root/drivers/parport/parport_ip32.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. parport_ip32_dump_state
  2. parport_ip32_dma_setup_context
  3. parport_ip32_dma_interrupt
  4. parport_ip32_merr_interrupt
  5. parport_ip32_dma_start
  6. parport_ip32_dma_stop
  7. parport_ip32_dma_get_residue
  8. parport_ip32_dma_register
  9. parport_ip32_dma_unregister
  10. parport_ip32_wakeup
  11. parport_ip32_interrupt
  12. parport_ip32_read_econtrol
  13. parport_ip32_write_econtrol
  14. parport_ip32_frob_econtrol
  15. parport_ip32_set_mode
  16. parport_ip32_read_data
  17. parport_ip32_write_data
  18. parport_ip32_read_status
  19. __parport_ip32_read_control
  20. __parport_ip32_write_control
  21. __parport_ip32_frob_control
  22. parport_ip32_read_control
  23. parport_ip32_write_control
  24. parport_ip32_frob_control
  25. parport_ip32_disable_irq
  26. parport_ip32_enable_irq
  27. parport_ip32_data_forward
  28. parport_ip32_data_reverse
  29. parport_ip32_init_state
  30. parport_ip32_save_state
  31. parport_ip32_restore_state
  32. parport_ip32_clear_epp_timeout
  33. parport_ip32_epp_read
  34. parport_ip32_epp_write
  35. parport_ip32_epp_read_data
  36. parport_ip32_epp_write_data
  37. parport_ip32_epp_read_addr
  38. parport_ip32_epp_write_addr
  39. parport_ip32_fifo_wait_break
  40. parport_ip32_fwp_wait_polling
  41. parport_ip32_fwp_wait_interrupt
  42. parport_ip32_fifo_write_block_pio
  43. parport_ip32_fifo_write_block_dma
  44. parport_ip32_fifo_write_block
  45. parport_ip32_drain_fifo
  46. parport_ip32_get_fifo_residue
  47. parport_ip32_compat_write_data
  48. parport_ip32_ecp_write_data
  49. parport_ip32_ecp_supported
  50. parport_ip32_fifo_supported
  51. parport_ip32_make_isa_registers
  52. parport_ip32_probe_port
  53. parport_ip32_unregister_port
  54. parport_ip32_init
  55. parport_ip32_exit

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* Low-level parallel port routines for built-in port on SGI IP32
   3  *
   4  * Author: Arnaud Giersch <arnaud.giersch@free.fr>
   5  *
   6  * Based on parport_pc.c by
   7  *      Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
   8  *      Andrea Arcangeli, et al.
   9  *
  10  * Thanks to Ilya A. Volynets-Evenbakh for his help.
  11  *
  12  * Copyright (C) 2005, 2006 Arnaud Giersch.
  13  */
  14 
  15 /* Current status:
  16  *
  17  *      Basic SPP and PS2 modes are supported.
  18  *      Support for parallel port IRQ is present.
  19  *      Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
  20  *      supported.
  21  *      SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
  22  *      or without interrupt support.
  23  *
  24  *      Hardware ECP mode is not fully implemented (ecp_read_data and
  25  *      ecp_write_addr are actually missing).
  26  *
  27  * To do:
  28  *
  29  *      Fully implement ECP mode.
  30  *      EPP and ECP mode need to be tested.  I currently do not own any
  31  *      peripheral supporting these extended mode, and cannot test them.
  32  *      If DMA mode works well, decide if support for PIO FIFO modes should be
  33  *      dropped.
  34  *      Use the io{read,write} family functions when they become available in
  35  *      the linux-mips.org tree.  Note: the MIPS specific functions readsb()
  36  *      and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
  37  *      respectively.
  38  */
  39 
  40 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
  41  * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
  42  * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
  43  * FIFO buffer and supports DMA transfers.
  44  *
  45  * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
  46  *
  47  * Theoretically, we could simply use the parport_pc module.  It is however
  48  * not so simple.  The parport_pc code assumes that the parallel port
  49  * registers are port-mapped.  On the O2, they are memory-mapped.
