char *name,
 432                          long file_size, long prefix_size)
 433 {
 434         /* make sure we have some payload */
 435         if (prefix_size >= file_size) {
 436                 dd_dev_err(dd,
 437                            "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
 438                            name, file_size, prefix_size);
 439                 return -EINVAL;
 440         }
 441 
 442         return 0;
 443 }
 444 
 445 /*
 446  * Request the firmware from the system.  Extract the pieces and fill in
 447  * fdet.  If successful, the caller will need to call dispose_one_firmware().
 448  * Returns 0 on success, -ERRNO on error.
 449  */
 450 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
 451                                struct firmware_details *fdet)
 452 {
 453         struct css_header *css;
 454         int ret;
 455 
 456         memset(fdet, 0, sizeof(*fdet));
 457 
 458         ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
 459         if (ret) {
 460                 dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
 461                             name, ret);
 462                 return ret;
 463         }
 464 
 465         /* verify the firmware */
 466         if (fdet->fw->size < sizeof(struct css_header)) {
 467                 dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
 468                 ret = -EINVAL;
 469                 goto done;
 470         }
 471         css = (struct css_header *)fdet->fw->data;
 472 
 473         hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
 474         hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
 475         hfi1_cdbg(FIRMWARE, "CSS structure:");
 476         hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
 477         hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
 478                   css->header_len, 4 * css->header_len);
 479         hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
 480         hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
 481         hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
 482         hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
 483         hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
 484                   css->size, 4 * css->size);
 485         hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
 486                   css->key_size, 4 * css->key_size);
 487         hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
 488                   css->modulus_size, 4 * css->modulus_size);
 489         hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
 490                   css->exponent_size, 4 * css->exponent_size);
 491         hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
 492                   fdet->fw->size - sizeof(struct firmware_file));
 493 
 494         /*
 495          * If the file does not have a valid CSS header, fail.
 496          * Otherwise, check the CSS size field for an expected size.
 497          * The augmented file has r2 and mu inserted after the header
 498          * was generated, so there will be a known difference between
 499          * the CSS header size and the actual file size.  Use this
 500          * difference to identify an augmented file.
 501          *
 502          * Note: css->size is in DWORDs, multiply by 4 to get bytes.
 503          */
 504         ret = verify_css_header(dd, css);
 505         if (ret) {
 506                 dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
 507         } else if ((css->size * 4) == fdet->fw->size) {
 508                 /* non-augmented firmware file */
 509                 struct firmware_file *ff = (struct firmware_file *)
 510                                                         fdet->fw->data;
 511 
 512                 /* make sure there are bytes in the payload */
 513                 ret = payload_check(dd, name, fdet->fw->size,
 514                                     sizeof(struct firmware_file));
 515                 if (ret == 0) {
 516                         fdet->css_header = css;
 517                         fdet->modulus = ff->modulus;
 518                         fdet->exponent = ff->exponent;
 519                         fdet->signature = ff->signature;
 520                         fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
 521                         fdet->mu = fdet->dummy_header.mu; /* use dummy space */
 522                         fdet->firmware_ptr = ff->firmware;
 523                         fdet->firmware_len = fdet->fw->size -
 524                                                 sizeof(struct firmware_file);
 525                         /*
 526                          * Header does not include r2 and mu - generate here.
 527                          * For now, fail.
 528                          */
 529                         dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
 530                         ret = -EINVAL;
 531                 }
 532         } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
 533                 /* augmented firmware file */
 534                 struct augmented_firmware_file *aff =
 535                         (struct augmented_firmware_file *)fdet->fw->data;
 536 
 537                 /* make sure there are bytes in the payload */
 538                 ret = payload_check(dd, name, fdet->fw->size,
 539                                     sizeof(struct augmented_firmware_file));
 540                 if (ret == 0) {
 541                         fdet->css_header = css;
 542                         fdet->modulus = aff->modulus;
 543                         fdet->exponent = aff->exponent;
 544                         fdet->signature = aff->signature;
 545                         fdet->r2 = aff->r2;
 546                         fdet->mu = aff->mu;
 547                         fdet->firmware_ptr = aff->firmware;
 548                         fdet->firmware_len = fdet->fw->size -
 549                                         sizeof(struct augmented_firmware_file);
 550                 }
 551         } else {
 552                 /* css->size check failed */
 553                 dd_dev_err(dd,
 554                            "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
 555                            fdet->fw->size / 4,
 556                            (fdet->fw->size - AUGMENT_SIZE) / 4,
 557                            css->size);
 558 
 559                 ret = -EINVAL;
 560         }
 561 
 562 done:
 563         /* if returning an error, clean up after ourselves */
 564         if (ret)
 565                 dispose_one_firmware(fdet);
 566         return ret;
 567 }
 568 
 569 static void dispose_one_firmware(struct firmware_details *fdet)
 570 {
 571         release_firmware(fdet->fw);
 572         /* erase all previous information */
 573         memset(fdet, 0, sizeof(*fdet));
 574 }
 575 
 576 /*
 577  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
 578  * at all.  If called with the firmware state in FW_TRY, use alternate names.
 579  * On exit, this routine will have set the firmware state to one of FW_TRY,
 580  * FW_FINAL, or FW_ERR.
 581  *
 582  * Must be holding fw_mutex.
 583  */
 584 static void __obtain_firmware(struct hfi1_devdata *dd)
 585 {
 586         int err = 0;
 587 
 588         if (fw_state == FW_FINAL)       /* nothing more to obtain */
 589                 return;
 590         if (fw_state == FW_ERR)         /* already in error */
 591                 return;
 592 
 593         /* fw_state is FW_EMPTY or FW_TRY */
 594 retry:
 595         if (fw_state == FW_TRY) {
 596                 /*
 597                  * We tried the original and it failed.  Move to the
 598                  * alternate.
 599                  */
 600                 dd_dev_warn(dd, "using alternate firmware names\n");
 601                 /*
 602                  * Let others run.  Some systems, when missing firmware, does
 603                  * something that holds for 30 seconds.  If we do that twice
 604                  * in a row it triggers task blocked warning.
 605                  */
 606                 cond_resched();
 607                 if (fw_8051_load)
 608                         dispose_one_firmware(&fw_8051);
 609                 if (fw_fabric_serdes_load)
 610                         dispose_one_firmware(&fw_fabric);
 611                 if (fw_sbus_load)
 612                         dispose_one_firmware(&fw_sbus);
 613                 if (fw_pcie_serdes_load)
 614                         dispose_one_firmware(&fw_pcie);
 615                 fw_8051_name = ALT_FW_8051_NAME_ASIC;
 616                 fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
 617                 fw_sbus_name = ALT_FW_SBUS_NAME;
 618                 fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
 619 
 620                 /*
 621                  * Add a delay before obtaining and loading debug firmware.
 622                  * Authorization will fail if the delay between firmware
 623                  * authorization events is shorter than 50us. Add 100us to
 624                  * make a delay time safe.
