root/drivers/infiniband/hw/hfi1/sdma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sdma_state_name
  2. sdma_get
  3. sdma_complete
  4. sdma_put
  5. sdma_finalput
  6. write_sde_csr
  7. read_sde_csr
  8. sdma_wait_for_packet_egress
  9. sdma_wait
  10. sdma_set_desc_cnt
  11. complete_tx
  12. sdma_flush
  13. sdma_field_flush
  14. sdma_err_halt_wait
  15. sdma_err_progress_check_schedule
  16. sdma_err_progress_check
  17. sdma_hw_clean_up_task
  18. get_txhead
  19. sdma_flush_descq
  20. sdma_sw_clean_up_task
  21. sdma_sw_tear_down
  22. sdma_start_hw_clean_up
  23. sdma_set_state
  24. sdma_get_descq_cnt
  25. sdma_engine_get_vl
  26. sdma_select_engine_vl
  27. sdma_select_engine_sc
  28. sdma_select_user_engine
  29. sdma_populate_sde_map
  30. sdma_cleanup_sde_map
  31. sdma_set_cpu_to_sde_map
  32. sdma_get_cpu_to_sde_map
  33. sdma_rht_free
  34. sdma_seqfile_dump_cpu_list
  35. sdma_map_free
  36. sdma_map_rcu_callback
  37. sdma_map_init
  38. sdma_clean
  39. sdma_init
  40. sdma_all_running
  41. sdma_all_idle
  42. sdma_start
  43. sdma_exit
  44. sdma_unmap_desc
  45. ahg_mode
  46. __sdma_txclean
  47. sdma_gethead
  48. sdma_desc_avail
  49. sdma_make_progress
  50. sdma_engine_interrupt
  51. sdma_engine_error
  52. sdma_sendctrl
  53. sdma_setlengen
  54. sdma_update_tail
  55. sdma_hw_start_up
  56. set_sdma_integrity
  57. init_sdma_regs
  58. sdma_dumpstate
  59. dump_sdma_state
  60. sdma_seqfile_dump_sde
  61. add_gen
  62. submit_tx
  63. sdma_check_progress
  64. sdma_send_txreq
  65. sdma_send_txlist
  66. sdma_process_event
  67. __sdma_process_event
  68. _extend_sdma_tx_descs
  69. ext_coal_sdma_tx_descs
  70. sdma_update_lmc
  71. _pad_sdma_tx_descs
  72. _sdma_txreq_ahgadd
  73. sdma_ahg_alloc
  74. sdma_ahg_free
  75. sdma_freeze_notify
  76. sdma_freeze
  77. sdma_unfreeze
  78. _sdma_engine_progress_schedule

   1 /*
   2  * Copyright(c) 2015 - 2018 Intel Corporation.
   3  *
   4  * This file is provided under a dual BSD/GPLv2 license.  When using or
   5  * redistributing this file, you may do so under either license.
   6  *
   7  * GPL LICENSE SUMMARY
   8  *
   9  * This program is free software; you can redistribute it and/or modify
  10  * it under the terms of version 2 of the GNU General Public License as
  11  * published by the Free Software Foundation.
  12  *
  13  * This program is distributed in the hope that it will be useful, but
  14  * WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  * General Public License for more details.
  17  *
  18  * BSD LICENSE
  19  *
  20  * Redistribution and use in source and binary forms, with or without
  21  * modification, are permitted provided that the following conditions
  22  * are met:
  23  *
  24  *  - Redistributions of source code must retain the above copyright
  25  *    notice, this list of conditions and the following disclaimer.
  26  *  - Redistributions in binary form must reproduce the above copyright
  27  *    notice, this list of conditions and the following disclaimer in
  28  *    the documentation and/or other materials provided with the
  29  *    distribution.
  30  *  - Neither the name of Intel Corporation nor the names of its
  31  *    contributors may be used to endorse or promote products derived
  32  *    from this software without specific prior written permission.
  33  *
  34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45  *
  46  */
  47 
  48 #include <linux/spinlock.h>
  49 #include <linux/seqlock.h>
  50 #include <linux/netdevice.h>
  51 #include <linux/moduleparam.h>
  52 #include <linux/bitops.h>
  53 #include <linux/timer.h>
  54 #include <linux/vmalloc.h>
  55 #include <linux/highmem.h>
  56 
  57 #include "hfi.h"
  58 #include "common.h"
  59 #include "qp.h"
  60 #include "sdma.h"
  61 #include "iowait.h"
  62 #include "trace.h"
  63 
  64 /* must be a power of 2 >= 64 <= 32768 */
  65 #define SDMA_DESCQ_CNT 2048
  66 #define SDMA_DESC_INTR 64
  67 #define INVALID_TAIL 0xffff
  68 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
  69 
  70 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  71 module_param(sdma_descq_cnt, uint, S_IRUGO);
  72 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  73 
  74 static uint sdma_idle_cnt = 250;
  75 module_param(sdma_idle_cnt, uint, S_IRUGO);
  76 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  77 
  78 uint mod_num_sdma;
  79 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  80 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  81 
  82 static uint sdma_desct_intr = SDMA_DESC_INTR;
  83 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  84 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  85 
  86 #define SDMA_WAIT_BATCH_SIZE 20
  87 /* max wait time for a SDMA engine to indicate it has halted */
  88 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  89 /* all SDMA engine errors that cause a halt */
  90 
  91 #define SD(name) SEND_DMA_##name
  92 #define ALL_SDMA_ENG_HALT_ERRS \
  93         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  94         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  95         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  96         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  97         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  98         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  99         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
 100         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
 101         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
 102         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
 103         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
 104         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
 105         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
 106         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
 107         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
 108         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
 109         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
 110         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
 111 
 112 /* sdma_sendctrl operations */
 113 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
 114 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
 115 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
 116 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
 117 
 118 /* handle long defines */
 119 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
 120 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
 121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
 122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
 123 
 124 static const char * const sdma_state_names[] = {
 125         [sdma_state_s00_hw_down]                = "s00_HwDown",
 126         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
 127         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
 128         [sdma_state_s20_idle]                   = "s20_Idle",
 129         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
 130         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
 131         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
 132         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
 133         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
 134         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
 135         [sdma_state_s99_running]                = "s99_Running",
 136 };
 137 
 138 #ifdef CONFIG_SDMA_VERBOSITY
 139 static const char * const sdma_event_names[] = {
 140         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
 141         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 142         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 143         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 144         [sdma_event_e30_go_running]   = "e30_GoRunning",
 145         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 146         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 147         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
 148         [sdma_event_e70_go_idle]      = "e70_GoIdle",
 149         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 150         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 151         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 152         [sdma_event_e85_link_down]    = "e85_LinkDown",
 153         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
 154 };
 155 #endif
 156 
 157 static const struct sdma_set_state_action sdma_action_table[] = {
 158         [sdma_state_s00_hw_down] = {
 159                 .go_s99_running_tofalse = 1,
 160                 .op_enable = 0,
 161                 .op_intenable = 0,
 162                 .op_halt = 0,
 163                 .op_cleanup = 0,
 164         },
 165         [sdma_state_s10_hw_start_up_halt_wait] = {
 166                 .op_enable = 0,
 167                 .op_intenable = 0,
 168                 .op_halt = 1,
 169                 .op_cleanup = 0,
 170         },
 171         [sdma_state_s15_hw_start_up_clean_wait] = {
 172                 .op_enable = 0,
 173                 .op_intenable = 1,
 174                 .op_halt = 0,
 175                 .op_cleanup = 1,
 176         },
 177         [sdma_state_s20_idle] = {
 178                 .op_enable = 0,
 179                 .op_intenable = 1,
 180                 .op_halt = 0,
 181                 .op_cleanup = 0,
 182         },
 183         [sdma_state_s30_sw_clean_up_wait] = {
 184                 .op_enable = 0,
 185                 .op_intenable = 0,
 186                 .op_halt = 0,
 187                 .op_cleanup = 0,
 188         },
 189         [sdma_state_s40_hw_clean_up_wait] = {
 190                 .op_enable = 0,
 191                 .op_intenable = 0,
 192                 .op_halt = 0,
 193                 .op_cleanup = 1,
 194         },
 195         [sdma_state_s50_hw_halt_wait] = {
 196                 .op_enable = 0,
 197                 .op_intenable = 0,
 198                 .op_halt = 0,
 199                 .op_cleanup = 0,
 200         },
 201         [sdma_state_s60_idle_halt_wait] = {
 202                 .go_s99_running_tofalse = 1,
 203                 .op_enable = 0,
 204                 .op_intenable = 0,
 205                 .op_halt = 1,
 206                 .op_cleanup = 0,
 207         },
 208         [sdma_state_s80_hw_freeze] = {
 209                 .op_enable = 0,
 210                 .op_intenable = 0,
 211                 .op_halt = 0,
 212                 .op_cleanup = 0,
 213         },
 214         [sdma_state_s82_freeze_sw_clean] = {
 215                 .op_enable = 0,
 216                 .op_intenable = 0,
 217                 .op_halt = 0,
 218                 .op_cleanup = 0,
 219         },
 220         [sdma_state_s99_running] = {
 221                 .op_enable = 1,
 222                 .op_intenable = 1,
 223                 .op_halt = 0,
 224                 .op_cleanup = 0,
 225                 .go_s99_running_totrue = 1,
 226         },
 227 };
 228 
 229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
 230 
 231 /* declare all statics here rather than keep sorting */
 232 static void sdma_complete(struct kref *);
 233 static void sdma_finalput(struct sdma_state *);
 234 static void sdma_get(struct sdma_state *);
 235 static void sdma_hw_clean_up_task(unsigned long);
 236 static void sdma_put(struct sdma_state *);
 237 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 238 static void sdma_start_hw_clean_up(struct sdma_engine *);
 239 static void sdma_sw_clean_up_task(unsigned long);
 240 static void sdma_sendctrl(struct sdma_engine *, unsigned);
 241 static void init_sdma_regs(struct sdma_engine *, u32, uint);
 242 static void sdma_process_event(
 243         struct sdma_engine *sde,
 244         enum sdma_events event);
 245 static void __sdma_process_event(
 246         struct sdma_engine *sde,
 247         enum sdma_events event);
 248 static void dump_sdma_state(struct sdma_engine *sde);
 249 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 250 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 251 static void sdma_flush_descq(struct sdma_engine *sde);
 252 
 253 /**
 254  * sdma_state_name() - return state string from enum
 255  * @state: state
 256  */
 257 static const char *sdma_state_name(enum sdma_states state)
 258 {
 259         return sdma_state_names[state];
 260 }
 261 
 262 static void sdma_get(struct sdma_state *ss)
 263 {
 264         kref_get(&ss->kref);
 265 }
 266 
 267 static void sdma_complete(struct kref *kref)
 268 {
 269         struct sdma_state *ss =
 270                 container_of(kref, struct sdma_state, kref);
 271 
 272         complete(&ss->comp);
 273 }
 274 
 275 static void sdma_put(struct sdma_state *ss)
 276 {
 277         kref_put(&ss->kref, sdma_complete);
 278 }
 279 
 280 static void sdma_finalput(struct sdma_state *ss)
 281 {
 282         sdma_put(ss);
 283         wait_for_completion(&ss->comp);
 284 }
 285 
 286 static inline void write_sde_csr(
 287         struct sdma_engine *sde,
 288         u32 offset0,
 289         u64 value)
 290 {
 291         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 292 }
 293 
 294 static inline u64 read_sde_csr(
 295         struct sdma_engine *sde,
 296         u32 offset0)
 297 {
 298         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 299 }
 300 
 301 /*
 302  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 303  * sdma engine 'sde' to drop to 0.
 304  */
 305 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 306                                         int pause)
 307 {
 308         u64 off = 8 * sde->this_idx;
 309         struct hfi1_devdata *dd = sde->dd;
 310         int lcnt = 0;
 311         u64 reg_prev;
 312         u64 reg = 0;
 313 
 314         while (1) {
 315                 reg_prev = reg;
 316                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 317 
 318                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 319                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 320                 if (reg == 0)
 321                         break;
 322                 /* counter is reest if accupancy count changes */
 323                 if (reg != reg_prev)
 324                         lcnt = 0;
 325                 if (lcnt++ > 500) {
 326                         /* timed out - bounce the link */
 327                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 328                                    __func__, sde->this_idx, (u32)reg);
 329                         queue_work(dd->pport->link_wq,
 330                                    &dd->pport->link_bounce_work);
 331                         break;
 332                 }
 333                 udelay(1);
 334         }
 335 }
 336 
 337 /*
 338  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 339  * and pause for credit return.
 340  */
 341 void sdma_wait(struct hfi1_devdata *dd)
 342 {
 343         int i;
 344 
 345         for (i = 0; i < dd->num_sdma; i++) {
 346                 struct sdma_engine *sde = &dd->per_sdma[i];
 347 
 348                 sdma_wait_for_packet_egress(sde, 0);
 349         }
 350 }
 351 
 352 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 353 {
 354         u64 reg;
 355 
 356         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 357                 return;
 358         reg = cnt;
 359         reg &= SD(DESC_CNT_CNT_MASK);
 360         reg <<= SD(DESC_CNT_CNT_SHIFT);
 361         write_sde_csr(sde, SD(DESC_CNT), reg);
 362 }
 363 
 364 static inline void complete_tx(struct sdma_engine *sde,
 365                                struct sdma_txreq *tx,
 366                                int res)
 367 {
 368         /* protect against complete modifying */
 369         struct iowait *wait = tx->wait;
 370         callback_t complete = tx->complete;
 371 
 372 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 373         trace_hfi1_sdma_out_sn(sde, tx->sn);
 374         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 375                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
 376                            sde->head_sn, tx->sn);
 377         sde->head_sn++;
 378 #endif
 379         __sdma_txclean(sde->dd, tx);
 380         if (complete)
 381                 (*complete)(tx, res);
 382         if (iowait_sdma_dec(wait))
 383                 iowait_drain_wakeup(wait);
 384 }
 385 
 386 /*
 387  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 388  *
 389  * Depending on timing there can be txreqs in two places:
 390  * - in the descq ring
 391  * - in the flush list
 392  *
 393  * To avoid ordering issues the descq ring needs to be flushed
 394  * first followed by the flush list.
