root/drivers/infiniband/hw/hfi1/sdma.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. sdma_empty
  2. sdma_descq_freecnt
  3. sdma_descq_inprocess
  4. __sdma_running
  5. sdma_running
  6. sdma_txinit_ahg
  7. sdma_txinit
  8. sdma_mapping_type
  9. sdma_mapping_len
  10. sdma_mapping_addr
  11. make_tx_sdma_desc
  12. sdma_txclean
  13. _sdma_close_tx
  14. _sdma_txadd_daddr
  15. sdma_txadd_page
  16. sdma_txadd_daddr
  17. sdma_txadd_kvaddr
  18. sdma_build_ahg_descriptor
  19. sdma_progress
  20. sdma_iowait_schedule
  21. sdma_engine_progress_schedule
  22. slashstrip

   1 #ifndef _HFI1_SDMA_H
   2 #define _HFI1_SDMA_H
   3 /*
   4  * Copyright(c) 2015 - 2018 Intel Corporation.
   5  *
   6  * This file is provided under a dual BSD/GPLv2 license.  When using or
   7  * redistributing this file, you may do so under either license.
   8  *
   9  * GPL LICENSE SUMMARY
  10  *
  11  * This program is free software; you can redistribute it and/or modify
  12  * it under the terms of version 2 of the GNU General Public License as
  13  * published by the Free Software Foundation.
  14  *
  15  * This program is distributed in the hope that it will be useful, but
  16  * WITHOUT ANY WARRANTY; without even the implied warranty of
  17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18  * General Public License for more details.
  19  *
  20  * BSD LICENSE
  21  *
  22  * Redistribution and use in source and binary forms, with or without
  23  * modification, are permitted provided that the following conditions
  24  * are met:
  25  *
  26  *  - Redistributions of source code must retain the above copyright
  27  *    notice, this list of conditions and the following disclaimer.
  28  *  - Redistributions in binary form must reproduce the above copyright
  29  *    notice, this list of conditions and the following disclaimer in
  30  *    the documentation and/or other materials provided with the
  31  *    distribution.
  32  *  - Neither the name of Intel Corporation nor the names of its
  33  *    contributors may be used to endorse or promote products derived
  34  *    from this software without specific prior written permission.
  35  *
  36  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  37  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  38  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  39  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  40  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  42  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  43  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  44  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  45  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  46  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  47  *
  48  */
  49 
  50 #include <linux/types.h>
  51 #include <linux/list.h>
  52 #include <asm/byteorder.h>
  53 #include <linux/workqueue.h>
  54 #include <linux/rculist.h>
  55 
  56 #include "hfi.h"
  57 #include "verbs.h"
  58 #include "sdma_txreq.h"
  59 
  60 /* Hardware limit */
  61 #define MAX_DESC 64
  62 /* Hardware limit for SDMA packet size */
  63 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
  64 
  65 #define SDMA_MAP_NONE          0
  66 #define SDMA_MAP_SINGLE        1
  67 #define SDMA_MAP_PAGE          2
  68 
  69 #define SDMA_AHG_VALUE_MASK          0xffff
  70 #define SDMA_AHG_VALUE_SHIFT         0
  71 #define SDMA_AHG_INDEX_MASK          0xf
  72 #define SDMA_AHG_INDEX_SHIFT         16
  73 #define SDMA_AHG_FIELD_LEN_MASK      0xf
  74 #define SDMA_AHG_FIELD_LEN_SHIFT     20
  75 #define SDMA_AHG_FIELD_START_MASK    0x1f
  76 #define SDMA_AHG_FIELD_START_SHIFT   24
  77 #define SDMA_AHG_UPDATE_ENABLE_MASK  0x1
  78 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
  79 
  80 /* AHG modes */
  81 
  82 /*
  83  * Be aware the ordering and values
  84  * for SDMA_AHG_APPLY_UPDATE[123]
  85  * are assumed in generating a skip
  86  * count in submit_tx() in sdma.c
  87  */
  88 #define SDMA_AHG_NO_AHG              0
  89 #define SDMA_AHG_COPY                1
  90 #define SDMA_AHG_APPLY_UPDATE1       2
  91 #define SDMA_AHG_APPLY_UPDATE2       3
  92 #define SDMA_AHG_APPLY_UPDATE3       4
  93 
  94 /*
  95  * Bits defined in the send DMA descriptor.