 625                  */
 626                 usleep_range(100, 120);
 627         }
 628 
 629         if (fw_sbus_load) {
 630                 err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
 631                 if (err)
 632                         goto done;
 633         }
 634 
 635         if (fw_pcie_serdes_load) {
 636                 err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
 637                 if (err)
 638                         goto done;
 639         }
 640 
 641         if (fw_fabric_serdes_load) {
 642                 err = obtain_one_firmware(dd, fw_fabric_serdes_name,
 643                                           &fw_fabric);
 644                 if (err)
 645                         goto done;
 646         }
 647 
 648         if (fw_8051_load) {
 649                 err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
 650                 if (err)
 651                         goto done;
 652         }
 653 
 654 done:
 655         if (err) {
 656                 /* oops, had problems obtaining a firmware */
 657                 if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
 658                         /* retry with alternate (RTL only) */
 659                         fw_state = FW_TRY;
 660                         goto retry;
 661                 }
 662                 dd_dev_err(dd, "unable to obtain working firmware\n");
 663                 fw_state = FW_ERR;
 664                 fw_err = -ENOENT;
 665         } else {
 666                 /* success */
 667                 if (fw_state == FW_EMPTY &&
 668                     dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
 669                         fw_state = FW_TRY;      /* may retry later */
 670                 else
 671                         fw_state = FW_FINAL;    /* cannot try again */
 672         }
 673 }
 674 
 675 /*
 676  * Called by all HFIs when loading their firmware - i.e. device probe time.
 677  * The first one will do the actual firmware load.  Use a mutex to resolve
 678  * any possible race condition.
 679  *
 680  * The call to this routine cannot be moved to driver load because the kernel
 681  * call request_firmware() requires a device which is only available after
 682  * the first device probe.
 683  */
 684 static int obtain_firmware(struct hfi1_devdata *dd)
 685 {
 686         unsigned long timeout;
 687 
 688         mutex_lock(&fw_mutex);
 689 
 690         /* 40s delay due to long delay on missing firmware on some systems */
 691         timeout = jiffies + msecs_to_jiffies(40000);
 692         while (fw_state == FW_TRY) {
 693                 /*
 694                  * Another device is trying the firmware.  Wait until it
 695                  * decides what works (or not).
 696                  */
 697                 if (time_after(jiffies, timeout)) {
 698                         /* waited too long */
 699                         dd_dev_err(dd, "Timeout waiting for firmware try");
 700                         fw_state = FW_ERR;
 701                         fw_err = -ETIMEDOUT;
 702                         break;
 703                 }
 704                 mutex_unlock(&fw_mutex);
 705                 msleep(20);     /* arbitrary delay */
 706                 mutex_lock(&fw_mutex);
 707         }
 708         /* not in FW_TRY state */
 709 
 710         /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
 711         if (fw_state == FW_EMPTY)
 712                 __obtain_firmware(dd);
 713 
 714         mutex_unlock(&fw_mutex);
 715         return fw_err;
 716 }
 717 
 718 /*
 719  * Called when the driver unloads.  The timing is asymmetric with its
 720  * counterpart, obtain_firmware().  If called at device remove time,
 721  * then it is conceivable that another device could probe while the
 722  * firmware is being disposed.  The mutexes can be moved to do that
 723  * safely, but then the firmware would be requested from the OS multiple
 724  * times.
 725  *
 726  * No mutex is needed as the driver is unloading and there cannot be any
 727  * other callers.
 728  */
 729 void dispose_firmware(void)
 730 {
 731         dispose_one_firmware(&fw_8051);
 732         dispose_one_firmware(&fw_fabric);
 733         dispose_one_firmware(&fw_pcie);
 734         dispose_one_firmware(&fw_sbus);
 735 
 736         /* retain the error state, otherwise revert to empty */
 737         if (fw_state != FW_ERR)
 738                 fw_state = FW_EMPTY;
 739 }
 740 
 741 /*
 742  * Called with the result of a firmware download.
 743  *
 744  * Return 1 to retry loading the firmware, 0 to stop.
 745  */
 746 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
 747 {
 748         int retry;
 749 
 750         mutex_lock(&fw_mutex);
 751 
 752         if (load_result == 0) {
 753                 /*
 754                  * The load succeeded, so expect all others to do the same.
 755                  * Do not retry again.
 756                  */
 757                 if (fw_state == FW_TRY)
 758                         fw_state = FW_FINAL;
 759                 retry = 0;      /* do NOT retry */
 760         } else if (fw_state == FW_TRY) {
 761                 /* load failed, obtain alternate firmware */
 762                 __obtain_firmware(dd);
 763                 retry = (fw_state == FW_FINAL);
 764         } else {
 765                 /* else in FW_FINAL or FW_ERR, no retry in either case */
 766                 retry = 0;
 767         }
 768 
 769         mutex_unlock(&fw_mutex);
 770         return retry;
 771 }
 772 
 773 /*
 774  * Write a block of data to a given array CSR.  All calls will be in
 775  * multiples of 8 bytes.
 776  */
 777 static void write_rsa_data(struct hfi1_devdata *dd, int what,
 778                            const u8 *data, int nbytes)
 779 {
 780         int qw_size = nbytes / 8;
 781         int i;
 782 
 783         if (((unsigned long)data & 0x7) == 0) {
 784                 /* aligned */
 785                 u64 *ptr = (u64 *)data;
 786 
 787                 for (i = 0; i < qw_size; i++, ptr++)
 788                         write_csr(dd, what + (8 * i), *ptr);
 789         } else {
 790                 /* not aligned */
 791                 for (i = 0; i < qw_size; i++, data += 8) {
 792                         u64 value;
 793 
 794                         memcpy(&value, data, 8);
 795                         write_csr(dd, what + (8 * i), value);
 796                 }
 797         }
 798 }
 799 
 800 /*
 801  * Write a block of data to a given CSR as a stream of writes.  All calls will
 802  * be in multiples of 8 bytes.
 803  */
 804 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
 805                                     const u8 *data, int nbytes)
 806 {
 807         u64 *ptr = (u64 *)data;
 808         int qw_size = nbytes / 8;
 809 
 810         for (; qw_size > 0; qw_size--, ptr++)
 811                 write_csr(dd, what, *ptr);
 812 }
 813 
 814 /*
 815  * Download the signature and start the RSA mechanism.  Wait for
 816  * RSA_ENGINE_TIMEOUT before giving up.
 817  */
 818 static int run_rsa(struct hfi1_devdata *dd, const char *who,
 819                    const u8 *signature)
 820 {
 821         unsigned long timeout;
 822         u64 reg;
 823         u32 status;
 824         int ret = 0;
 825 
 826         /* write the signature */
 827         write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
 828 
 829         /* initialize RSA */
 830         write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
 831 
 832         /*
 833          * Make sure the engine is idle and insert a delay between the two
 834          * writes to MISC_CFG_RSA_CMD.
 835          */
 836         status = (read_csr(dd, MISC_CFG_FW_CTRL)
 837                            & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 838                              >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 839         if (status != RSA_STATUS_IDLE) {
 840                 dd_dev_err(dd, "%s security engine not idle - giving up\n",
 841                            who);
 842                 return -EBUSY;
 843         }
 844 
 845         /* start RSA */
 846         write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
 847 
 848         /*
 849          * Look for the result.
 850          *
 851          * The RSA engine is hooked up to two MISC errors.  The driver
 852          * masks these errors as they do not respond to the standard
 853          * error "clear down" mechanism.  Look for these errors here and
 854          * clear them when possible.  This routine will exit with the
 855          * errors of the current run still set.
 856          *
 857          * MISC_FW_AUTH_FAILED_ERR
 858          *      Firmware authorization failed.  This can be cleared by
 859          *      re-initializing the RSA engine, then clearing the status bit.
 860          *      Do not re-init the RSA angine immediately after a successful
 861          *      run - this will reset the current authorization.