 395  *
 396  * This routine is called from two places
 397  * - From a work queue item
 398  * - Directly from the state machine just before setting the
 399  *   state to running
 400  *
 401  * Must be called with head_lock held
 402  *
 403  */
 404 static void sdma_flush(struct sdma_engine *sde)
 405 {
 406         struct sdma_txreq *txp, *txp_next;
 407         LIST_HEAD(flushlist);
 408         unsigned long flags;
 409         uint seq;
 410 
 411         /* flush from head to tail */
 412         sdma_flush_descq(sde);
 413         spin_lock_irqsave(&sde->flushlist_lock, flags);
 414         /* copy flush list */
 415         list_splice_init(&sde->flushlist, &flushlist);
 416         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 417         /* flush from flush list */
 418         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 419                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 420         /* wakeup QPs orphaned on the dmawait list */
 421         do {
 422                 struct iowait *w, *nw;
 423 
 424                 seq = read_seqbegin(&sde->waitlock);
 425                 if (!list_empty(&sde->dmawait)) {
 426                         write_seqlock(&sde->waitlock);
 427                         list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
 428                                 if (w->wakeup) {
 429                                         w->wakeup(w, SDMA_AVAIL_REASON);
 430                                         list_del_init(&w->list);
 431                                 }
 432                         }
 433                         write_sequnlock(&sde->waitlock);
 434                 }
 435         } while (read_seqretry(&sde->waitlock, seq));
 436 }
 437 
 438 /*
 439  * Fields a work request for flushing the descq ring
 440  * and the flush list
 441  *
 442  * If the engine has been brought to running during
 443  * the scheduling delay, the flush is ignored, assuming
 444  * that the process of bringing the engine to running
 445  * would have done this flush prior to going to running.
 446  *
 447  */
 448 static void sdma_field_flush(struct work_struct *work)
 449 {
 450         unsigned long flags;
 451         struct sdma_engine *sde =
 452                 container_of(work, struct sdma_engine, flush_worker);
 453 
 454         write_seqlock_irqsave(&sde->head_lock, flags);
 455         if (!__sdma_running(sde))
 456                 sdma_flush(sde);
 457         write_sequnlock_irqrestore(&sde->head_lock, flags);
 458 }
 459 
 460 static void sdma_err_halt_wait(struct work_struct *work)
 461 {
 462         struct sdma_engine *sde = container_of(work, struct sdma_engine,
 463                                                 err_halt_worker);
 464         u64 statuscsr;
 465         unsigned long timeout;
 466 
 467         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 468         while (1) {
 469                 statuscsr = read_sde_csr(sde, SD(STATUS));
 470                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 471                 if (statuscsr)
 472                         break;
 473                 if (time_after(jiffies, timeout)) {
 474                         dd_dev_err(sde->dd,
 475                                    "SDMA engine %d - timeout waiting for engine to halt\n",
 476                                    sde->this_idx);
 477                         /*
 478                          * Continue anyway.  This could happen if there was
 479                          * an uncorrectable error in the wrong spot.
 480                          */
 481                         break;
 482                 }
 483                 usleep_range(80, 120);
 484         }
 485 
 486         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 487 }
 488 
 489 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 490 {
 491         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 492                 unsigned index;
 493                 struct hfi1_devdata *dd = sde->dd;
 494 
 495                 for (index = 0; index < dd->num_sdma; index++) {
 496                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 497 
 498                         if (curr_sdma != sde)
 499                                 curr_sdma->progress_check_head =
 500                                                         curr_sdma->descq_head;
 501                 }
 502                 dd_dev_err(sde->dd,
 503                            "SDMA engine %d - check scheduled\n",
 504                                 sde->this_idx);
 505                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 506         }
 507 }
 508 
 509 static void sdma_err_progress_check(struct timer_list *t)
 510 {
 511         unsigned index;
 512         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 513 
 514         dd_dev_err(sde->dd, "SDE progress check event\n");
 515         for (index = 0; index < sde->dd->num_sdma; index++) {
 516                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 517                 unsigned long flags;
 518 
 519                 /* check progress on each engine except the current one */
 520                 if (curr_sde == sde)
 521                         continue;
 522                 /*
 523                  * We must lock interrupts when acquiring sde->lock,
 524                  * to avoid a deadlock if interrupt triggers and spins on
 525                  * the same lock on same CPU
 526                  */
 527                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
 528                 write_seqlock(&curr_sde->head_lock);
 529 
 530                 /* skip non-running queues */
 531                 if (curr_sde->state.current_state != sdma_state_s99_running) {
 532                         write_sequnlock(&curr_sde->head_lock);
 533                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 534                         continue;
 535                 }
 536 
 537                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 538                     (curr_sde->descq_head ==
 539                                 curr_sde->progress_check_head))
 540                         __sdma_process_event(curr_sde,
 541                                              sdma_event_e90_sw_halted);
 542                 write_sequnlock(&curr_sde->head_lock);
 543                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 544         }
 545         schedule_work(&sde->err_halt_worker);
 546 }
 547 
 548 static void sdma_hw_clean_up_task(unsigned long opaque)
 549 {
 550         struct sdma_engine *sde = (struct sdma_engine *)opaque;
 551         u64 statuscsr;
 552 
 553         while (1) {
 554 #ifdef CONFIG_SDMA_VERBOSITY
 555                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 556                            sde->this_idx, slashstrip(__FILE__), __LINE__,
 557                         __func__);
 558 #endif
 559                 statuscsr = read_sde_csr(sde, SD(STATUS));
 560                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 561                 if (statuscsr)
 562                         break;
 563                 udelay(10);
 564         }
 565 
 566         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 567 }
 568 
 569 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 570 {
 571         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 572 }
 573 
 574 /*
 575  * flush ring for recovery
 576  */
 577 static void sdma_flush_descq(struct sdma_engine *sde)
 578 {
 579         u16 head, tail;
 580         int progress = 0;
 581         struct sdma_txreq *txp = get_txhead(sde);
 582 
 583         /* The reason for some of the complexity of this code is that
 584          * not all descriptors have corresponding txps.  So, we have to
 585          * be able to skip over descs until we wander into the range of
 586          * the next txp on the list.
 587          */
 588         head = sde->descq_head & sde->sdma_mask;
 589         tail = sde->descq_tail & sde->sdma_mask;
 590         while (head != tail) {
 591                 /* advance head, wrap if needed */
 592                 head = ++sde->descq_head & sde->sdma_mask;
 593                 /* if now past this txp's descs, do the callback */
 594                 if (txp && txp->next_descq_idx == head) {
 595                         /* remove from list */
 596                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 597                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 598                         trace_hfi1_sdma_progress(sde, head, tail, txp);
 599                         txp = get_txhead(sde);
 600                 }
 601                 progress++;
 602         }
 603         if (progress)
 604                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 605 }
 606 
 607 static void sdma_sw_clean_up_task(unsigned long opaque)
 608 {
 609         struct sdma_engine *sde = (struct sdma_engine *)opaque;
 610         unsigned long flags;
 611 
 612         spin_lock_irqsave(&sde->tail_lock, flags);
 613         write_seqlock(&sde->head_lock);
 614 
 615         /*
 616          * At this point, the following should always be true:
 617          * - We are halted, so no more descriptors are getting retired.
 618          * - We are not running, so no one is submitting new work.
 619          * - Only we can send the e40_sw_cleaned, so we can't start
 620          *   running again until we say so.  So, the active list and
 621          *   descq are ours to play with.
 622          */
 623 
 624         /*
 625          * In the error clean up sequence, software clean must be called
 626          * before the hardware clean so we can use the hardware head in
 627          * the progress routine.  A hardware clean or SPC unfreeze will
 628          * reset the hardware head.
 629          *
 630          * Process all retired requests. The progress routine will use the
 631          * latest physical hardware head - we are not running so speed does
 632          * not matter.
 633          */
 634         sdma_make_progress(sde, 0);
 635 
 636         sdma_flush(sde);
 637 
 638         /*
 639          * Reset our notion of head and tail.
 640          * Note that the HW registers have been reset via an earlier
 641          * clean up.
 642          */
 643         sde->descq_tail = 0;
 644         sde->descq_head = 0;
 645         sde->desc_avail = sdma_descq_freecnt(sde);
 646         *sde->head_dma = 0;
 647 
 648         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 649 
 650         write_sequnlock(&sde->head_lock);
 651         spin_unlock_irqrestore(&sde->tail_lock, flags);
 652 }
 653 
 654 static void sdma_sw_tear_down(struct sdma_engine *sde)
 655 {
 656         struct sdma_state *ss = &sde->state;
 657 
 658         /* Releasing this reference means the state machine has stopped. */
 659         sdma_put(ss);
 660 
 661         /* stop waiting for all unfreeze events to complete */
 662         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 663         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 664 }
 665 
 666 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 667 {
 668         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 669 }
 670 
 671 static void sdma_set_state(struct sdma_engine *sde,
 672                            enum sdma_states next_state)
 673 {
 674         struct sdma_state *ss = &sde->state;
 675         const struct sdma_set_state_action *action = sdma_action_table;
 676         unsigned op = 0;
 677 
 678         trace_hfi1_sdma_state(
 679                 sde,
 680                 sdma_state_names[ss->current_state],
 681                 sdma_state_names[next_state]);
 682 
 683         /* debugging bookkeeping */
 684         ss->previous_state = ss->current_state;
 685         ss->previous_op = ss->current_op;
 686         ss->current_state = next_state;
 687 
 688         if (ss->previous_state != sdma_state_s99_running &&
 689             next_state == sdma_state_s99_running)
 690                 sdma_flush(sde);
 691 
 692         if (action[next_state].op_enable)
 693                 op |= SDMA_SENDCTRL_OP_ENABLE;
 694 
 695         if (action[next_state].op_intenable)
 696                 op |= SDMA_SENDCTRL_OP_INTENABLE;
 697 
 698         if (action[next_state].op_halt)
 699                 op |= SDMA_SENDCTRL_OP_HALT;
 700 
 701         if (action[next_state].op_cleanup)
 702                 op |= SDMA_SENDCTRL_OP_CLEANUP;
 703 
 704         if (action[next_state].go_s99_running_tofalse)
 705                 ss->go_s99_running = 0;
 706 
 707         if (action[next_state].go_s99_running_totrue)
 708                 ss->go_s99_running = 1;
 709 
 710         ss->current_op = op;
 711         sdma_sendctrl(sde, ss->current_op);
 712 }
 713 
 714 /**
 715  * sdma_get_descq_cnt() - called when device probed
 716  *
 717  * Return a validated descq count.
 718  *
 719  * This is currently only used in the verbs initialization to build the tx
 720  * list.
 721  *
 722  * This will probably be deleted in favor of a more scalable approach to
 723  * alloc tx's.
 724  *
 725  */
 726 u16 sdma_get_descq_cnt(void)
 727 {
 728         u16 count = sdma_descq_cnt;
 729 
 730         if (!count)
 731                 return SDMA_DESCQ_CNT;
 732         /* count must be a power of 2 greater than 64 and less than
 733          * 32768.   Otherwise return default.
 734          */
 735         if (!is_power_of_2(count))
 736                 return SDMA_DESCQ_CNT;
 737         if (count < 64 || count > 32768)
 738                 return SDMA_DESCQ_CNT;
 739         return count;
 740 }
 741 
 742 /**
 743  * sdma_engine_get_vl() - return vl for a given sdma engine
 744  * @sde: sdma engine
 745  *
 746  * This function returns the vl mapped to a given engine, or an error if
 747  * the mapping can't be found. The mapping fields are protected by RCU.
 748  */
 749 int sdma_engine_get_vl(struct sdma_engine *sde)
 750 {
 751         struct hfi1_devdata *dd = sde->dd;
 752         struct sdma_vl_map *m;
 753         u8 vl;
 754 
 755         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 756                 return -EINVAL;
 757 
 758         rcu_read_lock();
 759         m = rcu_dereference(dd->sdma_map);
 760         if (unlikely(!m)) {
 761                 rcu_read_unlock();
 762                 return -EINVAL;
 763         }
 764         vl = m->engine_to_vl[sde->this_idx];
 765         rcu_read_unlock();
 766 
 767         return vl;
 768 }
 769 
 770 /**
 771  * sdma_select_engine_vl() - select sdma engine
 772  * @dd: devdata
 773  * @selector: a spreading factor
 774  * @vl: this vl
 775  *
 776  *
 777  * This function returns an engine based on the selector and a vl.  The
 778  * mapping fields are protected by RCU.
 779  */
 780 struct sdma_engine *sdma_select_engine_vl(
 781         struct hfi1_devdata *dd,
 782         u32 selector,
 783         u8 vl)
 784 {
 785         struct sdma_vl_map *m;
 786         struct sdma_map_elem *e;
 787         struct sdma_engine *rval;
 788 
 789         /* NOTE This should only happen if SC->VL changed after the initial
 790          *      checks on the QP/AH
 791          *      Default will return engine 0 below
 792          */
 793         if (vl >= num_vls) {
 794                 rval = NULL;
 795                 goto done;
 796         }
 797 
 798         rcu_read_lock();
 799         m = rcu_dereference(dd->sdma_map);
 800         if (unlikely(!m)) {
 801                 rcu_read_unlock();
 802                 return &dd->per_sdma[0];
 803         }
 804         e = m->map[vl & m->mask];
 805         rval = e->sde[selector & e->mask];
 806         rcu_read_unlock();
 807 
 808 done:
 809         rval =  !rval ? &dd->per_sdma[0] : rval;
 810         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 811         return rval;
 812 }
 813 
 814 /**
 815  * sdma_select_engine_sc() - select sdma engine
 816  * @dd: devdata
 817  * @selector: a spreading factor
 818  * @sc5: the 5 bit sc
 819  *
 820  *
 821  * This function returns an engine based on the selector and an sc.