  50  * Furthermore, each register is replicated on 256 consecutive addresses (as
  51  * it is for the built-in serial ports on the same chip).
  52  */
  53 
  54 /*--- Some configuration defines ---------------------------------------*/
  55 
  56 /* DEBUG_PARPORT_IP32
  57  *      0       disable debug
  58  *      1       standard level: pr_debug1 is enabled
  59  *      2       parport_ip32_dump_state is enabled
  60  *      >=3     verbose level: pr_debug is enabled
  61  */
  62 #if !defined(DEBUG_PARPORT_IP32)
  63 #       define DEBUG_PARPORT_IP32  0    /* 0 (disabled) for production */
  64 #endif
  65 
  66 /*----------------------------------------------------------------------*/
  67 
  68 /* Setup DEBUG macros.  This is done before any includes, just in case we
  69  * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
  70  */
  71 #if DEBUG_PARPORT_IP32 == 1
  72 #       warning DEBUG_PARPORT_IP32 == 1
  73 #elif DEBUG_PARPORT_IP32 == 2
  74 #       warning DEBUG_PARPORT_IP32 == 2
  75 #elif DEBUG_PARPORT_IP32 >= 3
  76 #       warning DEBUG_PARPORT_IP32 >= 3
  77 #       if !defined(DEBUG)
  78 #               define DEBUG /* enable pr_debug() in kernel.h */
  79 #       endif
  80 #endif
  81 
  82 #include <linux/completion.h>
  83 #include <linux/delay.h>
  84 #include <linux/dma-mapping.h>
  85 #include <linux/err.h>
  86 #include <linux/init.h>
  87 #include <linux/interrupt.h>
  88 #include <linux/jiffies.h>
  89 #include <linux/kernel.h>
  90 #include <linux/module.h>
  91 #include <linux/parport.h>
  92 #include <linux/sched/signal.h>
  93 #include <linux/slab.h>
  94 #include <linux/spinlock.h>
  95 #include <linux/stddef.h>
  96 #include <linux/types.h>
  97 #include <asm/io.h>
  98 #include <asm/ip32/ip32_ints.h>
  99 #include <asm/ip32/mace.h>
 100 
 101 /*--- Global variables -------------------------------------------------*/
 102 
 103 /* Verbose probing on by default for debugging. */
 104 #if DEBUG_PARPORT_IP32 >= 1
 105 #       define DEFAULT_VERBOSE_PROBING  1
 106 #else
 107 #       define DEFAULT_VERBOSE_PROBING  0
 108 #endif
 109 
 110 /* Default prefix for printk */
 111 #define PPIP32 "parport_ip32: "
 112 
 113 /*
 114  * These are the module parameters:
 115  * @features:           bit mask of features to enable/disable
 116  *                      (all enabled by default)
 117  * @verbose_probing:    log chit-chat during initialization
 118  */
 119 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
 120 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
 121 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
 122 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
 123 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
 124 static unsigned int features =  ~0U;
 125 static bool verbose_probing =   DEFAULT_VERBOSE_PROBING;
 126 
 127 /* We do not support more than one port. */
 128 static struct parport *this_port;
 129 
 130 /* Timing constants for FIFO modes.  */
 131 #define FIFO_NFAULT_TIMEOUT     100     /* milliseconds */
 132 #define FIFO_POLLING_INTERVAL   50      /* microseconds */
 133 
 134 /*--- I/O register definitions -----------------------------------------*/
 135 
 136 /**
 137  * struct parport_ip32_regs - virtual addresses of parallel port registers
 138  * @data:       Data Register
 139  * @dsr:        Device Status Register