 862          *
 863          * MISC_KEY_MISMATCH_ERR
 864          *      Key does not match.  The only way to clear this is to load
 865          *      a matching key then clear the status bit.  If this error
 866          *      is raised, it will persist outside of this routine until a
 867          *      matching key is loaded.
 868          */
 869         timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
 870         while (1) {
 871                 status = (read_csr(dd, MISC_CFG_FW_CTRL)
 872                            & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 873                              >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 874 
 875                 if (status == RSA_STATUS_IDLE) {
 876                         /* should not happen */
 877                         dd_dev_err(dd, "%s firmware security bad idle state\n",
 878                                    who);
 879                         ret = -EINVAL;
 880                         break;
 881                 } else if (status == RSA_STATUS_DONE) {
 882                         /* finished successfully */
 883                         break;
 884                 } else if (status == RSA_STATUS_FAILED) {
 885                         /* finished unsuccessfully */
 886                         ret = -EINVAL;
 887                         break;
 888                 }
 889                 /* else still active */
 890 
 891                 if (time_after(jiffies, timeout)) {
 892                         /*
 893                          * Timed out while active.  We can't reset the engine
 894                          * if it is stuck active, but run through the
 895                          * error code to see what error bits are set.
 896                          */
 897                         dd_dev_err(dd, "%s firmware security time out\n", who);
 898                         ret = -ETIMEDOUT;
 899                         break;
 900                 }
 901 
 902                 msleep(20);
 903         }
 904 
 905         /*
 906          * Arrive here on success or failure.  Clear all RSA engine
 907          * errors.  All current errors will stick - the RSA logic is keeping
 908          * error high.  All previous errors will clear - the RSA logic
 909          * is not keeping the error high.
 910          */
 911         write_csr(dd, MISC_ERR_CLEAR,
 912                   MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
 913                   MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
 914         /*
 915          * All that is left are the current errors.  Print warnings on
 916          * authorization failure details, if any.  Firmware authorization
 917          * can be retried, so these are only warnings.
 918          */
 919         reg = read_csr(dd, MISC_ERR_STATUS);
 920         if (ret) {
 921                 if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
 922                         dd_dev_warn(dd, "%s firmware authorization failed\n",
 923                                     who);
 924                 if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
 925                         dd_dev_warn(dd, "%s firmware key mismatch\n", who);
 926         }
 927 
 928         return ret;
 929 }
 930 
 931 static void load_security_variables(struct hfi1_devdata *dd,
 932                                     struct firmware_details *fdet)
 933 {
 934         /* Security variables a.  Write the modulus */
 935         write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
 936         /* Security variables b.  Write the r2 */
 937         write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
 938         /* Security variables c.  Write the mu */
 939         write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
 940         /* Security variables d.  Write the header */
 941         write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
 942                                 (u8 *)fdet->css_header,
 943                                 sizeof(struct css_header));
 944 }
 945 
 946 /* return the 8051 firmware state */
 947 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
 948 {
 949         u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
 950 
 951         return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
 952                                 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
 953 }
 954 
 955 /*
 956  * Wait until the firmware is up and ready to take host requests.
 957  * Return 0 on success, -ETIMEDOUT on timeout.
 958  */
 959 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
 960 {
 961         unsigned long timeout;
 962 
 963         /* in the simulator, the fake 8051 is always ready */
 964         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
 965                 return 0;
 966 
 967         timeout = msecs_to_jiffies(mstimeout) + jiffies;
 968         while (1) {
 969                 if (get_firmware_state(dd) == 0xa0)     /* ready */
 970                         return 0;
 971                 if (time_after(jiffies, timeout))       /* timed out */
 972                         return -ETIMEDOUT;
 973                 usleep_range(1950, 2050); /* sleep 2ms-ish */
 974         }
 975 }
 976 
 977 /*
 978  * Load the 8051 firmware.
 979  */
 980 static int load_8051_firmware(struct hfi1_devdata *dd,
 981                               struct firmware_details *fdet)
 982 {
 983         u64 reg;
 984         int ret;
 985         u8 ver_major;
 986         u8 ver_minor;
 987         u8 ver_patch;
 988 
 989         /*
 990          * DC Reset sequence
 991          * Load DC 8051 firmware
 992          */
 993         /*
 994          * DC reset step 1: Reset DC8051
 995          */
 996         reg = DC_DC8051_CFG_RST_M8051W_SMASK
 997                 | DC_DC8051_CFG_RST_CRAM_SMASK
 998                 | DC_DC8051_CFG_RST_DRAM_SMASK
 999                 | DC_DC8051_CFG_RST_IRAM_SMASK
1000                 | DC_DC8051_CFG_RST_SFR_SMASK;
1001         write_csr(dd, DC_DC8051_CFG_RST, reg);
1002 
1003         /*
1004          * DC reset step 2 (optional): Load 8051 data memory with link
1005          * configuration
1006          */
1007 
1008         /*
1009          * DC reset step 3: Load DC8051 firmware
1010          */
1011         /* release all but the core reset */
1012         reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1013         write_csr(dd, DC_DC8051_CFG_RST, reg);
1014 
1015         /* Firmware load step 1 */
1016         load_security_variables(dd, fdet);
1017 
1018         /*
1019          * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1020          */
1021         write_csr(dd, MISC_CFG_FW_CTRL, 0);
1022 
1023         /* Firmware load steps 3-5 */
1024         ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1025                          fdet->firmware_len);
1026         if (ret)
1027                 return ret;
1028 
1029         /*
1030          * DC reset step 4. Host starts the DC8051 firmware
1031          */
1032         /*
1033          * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1034          */
1035         write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1036 
1037         /* Firmware load steps 7-10 */
1038         ret = run_rsa(dd, "8051", fdet->signature);
1039         if (ret)
1040                 return ret;
1041 
1042         /* clear all reset bits, releasing the 8051 */
1043         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1044 
1045         /*
1046          * DC reset step 5. Wait for firmware to be ready to accept host
1047          * requests.
1048          */
1049         ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1050         if (ret) { /* timed out */
1051                 dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1052                            get_firmware_state(dd));
1053                 return -ETIMEDOUT;
1054         }
1055 
1056         read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1057         dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1058                     (int)ver_major, (int)ver_minor, (int)ver_patch);
1059         dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1060         ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1061         if (ret != HCMD_SUCCESS) {
1062                 dd_dev_err(dd,
1063                            "Failed to set host interface version, return 0x%x\n",
1064                            ret);
1065                 return -EIO;
1066         }
1067 
1068         return 0;
1069 }
1070 
1071 /*
1072  * Write the SBus request register
1073  *
1074  * No need for masking - the arguments are sized exactly.
1075  */
1076 void sbus_request(struct hfi1_devdata *dd,
1077                   u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1078 {
1079         write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1080                   ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1081                   ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1082                   ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1083                   ((u64)receiver_addr <<
1084                    ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1085 }
1086 
1087 /*
1088  * Read a value from the SBus.
1089  *
1090  * Requires the caller to be in fast mode
1091  */
1092 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1093                      u32 data_in)
1094 {
1095         u64 reg;
1096         int retries;
1097         int success = 0;
1098         u32 result = 0;
1099         u32 result_code = 0;
1100 
1101         sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1102 
1103         for (retries = 0; retries < 100; retries++) {
1104                 usleep_range(1000, 1200); /* arbitrary */
1105                 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1106                 result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1107                                 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1108                 if (result_code != SBUS_READ_COMPLETE)
1109                         continue;
1110 
1111                 success = 1;
1112                 result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1113                            & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1114                 break;
1115         }
1116 
1117         if (!success) {
1118                 dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1119                            result_code);
1120         }
1121 
1122         return result;
1123 }
1124 
1125 /*
1126  * Turn off the SBus and fabric serdes spicos.