 822  */
 823 struct sdma_engine *sdma_select_engine_sc(
 824         struct hfi1_devdata *dd,
 825         u32 selector,
 826         u8 sc5)
 827 {
 828         u8 vl = sc_to_vlt(dd, sc5);
 829 
 830         return sdma_select_engine_vl(dd, selector, vl);
 831 }
 832 
 833 struct sdma_rht_map_elem {
 834         u32 mask;
 835         u8 ctr;
 836         struct sdma_engine *sde[0];
 837 };
 838 
 839 struct sdma_rht_node {
 840         unsigned long cpu_id;
 841         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 842         struct rhash_head node;
 843 };
 844 
 845 #define NR_CPUS_HINT 192
 846 
 847 static const struct rhashtable_params sdma_rht_params = {
 848         .nelem_hint = NR_CPUS_HINT,
 849         .head_offset = offsetof(struct sdma_rht_node, node),
 850         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
 851         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
 852         .max_size = NR_CPUS,
 853         .min_size = 8,
 854         .automatic_shrinking = true,
 855 };
 856 
 857 /*
 858  * sdma_select_user_engine() - select sdma engine based on user setup
 859  * @dd: devdata
 860  * @selector: a spreading factor
 861  * @vl: this vl
 862  *
 863  * This function returns an sdma engine for a user sdma request.
 864  * User defined sdma engine affinity setting is honored when applicable,
 865  * otherwise system default sdma engine mapping is used. To ensure correct
 866  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 867  */
 868 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 869                                             u32 selector, u8 vl)
 870 {
 871         struct sdma_rht_node *rht_node;
 872         struct sdma_engine *sde = NULL;
 873         unsigned long cpu_id;
 874 
 875         /*
 876          * To ensure that always the same sdma engine(s) will be
 877          * selected make sure the process is pinned to this CPU only.
 878          */
 879         if (current->nr_cpus_allowed != 1)
 880                 goto out;
 881 
 882         cpu_id = smp_processor_id();
 883         rcu_read_lock();
 884         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
 885                                           sdma_rht_params);
 886 
 887         if (rht_node && rht_node->map[vl]) {
 888                 struct sdma_rht_map_elem *map = rht_node->map[vl];
 889 
 890                 sde = map->sde[selector & map->mask];
 891         }
 892         rcu_read_unlock();
 893 
 894         if (sde)
 895                 return sde;
 896 
 897 out:
 898         return sdma_select_engine_vl(dd, selector, vl);
 899 }
 900 
 901 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 902 {
 903         int i;
 904 
 905         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 906                 map->sde[map->ctr + i] = map->sde[i];
 907 }
 908 
 909 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 910                                  struct sdma_engine *sde)
 911 {
 912         unsigned int i, pow;
 913 
 914         /* only need to check the first ctr entries for a match */
 915         for (i = 0; i < map->ctr; i++) {
 916                 if (map->sde[i] == sde) {
 917                         memmove(&map->sde[i], &map->sde[i + 1],
 918                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
 919                         map->ctr--;
 920                         pow = roundup_pow_of_two(map->ctr ? : 1);
 921                         map->mask = pow - 1;
 922                         sdma_populate_sde_map(map);
 923                         break;
 924                 }
 925         }
 926 }
 927 
 928 /*
 929  * Prevents concurrent reads and writes of the sdma engine cpu_mask
 930  */
 931 static DEFINE_MUTEX(process_to_sde_mutex);
 932 
 933 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 934                                 size_t count)
 935 {
 936         struct hfi1_devdata *dd = sde->dd;
 937         cpumask_var_t mask, new_mask;
 938         unsigned long cpu;
 939         int ret, vl, sz;
 940         struct sdma_rht_node *rht_node;
 941 
 942         vl = sdma_engine_get_vl(sde);
 943         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
 944                 return -EINVAL;
 945 
 946         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 947         if (!ret)
 948                 return -ENOMEM;
 949 
 950         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 951         if (!ret) {
 952                 free_cpumask_var(mask);
 953                 return -ENOMEM;
 954         }
 955         ret = cpulist_parse(buf, mask);
 956         if (ret)
 957                 goto out_free;
 958 
 959         if (!cpumask_subset(mask, cpu_online_mask)) {
 960                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 961                 ret = -EINVAL;
 962                 goto out_free;
 963         }
 964 
 965         sz = sizeof(struct sdma_rht_map_elem) +
 966                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 967 
 968         mutex_lock(&process_to_sde_mutex);
 969 
 970         for_each_cpu(cpu, mask) {
 971                 /* Check if we have this already mapped */
 972                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 973                         cpumask_set_cpu(cpu, new_mask);
 974                         continue;
 975                 }
 976 
 977                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 978                                                   sdma_rht_params);
 979                 if (!rht_node) {
 980                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 981                         if (!rht_node) {
 982                                 ret = -ENOMEM;
 983                                 goto out;
 984                         }
 985 
 986                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 987                         if (!rht_node->map[vl]) {
 988                                 kfree(rht_node);
 989                                 ret = -ENOMEM;
 990                                 goto out;
 991                         }
 992                         rht_node->cpu_id = cpu;
 993                         rht_node->map[vl]->mask = 0;
 994                         rht_node->map[vl]->ctr = 1;
 995                         rht_node->map[vl]->sde[0] = sde;
 996 
 997                         ret = rhashtable_insert_fast(dd->sdma_rht,
 998                                                      &rht_node->node,
 999                                                      sdma_rht_params);
1000                         if (ret) {
1001                                 kfree(rht_node->map[vl]);
1002                                 kfree(rht_node);
1003                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1004                                            cpu);
1005                                 goto out;
1006                         }
1007 
1008                 } else {
1009                         int ctr, pow;
1010 
1011                         /* Add new user mappings */
1012                         if (!rht_node->map[vl])
1013                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1014 
1015                         if (!rht_node->map[vl]) {
1016                                 ret = -ENOMEM;
1017                                 goto out;
1018                         }
1019 
1020                         rht_node->map[vl]->ctr++;
1021                         ctr = rht_node->map[vl]->ctr;
1022                         rht_node->map[vl]->sde[ctr - 1] = sde;
1023                         pow = roundup_pow_of_two(ctr);
1024                         rht_node->map[vl]->mask = pow - 1;
1025 
1026                         /* Populate the sde map table */
1027                         sdma_populate_sde_map(rht_node->map[vl]);
1028                 }
1029                 cpumask_set_cpu(cpu, new_mask);
1030         }
1031 
1032         /* Clean up old mappings */
1033         for_each_cpu(cpu, cpu_online_mask) {
1034                 struct sdma_rht_node *rht_node;
1035 
1036                 /* Don't cleanup sdes that are set in the new mask */
1037                 if (cpumask_test_cpu(cpu, mask))
1038                         continue;
1039 
1040                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1041                                                   sdma_rht_params);
1042                 if (rht_node) {
1043                         bool empty = true;
1044                         int i;
1045 
1046                         /* Remove mappings for old sde */
1047                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1048                                 if (rht_node->map[i])
1049                                         sdma_cleanup_sde_map(rht_node->map[i],
1050                                                              sde);
1051 
1052                         /* Free empty hash table entries */
1053                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1054                                 if (!rht_node->map[i])
1055                                         continue;
1056 
1057                                 if (rht_node->map[i]->ctr) {
1058                                         empty = false;
1059                                         break;
1060                                 }
1061                         }
1062 
1063                         if (empty) {
1064                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1065                                                              &rht_node->node,
1066                                                              sdma_rht_params);
1067                                 WARN_ON(ret);
1068 
1069                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1070                                         kfree(rht_node->map[i]);
1071 
1072                                 kfree(rht_node);
1073                         }
1074                 }
1075         }
1076 
1077         cpumask_copy(&sde->cpu_mask, new_mask);
1078 out:
1079         mutex_unlock(&process_to_sde_mutex);
1080 out_free:
1081         free_cpumask_var(mask);
1082         free_cpumask_var(new_mask);
1083         return ret ? : strnlen(buf, PAGE_SIZE);
1084 }
1085 
1086 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1087 {
1088         mutex_lock(&process_to_sde_mutex);
1089         if (cpumask_empty(&sde->cpu_mask))
1090                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1091         else
1092                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1093         mutex_unlock(&process_to_sde_mutex);
1094         return strnlen(buf, PAGE_SIZE);
1095 }
1096 
1097 static void sdma_rht_free(void *ptr, void *arg)
1098 {
1099         struct sdma_rht_node *rht_node = ptr;
1100         int i;
1101 
1102         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1103                 kfree(rht_node->map[i]);
1104 
1105         kfree(rht_node);
1106 }
1107 
1108 /**
1109  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1110  * @s: seq file
1111  * @dd: hfi1_devdata
1112  * @cpuid: cpu id
1113  *
1114  * This routine dumps the process to sde mappings per cpu
1115  */
1116 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1117                                 struct hfi1_devdata *dd,
1118                                 unsigned long cpuid)
1119 {
1120         struct sdma_rht_node *rht_node;
1121         int i, j;
1122 
1123         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1124                                           sdma_rht_params);
1125         if (!rht_node)
1126                 return;
1127 
1128         seq_printf(s, "cpu%3lu: ", cpuid);
1129         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1130                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1131                         continue;
1132 
1133                 seq_printf(s, " vl%d: [", i);
1134 
1135                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1136                         if (!rht_node->map[i]->sde[j])
1137                                 continue;
1138 
1139                         if (j > 0)
1140                                 seq_puts(s, ",");
1141 
1142                         seq_printf(s, " sdma%2d",
1143                                    rht_node->map[i]->sde[j]->this_idx);
1144                 }
1145                 seq_puts(s, " ]");
1146         }
1147 
1148         seq_puts(s, "\n");
1149 }
1150 
1151 /*
1152  * Free the indicated map struct
1153  */
1154 static void sdma_map_free(struct sdma_vl_map *m)
1155 {
1156         int i;
1157 
1158         for (i = 0; m && i < m->actual_vls; i++)
1159                 kfree(m->map[i]);
1160         kfree(m);
1161 }
1162 
1163 /*
1164  * Handle RCU callback
1165  */
1166 static void sdma_map_rcu_callback(struct rcu_head *list)
1167 {
1168         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1169 
1170         sdma_map_free(m);
1171 }
1172 
1173 /**
1174  * sdma_map_init - called when # vls change
1175  * @dd: hfi1_devdata
1176  * @port: port number
1177  * @num_vls: number of vls
1178  * @vl_engines: per vl engine mapping (optional)
1179  *
1180  * This routine changes the mapping based on the number of vls.
1181  *
1182  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1183  * implies auto computing the loading and giving each VLs a uniform
1184  * distribution of engines per VL.
1185  *
1186  * The auto algorithm computes the sde_per_vl and the number of extra
1187  * engines.  Any extra engines are added from the last VL on down.
1188  *
1189  * rcu locking is used here to control access to the mapping fields.
1190  *
1191  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1192  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1193  * up to the next highest power of 2 and the first entry is reused
1194  * in a round robin fashion.
1195  *
1196  * If an error occurs the map change is not done and the mapping is
1197  * not changed.