 140  * @dcr:        Device Control Register
 141  * @eppAddr:    EPP Address Register
 142  * @eppData0:   EPP Data Register 0
 143  * @eppData1:   EPP Data Register 1
 144  * @eppData2:   EPP Data Register 2
 145  * @eppData3:   EPP Data Register 3
 146  * @ecpAFifo:   ECP Address FIFO
 147  * @fifo:       General FIFO register.  The same address is used for:
 148  *              - cFifo, the Parallel Port DATA FIFO
 149  *              - ecpDFifo, the ECP Data FIFO
 150  *              - tFifo, the ECP Test FIFO
 151  * @cnfgA:      Configuration Register A
 152  * @cnfgB:      Configuration Register B
 153  * @ecr:        Extended Control Register
 154  */
 155 struct parport_ip32_regs {
 156         void __iomem *data;
 157         void __iomem *dsr;
 158         void __iomem *dcr;
 159         void __iomem *eppAddr;
 160         void __iomem *eppData0;
 161         void __iomem *eppData1;
 162         void __iomem *eppData2;
 163         void __iomem *eppData3;
 164         void __iomem *ecpAFifo;
 165         void __iomem *fifo;
 166         void __iomem *cnfgA;
 167         void __iomem *cnfgB;
 168         void __iomem *ecr;
 169 };
 170 
 171 /* Device Status Register */
 172 #define DSR_nBUSY               (1U << 7)       /* PARPORT_STATUS_BUSY */
 173 #define DSR_nACK                (1U << 6)       /* PARPORT_STATUS_ACK */
 174 #define DSR_PERROR              (1U << 5)       /* PARPORT_STATUS_PAPEROUT */
 175 #define DSR_SELECT              (1U << 4)       /* PARPORT_STATUS_SELECT */
 176 #define DSR_nFAULT              (1U << 3)       /* PARPORT_STATUS_ERROR */
 177 #define DSR_nPRINT              (1U << 2)       /* specific to TL16PIR552 */
 178 /* #define DSR_reserved         (1U << 1) */
 179 #define DSR_TIMEOUT             (1U << 0)       /* EPP timeout */
 180 
 181 /* Device Control Register */
 182 /* #define DCR_reserved         (1U << 7) | (1U <<  6) */
 183 #define DCR_DIR                 (1U << 5)       /* direction */
 184 #define DCR_IRQ                 (1U << 4)       /* interrupt on nAck */
 185 #define DCR_SELECT              (1U << 3)       /* PARPORT_CONTROL_SELECT */
 186 #define DCR_nINIT               (1U << 2)       /* PARPORT_CONTROL_INIT */
 187 #define DCR_AUTOFD              (1U << 1)       /* PARPORT_CONTROL_AUTOFD */
 188 #define DCR_STROBE              (1U << 0)       /* PARPORT_CONTROL_STROBE */
 189 
 190 /* ECP Configuration Register A */
 191 #define CNFGA_IRQ               (1U << 7)
 192 #define CNFGA_ID_MASK           ((1U << 6) | (1U << 5) | (1U << 4))
 193 #define CNFGA_ID_SHIFT          4
 194 #define CNFGA_ID_16             (00U << CNFGA_ID_SHIFT)
 195 #define CNFGA_ID_8              (01U << CNFGA_ID_SHIFT)
 196 #define CNFGA_ID_32             (02U << CNFGA_ID_SHIFT)
 197 /* #define CNFGA_reserved       (1U << 3) */
 198 #define CNFGA_nBYTEINTRANS      (1U << 2)
 199 #define CNFGA_PWORDLEFT         ((1U << 1) | (1U << 0))
 200 
 201 /* ECP Configuration Register B */
 202 #define CNFGB_COMPRESS          (1U << 7)
 203 #define CNFGB_INTRVAL           (1U << 6)
 204 #define CNFGB_IRQ_MASK          ((1U << 5) | (1U << 4) | (1U << 3))
 205 #define CNFGB_IRQ_SHIFT         3
 206 #define CNFGB_DMA_MASK          ((1U << 2) | (1U << 1) | (1U << 0))
 207 #define CNFGB_DMA_SHIFT         0
 208 
 209 /* Extended Control Register */
 210 #define ECR_MODE_MASK           ((1U << 7) | (1U << 6) | (1U << 5))