1127  *
1128  * + Must be called with Sbus fast mode turned on.
1129  * + Must be called after fabric serdes broadcast is set up.
1130  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131  *   when using MISC_CFG_FW_CTRL.
1132  */
1133 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1134 {
1135         /* only needed on A0 */
1136         if (!is_ax(dd))
1137                 return;
1138 
1139         dd_dev_info(dd, "Turning off spicos:%s%s\n",
1140                     flags & SPICO_SBUS ? " SBus" : "",
1141                     flags & SPICO_FABRIC ? " fabric" : "");
1142 
1143         write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1144         /* disable SBus spico */
1145         if (flags & SPICO_SBUS)
1146                 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1147                              WRITE_SBUS_RECEIVER, 0x00000040);
1148 
1149         /* disable the fabric serdes spicos */
1150         if (flags & SPICO_FABRIC)
1151                 sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1152                              0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1153         write_csr(dd, MISC_CFG_FW_CTRL, 0);
1154 }
1155 
1156 /*
1157  * Reset all of the fabric serdes for this HFI in preparation to take the
1158  * link to Polling.
1159  *
1160  * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1161  * the fabric serdes download to the other HFI on the ASIC will have turned
1162  * off the firmware validation on this HFI.  This means we can't write to the
1163  * registers to reset the serdes.  Work around this by performing a complete
1164  * re-download and validation of the fabric serdes firmware.  This, as a
1165  * by-product, will reset the serdes.  NOTE: the re-download requires that
1166  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1167  * serdes.  This routine is called at the point where the link is Offline and
1168  * is getting ready to go to Polling.
1169  */
1170 void fabric_serdes_reset(struct hfi1_devdata *dd)
1171 {
1172         int ret;
1173 
1174         if (!fw_fabric_serdes_load)
1175                 return;
1176 
1177         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1178         if (ret) {
1179                 dd_dev_err(dd,
1180                            "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1181                 return;
1182         }
1183         set_sbus_fast_mode(dd);
1184 
1185         if (is_ax(dd)) {
1186                 /* A0 serdes do not work with a re-download */
1187                 u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1188 
1189                 /* place SerDes in reset and disable SPICO */
1190                 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1191                 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1192                 udelay(1);
1193                 /* remove SerDes reset */
1194                 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1195                 /* turn SPICO enable on */
1196                 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1197         } else {
1198                 turn_off_spicos(dd, SPICO_FABRIC);
1199                 /*
1200                  * No need for firmware retry - what to download has already
1201                  * been decided.
1202                  * No need to pay attention to the load return - the only
1203                  * failure is a validation failure, which has already been
1204                  * checked by the initial download.
1205                  */
1206                 (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1207         }
1208 
1209         clear_sbus_fast_mode(dd);
1210         release_chip_resource(dd, CR_SBUS);
1211 }
1212 
1213 /* Access to the SBus in this routine should probably be serialized */
1214 int sbus_request_slow(struct hfi1_devdata *dd,
1215                       u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1216 {
1217         u64 reg, count = 0;
1218 
1219         /* make sure fast mode is clear */
1220         clear_sbus_fast_mode(dd);
1221 
1222         sbus_request(dd, receiver_addr, data_addr, command, data_in);
1223         write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1224                   ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1225         /* Wait for both DONE and RCV_DATA_VALID to go high */
1226         reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1227         while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1228                  (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1229                 if (count++ >= SBUS_MAX_POLL_COUNT) {
1230                         u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1231                         /*
1232                          * If the loop has timed out, we are OK if DONE bit
1233                          * is set and RCV_DATA_VALID and EXECUTE counters
1234                          * are the same. If not, we cannot proceed.
1235                          */
1236                         if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1237                             (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1238                              SBUS_COUNTER(counts, EXECUTE)))
1239                                 break;
1240                         return -ETIMEDOUT;
1241                 }
1242                 udelay(1);
1243                 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244         }
1245         count = 0;
1246         write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1247         /* Wait for DONE to clear after EXECUTE is cleared */
1248         reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1249         while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1250                 if (count++ >= SBUS_MAX_POLL_COUNT)
1251                         return -ETIME;
1252                 udelay(1);
1253                 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1254         }
1255         return 0;
1256 }
1257 
1258 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1259                                        struct firmware_details *fdet)
1260 {
1261         int i, err;
1262         const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1263 
1264         dd_dev_info(dd, "Downloading fabric firmware\n");
1265 
1266         /* step 1: load security variables */
1267         load_security_variables(dd, fdet);
1268         /* step 2: place SerDes in reset and disable SPICO */
1269         sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1270         /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1271         udelay(1);
1272         /* step 3:  remove SerDes reset */
1273         sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1274         /* step 4: assert IMEM override */
1275         sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1276         /* step 5: download SerDes machine code */
1277         for (i = 0; i < fdet->firmware_len; i += 4) {
1278                 sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1279                              *(u32 *)&fdet->firmware_ptr[i]);
1280         }
1281         /* step 6: IMEM override off */
1282         sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1283         /* step 7: turn ECC on */
1284         sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1285 
1286         /* steps 8-11: run the RSA engine */
1287         err = run_rsa(dd, "fabric serdes", fdet->signature);
1288         if (err)
1289                 return err;
1290 
1291         /* step 12: turn SPICO enable on */
1292         sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1293         /* step 13: enable core hardware interrupts */
1294         sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1295 
1296         return 0;
1297 }
1298 
1299 static int load_sbus_firmware(struct hfi1_devdata *dd,
1300                               struct firmware_details *fdet)
1301 {
1302         int i, err;
1303         const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1304 
1305         dd_dev_info(dd, "Downloading SBus firmware\n");
1306 
1307         /* step 1: load security variables */
1308         load_security_variables(dd, fdet);
1309         /* step 2: place SPICO into reset and enable off */
1310         sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1311         /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312         sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1313         /* step 4: set starting IMEM address for burst download */
1314         sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1315         /* step 5: download the SBus Master machine code */
1316         for (i = 0; i < fdet->firmware_len; i += 4) {
1317                 sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1318                              *(u32 *)&fdet->firmware_ptr[i]);
1319         }
1320         /* step 6: set IMEM_CNTL_EN off */
1321         sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1322         /* step 7: turn ECC on */
1323         sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1324 
1325         /* steps 8-11: run the RSA engine */
1326         err = run_rsa(dd, "SBus", fdet->signature);
1327         if (err)
1328                 return err;
1329 
1330         /* step 12: set SPICO_ENABLE on */
1331         sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1332 
1333         return 0;
1334 }
1335 
1336 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1337                                      struct firmware_details *fdet)
1338 {
1339         int i;
1340         const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1341 
1342         dd_dev_info(dd, "Downloading PCIe firmware\n");
1343 
1344         /* step 1: load security variables */
1345         load_security_variables(dd, fdet);
1346         /* step 2: assert single step (halts the SBus Master spico) */
1347         sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1348         /* step 3: enable XDMEM access */
1349         sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1350         /* step 4: load firmware into SBus Master XDMEM */
1351         /*
1352          * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353          * we only need to pick up the bytes and write them
1354          */
1355         for (i = 0; i < fdet->firmware_len; i += 4) {
1356                 sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1357                              *(u32 *)&fdet->firmware_ptr[i]);
1358         }
1359         /* step 5: disable XDMEM access */
1360         sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1361         /* step 6: allow SBus Spico to run */
1362         sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1363 
1364         /*
1365          * steps 7-11: run RSA, if it succeeds, firmware is available to
1366          * be swapped
1367          */
1368         return run_rsa(dd, "PCIe serdes", fdet->signature);
1369 }
1370 
1371 /*
1372  * Set the given broadcast values on the given list of devices.