  96  */
  97 #define SDMA_DESC0_FIRST_DESC_FLAG      BIT_ULL(63)
  98 #define SDMA_DESC0_LAST_DESC_FLAG       BIT_ULL(62)
  99 #define SDMA_DESC0_BYTE_COUNT_SHIFT     48
 100 #define SDMA_DESC0_BYTE_COUNT_WIDTH     14
 101 #define SDMA_DESC0_BYTE_COUNT_MASK \
 102         ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
 103 #define SDMA_DESC0_BYTE_COUNT_SMASK \
 104         (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
 105 #define SDMA_DESC0_PHY_ADDR_SHIFT       0
 106 #define SDMA_DESC0_PHY_ADDR_WIDTH       48
 107 #define SDMA_DESC0_PHY_ADDR_MASK \
 108         ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
 109 #define SDMA_DESC0_PHY_ADDR_SMASK \
 110         (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
 111 
 112 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
 113 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
 114 #define SDMA_DESC1_HEADER_UPDATE1_MASK \
 115         ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
 116 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \
 117         (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
 118 #define SDMA_DESC1_HEADER_MODE_SHIFT    13
 119 #define SDMA_DESC1_HEADER_MODE_WIDTH    3
 120 #define SDMA_DESC1_HEADER_MODE_MASK \
 121         ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
 122 #define SDMA_DESC1_HEADER_MODE_SMASK \
 123         (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
 124 #define SDMA_DESC1_HEADER_INDEX_SHIFT   8
 125 #define SDMA_DESC1_HEADER_INDEX_WIDTH   5
 126 #define SDMA_DESC1_HEADER_INDEX_MASK \
 127         ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
 128 #define SDMA_DESC1_HEADER_INDEX_SMASK \
 129         (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
 130 #define SDMA_DESC1_HEADER_DWS_SHIFT     4
 131 #define SDMA_DESC1_HEADER_DWS_WIDTH     4
 132 #define SDMA_DESC1_HEADER_DWS_MASK \
 133         ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
 134 #define SDMA_DESC1_HEADER_DWS_SMASK \
 135         (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
 136 #define SDMA_DESC1_GENERATION_SHIFT     2
 137 #define SDMA_DESC1_GENERATION_WIDTH     2
 138 #define SDMA_DESC1_GENERATION_MASK \
 139         ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
 140 #define SDMA_DESC1_GENERATION_SMASK \
 141         (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
 142 #define SDMA_DESC1_INT_REQ_FLAG         BIT_ULL(1)
 143 #define SDMA_DESC1_HEAD_TO_HOST_FLAG    BIT_ULL(0)
 144 
 145 enum sdma_states {
 146         sdma_state_s00_hw_down,
 147         sdma_state_s10_hw_start_up_halt_wait,
 148         sdma_state_s15_hw_start_up_clean_wait,
 149         sdma_state_s20_idle,
 150         sdma_state_s30_sw_clean_up_wait,
 151         sdma_state_s40_hw_clean_up_wait,
 152         sdma_state_s50_hw_halt_wait,
 153         sdma_state_s60_idle_halt_wait,
 154         sdma_state_s80_hw_freeze,
 155         sdma_state_s82_freeze_sw_clean,
 156         sdma_state_s99_running,
 157 };
 158 
 159 enum sdma_events {
 160         sdma_event_e00_go_hw_down,
 161         sdma_event_e10_go_hw_start,
 162         sdma_event_e15_hw_halt_done,
 163         sdma_event_e25_hw_clean_up_done,
 164         sdma_event_e30_go_running,
 165         sdma_event_e40_sw_cleaned,
 166         sdma_event_e50_hw_cleaned,
 167         sdma_event_e60_hw_halted,
 168         sdma_event_e70_go_idle,
 169         sdma_event_e80_hw_freeze,
 170         sdma_event_e81_hw_frozen,
 171         sdma_event_e82_hw_unfreeze,
 172         sdma_event_e85_link_down,
 173         sdma_event_e90_sw_halted,
 174 };
 175 
 176 struct sdma_set_state_action {
 177         unsigned op_enable:1;
 178         unsigned op_intenable:1;
 179         unsigned op_halt:1;
 180         unsigned op_cleanup:1;
 181         unsigned go_s99_running_tofalse:1;
 182         unsigned go_s99_running_totrue:1;
 183 };
 184 
 185 struct sdma_state {
 186         struct kref          kref;
 187         struct completion    comp;
 188         enum sdma_states current_state;
 189         unsigned             current_op;
 190         unsigned             go_s99_running;
 191         /* debugging/development */
 192         enum sdma_states previous_state;
 193         unsigned             previous_op;
 194         enum sdma_events last_event;
 195 };
 196 
 197 /**
 198  * DOC: sdma exported routines
 199  *
 200  * These sdma routines fit into three categories:
 201  * - The SDMA API for building and submitting packets
 202  *   to the ring
 203  *
 204  * - Initialization and tear down routines to buildup
 205  *   and tear down SDMA
 206  *
 207  * - ISR entrances to handle interrupts, state changes
 208  *   and errors
 209  */
 210 
 211 /**
 212  * DOC: sdma PSM/verbs API
 213  *
 214  * The sdma API is designed to be used by both PSM
 215  * and verbs to supply packets to the SDMA ring.
 216  *
 217  * The usage of the API is as follows:
 218  *
 219  * Embed a struct iowait in the QP or
 220  * PQ.  The iowait should be initialized with a
 221  * call to iowait_init().
 222  *
 223  * The user of the API should create an allocation method
 224  * for their version of the txreq. slabs, pre-allocated lists,
 225  * and dma pools can be used.  Once the user's overload of
 226  * the sdma_txreq has been allocated, the sdma_txreq member
 227  * must be initialized with sdma_txinit() or sdma_txinit_ahg().