1198  *
1199  */
1200 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1201 {
1202         int i, j;
1203         int extra, sde_per_vl;
1204         int engine = 0;
1205         u8 lvl_engines[OPA_MAX_VLS];
1206         struct sdma_vl_map *oldmap, *newmap;
1207 
1208         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1209                 return 0;
1210 
1211         if (!vl_engines) {
1212                 /* truncate divide */
1213                 sde_per_vl = dd->num_sdma / num_vls;
1214                 /* extras */
1215                 extra = dd->num_sdma % num_vls;
1216                 vl_engines = lvl_engines;
1217                 /* add extras from last vl down */
1218                 for (i = num_vls - 1; i >= 0; i--, extra--)
1219                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1220         }
1221         /* build new map */
1222         newmap = kzalloc(
1223                 sizeof(struct sdma_vl_map) +
1224                         roundup_pow_of_two(num_vls) *
1225                         sizeof(struct sdma_map_elem *),
1226                 GFP_KERNEL);
1227         if (!newmap)
1228                 goto bail;
1229         newmap->actual_vls = num_vls;
1230         newmap->vls = roundup_pow_of_two(num_vls);
1231         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1232         /* initialize back-map */
1233         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1234                 newmap->engine_to_vl[i] = -1;
1235         for (i = 0; i < newmap->vls; i++) {
1236                 /* save for wrap around */
1237                 int first_engine = engine;
1238 
1239                 if (i < newmap->actual_vls) {
1240                         int sz = roundup_pow_of_two(vl_engines[i]);
1241 
1242                         /* only allocate once */
1243                         newmap->map[i] = kzalloc(
1244                                 sizeof(struct sdma_map_elem) +
1245                                         sz * sizeof(struct sdma_engine *),
1246                                 GFP_KERNEL);
1247                         if (!newmap->map[i])
1248                                 goto bail;
1249                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1250                         /* assign engines */
1251                         for (j = 0; j < sz; j++) {
1252                                 newmap->map[i]->sde[j] =
1253                                         &dd->per_sdma[engine];
1254                                 if (++engine >= first_engine + vl_engines[i])
1255                                         /* wrap back to first engine */
1256                                         engine = first_engine;
1257                         }
1258                         /* assign back-map */
1259                         for (j = 0; j < vl_engines[i]; j++)
1260                                 newmap->engine_to_vl[first_engine + j] = i;
1261                 } else {
1262                         /* just re-use entry without allocating */
1263                         newmap->map[i] = newmap->map[i % num_vls];
1264                 }
1265                 engine = first_engine + vl_engines[i];
1266         }
1267         /* newmap in hand, save old map */
1268         spin_lock_irq(&dd->sde_map_lock);
1269         oldmap = rcu_dereference_protected(dd->sdma_map,
1270                                            lockdep_is_held(&dd->sde_map_lock));
1271 
1272         /* publish newmap */
1273         rcu_assign_pointer(dd->sdma_map, newmap);
1274 
1275         spin_unlock_irq(&dd->sde_map_lock);
1276         /* success, free any old map after grace period */
1277         if (oldmap)
1278                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1279         return 0;
1280 bail:
1281         /* free any partial allocation */
1282         sdma_map_free(newmap);
1283         return -ENOMEM;
1284 }
1285 
1286 /**
1287  * sdma_clean()  Clean up allocated memory
1288  * @dd:          struct hfi1_devdata
1289  * @num_engines: num sdma engines
1290  *
1291  * This routine can be called regardless of the success of
1292  * sdma_init()
1293  */
1294 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1295 {
1296         size_t i;
1297         struct sdma_engine *sde;
1298 
1299         if (dd->sdma_pad_dma) {
1300                 dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1301                                   (void *)dd->sdma_pad_dma,
1302                                   dd->sdma_pad_phys);
1303                 dd->sdma_pad_dma = NULL;
1304                 dd->sdma_pad_phys = 0;
1305         }
1306         if (dd->sdma_heads_dma) {
1307                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1308                                   (void *)dd->sdma_heads_dma,
1309                                   dd->sdma_heads_phys);
1310                 dd->sdma_heads_dma = NULL;
1311                 dd->sdma_heads_phys = 0;
1312         }
1313         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1314                 sde = &dd->per_sdma[i];
1315 
1316                 sde->head_dma = NULL;
1317                 sde->head_phys = 0;
1318 
1319                 if (sde->descq) {
1320                         dma_free_coherent(
1321                                 &dd->pcidev->dev,
1322                                 sde->descq_cnt * sizeof(u64[2]),
1323                                 sde->descq,
1324                                 sde->descq_phys
1325                         );
1326                         sde->descq = NULL;
1327                         sde->descq_phys = 0;
1328                 }
1329                 kvfree(sde->tx_ring);
1330                 sde->tx_ring = NULL;
1331         }
1332         spin_lock_irq(&dd->sde_map_lock);
1333         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1334         RCU_INIT_POINTER(dd->sdma_map, NULL);
1335         spin_unlock_irq(&dd->sde_map_lock);
1336         synchronize_rcu();
1337         kfree(dd->per_sdma);
1338         dd->per_sdma = NULL;
1339 
1340         if (dd->sdma_rht) {
1341                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1342                 kfree(dd->sdma_rht);
1343                 dd->sdma_rht = NULL;
1344         }
1345 }
1346 
1347 /**
1348  * sdma_init() - called when device probed
1349  * @dd: hfi1_devdata
1350  * @port: port number (currently only zero)
1351  *
1352  * Initializes each sde and its csrs.
1353  * Interrupts are not required to be enabled.
1354  *
1355  * Returns:
1356  * 0 - success, -errno on failure
1357  */
1358 int sdma_init(struct hfi1_devdata *dd, u8 port)
1359 {
1360         unsigned this_idx;
1361         struct sdma_engine *sde;
1362         struct rhashtable *tmp_sdma_rht;
1363         u16 descq_cnt;
1364         void *curr_head;
1365         struct hfi1_pportdata *ppd = dd->pport + port;
1366         u32 per_sdma_credits;
1367         uint idle_cnt = sdma_idle_cnt;
1368         size_t num_engines = chip_sdma_engines(dd);
1369         int ret = -ENOMEM;
1370 
1371         if (!HFI1_CAP_IS_KSET(SDMA)) {
1372                 HFI1_CAP_CLEAR(SDMA_AHG);
1373                 return 0;
1374         }
1375         if (mod_num_sdma &&
1376             /* can't exceed chip support */
1377             mod_num_sdma <= chip_sdma_engines(dd) &&
1378             /* count must be >= vls */
1379             mod_num_sdma >= num_vls)
1380                 num_engines = mod_num_sdma;
1381 
1382         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1383         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1384         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1385                     chip_sdma_mem_size(dd));
1386 
1387         per_sdma_credits =
1388                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1389 
1390         /* set up freeze waitqueue */
1391         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1392         atomic_set(&dd->sdma_unfreeze_count, 0);
1393 
1394         descq_cnt = sdma_get_descq_cnt();
1395         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1396                     num_engines, descq_cnt);
1397 
1398         /* alloc memory for array of send engines */
1399         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1400                                     GFP_KERNEL, dd->node);
1401         if (!dd->per_sdma)
1402                 return ret;
1403 
1404         idle_cnt = ns_to_cclock(dd, idle_cnt);
1405         if (idle_cnt)
1406                 dd->default_desc1 =
1407                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1408         else
1409                 dd->default_desc1 =
1410                         SDMA_DESC1_INT_REQ_FLAG;
1411 
1412         if (!sdma_desct_intr)
1413                 sdma_desct_intr = SDMA_DESC_INTR;
1414 
1415         /* Allocate memory for SendDMA descriptor FIFOs */
1416         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1417                 sde = &dd->per_sdma[this_idx];
1418                 sde->dd = dd;
1419                 sde->ppd = ppd;
1420                 sde->this_idx = this_idx;
1421                 sde->descq_cnt = descq_cnt;
1422                 sde->desc_avail = sdma_descq_freecnt(sde);
1423                 sde->sdma_shift = ilog2(descq_cnt);
1424                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1425 
1426                 /* Create a mask specifically for each interrupt source */
1427                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1428                                            this_idx);
1429                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1430                                                 this_idx);
1431                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1432                                             this_idx);
1433                 /* Create a combined mask to cover all 3 interrupt sources */
1434                 sde->imask = sde->int_mask | sde->progress_mask |
1435                              sde->idle_mask;
1436 
1437                 spin_lock_init(&sde->tail_lock);
1438                 seqlock_init(&sde->head_lock);
1439                 spin_lock_init(&sde->senddmactrl_lock);
1440                 spin_lock_init(&sde->flushlist_lock);
1441                 seqlock_init(&sde->waitlock);
1442                 /* insure there is always a zero bit */
1443                 sde->ahg_bits = 0xfffffffe00000000ULL;
1444 
1445                 sdma_set_state(sde, sdma_state_s00_hw_down);
1446 
1447                 /* set up reference counting */
1448                 kref_init(&sde->state.kref);
1449                 init_completion(&sde->state.comp);
1450 
1451                 INIT_LIST_HEAD(&sde->flushlist);
1452                 INIT_LIST_HEAD(&sde->dmawait);
1453 
1454                 sde->tail_csr =
1455                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1456 
1457                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1458                              (unsigned long)sde);
1459 
1460                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1461                              (unsigned long)sde);
1462                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1463                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1464 
1465                 sde->progress_check_head = 0;
1466 
1467                 timer_setup(&sde->err_progress_check_timer,
1468                             sdma_err_progress_check, 0);
1469 
1470                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1471                                                 descq_cnt * sizeof(u64[2]),
1472                                                 &sde->descq_phys, GFP_KERNEL);
1473                 if (!sde->descq)
1474                         goto bail;
1475                 sde->tx_ring =
1476                         kvzalloc_node(array_size(descq_cnt,
1477                                                  sizeof(struct sdma_txreq *)),
1478                                       GFP_KERNEL, dd->node);
1479                 if (!sde->tx_ring)
1480                         goto bail;
1481         }
1482 
1483         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1484         /* Allocate memory for DMA of head registers to memory */
1485         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1486                                                 dd->sdma_heads_size,
1487                                                 &dd->sdma_heads_phys,
1488                                                 GFP_KERNEL);
1489         if (!dd->sdma_heads_dma) {
1490                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1491                 goto bail;
1492         }
1493 
1494         /* Allocate memory for pad */
1495         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1496                                               &dd->sdma_pad_phys, GFP_KERNEL);
1497         if (!dd->sdma_pad_dma) {
1498                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1499                 goto bail;
1500         }
1501 
1502         /* assign each engine to different cacheline and init registers */
1503         curr_head = (void *)dd->sdma_heads_dma;
1504         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1505                 unsigned long phys_offset;
1506 
1507                 sde = &dd->per_sdma[this_idx];
1508 
1509                 sde->head_dma = curr_head;
1510                 curr_head += L1_CACHE_BYTES;
1511                 phys_offset = (unsigned long)sde->head_dma -
1512                               (unsigned long)dd->sdma_heads_dma;
1513                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1514                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515         }
1516         dd->flags |= HFI1_HAS_SEND_DMA;
1517         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1518         dd->num_sdma = num_engines;
1519         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1520         if (ret < 0)
1521                 goto bail;
1522 
1523         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1524         if (!tmp_sdma_rht) {
1525                 ret = -ENOMEM;
1526                 goto bail;
1527         }
1528 
1529         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1530         if (ret < 0) {
1531                 kfree(tmp_sdma_rht);
1532                 goto bail;
1533         }
1534 
1535         dd->sdma_rht = tmp_sdma_rht;
1536 
1537         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1538         return 0;
1539 
1540 bail:
1541         sdma_clean(dd, num_engines);
1542         return ret;
1543 }
1544 
1545 /**
1546  * sdma_all_running() - called when the link goes up
1547  * @dd: hfi1_devdata
1548  *
1549  * This routine moves all engines to the running state.
1550  */
1551 void sdma_all_running(struct hfi1_devdata *dd)
1552 {
1553         struct sdma_engine *sde;
1554         unsigned int i;
1555 
1556         /* move all engines to running */
1557         for (i = 0; i < dd->num_sdma; ++i) {
1558                 sde = &dd->per_sdma[i];
1559                 sdma_process_event(sde, sdma_event_e30_go_running);
1560         }
1561 }
1562 
1563 /**
1564  * sdma_all_idle() - called when the link goes down
1565  * @dd: hfi1_devdata
1566  *
1567  * This routine moves all engines to the idle state.
1568  */
1569 void sdma_all_idle(struct hfi1_devdata *dd)
1570 {
1571         struct sdma_engine *sde;
1572         unsigned int i;
1573 
1574         /* idle all engines */
1575         for (i = 0; i < dd->num_sdma; ++i) {
1576                 sde = &dd->per_sdma[i];
1577                 sdma_process_event(sde, sdma_event_e70_go_idle);
1578         }
1579 }
1580 
1581 /**
1582  * sdma_start() - called to kick off state processing for all engines
1583  * @dd: hfi1_devdata
1584  *
1585  * This routine is for kicking off the state processing for all required
1586  * sdma engines.  Interrupts need to be working at this point.
1587  *
1588  */
1589 void sdma_start(struct hfi1_devdata *dd)
1590 {
1591         unsigned i;
1592         struct sdma_engine *sde;
1593 
1594         /* kick off the engines state processing */
1595         for (i = 0; i < dd->num_sdma; ++i) {
1596                 sde = &dd->per_sdma[i];
1597                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1598         }
1599 }
1600 
1601 /**
1602  * sdma_exit() - used when module is removed
1603  * @dd: hfi1_devdata
1604  */
1605 void sdma_exit(struct hfi1_devdata *dd)
1606 {
1607         unsigned this_idx;
1608         struct sdma_engine *sde;
1609 
1610         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1611                         ++this_idx) {
1612                 sde = &dd->per_sdma[this_idx];
1613                 if (!list_empty(&sde->dmawait))
1614                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1615                                    sde->this_idx);
1616                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1617 
1618                 del_timer_sync(&sde->err_progress_check_timer);
1619 
1620                 /*
1621                  * This waits for the state machine to exit so it is not
1622                  * necessary to kill the sdma_sw_clean_up_task to make sure
1623                  * it is not running.
1624                  */
1625                 sdma_finalput(&sde->state);
1626         }
1627 }
1628 
1629 /*
1630  * unmap the indicated descriptor
1631  */
1632 static inline void sdma_unmap_desc(
1633         struct hfi1_devdata *dd,
1634         struct sdma_desc *descp)
1635 {
1636         switch (sdma_mapping_type(descp)) {
1637         case SDMA_MAP_SINGLE:
1638                 dma_unmap_single(
1639                         &dd->pcidev->dev,
1640                         sdma_mapping_addr(descp),
1641                         sdma_mapping_len(descp),
1642                         DMA_TO_DEVICE);
1643                 break;
1644         case SDMA_MAP_PAGE:
1645                 dma_unmap_page(
1646                         &dd->pcidev->dev,
1647                         sdma_mapping_addr(descp),
1648                         sdma_mapping_len(descp),
1649                         DMA_TO_DEVICE);
1650                 break;
1651         }
1652 }
1653 
1654 /*
1655  * return the mode as indicated by the first
1656  * descriptor in the tx.
1657  */
1658 static inline u8 ahg_mode(struct sdma_txreq *tx)
1659 {
1660         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1661                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1662 }
1663 
1664 /**
1665  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1666  * @dd: hfi1_devdata for unmapping
1667  * @tx: tx request to clean
1668  *
1669  * This is used in the progress routine to clean the tx or
1670  * by the ULP to toss an in-process tx build.
1671  *
1672  * The code can be called multiple times without issue.
1673  *
1674  */
1675 void __sdma_txclean(
1676         struct hfi1_devdata *dd,
1677         struct sdma_txreq *tx)
1678 {
1679         u16 i;
1680 
1681         if (tx->num_desc) {
1682                 u8 skip = 0, mode = ahg_mode(tx);
1683 
1684                 /* unmap first */
1685                 sdma_unmap_desc(dd, &tx->descp[0]);
1686                 /* determine number of AHG descriptors to skip */
1687                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1688                         skip = mode >> 1;
1689                 for (i = 1 + skip; i < tx->num_desc; i++)
1690                         sdma_unmap_desc(dd, &tx->descp[i]);
1691                 tx->num_desc = 0;
1692         }
1693         kfree(tx->coalesce_buf);
1694         tx->coalesce_buf = NULL;
1695         /* kmalloc'ed descp */
1696         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1697                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1698                 kfree(tx->descp);
1699         }
1700 }
1701 
1702 static inline u16 sdma_gethead(struct sdma_engine *sde)
1703 {
1704         struct hfi1_devdata *dd = sde->dd;
1705         int use_dmahead;
1706         u16 hwhead;
1707 
1708 #ifdef CONFIG_SDMA_VERBOSITY
1709         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1710                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1711 #endif
1712 
1713 retry:
1714         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1715                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1716         hwhead = use_dmahead ?