1373  */
1374 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1375                                  const u8 *addrs, int count)
1376 {
1377         while (--count >= 0) {
1378                 /*
1379                  * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380                  * defaults for everything else.  Do not read-modify-write,
1381                  * per instruction from the manufacturer.
1382                  *
1383                  * Register 0xfd:
1384                  *      bits    what
1385                  *      -----   ---------------------------------
1386                  *        0     IGNORE_BROADCAST  (default 0)
1387                  *      11:4    BROADCAST_GROUP_1 (default 0xff)
1388                  *      23:16   BROADCAST_GROUP_2 (default 0xff)
1389                  */
1390                 sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1391                              (u32)bg1 << 4 | (u32)bg2 << 16);
1392         }
1393 }
1394 
1395 int acquire_hw_mutex(struct hfi1_devdata *dd)
1396 {
1397         unsigned long timeout;
1398         int try = 0;
1399         u8 mask = 1 << dd->hfi1_id;
1400         u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1401 
1402         if (user == mask) {
1403                 dd_dev_info(dd,
1404                             "Hardware mutex already acquired, mutex mask %u\n",
1405                             (u32)mask);
1406                 return 0;
1407         }
1408 
1409 retry:
1410         timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1411         while (1) {
1412                 write_csr(dd, ASIC_CFG_MUTEX, mask);
1413                 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1414                 if (user == mask)
1415                         return 0; /* success */
1416                 if (time_after(jiffies, timeout))
1417                         break; /* timed out */
1418                 msleep(20);
1419         }
1420 
1421         /* timed out */
1422         dd_dev_err(dd,
1423                    "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424                    (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1425 
1426         if (try == 0) {
1427                 /* break mutex and retry */
1428                 write_csr(dd, ASIC_CFG_MUTEX, 0);
1429                 try++;
1430                 goto retry;
1431         }
1432 
1433         return -EBUSY;
1434 }
1435 
1436 void release_hw_mutex(struct hfi1_devdata *dd)
1437 {
1438         u8 mask = 1 << dd->hfi1_id;
1439         u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1440 
1441         if (user != mask)
1442                 dd_dev_warn(dd,
1443                             "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444                             (u32)user, (u32)mask);
1445         else
1446                 write_csr(dd, ASIC_CFG_MUTEX, 0);
1447 }
1448 
1449 /* return the given resource bit(s) as a mask for the given HFI */
1450 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451 {
1452         return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453 }
1454 
1455 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456                                        const char *func)
1457 {
1458         dd_dev_err(dd,
1459                    "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460                    func);
1461 }
1462 
1463 /*
1464  * Acquire access to a chip resource.
1465  *
1466  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467  */
1468 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469 {
1470         u64 scratch0, all_bits, my_bit;
1471         int ret;
1472 
1473         if (resource & CR_DYN_MASK) {
1474                 /* a dynamic resource is in use if either HFI has set the bit */
1475                 if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476                     (resource & (CR_I2C1 | CR_I2C2))) {
1477                         /* discrete devices must serialize across both chains */
1478                         all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479                                         resource_mask(1, CR_I2C1 | CR_I2C2);
1480                 } else {
1481                         all_bits = resource_mask(0, resource) |
1482                                                 resource_mask(1, resource);
1483                 }
1484                 my_bit = resource_mask(dd->hfi1_id, resource);
1485         } else {
1486                 /* non-dynamic resources are not split between HFIs */
1487                 all_bits = resource;
1488                 my_bit = resource;
1489         }
1490 
1491         /* lock against other callers within the driver wanting a resource */
1492         mutex_lock(&dd->asic_data->asic_resource_mutex);
1493 
1494         ret = acquire_hw_mutex(dd);
1495         if (ret) {
1496                 fail_mutex_acquire_message(dd, __func__);
1497                 ret = -EIO;
1498                 goto done;
1499         }
1500 
1501         scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502         if (scratch0 & all_bits) {
1503                 ret = -EBUSY;
1504         } else {
1505                 write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506                 /* force write to be visible to other HFI on another OS */
1507                 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1508         }
1509 
1510         release_hw_mutex(dd);
1511 
1512 done:
1513         mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514         return ret;
1515 }
1516 
1517 /*
1518  * Acquire access to a chip resource, wait up to mswait milliseconds for
1519  * the resource to become available.
1520  *
1521  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522  * acquire failed.
1523  */
1524 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525 {
1526         unsigned long timeout;
1527         int ret;
1528 
1529         timeout = jiffies + msecs_to_jiffies(mswait);
1530         while (1) {
1531                 ret = __acquire_chip_resource(dd, resource);
1532                 if (ret != -EBUSY)
1533                         return ret;
1534                 /* resource is busy, check our timeout */
1535                 if (time_after_eq(jiffies, timeout))
1536                         return -EBUSY;
1537                 usleep_range(80, 120);  /* arbitrary delay */
1538         }
1539 }
1540 
1541 /*
1542  * Release access to a chip resource
1543  */
1544 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545 {
1546         u64 scratch0, bit;
1547 
1548         /* only dynamic resources should ever be cleared */
1549         if (!(resource & CR_DYN_MASK)) {
1550                 dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551                            resource);
1552                 return;
1553         }
1554         bit = resource_mask(dd->hfi1_id, resource);
1555 
1556         /* lock against other callers within the driver wanting a resource */
1557         mutex_lock(&dd->asic_data->asic_resource_mutex);
1558 
1559         if (acquire_hw_mutex(dd)) {
1560                 fail_mutex_acquire_message(dd, __func__);
1561                 goto done;
1562         }
1563 
1564         scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565         if ((scratch0 & bit) != 0) {
1566                 scratch0 &= ~bit;
1567                 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568                 /* force write to be visible to other HFI on another OS */
1569                 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1570         } else {
1571                 dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572                             __func__, dd->hfi1_id, resource);
1573         }
1574 
1575         release_hw_mutex(dd);
1576 
1577 done:
1578         mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579 }
1580 
1581 /*
1582  * Return true if resource is set, false otherwise.  Print a warning
1583  * if not set and a function is supplied.