 228  *
 229  * The txreq must be declared with the sdma_txreq first.
 230  *
 231  * The tx request, once initialized,  is manipulated with calls to
 232  * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
 233  * for each disjoint memory location.  It is the user's responsibility
 234  * to understand the packet boundaries and page boundaries to do the
 235  * appropriate number of sdma_txadd_* calls..  The user
 236  * must be prepared to deal with failures from these routines due to
 237  * either memory allocation or dma_mapping failures.
 238  *
 239  * The mapping specifics for each memory location are recorded
 240  * in the tx. Memory locations added with sdma_txadd_page()
 241  * and sdma_txadd_kvaddr() are automatically mapped when added
 242  * to the tx and nmapped as part of the progress processing in the
 243  * SDMA interrupt handling.
 244  *
 245  * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
 246  * tx.   An example of a use case would be a pre-allocated
 247  * set of headers allocated via dma_pool_alloc() or
 248  * dma_alloc_coherent().  For these memory locations, it
 249  * is the responsibility of the user to handle that unmapping.
 250  * (This would usually be at an unload or job termination.)
 251  *
 252  * The routine sdma_send_txreq() is used to submit
 253  * a tx to the ring after the appropriate number of
 254  * sdma_txadd_* have been done.
 255  *
 256  * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
 257  * can be used to submit a list of packets.
 258  *
 259  * The user is free to use the link overhead in the struct sdma_txreq as
 260  * long as the tx isn't in flight.
 261  *
 262  * The extreme degenerate case of the number of descriptors
 263  * exceeding the ring size is automatically handled as
 264  * memory locations are added.  An overflow of the descriptor
 265  * array that is part of the sdma_txreq is also automatically
 266  * handled.
 267  *
 268  */
 269 
 270 /**
 271  * DOC: Infrastructure calls
 272  *
 273  * sdma_init() is used to initialize data structures and
 274  * CSRs for the desired number of SDMA engines.
 275  *
 276  * sdma_start() is used to kick the SDMA engines initialized
 277  * with sdma_init().   Interrupts must be enabled at this
 278  * point since aspects of the state machine are interrupt
 279  * driven.
 280  *
 281  * sdma_engine_error() and sdma_engine_interrupt() are
 282  * entrances for interrupts.
 283  *
 284  * sdma_map_init() is for the management of the mapping
 285  * table when the number of vls is changed.
 286  *
 287  */
 288 
 289 /*
 290  * struct hw_sdma_desc - raw 128 bit SDMA descriptor
 291  *
 292  * This is the raw descriptor in the SDMA ring
 293  */
 294 struct hw_sdma_desc {
 295         /* private:  don't use directly */
 296         __le64 qw[2];
 297 };
 298 
 299 /**
 300  * struct sdma_engine - Data pertaining to each SDMA engine.
 301  * @dd: a back-pointer to the device data
 302  * @ppd: per port back-pointer
 303  * @imask: mask for irq manipulation
 304  * @idle_mask: mask for determining if an interrupt is due to sdma_idle
 305  *
 306  * This structure has the state for each sdma_engine.
 307  *
 308  * Accessing to non public fields are not supported
 309  * since the private members are subject to change.
 310  */
 311 struct sdma_engine {
 312         /* read mostly */
 313         struct hfi1_devdata *dd;
 314         struct hfi1_pportdata *ppd;
 315         /* private: */
 316         void __iomem *tail_csr;
 317         u64 imask;                      /* clear interrupt mask */
 318         u64 idle_mask;
 319         u64 progress_mask;
 320         u64 int_mask;
 321         /* private: */
 322         volatile __le64      *head_dma; /* DMA'ed by chip */
 323         /* private: */
 324         dma_addr_t            head_phys;
 325         /* private: */
 326         struct hw_sdma_desc *descq;
 327         /* private: */
 328         unsigned descq_full_count;
 329         struct sdma_txreq **tx_ring;
 330         /* private: */
 331         dma_addr_t            descq_phys;
 332         /* private */
 333         u32 sdma_mask;
 334         /* private */
 335         struct sdma_state state;
 336         /* private */
 337         int cpu;
 338         /* private: */
 339         u8 sdma_shift;
 340         /* private: */
 341         u8 this_idx; /* zero relative engine */
 342         /* protect changes to senddmactrl shadow */
 343         spinlock_t senddmactrl_lock;
 344         /* private: */
 345         u64 p_senddmactrl;              /* shadow per-engine SendDmaCtrl */
 346 
 347         /* read/write using tail_lock */
 348         spinlock_t            tail_lock ____cacheline_aligned_in_smp;
 349 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 350         /* private: */
 351         u64                   tail_sn;
 352 #endif
 353         /* private: */
 354         u32                   descq_tail;
 355         /* private: */
 356         unsigned long         ahg_bits;
 357         /* private: */
 358         u16                   desc_avail;
 359         /* private: */
 360         u16                   tx_tail;
 361         /* private: */