1717                 (u16)le64_to_cpu(*sde->head_dma) :
1718                 (u16)read_sde_csr(sde, SD(HEAD));
1719 
1720         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1721                 u16 cnt;
1722                 u16 swtail;
1723                 u16 swhead;
1724                 int sane;
1725 
1726                 swhead = sde->descq_head & sde->sdma_mask;
1727                 /* this code is really bad for cache line trading */
1728                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1729                 cnt = sde->descq_cnt;
1730 
1731                 if (swhead < swtail)
1732                         /* not wrapped */
1733                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1734                 else if (swhead > swtail)
1735                         /* wrapped around */
1736                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1737                                 (hwhead <= swtail);
1738                 else
1739                         /* empty */
1740                         sane = (hwhead == swhead);
1741 
1742                 if (unlikely(!sane)) {
1743                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1744                                    sde->this_idx,
1745                                    use_dmahead ? "dma" : "kreg",
1746                                    hwhead, swhead, swtail, cnt);
1747                         if (use_dmahead) {
1748                                 /* try one more time, using csr */
1749                                 use_dmahead = 0;
1750                                 goto retry;
1751                         }
1752                         /* proceed as if no progress */
1753                         hwhead = swhead;
1754                 }
1755         }
1756         return hwhead;
1757 }
1758 
1759 /*
1760  * This is called when there are send DMA descriptors that might be
1761  * available.
1762  *
1763  * This is called with head_lock held.
1764  */
1765 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1766 {
1767         struct iowait *wait, *nw, *twait;
1768         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1769         uint i, n = 0, seq, tidx = 0;
1770 
1771 #ifdef CONFIG_SDMA_VERBOSITY
1772         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1773                    slashstrip(__FILE__), __LINE__, __func__);
1774         dd_dev_err(sde->dd, "avail: %u\n", avail);
1775 #endif
1776 
1777         do {
1778                 seq = read_seqbegin(&sde->waitlock);
1779                 if (!list_empty(&sde->dmawait)) {
1780                         /* at least one item */
1781                         write_seqlock(&sde->waitlock);
1782                         /* Harvest waiters wanting DMA descriptors */
1783                         list_for_each_entry_safe(
1784                                         wait,
1785                                         nw,
1786                                         &sde->dmawait,
1787                                         list) {
1788                                 u32 num_desc;
1789 
1790                                 if (!wait->wakeup)
1791                                         continue;
1792                                 if (n == ARRAY_SIZE(waits))
1793                                         break;
1794                                 iowait_init_priority(wait);
1795                                 num_desc = iowait_get_all_desc(wait);
1796                                 if (num_desc > avail)
1797                                         break;
1798                                 avail -= num_desc;
1799                                 /* Find the top-priority wait memeber */
1800                                 if (n) {
1801                                         twait = waits[tidx];
1802                                         tidx =
1803                                             iowait_priority_update_top(wait,
1804                                                                        twait,
1805                                                                        n,
1806                                                                        tidx);
1807                                 }
1808                                 list_del_init(&wait->list);
1809                                 waits[n++] = wait;
1810                         }
1811                         write_sequnlock(&sde->waitlock);
1812                         break;
1813                 }
1814         } while (read_seqretry(&sde->waitlock, seq));
1815 
1816         /* Schedule the top-priority entry first */
1817         if (n)
1818                 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1819 
1820         for (i = 0; i < n; i++)
1821                 if (i != tidx)
1822                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1823 }
1824 
1825 /* head_lock must be held */
1826 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1827 {
1828         struct sdma_txreq *txp = NULL;
1829         int progress = 0;
1830         u16 hwhead, swhead;
1831         int idle_check_done = 0;
1832 
1833         hwhead = sdma_gethead(sde);
1834 
1835         /* The reason for some of the complexity of this code is that
1836          * not all descriptors have corresponding txps.  So, we have to
1837          * be able to skip over descs until we wander into the range of
1838          * the next txp on the list.
1839          */
1840 
1841 retry:
1842         txp = get_txhead(sde);
1843         swhead = sde->descq_head & sde->sdma_mask;
1844         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1845         while (swhead != hwhead) {
1846                 /* advance head, wrap if needed */
1847                 swhead = ++sde->descq_head & sde->sdma_mask;
1848 
1849                 /* if now past this txp's descs, do the callback */
1850                 if (txp && txp->next_descq_idx == swhead) {
1851                         /* remove from list */
1852                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1853                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1854                         /* see if there is another txp */
1855                         txp = get_txhead(sde);
1856                 }
1857                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1858                 progress++;
1859         }
1860 
1861         /*
1862          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1863          * to updates to the the dma_head location in host memory. The head
1864          * value read might not be fully up to date. If there are pending
1865          * descriptors and the SDMA idle interrupt fired then read from the
1866          * CSR SDMA head instead to get the latest value from the hardware.
1867          * The hardware SDMA head should be read at most once in this invocation
1868          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1869          */
1870         if ((status & sde->idle_mask) && !idle_check_done) {
1871                 u16 swtail;
1872 
1873                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1874                 if (swtail != hwhead) {
1875                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1876                         idle_check_done = 1;
1877                         goto retry;
1878                 }
1879         }
1880 
1881         sde->last_status = status;
1882         if (progress)
1883                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1884 }
1885 
1886 /*
1887  * sdma_engine_interrupt() - interrupt handler for engine
1888  * @sde: sdma engine
1889  * @status: sdma interrupt reason
1890  *
1891  * Status is a mask of the 3 possible interrupts for this engine.  It will
1892  * contain bits _only_ for this SDMA engine.  It will contain at least one
1893  * bit, it may contain more.
1894  */
1895 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1896 {
1897         trace_hfi1_sdma_engine_interrupt(sde, status);
1898         write_seqlock(&sde->head_lock);
1899         sdma_set_desc_cnt(sde, sdma_desct_intr);
1900         if (status & sde->idle_mask)
1901                 sde->idle_int_cnt++;
1902         else if (status & sde->progress_mask)
1903                 sde->progress_int_cnt++;
1904         else if (status & sde->int_mask)
1905                 sde->sdma_int_cnt++;
1906         sdma_make_progress(sde, status);
1907         write_sequnlock(&sde->head_lock);
1908 }
1909 
1910 /**
1911  * sdma_engine_error() - error handler for engine
1912  * @sde: sdma engine
1913  * @status: sdma interrupt reason
1914  */
1915 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1916 {
1917         unsigned long flags;
1918 
1919 #ifdef CONFIG_SDMA_VERBOSITY
1920         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1921                    sde->this_idx,
1922                    (unsigned long long)status,
1923                    sdma_state_names[sde->state.current_state]);
1924 #endif
1925         spin_lock_irqsave(&sde->tail_lock, flags);
1926         write_seqlock(&sde->head_lock);
1927         if (status & ALL_SDMA_ENG_HALT_ERRS)
1928                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1929         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1930                 dd_dev_err(sde->dd,
1931                            "SDMA (%u) engine error: 0x%llx state %s\n",
1932                            sde->this_idx,
1933                            (unsigned long long)status,
1934                            sdma_state_names[sde->state.current_state]);
1935                 dump_sdma_state(sde);
1936         }
1937         write_sequnlock(&sde->head_lock);
1938         spin_unlock_irqrestore(&sde->tail_lock, flags);
1939 }
1940 
1941 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1942 {
1943         u64 set_senddmactrl = 0;
1944         u64 clr_senddmactrl = 0;
1945         unsigned long flags;
1946 
1947 #ifdef CONFIG_SDMA_VERBOSITY
1948         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1949                    sde->this_idx,
1950                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1951                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1952                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1953                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1954 #endif
1955 
1956         if (op & SDMA_SENDCTRL_OP_ENABLE)
1957                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1958         else
1959                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1960 
1961         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1962                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1963         else
1964                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1965 
1966         if (op & SDMA_SENDCTRL_OP_HALT)
1967                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1968         else
1969                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1970 
1971         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1972 
1973         sde->p_senddmactrl |= set_senddmactrl;
1974         sde->p_senddmactrl &= ~clr_senddmactrl;
1975 
1976         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1977                 write_sde_csr(sde, SD(CTRL),
1978                               sde->p_senddmactrl |
1979                               SD(CTRL_SDMA_CLEANUP_SMASK));
1980         else
1981                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1982 
1983         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1984 
1985 #ifdef CONFIG_SDMA_VERBOSITY
1986         sdma_dumpstate(sde);
1987 #endif
1988 }
1989 
1990 static void sdma_setlengen(struct sdma_engine *sde)
1991 {
1992 #ifdef CONFIG_SDMA_VERBOSITY
1993         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1994                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1995 #endif
1996 
1997         /*
1998          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1999          * count to enable generation checking and load the internal
2000          * generation counter.
2001          */
2002         write_sde_csr(sde, SD(LEN_GEN),
2003                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2004         write_sde_csr(sde, SD(LEN_GEN),
2005                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2006                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2007 }
2008 
2009 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2010 {
2011         /* Commit writes to memory and advance the tail on the chip */
2012         smp_wmb(); /* see get_txhead() */
2013         writeq(tail, sde->tail_csr);
2014 }
2015 
2016 /*
2017  * This is called when changing to state s10_hw_start_up_halt_wait as
2018  * a result of send buffer errors or send DMA descriptor errors.
2019  */
2020 static void sdma_hw_start_up(struct sdma_engine *sde)
2021 {
2022         u64 reg;
2023 
2024 #ifdef CONFIG_SDMA_VERBOSITY
2025         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2026                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2027 #endif
2028 
2029         sdma_setlengen(sde);
2030         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2031         *sde->head_dma = 0;
2032 
2033         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2034               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2035         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2036 }
2037 
2038 /*
2039  * set_sdma_integrity
2040  *
2041  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2042  */
2043 static void set_sdma_integrity(struct sdma_engine *sde)
2044 {
2045         struct hfi1_devdata *dd = sde->dd;
2046 
2047         write_sde_csr(sde, SD(CHECK_ENABLE),
2048                       hfi1_pkt_base_sdma_integrity(dd));
2049 }
2050 
2051 static void init_sdma_regs(
2052         struct sdma_engine *sde,
2053         u32 credits,
2054         uint idle_cnt)
2055 {
2056         u8 opval, opmask;
2057 #ifdef CONFIG_SDMA_VERBOSITY
2058         struct hfi1_devdata *dd = sde->dd;
2059 
2060         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2061                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2062 #endif
2063 
2064         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2065         sdma_setlengen(sde);
2066         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2067         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2068         write_sde_csr(sde, SD(DESC_CNT), 0);
2069         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2070         write_sde_csr(sde, SD(MEMORY),
2071                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2072                       ((u64)(credits * sde->this_idx) <<
2073                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2074         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2075         set_sdma_integrity(sde);
2076         opmask = OPCODE_CHECK_MASK_DISABLED;
2077         opval = OPCODE_CHECK_VAL_DISABLED;
2078         write_sde_csr(sde, SD(CHECK_OPCODE),
2079                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2080                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2081 }
2082 
2083 #ifdef CONFIG_SDMA_VERBOSITY
2084 
2085 #define sdma_dumpstate_helper0(reg) do { \
2086                 csr = read_csr(sde->dd, reg); \
2087                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2088         } while (0)
2089 
2090 #define sdma_dumpstate_helper(reg) do { \
2091                 csr = read_sde_csr(sde, reg); \
2092                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2093                         #reg, sde->this_idx, csr); \
2094         } while (0)
2095 
2096 #define sdma_dumpstate_helper2(reg) do { \
2097                 csr = read_csr(sde->dd, reg + (8 * i)); \
2098                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2099                                 #reg, i, csr); \
2100         } while (0)
2101 
2102 void sdma_dumpstate(struct sdma_engine *sde)
2103 {
2104         u64 csr;
2105         unsigned i;
2106 
2107         sdma_dumpstate_helper(SD(CTRL));
2108         sdma_dumpstate_helper(SD(STATUS));
2109         sdma_dumpstate_helper0(SD(ERR_STATUS));
2110         sdma_dumpstate_helper0(SD(ERR_MASK));
2111         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2112         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2113 
2114         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2115                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2116                 sdma_dumpstate_helper2(CCE_INT_MASK);
2117                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2118         }
2119 
2120         sdma_dumpstate_helper(SD(TAIL));
2121         sdma_dumpstate_helper(SD(HEAD));
2122         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2123         sdma_dumpstate_helper(SD(IDLE_CNT));
2124         sdma_dumpstate_helper(SD(RELOAD_CNT));
2125         sdma_dumpstate_helper(SD(DESC_CNT));
2126         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2127         sdma_dumpstate_helper(SD(MEMORY));
2128         sdma_dumpstate_helper0(SD(ENGINES));
2129         sdma_dumpstate_helper0(SD(MEM_SIZE));
2130         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2131         sdma_dumpstate_helper(SD(BASE_ADDR));
2132         sdma_dumpstate_helper(SD(LEN_GEN));
2133         sdma_dumpstate_helper(SD(HEAD_ADDR));
2134         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2135         sdma_dumpstate_helper(SD(CHECK_VL));
2136         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2137         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2138         sdma_dumpstate_helper(SD(CHECK_SLID));
2139         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2140 }
2141 #endif
2142 
2143 static void dump_sdma_state(struct sdma_engine *sde)
2144 {
2145         struct hw_sdma_desc *descqp;
2146         u64 desc[2];
2147         u64 addr;
2148         u8 gen;
2149         u16 len;
2150         u16 head, tail, cnt;
2151 
2152         head = sde->descq_head & sde->sdma_mask;
2153         tail = sde->descq_tail & sde->sdma_mask;
2154         cnt = sdma_descq_freecnt(sde);
2155 
2156         dd_dev_err(sde->dd,
2157                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2158                    sde->this_idx, head, tail, cnt,
2159                    !list_empty(&sde->flushlist));
2160 
2161         /* print info for each entry in the descriptor queue */
2162         while (head != tail) {
2163                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2164 
2165                 descqp = &sde->descq[head];
2166                 desc[0] = le64_to_cpu(descqp->qw[0]);
2167                 desc[1] = le64_to_cpu(descqp->qw[1]);
2168                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2169                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2170                                 'H' : '-';
2171                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2172                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2173                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2174                         & SDMA_DESC0_PHY_ADDR_MASK;
2175                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2176                         & SDMA_DESC1_GENERATION_MASK;
2177                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2178                         & SDMA_DESC0_BYTE_COUNT_MASK;
2179                 dd_dev_err(sde->dd,
2180                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2181                            head, flags, addr, gen, len);
2182                 dd_dev_err(sde->dd,
2183                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2184                            desc[0], desc[1]);
2185                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2186                         dd_dev_err(sde->dd,
2187                                    "\taidx: %u amode: %u alen: %u\n",
2188                                    (u8)((desc[1] &
2189                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2190                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2191                                    (u8)((desc[1] &
2192                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2193                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2194                                    (u8)((desc[1] &
2195                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2196                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2197                 head++;
2198                 head &= sde->sdma_mask;
2199         }
2200 }
2201 
2202 #define SDE_FMT \
2203         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2204 /**
2205  * sdma_seqfile_dump_sde() - debugfs dump of sde
2206  * @s: seq file
2207  * @sde: send dma engine to dump
2208  *
2209  * This routine dumps the sde to the indicated seq file.