1584  */
1585 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586                          const char *func)
1587 {
1588         u64 scratch0, bit;
1589 
1590         if (resource & CR_DYN_MASK)
1591                 bit = resource_mask(dd->hfi1_id, resource);
1592         else
1593                 bit = resource;
1594 
1595         scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596         if ((scratch0 & bit) == 0) {
1597                 if (func)
1598                         dd_dev_warn(dd,
1599                                     "%s: id %d, resource 0x%x, not acquired!\n",
1600                                     func, dd->hfi1_id, resource);
1601                 return false;
1602         }
1603         return true;
1604 }
1605 
1606 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607 {
1608         u64 scratch0;
1609 
1610         /* lock against other callers within the driver wanting a resource */
1611         mutex_lock(&dd->asic_data->asic_resource_mutex);
1612 
1613         if (acquire_hw_mutex(dd)) {
1614                 fail_mutex_acquire_message(dd, func);
1615                 goto done;
1616         }
1617 
1618         /* clear all dynamic access bits for this HFI */
1619         scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620         scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621         write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622         /* force write to be visible to other HFI on another OS */
1623         (void)read_csr(dd, ASIC_CFG_SCRATCH);
1624 
1625         release_hw_mutex(dd);
1626 
1627 done:
1628         mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629 }
1630 
1631 void init_chip_resources(struct hfi1_devdata *dd)
1632 {
1633         /* clear any holds left by us */
1634         clear_chip_resources(dd, __func__);
1635 }
1636 
1637 void finish_chip_resources(struct hfi1_devdata *dd)
1638 {
1639         /* clear any holds left by us */
1640         clear_chip_resources(dd, __func__);
1641 }
1642 
1643 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644 {
1645         write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646                   ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647 }
1648 
1649 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650 {
1651         u64 reg, count = 0;
1652 
1653         reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654         while (SBUS_COUNTER(reg, EXECUTE) !=
1655                SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656                 if (count++ >= SBUS_MAX_POLL_COUNT)
1657                         break;
1658                 udelay(1);
1659                 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660         }
1661         write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662 }
1663 
1664 int load_firmware(struct hfi1_devdata *dd)
1665 {
1666         int ret;
1667 
1668         if (fw_fabric_serdes_load) {
1669                 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670                 if (ret)
1671                         return ret;
1672 
1673                 set_sbus_fast_mode(dd);
1674 
1675                 set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676                                      fabric_serdes_broadcast[dd->hfi1_id],
1677                                      fabric_serdes_addrs[dd->hfi1_id],
1678                                      NUM_FABRIC_SERDES);
1679                 turn_off_spicos(dd, SPICO_FABRIC);
1680                 do {
1681                         ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682                 } while (retry_firmware(dd, ret));
1683 
1684                 clear_sbus_fast_mode(dd);
1685                 release_chip_resource(dd, CR_SBUS);
1686                 if (ret)
1687                         return ret;
1688         }
1689 
1690         if (fw_8051_load) {
1691                 do {
1692                         ret = load_8051_firmware(dd, &fw_8051);
1693                 } while (retry_firmware(dd, ret));
1694                 if (ret)
1695                         return ret;
1696         }
1697 
1698         dump_fw_version(dd);
1699         return 0;
1700 }
1701 
1702 int hfi1_firmware_init(struct hfi1_devdata *dd)
1703 {
1704         /* only RTL can use these */
1705         if (dd->icode != ICODE_RTL_SILICON) {
1706                 fw_fabric_serdes_load = 0;
1707                 fw_pcie_serdes_load = 0;
1708                 fw_sbus_load = 0;
1709         }
1710 
1711         /* no 8051 or QSFP on simulator */
1712         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1713                 fw_8051_load = 0;
1714 
1715         if (!fw_8051_name) {
1716                 if (dd->icode == ICODE_RTL_SILICON)
1717                         fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1718                 else
1719                         fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1720         }
1721         if (!fw_fabric_serdes_name)
1722                 fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1723         if (!fw_sbus_name)
1724                 fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1725         if (!fw_pcie_serdes_name)
1726                 fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1727 
1728         return obtain_firmware(dd);
1729 }
1730 
1731 /*
1732  * This function is a helper function for parse_platform_config(...) and
1733  * does not check for validity of the platform configuration cache
1734  * (because we know it is invalid as we are building up the cache).
1735  * As such, this should not be called from anywhere other than
1736  * parse_platform_config
1737  */
1738 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1739 {
1740         u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1741         struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1742 
1743         if (!system_table)
1744                 return -EINVAL;
1745 
1746         meta_ver_meta =
1747         *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1748         + SYSTEM_TABLE_META_VERSION);
1749 
1750         mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1751         ver_start = meta_ver_meta & mask;
1752 
1753         meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1754 
1755         mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1756         ver_len = meta_ver_meta & mask;
1757 
1758         ver_start /= 8;
1759         meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1760 
1761         if (meta_ver < 4) {
1762                 dd_dev_info(
1763                         dd, "%s:Please update platform config\n", __func__);
1764                 return -EINVAL;
1765         }
1766         return 0;
1767 }
1768 
1769 int parse_platform_config(struct hfi1_devdata *dd)
1770 {
1771         struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1772         struct hfi1_pportdata *ppd = dd->pport;
1773         u32 *ptr = NULL;
1774         u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1775         u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1776         int ret = -EINVAL; /* assume failure */
1777 
1778         /*
1779          * For integrated devices that did not fall back to the default file,
1780          * the SI tuning information for active channels is acquired from the
1781          * scratch register bitmap, thus there is no platform config to parse.
1782          * Skip parsing in these situations.
1783          */
1784         if (ppd->config_from_scratch)
1785                 return 0;
1786 
1787         if (!dd->platform_config.data) {
1788                 dd_dev_err(dd, "%s: Missing config file\n", __func__);
1789                 goto bail;
1790         }
1791         ptr = (u32 *)dd->platform_config.data;
1792 
1793         magic_num = *ptr;
1794         ptr++;
1795         if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1796                 dd_dev_err(dd, "%s: Bad config file\n", __func__);
1797                 goto bail;
1798         }
1799 
1800         /* Field is file size in DWORDs */
1801         file_length = (*ptr) * 4;
1802 
1803         /*
1804          * Length can't be larger than partition size. Assume platform
1805          * config format version 4 is being used. Interpret the file size
1806          * field as header instead by not moving the pointer.
1807          */
1808         if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1809                 dd_dev_info(dd,
1810                             "%s:File length out of bounds, using alternative format\n",
1811                             __func__);
1812                 file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1813         } else {
1814                 ptr++;
1815         }
1816 
1817         if (file_length > dd->platform_config.size) {
1818                 dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1819                             __func__);
1820                 goto bail;
1821         } else if (file_length < dd->platform_config.size) {
1822                 dd_dev_info(dd,
1823                             "%s:File claims to be smaller than read size, continuing\n",
1824                             __func__);
1825         }
1826         /* exactly equal, perfection */
1827 
1828         /*
1829          * In both cases where we proceed, using the self-reported file length
1830          * is the safer option. In case of old format a predefined value is
1831          * being used.