 211 #define ECR_MODE_SHIFT          5
 212 #define ECR_MODE_SPP            (00U << ECR_MODE_SHIFT)
 213 #define ECR_MODE_PS2            (01U << ECR_MODE_SHIFT)
 214 #define ECR_MODE_PPF            (02U << ECR_MODE_SHIFT)
 215 #define ECR_MODE_ECP            (03U << ECR_MODE_SHIFT)
 216 #define ECR_MODE_EPP            (04U << ECR_MODE_SHIFT)
 217 /* #define ECR_MODE_reserved    (05U << ECR_MODE_SHIFT) */
 218 #define ECR_MODE_TST            (06U << ECR_MODE_SHIFT)
 219 #define ECR_MODE_CFG            (07U << ECR_MODE_SHIFT)
 220 #define ECR_nERRINTR            (1U << 4)
 221 #define ECR_DMAEN               (1U << 3)
 222 #define ECR_SERVINTR            (1U << 2)
 223 #define ECR_F_FULL              (1U << 1)
 224 #define ECR_F_EMPTY             (1U << 0)
 225 
 226 /*--- Private data -----------------------------------------------------*/
 227 
 228 /**
 229  * enum parport_ip32_irq_mode - operation mode of interrupt handler
 230  * @PARPORT_IP32_IRQ_FWD:       forward interrupt to the upper parport layer
 231  * @PARPORT_IP32_IRQ_HERE:      interrupt is handled locally
 232  */
 233 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
 234 
 235 /**
 236  * struct parport_ip32_private - private stuff for &struct parport
 237  * @regs:               register addresses
 238  * @dcr_cache:          cached contents of DCR
 239  * @dcr_writable:       bit mask of writable DCR bits
 240  * @pword:              number of bytes per PWord
 241  * @fifo_depth:         number of PWords that FIFO will hold
 242  * @readIntrThreshold:  minimum number of PWords we can read
 243  *                      if we get an interrupt
 244  * @writeIntrThreshold: minimum number of PWords we can write
 245  *                      if we get an interrupt
 246  * @irq_mode:           operation mode of interrupt handler for this port
 247  * @irq_complete:       mutex used to wait for an interrupt to occur
 248  */
 249 struct parport_ip32_private {
 250         struct parport_ip32_regs        regs;
 251         unsigned int                    dcr_cache;
 252         unsigned int                    dcr_writable;
 253         unsigned int                    pword;
 254         unsigned int                    fifo_depth;
 255         unsigned int                    readIntrThreshold;
 256         unsigned int                    writeIntrThreshold;
 257         enum parport_ip32_irq_mode      irq_mode;
 258         struct completion               irq_complete;
 259 };
 260 
 261 /*--- Debug code -------------------------------------------------------*/
 262 
 263 /*
 264  * pr_debug1 - print debug messages
 265  *
 266  * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
 267  */
 268 #if DEBUG_PARPORT_IP32 >= 1
 269 #       define pr_debug1(...)   printk(KERN_DEBUG __VA_ARGS__)
 270 #else /* DEBUG_PARPORT_IP32 < 1 */
 271 #       define pr_debug1(...)   do { } while (0)
 272 #endif
 273 
 274 /*
 275  * pr_trace, pr_trace1 - trace function calls
 276  * @p:          pointer to &struct parport
 277  * @fmt:        printk format string
 278  * @...:        parameters for format string
 279  *
 280  * Macros used to trace function calls.  The given string is formatted after
 281  * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
 282  * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
 283  * directly.