2210  */
2211 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2212 {
2213         u16 head, tail;
2214         struct hw_sdma_desc *descqp;
2215         u64 desc[2];
2216         u64 addr;
2217         u8 gen;
2218         u16 len;
2219 
2220         head = sde->descq_head & sde->sdma_mask;
2221         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2222         seq_printf(s, SDE_FMT, sde->this_idx,
2223                    sde->cpu,
2224                    sdma_state_name(sde->state.current_state),
2225                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2226                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2227                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2228                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2229                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2230                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2231                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2232                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2233                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2234                    (unsigned long long)sde->last_status,
2235                    (unsigned long long)sde->ahg_bits,
2236                    sde->tx_tail,
2237                    sde->tx_head,
2238                    sde->descq_tail,
2239                    sde->descq_head,
2240                    !list_empty(&sde->flushlist),
2241                    sde->descq_full_count,
2242                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2243 
2244         /* print info for each entry in the descriptor queue */
2245         while (head != tail) {
2246                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2247 
2248                 descqp = &sde->descq[head];
2249                 desc[0] = le64_to_cpu(descqp->qw[0]);
2250                 desc[1] = le64_to_cpu(descqp->qw[1]);
2251                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2252                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2253                                 'H' : '-';
2254                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2255                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2256                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2257                         & SDMA_DESC0_PHY_ADDR_MASK;
2258                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2259                         & SDMA_DESC1_GENERATION_MASK;
2260                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2261                         & SDMA_DESC0_BYTE_COUNT_MASK;
2262                 seq_printf(s,
2263                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2264                            head, flags, addr, gen, len);
2265                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2266                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2267                                    (u8)((desc[1] &
2268                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2269                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2270                                    (u8)((desc[1] &
2271                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2272                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2273                 head = (head + 1) & sde->sdma_mask;
2274         }
2275 }
2276 
2277 /*
2278  * add the generation number into
2279  * the qw1 and return
2280  */
2281 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2282 {
2283         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2284 
2285         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2286         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2287                         << SDMA_DESC1_GENERATION_SHIFT;
2288         return qw1;
2289 }
2290 
2291 /*
2292  * This routine submits the indicated tx
2293  *
2294  * Space has already been guaranteed and
2295  * tail side of ring is locked.
2296  *
2297  * The hardware tail update is done
2298  * in the caller and that is facilitated
2299  * by returning the new tail.
2300  *
2301  * There is special case logic for ahg
2302  * to not add the generation number for
2303  * up to 2 descriptors that follow the
2304  * first descriptor.
2305  *
2306  */
2307 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2308 {
2309         int i;
2310         u16 tail;
2311         struct sdma_desc *descp = tx->descp;
2312         u8 skip = 0, mode = ahg_mode(tx);
2313 
2314         tail = sde->descq_tail & sde->sdma_mask;
2315         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2316         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2317         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2318                                    tail, &sde->descq[tail]);
2319         tail = ++sde->descq_tail & sde->sdma_mask;
2320         descp++;
2321         if (mode > SDMA_AHG_APPLY_UPDATE1)
2322                 skip = mode >> 1;
2323         for (i = 1; i < tx->num_desc; i++, descp++) {
2324                 u64 qw1;
2325 
2326                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2327                 if (skip) {
2328                         /* edits don't have generation */
2329                         qw1 = descp->qw[1];
2330                         skip--;
2331                 } else {
2332                         /* replace generation with real one for non-edits */
2333                         qw1 = add_gen(sde, descp->qw[1]);
2334                 }
2335                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2336                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2337                                            tail, &sde->descq[tail]);
2338                 tail = ++sde->descq_tail & sde->sdma_mask;
2339         }
2340         tx->next_descq_idx = tail;
2341 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2342         tx->sn = sde->tail_sn++;
2343         trace_hfi1_sdma_in_sn(sde, tx->sn);
2344         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2345 #endif
2346         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2347         sde->desc_avail -= tx->num_desc;
2348         return tail;
2349 }
2350 
2351 /*
2352  * Check for progress
2353  */
2354 static int sdma_check_progress(
2355         struct sdma_engine *sde,
2356         struct iowait_work *wait,
2357         struct sdma_txreq *tx,
2358         bool pkts_sent)
2359 {
2360         int ret;
2361 
2362         sde->desc_avail = sdma_descq_freecnt(sde);
2363         if (tx->num_desc <= sde->desc_avail)
2364                 return -EAGAIN;
2365         /* pulse the head_lock */
2366         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2367                 unsigned seq;
2368 
2369                 seq = raw_seqcount_begin(
2370                         (const seqcount_t *)&sde->head_lock.seqcount);
2371                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2372                 if (ret == -EAGAIN)
2373                         sde->desc_avail = sdma_descq_freecnt(sde);
2374         } else {
2375                 ret = -EBUSY;
2376         }
2377         return ret;
2378 }
2379 
2380 /**
2381  * sdma_send_txreq() - submit a tx req to ring
2382  * @sde: sdma engine to use
2383  * @wait: SE wait structure to use when full (may be NULL)
2384  * @tx: sdma_txreq to submit
2385  * @pkts_sent: has any packet been sent yet?
2386  *
2387  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2388  * the packet will be queued to the list in wait.
2389  *
2390  * Return:
2391  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2392  * ring (wait == NULL)
2393  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2394  */
2395 int sdma_send_txreq(struct sdma_engine *sde,
2396                     struct iowait_work *wait,
2397                     struct sdma_txreq *tx,
2398                     bool pkts_sent)
2399 {
2400         int ret = 0;
2401         u16 tail;
2402         unsigned long flags;
2403 
2404         /* user should have supplied entire packet */
2405         if (unlikely(tx->tlen))
2406                 return -EINVAL;
2407         tx->wait = iowait_ioww_to_iow(wait);
2408         spin_lock_irqsave(&sde->tail_lock, flags);
2409 retry:
2410         if (unlikely(!__sdma_running(sde)))
2411                 goto unlock_noconn;
2412         if (unlikely(tx->num_desc > sde->desc_avail))
2413                 goto nodesc;
2414         tail = submit_tx(sde, tx);
2415         if (wait)
2416                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2417         sdma_update_tail(sde, tail);
2418 unlock:
2419         spin_unlock_irqrestore(&sde->tail_lock, flags);
2420         return ret;
2421 unlock_noconn:
2422         if (wait)
2423                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2424         tx->next_descq_idx = 0;
2425 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2426         tx->sn = sde->tail_sn++;
2427         trace_hfi1_sdma_in_sn(sde, tx->sn);
2428 #endif
2429         spin_lock(&sde->flushlist_lock);
2430         list_add_tail(&tx->list, &sde->flushlist);
2431         spin_unlock(&sde->flushlist_lock);
2432         iowait_inc_wait_count(wait, tx->num_desc);
2433         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2434         ret = -ECOMM;
2435         goto unlock;
2436 nodesc:
2437         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2438         if (ret == -EAGAIN) {
2439                 ret = 0;
2440                 goto retry;
2441         }
2442         sde->descq_full_count++;
2443         goto unlock;
2444 }
2445 
2446 /**
2447  * sdma_send_txlist() - submit a list of tx req to ring
2448  * @sde: sdma engine to use
2449  * @wait: SE wait structure to use when full (may be NULL)
2450  * @tx_list: list of sdma_txreqs to submit
2451  * @count: pointer to a u16 which, after return will contain the total number of
2452  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2453  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2454  *         which are added to SDMA engine flush list if the SDMA engine state is
2455  *         not running.
2456  *
2457  * The call submits the list into the ring.
2458  *
2459  * If the iowait structure is non-NULL and not equal to the iowait list
2460  * the unprocessed part of the list  will be appended to the list in wait.
2461  *
2462  * In all cases, the tx_list will be updated so the head of the tx_list is
2463  * the list of descriptors that have yet to be transmitted.
2464  *
2465  * The intent of this call is to provide a more efficient
2466  * way of submitting multiple packets to SDMA while holding the tail
2467  * side locking.
2468  *
2469  * Return:
2470  * 0 - Success,
2471  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2472  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2473  */
2474 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2475                      struct list_head *tx_list, u16 *count_out)
2476 {
2477         struct sdma_txreq *tx, *tx_next;
2478         int ret = 0;
2479         unsigned long flags;
2480         u16 tail = INVALID_TAIL;
2481         u32 submit_count = 0, flush_count = 0, total_count;
2482 
2483         spin_lock_irqsave(&sde->tail_lock, flags);
2484 retry:
2485         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2486                 tx->wait = iowait_ioww_to_iow(wait);
2487                 if (unlikely(!__sdma_running(sde)))
2488                         goto unlock_noconn;
2489                 if (unlikely(tx->num_desc > sde->desc_avail))
2490                         goto nodesc;
2491                 if (unlikely(tx->tlen)) {
2492                         ret = -EINVAL;
2493                         goto update_tail;
2494                 }
2495                 list_del_init(&tx->list);
2496                 tail = submit_tx(sde, tx);
2497                 submit_count++;
2498                 if (tail != INVALID_TAIL &&
2499                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2500                         sdma_update_tail(sde, tail);
2501                         tail = INVALID_TAIL;
2502                 }
2503         }
2504 update_tail:
2505         total_count = submit_count + flush_count;
2506         if (wait) {
2507                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2508                 iowait_starve_clear(submit_count > 0,
2509                                     iowait_ioww_to_iow(wait));
2510         }
2511         if (tail != INVALID_TAIL)
2512                 sdma_update_tail(sde, tail);
2513         spin_unlock_irqrestore(&sde->tail_lock, flags);
2514         *count_out = total_count;
2515         return ret;
2516 unlock_noconn:
2517         spin_lock(&sde->flushlist_lock);
2518         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519                 tx->wait = iowait_ioww_to_iow(wait);
2520                 list_del_init(&tx->list);
2521                 tx->next_descq_idx = 0;
2522 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523                 tx->sn = sde->tail_sn++;
2524                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2525 #endif
2526                 list_add_tail(&tx->list, &sde->flushlist);
2527                 flush_count++;
2528                 iowait_inc_wait_count(wait, tx->num_desc);
2529         }
2530         spin_unlock(&sde->flushlist_lock);
2531         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2532         ret = -ECOMM;
2533         goto update_tail;
2534 nodesc:
2535         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2536         if (ret == -EAGAIN) {
2537                 ret = 0;
2538                 goto retry;
2539         }
2540         sde->descq_full_count++;
2541         goto update_tail;
2542 }
2543 
2544 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2545 {
2546         unsigned long flags;
2547 
2548         spin_lock_irqsave(&sde->tail_lock, flags);
2549         write_seqlock(&sde->head_lock);
2550 
2551         __sdma_process_event(sde, event);
2552 
2553         if (sde->state.current_state == sdma_state_s99_running)
2554                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2555 
2556         write_sequnlock(&sde->head_lock);
2557         spin_unlock_irqrestore(&sde->tail_lock, flags);
2558 }
2559 
2560 static void __sdma_process_event(struct sdma_engine *sde,
2561                                  enum sdma_events event)
2562 {
2563         struct sdma_state *ss = &sde->state;
2564         int need_progress = 0;
2565 
2566         /* CONFIG SDMA temporary */
2567 #ifdef CONFIG_SDMA_VERBOSITY
2568         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2569                    sdma_state_names[ss->current_state],
2570                    sdma_event_names[event]);
2571 #endif
2572 
2573         switch (ss->current_state) {
2574         case sdma_state_s00_hw_down:
2575                 switch (event) {
2576                 case sdma_event_e00_go_hw_down:
2577                         break;
2578                 case sdma_event_e30_go_running:
2579                         /*
2580                          * If down, but running requested (usually result
2581                          * of link up, then we need to start up.
2582                          * This can happen when hw down is requested while
2583                          * bringing the link up with traffic active on
2584                          * 7220, e.g.