 362         u16 descq_cnt;
 363 
 364         /* read/write using head_lock */
 365         /* private: */
 366         seqlock_t            head_lock ____cacheline_aligned_in_smp;
 367 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 368         /* private: */
 369         u64                   head_sn;
 370 #endif
 371         /* private: */
 372         u32                   descq_head;
 373         /* private: */
 374         u16                   tx_head;
 375         /* private: */
 376         u64                   last_status;
 377         /* private */
 378         u64                     err_cnt;
 379         /* private */
 380         u64                     sdma_int_cnt;
 381         u64                     idle_int_cnt;
 382         u64                     progress_int_cnt;
 383 
 384         /* private: */
 385         seqlock_t            waitlock;
 386         struct list_head      dmawait;
 387 
 388         /* CONFIG SDMA for now, just blindly duplicate */
 389         /* private: */
 390         struct tasklet_struct sdma_hw_clean_up_task
 391                 ____cacheline_aligned_in_smp;
 392 
 393         /* private: */
 394         struct tasklet_struct sdma_sw_clean_up_task
 395                 ____cacheline_aligned_in_smp;
 396         /* private: */
 397         struct work_struct err_halt_worker;
 398         /* private */
 399         struct timer_list     err_progress_check_timer;
 400         u32                   progress_check_head;
 401         /* private: */
 402         struct work_struct flush_worker;
 403         /* protect flush list */
 404         spinlock_t flushlist_lock;
 405         /* private: */
 406         struct list_head flushlist;
 407         struct cpumask cpu_mask;
 408         struct kobject kobj;
 409         u32 msix_intr;
 410 };
 411 
 412 int sdma_init(struct hfi1_devdata *dd, u8 port);
 413 void sdma_start(struct hfi1_devdata *dd);
 414 void sdma_exit(struct hfi1_devdata *dd);
 415 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
 416 void sdma_all_running(struct hfi1_devdata *dd);
 417 void sdma_all_idle(struct hfi1_devdata *dd);
 418 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
 419 void sdma_freeze(struct hfi1_devdata *dd);
 420 void sdma_unfreeze(struct hfi1_devdata *dd);
 421 void sdma_wait(struct hfi1_devdata *dd);
 422 
 423 /**
 424  * sdma_empty() - idle engine test
 425  * @engine: sdma engine
 426  *
 427  * Currently used by verbs as a latency optimization.
 428  *
 429  * Return:
 430  * 1 - empty, 0 - non-empty
 431  */
 432 static inline int sdma_empty(struct sdma_engine *sde)
 433 {
 434         return sde->descq_tail == sde->descq_head;
 435 }
 436 
 437 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
 438 {
 439         return sde->descq_cnt -
 440                 (sde->descq_tail -
 441                  READ_ONCE(sde->descq_head)) - 1;
 442 }
 443 
 444 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
 445 {
 446         return sde->descq_cnt - sdma_descq_freecnt(sde);
 447 }
 448 
 449 /*
 450  * Either head_lock or tail lock required to see
 451  * a steady state.
 452  */
 453 static inline int __sdma_running(struct sdma_engine *engine)
 454 {
 455         return engine->state.current_state == sdma_state_s99_running;
 456 }
 457 
 458 /**
 459  * sdma_running() - state suitability test
 460  * @engine: sdma engine
 461  *
 462  * sdma_running probes the internal state to determine if it is suitable
 463  * for submitting packets.
 464  *
 465  * Return:
 466  * 1 - ok to submit, 0 - not ok to submit
 467  *
 468  */
 469 static inline int sdma_running(struct sdma_engine *engine)
 470 {
 471         unsigned long flags;
 472         int ret;
 473 
 474         spin_lock_irqsave(&engine->tail_lock, flags);
 475         ret = __sdma_running(engine);
 476         spin_unlock_irqrestore(&engine->tail_lock, flags);
 477         return ret;
 478 }
 479 
 480 void _sdma_txreq_ahgadd(
 481         struct sdma_txreq *tx,
 482         u8 num_ahg,
 483         u8 ahg_entry,
 484         u32 *ahg,
 485         u8 ahg_hlen);
 486 
 487 /**
 488  * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
 489  * @tx: tx request to initialize
 490  * @flags: flags to key last descriptor additions
 491  * @tlen: total packet length (pbc + headers + data)
 492  * @ahg_entry: ahg entry to use  (0 - 31)
 493  * @num_ahg: ahg descriptor for first descriptor (0 - 9)
 494  * @ahg: array of AHG descriptors (up to 9 entries)
 495  * @ahg_hlen: number of bytes from ASIC entry to use
 496  * @cb: callback
 497  *
 498  * The allocation of the sdma_txreq and it enclosing structure is user
 499  * dependent.  This routine must be called to initialize the user independent
 500  * fields.
 501  *
 502  * The currently supported flags are SDMA_TXREQ_F_URGENT,
 503  * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
 504  *
 505  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
 506  * completion is desired as soon as possible.
 507  *
 508  * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
 509  * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
 510  * the AHG descriptors into the first 1 to 3 descriptors.