 284  */
 285 #define __pr_trace(pr, p, fmt, ...)                                     \
 286         pr("%s: %s" fmt "\n",                                           \
 287            ({ const struct parport *__p = (p);                          \
 288                    __p ? __p->name : "parport_ip32"; }),                \
 289            __func__ , ##__VA_ARGS__)
 290 #define pr_trace(p, fmt, ...)   __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
 291 #define pr_trace1(p, fmt, ...)  __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
 292 
 293 /*
 294  * __pr_probe, pr_probe - print message if @verbose_probing is true
 295  * @p:          pointer to &struct parport
 296  * @fmt:        printk format string
 297  * @...:        parameters for format string
 298  *
 299  * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
 300  */
 301 #define __pr_probe(...)                                                 \
 302         do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
 303 #define pr_probe(p, fmt, ...)                                           \
 304         __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
 305 
 306 /*
 307  * parport_ip32_dump_state - print register status of parport
 308  * @p:          pointer to &struct parport
 309  * @str:        string to add in message
 310  * @show_ecp_config:    shall we dump ECP configuration registers too?
 311  *
 312  * This function is only here for debugging purpose, and should be used with
 313  * care.  Reading the parallel port registers may have undesired side effects.
 314  * Especially if @show_ecp_config is true, the parallel port is resetted.
 315  * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
 316  */
 317 #if DEBUG_PARPORT_IP32 >= 2
 318 static void parport_ip32_dump_state(struct parport *p, char *str,
 319                                     unsigned int show_ecp_config)
 320 {
 321         struct parport_ip32_private * const priv = p->physport->private_data;
 322         unsigned int i;
 323 
 324         printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
 325         {
 326                 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
 327                                                      "ECP", "EPP", "???",
 328                                                      "TST", "CFG"};
 329                 unsigned int ecr = readb(priv->regs.ecr);
 330                 printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
 331                 printk(" %s",
 332                        ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
 333                 if (ecr & ECR_nERRINTR)
 334                         printk(",nErrIntrEn");
 335                 if (ecr & ECR_DMAEN)
 336                         printk(",dmaEn");
 337                 if (ecr & ECR_SERVINTR)
 338                         printk(",serviceIntr");
 339                 if (ecr & ECR_F_FULL)
 340                         printk(",f_full");
 341                 if (ecr & ECR_F_EMPTY)
 342                         printk(",f_empty");
 343                 printk("\n");
 344         }
 345         if (show_ecp_config) {
 346                 unsigned int oecr, cnfgA, cnfgB;
 347                 oecr = readb(priv->regs.ecr);
 348                 writeb(ECR_MODE_PS2, priv->regs.ecr);
 349                 writeb(ECR_MODE_CFG, priv->regs.ecr);
 350                 cnfgA = readb(priv->regs.cnfgA);
 351                 cnfgB = readb(priv->regs.cnfgB);
 352                 writeb(ECR_MODE_PS2, priv->regs.ecr);
 353                 writeb(oecr, priv->regs.ecr);
 354                 printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
 355                 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
 356                 switch (cnfgA & CNFGA_ID_MASK) {
 357                 case CNFGA_ID_8:
 358                         printk(",8 bits");
 359                         break;
 360                 case CNFGA_ID_16:
 361                         printk(",16 bits");
 362                         break;
 363                 case CNFGA_ID_32:
 364                         printk(",32 bits");
 365                         break;
 366                 default:
 367                         printk(",unknown ID");
 368                         break;
 369                 }
 370                 if (!(cnfgA & CNFGA_nBYTEINTRANS))
 371                         printk(",ByteInTrans");
 372                 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
 373                         printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
 374                                ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
 375                 printk("\n");
 376                 printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
 377                 printk(" irq=%u,dma=%u",