2585                          */
2586                         ss->go_s99_running = 1;
2587                         /* fall through -- and start dma engine */
2588                 case sdma_event_e10_go_hw_start:
2589                         /* This reference means the state machine is started */
2590                         sdma_get(&sde->state);
2591                         sdma_set_state(sde,
2592                                        sdma_state_s10_hw_start_up_halt_wait);
2593                         break;
2594                 case sdma_event_e15_hw_halt_done:
2595                         break;
2596                 case sdma_event_e25_hw_clean_up_done:
2597                         break;
2598                 case sdma_event_e40_sw_cleaned:
2599                         sdma_sw_tear_down(sde);
2600                         break;
2601                 case sdma_event_e50_hw_cleaned:
2602                         break;
2603                 case sdma_event_e60_hw_halted:
2604                         break;
2605                 case sdma_event_e70_go_idle:
2606                         break;
2607                 case sdma_event_e80_hw_freeze:
2608                         break;
2609                 case sdma_event_e81_hw_frozen:
2610                         break;
2611                 case sdma_event_e82_hw_unfreeze:
2612                         break;
2613                 case sdma_event_e85_link_down:
2614                         break;
2615                 case sdma_event_e90_sw_halted:
2616                         break;
2617                 }
2618                 break;
2619 
2620         case sdma_state_s10_hw_start_up_halt_wait:
2621                 switch (event) {
2622                 case sdma_event_e00_go_hw_down:
2623                         sdma_set_state(sde, sdma_state_s00_hw_down);
2624                         sdma_sw_tear_down(sde);
2625                         break;
2626                 case sdma_event_e10_go_hw_start:
2627                         break;
2628                 case sdma_event_e15_hw_halt_done:
2629                         sdma_set_state(sde,
2630                                        sdma_state_s15_hw_start_up_clean_wait);
2631                         sdma_start_hw_clean_up(sde);
2632                         break;
2633                 case sdma_event_e25_hw_clean_up_done:
2634                         break;
2635                 case sdma_event_e30_go_running:
2636                         ss->go_s99_running = 1;
2637                         break;
2638                 case sdma_event_e40_sw_cleaned:
2639                         break;
2640                 case sdma_event_e50_hw_cleaned:
2641                         break;
2642                 case sdma_event_e60_hw_halted:
2643                         schedule_work(&sde->err_halt_worker);
2644                         break;
2645                 case sdma_event_e70_go_idle:
2646                         ss->go_s99_running = 0;
2647                         break;
2648                 case sdma_event_e80_hw_freeze:
2649                         break;
2650                 case sdma_event_e81_hw_frozen:
2651                         break;
2652                 case sdma_event_e82_hw_unfreeze:
2653                         break;
2654                 case sdma_event_e85_link_down:
2655                         break;
2656                 case sdma_event_e90_sw_halted:
2657                         break;
2658                 }
2659                 break;
2660 
2661         case sdma_state_s15_hw_start_up_clean_wait:
2662                 switch (event) {
2663                 case sdma_event_e00_go_hw_down:
2664                         sdma_set_state(sde, sdma_state_s00_hw_down);
2665                         sdma_sw_tear_down(sde);
2666                         break;
2667                 case sdma_event_e10_go_hw_start:
2668                         break;
2669                 case sdma_event_e15_hw_halt_done:
2670                         break;
2671                 case sdma_event_e25_hw_clean_up_done:
2672                         sdma_hw_start_up(sde);
2673                         sdma_set_state(sde, ss->go_s99_running ?
2674                                        sdma_state_s99_running :
2675                                        sdma_state_s20_idle);
2676                         break;
2677                 case sdma_event_e30_go_running:
2678                         ss->go_s99_running = 1;
2679                         break;
2680                 case sdma_event_e40_sw_cleaned:
2681                         break;
2682                 case sdma_event_e50_hw_cleaned:
2683                         break;
2684                 case sdma_event_e60_hw_halted:
2685                         break;
2686                 case sdma_event_e70_go_idle:
2687                         ss->go_s99_running = 0;
2688                         break;
2689                 case sdma_event_e80_hw_freeze:
2690                         break;
2691                 case sdma_event_e81_hw_frozen:
2692                         break;
2693                 case sdma_event_e82_hw_unfreeze:
2694                         break;
2695                 case sdma_event_e85_link_down:
2696                         break;
2697                 case sdma_event_e90_sw_halted:
2698                         break;
2699                 }
2700                 break;
2701 
2702         case sdma_state_s20_idle:
2703                 switch (event) {
2704                 case sdma_event_e00_go_hw_down:
2705                         sdma_set_state(sde, sdma_state_s00_hw_down);
2706                         sdma_sw_tear_down(sde);
2707                         break;
2708                 case sdma_event_e10_go_hw_start:
2709                         break;
2710                 case sdma_event_e15_hw_halt_done:
2711                         break;
2712                 case sdma_event_e25_hw_clean_up_done:
2713                         break;
2714                 case sdma_event_e30_go_running:
2715                         sdma_set_state(sde, sdma_state_s99_running);
2716                         ss->go_s99_running = 1;
2717                         break;
2718                 case sdma_event_e40_sw_cleaned:
2719                         break;
2720                 case sdma_event_e50_hw_cleaned:
2721                         break;
2722                 case sdma_event_e60_hw_halted:
2723                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2724                         schedule_work(&sde->err_halt_worker);
2725                         break;
2726                 case sdma_event_e70_go_idle:
2727                         break;
2728                 case sdma_event_e85_link_down:
2729                         /* fall through */
2730                 case sdma_event_e80_hw_freeze:
2731                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2732                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2733                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2734                         break;
2735                 case sdma_event_e81_hw_frozen:
2736                         break;
2737                 case sdma_event_e82_hw_unfreeze:
2738                         break;
2739                 case sdma_event_e90_sw_halted:
2740                         break;
2741                 }
2742                 break;
2743 
2744         case sdma_state_s30_sw_clean_up_wait:
2745                 switch (event) {
2746                 case sdma_event_e00_go_hw_down:
2747                         sdma_set_state(sde, sdma_state_s00_hw_down);
2748                         break;
2749                 case sdma_event_e10_go_hw_start:
2750                         break;
2751                 case sdma_event_e15_hw_halt_done:
2752                         break;
2753                 case sdma_event_e25_hw_clean_up_done:
2754                         break;
2755                 case sdma_event_e30_go_running:
2756                         ss->go_s99_running = 1;
2757                         break;
2758                 case sdma_event_e40_sw_cleaned:
2759                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2760                         sdma_start_hw_clean_up(sde);
2761                         break;
2762                 case sdma_event_e50_hw_cleaned:
2763                         break;
2764                 case sdma_event_e60_hw_halted:
2765                         break;
2766                 case sdma_event_e70_go_idle:
2767                         ss->go_s99_running = 0;
2768                         break;
2769                 case sdma_event_e80_hw_freeze:
2770                         break;
2771                 case sdma_event_e81_hw_frozen:
2772                         break;
2773                 case sdma_event_e82_hw_unfreeze:
2774                         break;
2775                 case sdma_event_e85_link_down:
2776                         ss->go_s99_running = 0;
2777                         break;
2778                 case sdma_event_e90_sw_halted:
2779                         break;
2780                 }
2781                 break;
2782 
2783         case sdma_state_s40_hw_clean_up_wait:
2784                 switch (event) {
2785                 case sdma_event_e00_go_hw_down:
2786                         sdma_set_state(sde, sdma_state_s00_hw_down);
2787                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2788                         break;
2789                 case sdma_event_e10_go_hw_start:
2790                         break;
2791                 case sdma_event_e15_hw_halt_done:
2792                         break;
2793                 case sdma_event_e25_hw_clean_up_done:
2794                         sdma_hw_start_up(sde);
2795                         sdma_set_state(sde, ss->go_s99_running ?
2796                                        sdma_state_s99_running :
2797                                        sdma_state_s20_idle);
2798                         break;
2799                 case sdma_event_e30_go_running:
2800                         ss->go_s99_running = 1;
2801                         break;
2802                 case sdma_event_e40_sw_cleaned:
2803                         break;
2804                 case sdma_event_e50_hw_cleaned:
2805                         break;
2806                 case sdma_event_e60_hw_halted:
2807                         break;
2808                 case sdma_event_e70_go_idle:
2809                         ss->go_s99_running = 0;
2810                         break;
2811                 case sdma_event_e80_hw_freeze:
2812                         break;
2813                 case sdma_event_e81_hw_frozen:
2814                         break;
2815                 case sdma_event_e82_hw_unfreeze:
2816                         break;
2817                 case sdma_event_e85_link_down:
2818                         ss->go_s99_running = 0;
2819                         break;
2820                 case sdma_event_e90_sw_halted:
2821                         break;
2822                 }
2823                 break;
2824 
2825         case sdma_state_s50_hw_halt_wait:
2826                 switch (event) {
2827                 case sdma_event_e00_go_hw_down:
2828                         sdma_set_state(sde, sdma_state_s00_hw_down);
2829                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2830                         break;
2831                 case sdma_event_e10_go_hw_start:
2832                         break;
2833                 case sdma_event_e15_hw_halt_done:
2834                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2835                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2836                         break;
2837                 case sdma_event_e25_hw_clean_up_done:
2838                         break;
2839                 case sdma_event_e30_go_running:
2840                         ss->go_s99_running = 1;
2841                         break;
2842                 case sdma_event_e40_sw_cleaned:
2843                         break;
2844                 case sdma_event_e50_hw_cleaned:
2845                         break;
2846                 case sdma_event_e60_hw_halted:
2847                         schedule_work(&sde->err_halt_worker);
2848                         break;
2849                 case sdma_event_e70_go_idle:
2850                         ss->go_s99_running = 0;
2851                         break;
2852                 case sdma_event_e80_hw_freeze:
2853                         break;
2854                 case sdma_event_e81_hw_frozen:
2855                         break;
2856                 case sdma_event_e82_hw_unfreeze:
2857                         break;
2858                 case sdma_event_e85_link_down:
2859                         ss->go_s99_running = 0;
2860                         break;
2861                 case sdma_event_e90_sw_halted:
2862                         break;
2863                 }
2864                 break;
2865 
2866         case sdma_state_s60_idle_halt_wait:
2867                 switch (event) {
2868                 case sdma_event_e00_go_hw_down:
2869                         sdma_set_state(sde, sdma_state_s00_hw_down);
2870                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2871                         break;
2872                 case sdma_event_e10_go_hw_start:
2873                         break;
2874                 case sdma_event_e15_hw_halt_done:
2875                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2876                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2877                         break;
2878                 case sdma_event_e25_hw_clean_up_done:
2879                         break;
2880                 case sdma_event_e30_go_running:
2881                         ss->go_s99_running = 1;
2882                         break;
2883                 case sdma_event_e40_sw_cleaned:
2884                         break;
2885                 case sdma_event_e50_hw_cleaned:
2886                         break;
2887                 case sdma_event_e60_hw_halted:
2888                         schedule_work(&sde->err_halt_worker);
2889                         break;
2890                 case sdma_event_e70_go_idle:
2891                         ss->go_s99_running = 0;
2892                         break;
2893                 case sdma_event_e80_hw_freeze:
2894                         break;
2895                 case sdma_event_e81_hw_frozen:
2896                         break;
2897                 case sdma_event_e82_hw_unfreeze:
2898                         break;
2899                 case sdma_event_e85_link_down:
2900                         break;
2901                 case sdma_event_e90_sw_halted:
2902                         break;
2903                 }
2904                 break;
2905 
2906         case sdma_state_s80_hw_freeze:
2907                 switch (event) {
2908                 case sdma_event_e00_go_hw_down:
2909                         sdma_set_state(sde, sdma_state_s00_hw_down);
2910                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2911                         break;
2912                 case sdma_event_e10_go_hw_start:
2913                         break;
2914                 case sdma_event_e15_hw_halt_done:
2915                         break;
2916                 case sdma_event_e25_hw_clean_up_done:
2917                         break;
2918                 case sdma_event_e30_go_running:
2919                         ss->go_s99_running = 1;
2920                         break;
2921                 case sdma_event_e40_sw_cleaned:
2922                         break;
2923                 case sdma_event_e50_hw_cleaned:
2924                         break;
2925                 case sdma_event_e60_hw_halted:
2926                         break;
2927                 case sdma_event_e70_go_idle:
2928                         ss->go_s99_running = 0;
2929                         break;
2930                 case sdma_event_e80_hw_freeze:
2931                         break;
2932                 case sdma_event_e81_hw_frozen:
2933                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2934                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2935                         break;
2936                 case sdma_event_e82_hw_unfreeze:
2937                         break;
2938                 case sdma_event_e85_link_down:
2939                         break;
2940                 case sdma_event_e90_sw_halted:
2941                         break;
2942                 }
2943                 break;
2944 
2945         case sdma_state_s82_freeze_sw_clean:
2946                 switch (event) {
2947                 case sdma_event_e00_go_hw_down:
2948                         sdma_set_state(sde, sdma_state_s00_hw_down);
2949                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2950                         break;
2951                 case sdma_event_e10_go_hw_start:
2952                         break;
2953                 case sdma_event_e15_hw_halt_done:
2954                         break;
2955                 case sdma_event_e25_hw_clean_up_done:
2956                         break;
2957                 case sdma_event_e30_go_running:
2958                         ss->go_s99_running = 1;
2959                         break;
2960                 case sdma_event_e40_sw_cleaned:
2961                         /* notify caller this engine is done cleaning */
2962                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2963                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2964                         break;
2965                 case sdma_event_e50_hw_cleaned:
2966                         break;
2967                 case sdma_event_e60_hw_halted:
2968                         break;
2969                 case sdma_event_e70_go_idle:
2970                         ss->go_s99_running = 0;
2971                         break;
2972                 case sdma_event_e80_hw_freeze:
2973                         break;
2974                 case sdma_event_e81_hw_frozen:
2975                         break;
2976                 case sdma_event_e82_hw_unfreeze:
2977                         sdma_hw_start_up(sde);
2978                         sdma_set_state(sde, ss->go_s99_running ?