 511  *
 512  * Completions of submitted requests can be gotten on selected
 513  * txreqs by giving a completion routine callback to sdma_txinit() or
 514  * sdma_txinit_ahg().  The environment in which the callback runs
 515  * can be from an ISR, a tasklet, or a thread, so no sleeping
 516  * kernel routines can be used.   Aspects of the sdma ring may
 517  * be locked so care should be taken with locking.
 518  *
 519  * The callback pointer can be NULL to avoid any callback for the packet
 520  * being submitted. The callback will be provided this tx, a status, and a flag.
 521  *
 522  * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
 523  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
 524  *
 525  * The flag, if the is the iowait had been used, indicates the iowait
 526  * sdma_busy count has reached zero.
 527  *
 528  * user data portion of tlen should be precise.   The sdma_txadd_* entrances
 529  * will pad with a descriptor references 1 - 3 bytes when the number of bytes
 530  * specified in tlen have been supplied to the sdma_txreq.
 531  *
 532  * ahg_hlen is used to determine the number of on-chip entry bytes to
 533  * use as the header.   This is for cases where the stored header is
 534  * larger than the header to be used in a packet.  This is typical
 535  * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
 536  * and RDMA_WRITE_MIDDLE.
 537  *
 538  */
 539 static inline int sdma_txinit_ahg(
 540         struct sdma_txreq *tx,
 541         u16 flags,
 542         u16 tlen,
 543         u8 ahg_entry,
 544         u8 num_ahg,
 545         u32 *ahg,
 546         u8 ahg_hlen,
 547         void (*cb)(struct sdma_txreq *, int))
 548 {
 549         if (tlen == 0)
 550                 return -ENODATA;
 551         if (tlen > MAX_SDMA_PKT_SIZE)
 552                 return -EMSGSIZE;
 553         tx->desc_limit = ARRAY_SIZE(tx->descs);
 554         tx->descp = &tx->descs[0];
 555         INIT_LIST_HEAD(&tx->list);
 556         tx->num_desc = 0;
 557         tx->flags = flags;
 558         tx->complete = cb;
 559         tx->coalesce_buf = NULL;
 560         tx->wait = NULL;
 561         tx->packet_len = tlen;
 562         tx->tlen = tx->packet_len;
 563         tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
 564         tx->descs[0].qw[1] = 0;
 565         if (flags & SDMA_TXREQ_F_AHG_COPY)
 566                 tx->descs[0].qw[1] |=
 567                         (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
 568                                 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
 569                         (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
 570                                 << SDMA_DESC1_HEADER_MODE_SHIFT);
 571         else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
 572                 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
 573         return 0;
 574 }
 575 
 576 /**
 577  * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
 578  * @tx: tx request to initialize
 579  * @flags: flags to key last descriptor additions
 580  * @tlen: total packet length (pbc + headers + data)
 581  * @cb: callback pointer
 582  *
 583  * The allocation of the sdma_txreq and it enclosing structure is user
 584  * dependent.  This routine must be called to initialize the user
 585  * independent fields.
 586  *
 587  * The currently supported flags is SDMA_TXREQ_F_URGENT.
 588  *
 589  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
 590  * completion is desired as soon as possible.
 591  *
 592  * Completions of submitted requests can be gotten on selected
 593  * txreqs by giving a completion routine callback to sdma_txinit() or
 594  * sdma_txinit_ahg().  The environment in which the callback runs
 595  * can be from an ISR, a tasklet, or a thread, so no sleeping
 596  * kernel routines can be used.   The head size of the sdma ring may
 597  * be locked so care should be taken with locking.
 598  *
 599  * The callback pointer can be NULL to avoid any callback for the packet
 600  * being submitted.
 601  *
 602  * The callback, if non-NULL,  will be provided this tx and a status.  The
 603  * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
 604  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
 605  *
 606  */
 607 static inline int sdma_txinit(
 608         struct sdma_txreq *tx,
 609         u16 flags,
 610         u16 tlen,
 611         void (*cb)(struct sdma_txreq *, int))
 612 {
 613         return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
 614 }
 615 
 616 /* helpers - don't use */
 617 static inline int sdma_mapping_type(struct sdma_desc *d)
 618 {
 619         return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
 620                 >> SDMA_DESC1_GENERATION_SHIFT;
 621 }
 622 
 623 static inline size_t sdma_mapping_len(struct sdma_desc *d)
 624 {
 625         return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
 626                 >> SDMA_DESC0_BYTE_COUNT_SHIFT;
 627 }
 628 
 629 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
 630 {
 631         return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
 632                 >> SDMA_DESC0_PHY_ADDR_SHIFT;
 633 }
 634 
 635 static inline void make_tx_sdma_desc(
 636         struct sdma_txreq *tx,
 637         int type,
 638         dma_addr_t addr,
 639         size_t len)
 640 {
 641         struct sdma_desc *desc = &tx->descp[tx->num_desc];
 642 
 643         if (!tx->num_desc) {
 644                 /* qw[0] zero; qw[1] first, ahg mode already in from init */
 645                 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
 646                                 << SDMA_DESC1_GENERATION_SHIFT;