 378                        (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
 379                        (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
 380                 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
 381                 if (cnfgB & CNFGB_COMPRESS)
 382                         printk(",compress");
 383                 printk("\n");
 384         }
 385         for (i = 0; i < 2; i++) {
 386                 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
 387                 printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
 388                        i ? "soft" : "hard", dcr);
 389                 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
 390                 if (dcr & DCR_IRQ)
 391                         printk(",ackIntEn");
 392                 if (!(dcr & DCR_SELECT))
 393                         printk(",nSelectIn");
 394                 if (dcr & DCR_nINIT)
 395                         printk(",nInit");
 396                 if (!(dcr & DCR_AUTOFD))
 397                         printk(",nAutoFD");
 398                 if (!(dcr & DCR_STROBE))
 399                         printk(",nStrobe");
 400                 printk("\n");
 401         }
 402 #define sep (f++ ? ',' : ' ')
 403         {
 404                 unsigned int f = 0;
 405                 unsigned int dsr = readb(priv->regs.dsr);
 406                 printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
 407                 if (!(dsr & DSR_nBUSY))
 408                         printk("%cBusy", sep);
 409                 if (dsr & DSR_nACK)
 410                         printk("%cnAck", sep);
 411                 if (dsr & DSR_PERROR)
 412                         printk("%cPError", sep);
 413                 if (dsr & DSR_SELECT)
 414                         printk("%cSelect", sep);
 415                 if (dsr & DSR_nFAULT)
 416                         printk("%cnFault", sep);
 417                 if (!(dsr & DSR_nPRINT))
 418                         printk("%c(Print)", sep);
 419                 if (dsr & DSR_TIMEOUT)
 420                         printk("%cTimeout", sep);
 421                 printk("\n");
 422         }
 423 #undef sep
 424 }
 425 #else /* DEBUG_PARPORT_IP32 < 2 */
 426 #define parport_ip32_dump_state(...)    do { } while (0)
 427 #endif
 428 
 429 /*
 430  * CHECK_EXTRA_BITS - track and log extra bits
 431  * @p:          pointer to &struct parport
 432  * @b:          byte to inspect
 433  * @m:          bit mask of authorized bits
 434  *
 435  * This is used to track and log extra bits that should not be there in
 436  * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
 437  * defined if %DEBUG_PARPORT_IP32 >= 1.
 438  */
 439 #if DEBUG_PARPORT_IP32 >= 1
 440 #define CHECK_EXTRA_BITS(p, b, m)                                       \
 441         do {                                                            \
 442                 unsigned int __b = (b), __m = (m);                      \
 443                 if (__b & ~__m)                                         \
 444                         pr_debug1(PPIP32 "%s: extra bits in %s(%s): "   \
 445                                   "0x%02x/0x%02x\n",                    \
 446                                   (p)->name, __func__, #b, __b, __m);   \
 447         } while (0)
 448 #else /* DEBUG_PARPORT_IP32 < 1 */
 449 #define CHECK_EXTRA_BITS(...)   do { } while (0)
 450 #endif
 451 
 452 /*--- IP32 parallel port DMA operations --------------------------------*/
 453 
 454 /**
 455  * struct parport_ip32_dma_data - private data needed for DMA operation
 456  * @dir:        DMA direction (from or to device)
 457  * @buf:        buffer physical address
 458  * @len:        buffer length
 459  * @next:       address of next bytes to DMA transfer
 460  * @left:       number of bytes remaining
 461  * @ctx:        next context to write (0: context_a; 1: context_b)
 462  * @irq_on:     are the DMA IRQs currently enabled?
 463  * @lock:       spinlock to protect access to the structure
 464  */
 465 struct parport_ip32_dma_data {
 466         enum dma_data_direction         dir;
 467         dma_addr_t                      buf;
 468         dma_addr_t                      next;
 469         size_t                          len;
 470         size_t                          left;
 471         unsigned int                    ctx;
 472         unsigned int                    irq_on;
 473         spinlock_t                      lock;
 474 };
 475 static struct parport_ip32_dma_data parport_ip32_dma;
 476 
 477 /**
 478  * parport_ip32_dma_setup_context - setup next DMA context
 479  * @limit:      maximum data size for the context
 480  *
 481  * The alignment constraints must be verified in caller function, and the
 482  * parameter @limit must be set accordingly.