2979                                        sdma_state_s99_running :
2980                                        sdma_state_s20_idle);
2981                         break;
2982                 case sdma_event_e85_link_down:
2983                         break;
2984                 case sdma_event_e90_sw_halted:
2985                         break;
2986                 }
2987                 break;
2988 
2989         case sdma_state_s99_running:
2990                 switch (event) {
2991                 case sdma_event_e00_go_hw_down:
2992                         sdma_set_state(sde, sdma_state_s00_hw_down);
2993                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2994                         break;
2995                 case sdma_event_e10_go_hw_start:
2996                         break;
2997                 case sdma_event_e15_hw_halt_done:
2998                         break;
2999                 case sdma_event_e25_hw_clean_up_done:
3000                         break;
3001                 case sdma_event_e30_go_running:
3002                         break;
3003                 case sdma_event_e40_sw_cleaned:
3004                         break;
3005                 case sdma_event_e50_hw_cleaned:
3006                         break;
3007                 case sdma_event_e60_hw_halted:
3008                         need_progress = 1;
3009                         sdma_err_progress_check_schedule(sde);
3010                         /* fall through */
3011                 case sdma_event_e90_sw_halted:
3012                         /*
3013                         * SW initiated halt does not perform engines
3014                         * progress check
3015                         */
3016                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3017                         schedule_work(&sde->err_halt_worker);
3018                         break;
3019                 case sdma_event_e70_go_idle:
3020                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3021                         break;
3022                 case sdma_event_e85_link_down:
3023                         ss->go_s99_running = 0;
3024                         /* fall through */
3025                 case sdma_event_e80_hw_freeze:
3026                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3027                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3028                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3029                         break;
3030                 case sdma_event_e81_hw_frozen:
3031                         break;
3032                 case sdma_event_e82_hw_unfreeze:
3033                         break;
3034                 }
3035                 break;
3036         }
3037 
3038         ss->last_event = event;
3039         if (need_progress)
3040                 sdma_make_progress(sde, 0);
3041 }
3042 
3043 /*
3044  * _extend_sdma_tx_descs() - helper to extend txreq
3045  *
3046  * This is called once the initial nominal allocation
3047  * of descriptors in the sdma_txreq is exhausted.
3048  *
3049  * The code will bump the allocation up to the max
3050  * of MAX_DESC (64) descriptors. There doesn't seem
3051  * much point in an interim step. The last descriptor
3052  * is reserved for coalesce buffer in order to support
3053  * cases where input packet has >MAX_DESC iovecs.
3054  *
3055  */
3056 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3057 {
3058         int i;
3059 
3060         /* Handle last descriptor */
3061         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3062                 /* if tlen is 0, it is for padding, release last descriptor */
3063                 if (!tx->tlen) {
3064                         tx->desc_limit = MAX_DESC;
3065                 } else if (!tx->coalesce_buf) {
3066                         /* allocate coalesce buffer with space for padding */
3067                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3068                                                    GFP_ATOMIC);
3069                         if (!tx->coalesce_buf)
3070                                 goto enomem;
3071                         tx->coalesce_idx = 0;
3072                 }
3073                 return 0;
3074         }
3075 
3076         if (unlikely(tx->num_desc == MAX_DESC))
3077                 goto enomem;
3078 
3079         tx->descp = kmalloc_array(
3080                         MAX_DESC,
3081                         sizeof(struct sdma_desc),
3082                         GFP_ATOMIC);
3083         if (!tx->descp)
3084                 goto enomem;
3085 
3086         /* reserve last descriptor for coalescing */
3087         tx->desc_limit = MAX_DESC - 1;
3088         /* copy ones already built */
3089         for (i = 0; i < tx->num_desc; i++)
3090                 tx->descp[i] = tx->descs[i];
3091         return 0;
3092 enomem:
3093         __sdma_txclean(dd, tx);
3094         return -ENOMEM;
3095 }
3096 
3097 /*
3098  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3099  *
3100  * This is called once the initial nominal allocation of descriptors
3101  * in the sdma_txreq is exhausted.
3102  *
3103  * This function calls _extend_sdma_tx_descs to extend or allocate
3104  * coalesce buffer. If there is a allocated coalesce buffer, it will
3105  * copy the input packet data into the coalesce buffer. It also adds
3106  * coalesce buffer descriptor once when whole packet is received.
3107  *
3108  * Return:
3109  * <0 - error
3110  * 0 - coalescing, don't populate descriptor
3111  * 1 - continue with populating descriptor
3112  */
3113 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3114                            int type, void *kvaddr, struct page *page,
3115                            unsigned long offset, u16 len)
3116 {
3117         int pad_len, rval;
3118         dma_addr_t addr;
3119 
3120         rval = _extend_sdma_tx_descs(dd, tx);
3121         if (rval) {
3122                 __sdma_txclean(dd, tx);
3123                 return rval;
3124         }
3125 
3126         /* If coalesce buffer is allocated, copy data into it */
3127         if (tx->coalesce_buf) {
3128                 if (type == SDMA_MAP_NONE) {
3129                         __sdma_txclean(dd, tx);
3130                         return -EINVAL;
3131                 }
3132 
3133                 if (type == SDMA_MAP_PAGE) {
3134                         kvaddr = kmap(page);
3135                         kvaddr += offset;
3136                 } else if (WARN_ON(!kvaddr)) {
3137                         __sdma_txclean(dd, tx);
3138                         return -EINVAL;
3139                 }
3140 
3141                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3142                 tx->coalesce_idx += len;
3143                 if (type == SDMA_MAP_PAGE)
3144                         kunmap(page);
3145 
3146                 /* If there is more data, return */
3147                 if (tx->tlen - tx->coalesce_idx)
3148                         return 0;
3149 
3150                 /* Whole packet is received; add any padding */
3151                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3152                 if (pad_len) {
3153                         pad_len = sizeof(u32) - pad_len;
3154                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3155                         /* padding is taken care of for coalescing case */
3156                         tx->packet_len += pad_len;
3157                         tx->tlen += pad_len;
3158                 }
3159 
3160                 /* dma map the coalesce buffer */
3161                 addr = dma_map_single(&dd->pcidev->dev,
3162                                       tx->coalesce_buf,
3163                                       tx->tlen,
3164                                       DMA_TO_DEVICE);
3165 
3166                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3167                         __sdma_txclean(dd, tx);
3168                         return -ENOSPC;
3169                 }
3170 
3171                 /* Add descriptor for coalesce buffer */
3172                 tx->desc_limit = MAX_DESC;
3173                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3174                                          addr, tx->tlen);
3175         }
3176 
3177         return 1;
3178 }
3179 
3180 /* Update sdes when the lmc changes */
3181 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3182 {
3183         struct sdma_engine *sde;
3184         int i;
3185         u64 sreg;
3186 
3187         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3188                 SD(CHECK_SLID_MASK_SHIFT)) |
3189                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3190                 SD(CHECK_SLID_VALUE_SHIFT));
3191 
3192         for (i = 0; i < dd->num_sdma; i++) {
3193                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3194                           i, (u32)sreg);
3195                 sde = &dd->per_sdma[i];
3196                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3197         }
3198 }
3199 
3200 /* tx not dword sized - pad */
3201 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3202 {
3203         int rval = 0;
3204 
3205         tx->num_desc++;
3206         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3207                 rval = _extend_sdma_tx_descs(dd, tx);
3208                 if (rval) {
3209                         __sdma_txclean(dd, tx);
3210                         return rval;
3211                 }
3212         }
3213         /* finish the one just added */
3214         make_tx_sdma_desc(
3215                 tx,
3216                 SDMA_MAP_NONE,
3217                 dd->sdma_pad_phys,
3218                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3219         _sdma_close_tx(dd, tx);
3220         return rval;
3221 }
3222 
3223 /*
3224  * Add ahg to the sdma_txreq
3225  *
3226  * The logic will consume up to 3
3227  * descriptors at the beginning of
3228  * sdma_txreq.
3229  */
3230 void _sdma_txreq_ahgadd(
3231         struct sdma_txreq *tx,
3232         u8 num_ahg,
3233         u8 ahg_entry,
3234         u32 *ahg,
3235         u8 ahg_hlen)
3236 {
3237         u32 i, shift = 0, desc = 0;
3238         u8 mode;
3239 
3240         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3241         /* compute mode */
3242         if (num_ahg == 1)
3243                 mode = SDMA_AHG_APPLY_UPDATE1;
3244         else if (num_ahg <= 5)
3245                 mode = SDMA_AHG_APPLY_UPDATE2;
3246         else
3247                 mode = SDMA_AHG_APPLY_UPDATE3;
3248         tx->num_desc++;
3249         /* initialize to consumed descriptors to zero */
3250         switch (mode) {
3251         case SDMA_AHG_APPLY_UPDATE3:
3252                 tx->num_desc++;
3253                 tx->descs[2].qw[0] = 0;
3254                 tx->descs[2].qw[1] = 0;
3255                 /* FALLTHROUGH */
3256         case SDMA_AHG_APPLY_UPDATE2:
3257                 tx->num_desc++;
3258                 tx->descs[1].qw[0] = 0;
3259                 tx->descs[1].qw[1] = 0;
3260                 break;
3261         }
3262         ahg_hlen >>= 2;
3263         tx->descs[0].qw[1] |=
3264                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3265                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3266                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3267                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3268                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3269                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3270                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3271                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3272         for (i = 0; i < (num_ahg - 1); i++) {
3273                 if (!shift && !(i & 2))
3274                         desc++;
3275                 tx->descs[desc].qw[!!(i & 2)] |=
3276                         (((u64)ahg[i + 1])
3277                                 << shift);
3278                 shift = (shift + 32) & 63;
3279         }
3280 }
3281 
3282 /**
3283  * sdma_ahg_alloc - allocate an AHG entry
3284  * @sde: engine to allocate from
3285  *
3286  * Return:
3287  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3288  * -ENOSPC if an entry is not available
3289  */
3290 int sdma_ahg_alloc(struct sdma_engine *sde)
3291 {
3292         int nr;
3293         int oldbit;
3294 
3295         if (!sde) {
3296                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3297                 return -EINVAL;
3298         }
3299         while (1) {
3300                 nr = ffz(READ_ONCE(sde->ahg_bits));
3301                 if (nr > 31) {
3302                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3303                         return -ENOSPC;
3304                 }
3305                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3306                 if (!oldbit)
3307                         break;
3308                 cpu_relax();
3309         }
3310         trace_hfi1_ahg_allocate(sde, nr);
3311         return nr;
3312 }
3313 
3314 /**
3315  * sdma_ahg_free - free an AHG entry
3316  * @sde: engine to return AHG entry
3317  * @ahg_index: index to free
3318  *
3319  * This routine frees the indicate AHG entry.
3320  */
3321 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3322 {
3323         if (!sde)
3324                 return;
3325         trace_hfi1_ahg_deallocate(sde, ahg_index);
3326         if (ahg_index < 0 || ahg_index > 31)
3327                 return;
3328         clear_bit(ahg_index, &sde->ahg_bits);
3329 }
3330 
3331 /*
3332  * SPC freeze handling for SDMA engines.  Called when the driver knows
3333  * the SPC is going into a freeze but before the freeze is fully
3334  * settled.  Generally an error interrupt.
3335  *
3336  * This event will pull the engine out of running so no more entries can be
3337  * added to the engine's queue.
3338  */
3339 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3340 {
3341         int i;
3342         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3343                                              sdma_event_e80_hw_freeze;
3344 
3345         /* set up the wait but do not wait here */
3346         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3347 
3348         /* tell all engines to stop running and wait */
3349         for (i = 0; i < dd->num_sdma; i++)
3350                 sdma_process_event(&dd->per_sdma[i], event);
3351 
3352         /* sdma_freeze() will wait for all engines to have stopped */
3353 }
3354 
3355 /*
3356  * SPC freeze handling for SDMA engines.  Called when the driver knows
3357  * the SPC is fully frozen.
3358  */
3359 void sdma_freeze(struct hfi1_devdata *dd)
3360 {
3361         int i;
3362         int ret;
3363 
3364         /*
3365          * Make sure all engines have moved out of the running state before
3366          * continuing.
3367          */
3368         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3369                                        atomic_read(&dd->sdma_unfreeze_count) <=
3370                                        0);
3371         /* interrupted or count is negative, then unloading - just exit */
3372         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3373                 return;
3374 
3375         /* set up the count for the next wait */
3376         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3377 
3378         /* tell all engines that the SPC is frozen, they can start cleaning */
3379         for (i = 0; i < dd->num_sdma; i++)
3380                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3381 
3382         /*
3383          * Wait for everyone to finish software clean before exiting.  The
3384          * software clean will read engine CSRs, so must be completed before
3385          * the next step, which will clear the engine CSRs.
3386          */
3387         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3388                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3389         /* no need to check results - done no matter what */
3390 }
3391 
3392 /*
3393  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3394  *
3395  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3396  * that is left is a software clean.  We could do it after the SPC is fully
3397  * frozen, but then we'd have to add another state to wait for the unfreeze.
3398  * Instead, just defer the software clean until the unfreeze step.
3399  */
3400 void sdma_unfreeze(struct hfi1_devdata *dd)
3401 {
3402         int i;
3403 
3404         /* tell all engines start freeze clean up */
3405         for (i = 0; i < dd->num_sdma; i++)
3406                 sdma_process_event(&dd->per_sdma[i],
3407                                    sdma_event_e82_hw_unfreeze);
3408 }
3409 
3410 /**
3411  * _sdma_engine_progress_schedule() - schedule progress on engine
3412  * @sde: sdma_engine to schedule progress
3413  *
3414  */
3415 void _sdma_engine_progress_schedule(
3416         struct sdma_engine *sde)
3417 {
3418         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3419         /* assume we have selected a good cpu */
3420         write_csr(sde->dd,
3421                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3422                   sde->progress_mask);
3423 }

/* [<][>][^][v][top][bottom][index][help] */