 647         } else {
 648                 desc->qw[0] = 0;
 649                 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
 650                                 << SDMA_DESC1_GENERATION_SHIFT;
 651         }
 652         desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
 653                                 << SDMA_DESC0_PHY_ADDR_SHIFT) |
 654                         (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
 655                                 << SDMA_DESC0_BYTE_COUNT_SHIFT);
 656 }
 657 
 658 /* helper to extend txreq */
 659 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
 660                            int type, void *kvaddr, struct page *page,
 661                            unsigned long offset, u16 len);
 662 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
 663 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
 664 
 665 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
 666 {
 667         if (tx->num_desc)
 668                 __sdma_txclean(dd, tx);
 669 }
 670 
 671 /* helpers used by public routines */
 672 static inline void _sdma_close_tx(struct hfi1_devdata *dd,
 673                                   struct sdma_txreq *tx)
 674 {
 675         tx->descp[tx->num_desc].qw[0] |=
 676                 SDMA_DESC0_LAST_DESC_FLAG;
 677         tx->descp[tx->num_desc].qw[1] |=
 678                 dd->default_desc1;
 679         if (tx->flags & SDMA_TXREQ_F_URGENT)
 680                 tx->descp[tx->num_desc].qw[1] |=
 681                         (SDMA_DESC1_HEAD_TO_HOST_FLAG |
 682                          SDMA_DESC1_INT_REQ_FLAG);
 683 }
 684 
 685 static inline int _sdma_txadd_daddr(
 686         struct hfi1_devdata *dd,
 687         int type,
 688         struct sdma_txreq *tx,
 689         dma_addr_t addr,
 690         u16 len)
 691 {
 692         int rval = 0;
 693 
 694         make_tx_sdma_desc(
 695                 tx,
 696                 type,
 697                 addr, len);
 698         WARN_ON(len > tx->tlen);
 699         tx->tlen -= len;
 700         /* special cases for last */
 701         if (!tx->tlen) {
 702                 if (tx->packet_len & (sizeof(u32) - 1)) {
 703                         rval = _pad_sdma_tx_descs(dd, tx);
 704                         if (rval)
 705                                 return rval;
 706                 } else {
 707                         _sdma_close_tx(dd, tx);
 708                 }
 709         }
 710         tx->num_desc++;
 711         return rval;
 712 }
 713 
 714 /**
 715  * sdma_txadd_page() - add a page to the sdma_txreq
 716  * @dd: the device to use for mapping
 717  * @tx: tx request to which the page is added
 718  * @page: page to map
 719  * @offset: offset within the page
 720  * @len: length in bytes
 721  *
 722  * This is used to add a page/offset/length descriptor.
 723  *
 724  * The mapping/unmapping of the page/offset/len is automatically handled.
 725  *
 726  * Return:
 727  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
 728  * extend/coalesce descriptor array
 729  */
 730 static inline int sdma_txadd_page(
 731         struct hfi1_devdata *dd,
 732         struct sdma_txreq *tx,
 733         struct page *page,
 734         unsigned long offset,
 735         u16 len)
 736 {
 737         dma_addr_t addr;
 738         int rval;
 739 
 740         if ((unlikely(tx->num_desc == tx->desc_limit))) {
 741                 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
 742                                               NULL, page, offset, len);
 743                 if (rval <= 0)
 744                         return rval;
 745         }
 746 
 747         addr = dma_map_page(
 748                        &dd->pcidev->dev,
 749                        page,
 750                        offset,
 751                        len,
 752                        DMA_TO_DEVICE);
 753 
 754         if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 755                 __sdma_txclean(dd, tx);
 756                 return -ENOSPC;
 757         }
 758 
 759         return _sdma_txadd_daddr(
 760                         dd, SDMA_MAP_PAGE, tx, addr, len);
 761 }
 762 
 763 /**
 764  * sdma_txadd_daddr() - add a dma address to the sdma_txreq
 765  * @dd: the device to use for mapping
 766  * @tx: sdma_txreq to which the page is added
 767  * @addr: dma address mapped by caller
 768  * @len: length in bytes
 769  *
 770  * This is used to add a descriptor for memory that is already dma mapped.
 771  *
 772  * In this case, there is no unmapping as part of the progress processing for
 773  * this memory location.
 774  *
 775  * Return:
 776  * 0 - success, -ENOMEM - couldn't extend descriptor array
 777  */
 778 
 779 static inline int sdma_txadd_daddr(
 780         struct hfi1_devdata *dd,
 781         struct sdma_txreq *tx,
 782         dma_addr_t addr,
 783         u16 len)
 784 {
 785         int rval;
 786 
 787         if ((unlikely(tx->num_desc == tx->desc_limit))) {
 788                 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
 789                                               NULL, NULL, 0, 0);
 790                 if (rval <= 0)
 791                         return rval;
 792         }
 793 
 794         return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
 795 }
 796 
 797 /**
 798  * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
 799  * @dd: the device to use for mapping
 800  * @tx: sdma_txreq to which the page is added
 801  * @kvaddr: the kernel virtual address
 802  * @len: length in bytes
 803  *
 804  * This is used to add a descriptor referenced by the indicated kvaddr and
 805  * len.