1832          */
1833         while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1834                 header1 = *ptr;
1835                 header2 = *(ptr + 1);
1836                 if (header1 != ~header2) {
1837                         dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1838                                    __func__, (ptr - (u32 *)
1839                                               dd->platform_config.data));
1840                         goto bail;
1841                 }
1842 
1843                 record_idx = *ptr &
1844                         ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1845 
1846                 table_length_dwords = (*ptr >>
1847                                 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1848                       ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1849 
1850                 table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1851                         ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1852 
1853                 /* Done with this set of headers */
1854                 ptr += 2;
1855 
1856                 if (record_idx) {
1857                         /* data table */
1858                         switch (table_type) {
1859                         case PLATFORM_CONFIG_SYSTEM_TABLE:
1860                                 pcfgcache->config_tables[table_type].num_table =
1861                                                                         1;
1862                                 ret = check_meta_version(dd, ptr);
1863                                 if (ret)
1864                                         goto bail;
1865                                 break;
1866                         case PLATFORM_CONFIG_PORT_TABLE:
1867                                 pcfgcache->config_tables[table_type].num_table =
1868                                                                         2;
1869                                 break;
1870                         case PLATFORM_CONFIG_RX_PRESET_TABLE:
1871                                 /* fall through */
1872                         case PLATFORM_CONFIG_TX_PRESET_TABLE:
1873                                 /* fall through */
1874                         case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1875                                 /* fall through */
1876                         case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1877                                 pcfgcache->config_tables[table_type].num_table =
1878                                                         table_length_dwords;
1879                                 break;
1880                         default:
1881                                 dd_dev_err(dd,
1882                                            "%s: Unknown data table %d, offset %ld\n",
1883                                            __func__, table_type,
1884                                            (ptr - (u32 *)
1885                                             dd->platform_config.data));
1886                                 goto bail; /* We don't trust this file now */
1887                         }
1888                         pcfgcache->config_tables[table_type].table = ptr;
1889                 } else {
1890                         /* metadata table */
1891                         switch (table_type) {
1892                         case PLATFORM_CONFIG_SYSTEM_TABLE:
1893                                 /* fall through */
1894                         case PLATFORM_CONFIG_PORT_TABLE:
1895                                 /* fall through */
1896                         case PLATFORM_CONFIG_RX_PRESET_TABLE:
1897                                 /* fall through */
1898                         case PLATFORM_CONFIG_TX_PRESET_TABLE:
1899                                 /* fall through */
1900                         case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1901                                 /* fall through */
1902                         case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1903                                 break;
1904                         default:
1905                                 dd_dev_err(dd,
1906                                            "%s: Unknown meta table %d, offset %ld\n",
1907                                            __func__, table_type,
1908                                            (ptr -
1909                                             (u32 *)dd->platform_config.data));
1910                                 goto bail; /* We don't trust this file now */
1911                         }
1912                         pcfgcache->config_tables[table_type].table_metadata =
1913                                                                         ptr;
1914                 }
1915 
1916                 /* Calculate and check table crc */
1917                 crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1918                                (table_length_dwords * 4));
1919                 crc ^= ~(u32)0;
1920 
1921                 /* Jump the table */
1922                 ptr += table_length_dwords;
1923                 if (crc != *ptr) {
1924                         dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1925                                    __func__, (ptr -
1926                                    (u32 *)dd->platform_config.data));
1927                         goto bail;
1928                 }
1929                 /* Jump the CRC DWORD */
1930                 ptr++;
1931         }
1932 
1933         pcfgcache->cache_valid = 1;
1934         return 0;
1935 bail:
1936         memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1937         return ret;
1938 }
1939 
1940 static void get_integrated_platform_config_field(
1941                 struct hfi1_devdata *dd,
1942                 enum platform_config_table_type_encoding table_type,
1943                 int field_index, u32 *data)
1944 {
1945         struct hfi1_pportdata *ppd = dd->pport;
1946         u8 *cache = ppd->qsfp_info.cache;
1947         u32 tx_preset = 0;
1948 
1949         switch (table_type) {
1950         case PLATFORM_CONFIG_SYSTEM_TABLE:
1951                 if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1952                         *data = ppd->max_power_class;
1953                 else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1954                         *data = ppd->default_atten;
1955                 break;
1956         case PLATFORM_CONFIG_PORT_TABLE:
1957                 if (field_index == PORT_TABLE_PORT_TYPE)
1958                         *data = ppd->port_type;
1959                 else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1960                         *data = ppd->local_atten;
1961                 else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1962                         *data = ppd->remote_atten;
1963                 break;
1964         case PLATFORM_CONFIG_RX_PRESET_TABLE:
1965                 if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1966                         *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1967                                 QSFP_RX_CDR_APPLY_SHIFT;
1968                 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1969                         *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1970                                 QSFP_RX_EMP_APPLY_SHIFT;
1971                 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1972                         *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1973                                 QSFP_RX_AMP_APPLY_SHIFT;
1974                 else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1975                         *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1976                                 QSFP_RX_CDR_SHIFT;
1977                 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1978                         *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1979                                 QSFP_RX_EMP_SHIFT;
1980                 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1981                         *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1982                                 QSFP_RX_AMP_SHIFT;
1983                 break;
1984         case PLATFORM_CONFIG_TX_PRESET_TABLE:
1985                 if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1986                         tx_preset = ppd->tx_preset_eq;
1987                 else
1988                         tx_preset = ppd->tx_preset_noeq;
1989                 if (field_index == TX_PRESET_TABLE_PRECUR)
1990                         *data = (tx_preset & TX_PRECUR_SMASK) >>
1991                                 TX_PRECUR_SHIFT;
1992                 else if (field_index == TX_PRESET_TABLE_ATTN)
1993                         *data = (tx_preset & TX_ATTN_SMASK) >>
1994                                 TX_ATTN_SHIFT;
1995                 else if (field_index == TX_PRESET_TABLE_POSTCUR)
1996                         *data = (tx_preset & TX_POSTCUR_SMASK) >>
1997                                 TX_POSTCUR_SHIFT;
1998                 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1999                         *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
2000                                 QSFP_TX_CDR_APPLY_SHIFT;
2001                 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
2002                         *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
2003                                 QSFP_TX_EQ_APPLY_SHIFT;
2004                 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
2005                         *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
2006                                 QSFP_TX_CDR_SHIFT;
2007                 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2008                         *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2009                                 QSFP_TX_EQ_SHIFT;
2010                 break;
2011         case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2012         case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2013         default:
2014                 break;
2015         }
2016 }
2017 
2018 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2019                                           int field, u32 *field_len_bits,
2020                                           u32 *field_start_bits)
2021 {
2022         struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2023         u32 *src_ptr = NULL;
2024 
2025         if (!pcfgcache->cache_valid)
2026                 return -EINVAL;
2027 
2028         switch (table) {
2029         case PLATFORM_CONFIG_SYSTEM_TABLE:
2030                 /* fall through */
2031         case PLATFORM_CONFIG_PORT_TABLE:
2032                 /* fall through */
2033         case PLATFORM_CONFIG_RX_PRESET_TABLE:
2034                 /* fall through */
2035         case PLATFORM_CONFIG_TX_PRESET_TABLE:
2036                 /* fall through */
2037         case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2038                 /* fall through */
2039         case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2040                 if (field && field < platform_config_table_limits[table])
2041                         src_ptr =
2042                         pcfgcache->config_tables[table].table_metadata + field;
2043                 break;
2044         default:
2045                 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2046                 break;
2047         }
2048 
2049         if (!src_ptr)
2050                 return -EINVAL;
2051 
2052         if (field_start_bits)
2053                 *field_start_bits = *src_ptr &
2054                       ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2055 
2056         if (field_len_bits)
2057                 *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2058                        & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2059 
2060         return 0;
2061 }
2062 
2063 /* This is the central interface to getting data out of the platform config
2064  * file. It depends on parse_platform_config() having populated the
2065  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2066  * validate the sanity of the cache.
2067  *
2068  * The non-obvious parameters:
2069  * @table_index: Acts as a look up key into which instance of the tables the
2070  * relevant field is fetched from.
2071  *
2072  * This applies to the data tables that have multiple instances. The port table
2073  * is an exception to this rule as each HFI only has one port and thus the
2074  * relevant table can be distinguished by hfi_id.