 806  *
 807  * The mapping/unmapping of the kvaddr and len is automatically handled.
 808  *
 809  * Return:
 810  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
 811  * descriptor array
 812  */
 813 static inline int sdma_txadd_kvaddr(
 814         struct hfi1_devdata *dd,
 815         struct sdma_txreq *tx,
 816         void *kvaddr,
 817         u16 len)
 818 {
 819         dma_addr_t addr;
 820         int rval;
 821 
 822         if ((unlikely(tx->num_desc == tx->desc_limit))) {
 823                 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
 824                                               kvaddr, NULL, 0, len);
 825                 if (rval <= 0)
 826                         return rval;
 827         }
 828 
 829         addr = dma_map_single(
 830                        &dd->pcidev->dev,
 831                        kvaddr,
 832                        len,
 833                        DMA_TO_DEVICE);
 834 
 835         if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 836                 __sdma_txclean(dd, tx);
 837                 return -ENOSPC;
 838         }
 839 
 840         return _sdma_txadd_daddr(
 841                         dd, SDMA_MAP_SINGLE, tx, addr, len);
 842 }
 843 
 844 struct iowait_work;
 845 
 846 int sdma_send_txreq(struct sdma_engine *sde,
 847                     struct iowait_work *wait,
 848                     struct sdma_txreq *tx,
 849                     bool pkts_sent);
 850 int sdma_send_txlist(struct sdma_engine *sde,
 851                      struct iowait_work *wait,
 852                      struct list_head *tx_list,
 853                      u16 *count_out);
 854 
 855 int sdma_ahg_alloc(struct sdma_engine *sde);
 856 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
 857 
 858 /**
 859  * sdma_build_ahg - build ahg descriptor
 860  * @data
 861  * @dwindex
 862  * @startbit
 863  * @bits
 864  *
 865  * Build and return a 32 bit descriptor.
 866  */
 867 static inline u32 sdma_build_ahg_descriptor(
 868         u16 data,
 869         u8 dwindex,
 870         u8 startbit,
 871         u8 bits)
 872 {
 873         return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
 874                 ((startbit & SDMA_AHG_FIELD_START_MASK) <<
 875                 SDMA_AHG_FIELD_START_SHIFT) |
 876                 ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
 877                 SDMA_AHG_FIELD_LEN_SHIFT) |
 878                 ((dwindex & SDMA_AHG_INDEX_MASK) <<
 879                 SDMA_AHG_INDEX_SHIFT) |
 880                 ((data & SDMA_AHG_VALUE_MASK) <<
 881                 SDMA_AHG_VALUE_SHIFT));
 882 }
 883 
 884 /**
 885  * sdma_progress - use seq number of detect head progress
 886  * @sde: sdma_engine to check
 887  * @seq: base seq count
 888  * @tx: txreq for which we need to check descriptor availability
 889  *
 890  * This is used in the appropriate spot in the sleep routine
 891  * to check for potential ring progress.  This routine gets the
 892  * seqcount before queuing the iowait structure for progress.
 893  *
 894  * If the seqcount indicates that progress needs to be checked,
 895  * re-submission is detected by checking whether the descriptor
 896  * queue has enough descriptor for the txreq.
 897  */
 898 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
 899                                      struct sdma_txreq *tx)
 900 {
 901         if (read_seqretry(&sde->head_lock, seq)) {
 902                 sde->desc_avail = sdma_descq_freecnt(sde);
 903                 if (tx->num_desc > sde->desc_avail)
 904                         return 0;
 905                 return 1;
 906         }
 907         return 0;
 908 }
 909 
 910 /**
 911  * sdma_iowait_schedule() - initialize wait structure
 912  * @sde: sdma_engine to schedule
 913  * @wait: wait struct to schedule
 914  *
 915  * This function initializes the iowait
 916  * structure embedded in the QP or PQ.
 917  *
 918  */
 919 static inline void sdma_iowait_schedule(
 920         struct sdma_engine *sde,
 921         struct iowait *wait)
 922 {
 923         struct hfi1_pportdata *ppd = sde->dd->pport;
 924 
 925         iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
 926 }
 927 
 928 /* for use by interrupt handling */
 929 void sdma_engine_error(struct sdma_engine *sde, u64 status);
 930 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
 931 
 932 /*
 933  *
 934  * The diagram below details the relationship of the mapping structures
 935  *
 936  * Since the mapping now allows for non-uniform engines per vl, the
 937  * number of engines for a vl is either the vl_engines[vl] or
 938  * a computation based on num_sdma/num_vls:
 939  *
 940  * For example:
 941  * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
 942  *
 943  * n = roundup to next highest power of 2 using nactual
 944  *
 945  * In the case where there are num_sdma/num_vls doesn't divide
 946  * evenly, the extras are added from the last vl downward.
 947  *
 948  * For the case where n > nactual, the engines are assigned
 949  * in a round robin fashion wrapping back to the first engine
 950  * for a particular vl.
 951  *
 952  *               dd->sdma_map
 953  *                    |                                   sdma_map_elem[0]
 954  *                    |                                +--------------------+
 955  *                    v                                |       mask         |
 956  *               sdma_vl_map                           |--------------------|
 957  *      +--------------------------+                   | sde[0] -> eng 1    |
 958  *      |    list (RCU)            |                   |--------------------|
 959  *      |--------------------------|                 ->| sde[1] -> eng 2    |
 960  *      |    mask                  |              --/  |--------------------|
 961  *      |--------------------------|            -/     |        *           |
 962  *      |    actual_vls (max 8)    |          -/       |--------------------|
 963  *      |--------------------------|       --/         | sde[n-1] -> eng n  |
 964  *      |    vls (max 8)           |     -/            +--------------------+
 965  *      |--------------------------|  --/
 966  *      |    map[0]                |-/
 967  *      |--------------------------|                   +---------------------+
 968  *      |    map[1]                |---                |       mask          |
 969  *      |--------------------------|   \----           |---------------------|
 970  *      |           *              |        \--        | sde[0] -> eng 1+n   |
 971  *      |           *              |           \----   |---------------------|
 972  *      |           *              |                \->| sde[1] -> eng 2+n   |
 973  *      |--------------------------|                   |---------------------|
 974  *      |   map[vls - 1]           |-                  |         *           |
 975  *      +--------------------------+ \-                |---------------------|
 976  *                                     \-              | sde[m-1] -> eng m+n |
 977  *                                       \             +---------------------+
 978  *                                        \-
 979  *                                          \
 980  *                                           \-        +----------------------+
 981  *                                             \-      |       mask           |
 982  *                                               \     |----------------------|
 983  *                                                \-   | sde[0] -> eng 1+m+n  |
 984  *                                                  \- |----------------------|
 985  *                                                    >| sde[1] -> eng 2+m+n  |
 986  *                                                     |----------------------|
 987  *                                                     |         *            |
 988  *                                                     |----------------------|
 989  *                                                     | sde[o-1] -> eng o+m+n|
 990  *                                                     +----------------------+
 991  *
 992  */
 993 
 994 /**
 995  * struct sdma_map_elem - mapping for a vl
 996  * @mask - selector mask
 997  * @sde - array of engines for this vl
 998  *
 999  * The mask is used to "mod" the selector
1000  * to produce index into the trailing
1001  * array of sdes.
1002  */
1003 struct sdma_map_elem {
1004         u32 mask;
1005         struct sdma_engine *sde[0];
1006 };
1007 
1008 /**
1009  * struct sdma_map_el - mapping for a vl
1010  * @engine_to_vl - map of an engine to a vl
1011  * @list - rcu head for free callback
1012  * @mask - vl mask to "mod" the vl to produce an index to map array
1013  * @actual_vls - number of vls
1014  * @vls - number of vls rounded to next power of 2
1015  * @map - array of sdma_map_elem entries
1016  *
1017  * This is the parent mapping structure.  The trailing
1018  * members of the struct point to sdma_map_elem entries, which
1019  * in turn point to an array of sde's for that vl.
1020  */
1021 struct sdma_vl_map {
1022         s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1023         struct rcu_head list;
1024         u32 mask;
1025         u8 actual_vls;
1026         u8 vls;
1027         struct sdma_map_elem *map[0];
1028 };
1029 
1030 int sdma_map_init(
1031         struct hfi1_devdata *dd,
1032         u8 port,
1033         u8 num_vls,
1034         u8 *vl_engines);
1035 
1036 /* slow path */
1037 void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1038 
1039 /**
1040  * sdma_engine_progress_schedule() - schedule progress on engine
1041  * @sde: sdma_engine to schedule progress
1042  *
1043  * This is the fast path.
1044  *
1045  */
1046 static inline void sdma_engine_progress_schedule(
1047         struct sdma_engine *sde)
1048 {
1049         if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1050                 return;
1051         _sdma_engine_progress_schedule(sde);
1052 }
1053 
1054 struct sdma_engine *sdma_select_engine_sc(
1055         struct hfi1_devdata *dd,
1056         u32 selector,
1057         u8 sc5);
1058 
1059 struct sdma_engine *sdma_select_engine_vl(
1060         struct hfi1_devdata *dd,
1061         u32 selector,
1062         u8 vl);
1063 
1064 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1065                                             u32 selector, u8 vl);
1066 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1067 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1068                                 size_t count);
1069 int sdma_engine_get_vl(struct sdma_engine *sde);
1070 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1071 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1072                                 unsigned long cpuid);
1073 
1074 #ifdef CONFIG_SDMA_VERBOSITY
1075 void sdma_dumpstate(struct sdma_engine *);
1076 #endif
1077 static inline char *slashstrip(char *s)
1078 {
1079         char *r = s;
1080 
1081         while (*s)
1082                 if (*s++ == '/')
1083                         r = s;
1084         return r;
1085 }
1086 
1087 u16 sdma_get_descq_cnt(void);
1088 
1089 extern uint mod_num_sdma;
1090 
1091 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1092 
1093 #endif

/* [<][>][^][v][top][bottom][index][help] */