2075  *
2076  * @data: pointer to memory that will be populated with the field requested.
2077  * @len: length of memory pointed by @data in bytes.
2078  */
2079 int get_platform_config_field(struct hfi1_devdata *dd,
2080                               enum platform_config_table_type_encoding
2081                               table_type, int table_index, int field_index,
2082                               u32 *data, u32 len)
2083 {
2084         int ret = 0, wlen = 0, seek = 0;
2085         u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2086         struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2087         struct hfi1_pportdata *ppd = dd->pport;
2088 
2089         if (data)
2090                 memset(data, 0, len);
2091         else
2092                 return -EINVAL;
2093 
2094         if (ppd->config_from_scratch) {
2095                 /*
2096                  * Use saved configuration from ppd for integrated platforms
2097                  */
2098                 get_integrated_platform_config_field(dd, table_type,
2099                                                      field_index, data);
2100                 return 0;
2101         }
2102 
2103         ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2104                                              &field_len_bits,
2105                                              &field_start_bits);
2106         if (ret)
2107                 return -EINVAL;
2108 
2109         /* Convert length to bits */
2110         len *= 8;
2111 
2112         /* Our metadata function checked cache_valid and field_index for us */
2113         switch (table_type) {
2114         case PLATFORM_CONFIG_SYSTEM_TABLE:
2115                 src_ptr = pcfgcache->config_tables[table_type].table;
2116 
2117                 if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2118                         if (len < field_len_bits)
2119                                 return -EINVAL;
2120 
2121                         seek = field_start_bits / 8;
2122                         wlen = field_len_bits / 8;
2123 
2124                         src_ptr = (u32 *)((u8 *)src_ptr + seek);
2125 
2126                         /*
2127                          * We expect the field to be byte aligned and whole byte
2128                          * lengths if we are here
2129                          */
2130                         memcpy(data, src_ptr, wlen);
2131                         return 0;
2132                 }
2133                 break;
2134         case PLATFORM_CONFIG_PORT_TABLE:
2135                 /* Port table is 4 DWORDS */
2136                 src_ptr = dd->hfi1_id ?
2137                         pcfgcache->config_tables[table_type].table + 4 :
2138                         pcfgcache->config_tables[table_type].table;
2139                 break;
2140         case PLATFORM_CONFIG_RX_PRESET_TABLE:
2141                 /* fall through */
2142         case PLATFORM_CONFIG_TX_PRESET_TABLE:
2143                 /* fall through */
2144         case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2145                 /* fall through */
2146         case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2147                 src_ptr = pcfgcache->config_tables[table_type].table;
2148 
2149                 if (table_index <
2150                         pcfgcache->config_tables[table_type].num_table)
2151                         src_ptr += table_index;
2152                 else
2153                         src_ptr = NULL;
2154                 break;
2155         default:
2156                 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2157                 break;
2158         }
2159 
2160         if (!src_ptr || len < field_len_bits)
2161                 return -EINVAL;
2162 
2163         src_ptr += (field_start_bits / 32);
2164         *data = (*src_ptr >> (field_start_bits % 32)) &
2165                         ((1 << field_len_bits) - 1);
2166 
2167         return 0;
2168 }
2169 
2170 /*
2171  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2172  * to the SBus firmware is needed before updating the PCIe firmware.
2173  *
2174  * Note: caller must be holding the SBus resource.
2175  */
2176 int load_pcie_firmware(struct hfi1_devdata *dd)
2177 {
2178         int ret = 0;
2179 
2180         /* both firmware loads below use the SBus */
2181         set_sbus_fast_mode(dd);
2182 
2183         if (fw_sbus_load) {
2184                 turn_off_spicos(dd, SPICO_SBUS);
2185                 do {
2186                         ret = load_sbus_firmware(dd, &fw_sbus);
2187                 } while (retry_firmware(dd, ret));
2188                 if (ret)
2189                         goto done;
2190         }
2191 
2192         if (fw_pcie_serdes_load) {
2193                 dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2194                 set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2195                                      pcie_serdes_broadcast[dd->hfi1_id],
2196                                      pcie_serdes_addrs[dd->hfi1_id],
2197                                      NUM_PCIE_SERDES);
2198                 do {
2199                         ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2200                 } while (retry_firmware(dd, ret));
2201                 if (ret)
2202                         goto done;
2203         }
2204 
2205 done:
2206         clear_sbus_fast_mode(dd);
2207 
2208         return ret;
2209 }
2210 
2211 /*
2212  * Read the GUID from the hardware, store it in dd.
2213  */
2214 void read_guid(struct hfi1_devdata *dd)
2215 {
2216         /* Take the DC out of reset to get a valid GUID value */
2217         write_csr(dd, CCE_DC_CTRL, 0);
2218         (void)read_csr(dd, CCE_DC_CTRL);
2219 
2220         dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2221         dd_dev_info(dd, "GUID %llx",
2222                     (unsigned long long)dd->base_guid);
2223 }
2224 
2225 /* read and display firmware version info */
2226 static void dump_fw_version(struct hfi1_devdata *dd)
2227 {
2228         u32 pcie_vers[NUM_PCIE_SERDES];
2229         u32 fabric_vers[NUM_FABRIC_SERDES];
2230         u32 sbus_vers;
2231         int i;
2232         int all_same;
2233         int ret;
2234         u8 rcv_addr;
2235 
2236         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2237         if (ret) {
2238                 dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2239                 return;
2240         }
2241 
2242         /* set fast mode */
2243         set_sbus_fast_mode(dd);
2244 
2245         /* read version for SBus Master */
2246         sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2247         sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2248         /* wait for interrupt to be processed */
2249         usleep_range(10000, 11000);
2250         sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2251         dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2252 
2253         /* read version for PCIe SerDes */
2254         all_same = 1;
2255         pcie_vers[0] = 0;
2256         for (i = 0; i < NUM_PCIE_SERDES; i++) {
2257                 rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2258                 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2259                 /* wait for interrupt to be processed */
2260                 usleep_range(10000, 11000);
2261                 pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2262                 if (i > 0 && pcie_vers[0] != pcie_vers[i])
2263                         all_same = 0;
2264         }
2265 
2266         if (all_same) {
2267                 dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2268                             pcie_vers[0]);
2269         } else {
2270                 dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2271                 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2272                         dd_dev_info(dd,
2273                                     "PCIe SerDes lane %d firmware version 0x%x\n",
2274                                     i, pcie_vers[i]);
2275                 }
2276         }
2277 
2278         /* read version for fabric SerDes */
2279         all_same = 1;
2280         fabric_vers[0] = 0;
2281         for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2282                 rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2283                 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2284                 /* wait for interrupt to be processed */
2285                 usleep_range(10000, 11000);
2286                 fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2287                 if (i > 0 && fabric_vers[0] != fabric_vers[i])
2288                         all_same = 0;
2289         }
2290 
2291         if (all_same) {
2292                 dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2293                             fabric_vers[0]);
2294         } else {
2295                 dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2296                 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2297                         dd_dev_info(dd,
2298                                     "Fabric SerDes lane %d firmware version 0x%x\n",
2299                                     i, fabric_vers[i]);
2300                 }
2301         }
2302 
2303         clear_sbus_fast_mode(dd);
2304         release_chip_resource(dd, CR_SBUS);
2305 }

/* [<][>][^][v][top][bottom][index][help] */