 483  */
 484 static void parport_ip32_dma_setup_context(unsigned int limit)
 485 {
 486         unsigned long flags;
 487 
 488         spin_lock_irqsave(&parport_ip32_dma.lock, flags);
 489         if (parport_ip32_dma.left > 0) {
 490                 /* Note: ctxreg is "volatile" here only because
 491                  * mace->perif.ctrl.parport.context_a and context_b are
 492                  * "volatile".  */
 493                 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
 494                         &mace->perif.ctrl.parport.context_a :
 495                         &mace->perif.ctrl.parport.context_b;
 496                 u64 count;
 497                 u64 ctxval;
 498                 if (parport_ip32_dma.left <= limit) {
 499                         count = parport_ip32_dma.left;
 500                         ctxval = MACEPAR_CONTEXT_LASTFLAG;
 501                 } else {
 502                         count = limit;
 503                         ctxval = 0;
 504                 }
 505 
 506                 pr_trace(NULL,
 507                          "(%u): 0x%04x:0x%04x, %u -> %u%s",
 508                          limit,
 509                          (unsigned int)parport_ip32_dma.buf,
 510                          (unsigned int)parport_ip32_dma.next,
 511                          (unsigned int)count,
 512                          parport_ip32_dma.ctx, ctxval ? "*" : "");
 513 
 514                 ctxval |= parport_ip32_dma.next &
 515                         MACEPAR_CONTEXT_BASEADDR_MASK;
 516                 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
 517                         MACEPAR_CONTEXT_DATALEN_MASK;
 518                 writeq(ctxval, ctxreg);
 519                 parport_ip32_dma.next += count;
 520                 parport_ip32_dma.left -= count;
 521                 parport_ip32_dma.ctx ^= 1U;
 522         }
 523         /* If there is nothing more to send, disable IRQs to avoid to
 524          * face an IRQ storm which can lock the machine.  Disable them
 525          * only once. */
 526         if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
 527                 pr_debug(PPIP32 "IRQ off (ctx)\n");
 528                 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
 529                 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
 530                 parport_ip32_dma.irq_on = 0;
 531         }
 532         spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
 533 }
 534 
 535 /**
 536  * parport_ip32_dma_interrupt - DMA interrupt handler
 537  * @irq:        interrupt number
 538  * @dev_id:     unused
 539  */
 540 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
 541 {
 542         if (parport_ip32_dma.left)
 543                 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
 544         parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
 545         return IRQ_HANDLED;
 546 }
 547 
 548 #if DEBUG_PARPORT_IP32
 549 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
 550 {
 551         pr_trace1(NULL, "(%d)", irq);
 552         return IRQ_HANDLED;
 553 }
 554 #endif
 555 
 556 /**
 557  * parport_ip32_dma_start - begins a DMA transfer
 558  * @p:          partport to work on
 559  * @dir:        DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
 560  * @addr:       pointer to data buffer
 561  * @count:      buffer size
 562  *
 563  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
 564  * correctly balanced.
 565  */
 566 static int parport_ip32_dma_start(struct parport *p,
 567                 enum dma_data_direction dir, void *addr, size_t count)
 568 {
 569         unsigned int limit;
 570         u64 ctrl;
 571 
 572         pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
 573 
 574         /* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
 575          * be 64 bytes aligned. */
 576         BUG_ON(dir != DMA_TO_DEVICE);
 577 
 578         /* Reset DMA controller */
 579         ctrl = MACEPAR_CTLSTAT_RESET;
 580         writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 581 
 582         /* DMA IRQs should normally be enabled */
 583         if (!parport_ip32_dma.irq_on) {
 584                 WARN_ON(1);
 585                 enable_irq(MACEISA_PAR_CTXA_IRQ);
 586                 enable_irq(MACEISA_PAR_CTXB_IRQ);
 587                 parport_ip32_dma.irq_on = 1;
 588         }
 589 
 590         /* Prepare DMA pointers */
 591         parport_ip32_dma.dir = dir;
 592         parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir);
 593         parport_ip32_dma.len = count;
 594         parport_ip32_dma.next = parport_ip32_dma.buf;
 595         parport_ip32_dma.left = parport_ip32_dma.len;
 596         parport_ip32_dma.ctx = 0;
 597 
 598         /* Setup DMA direction and first two contexts */
 599         ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
 600         writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 601         /* Single transfer should not cross a 4K page boundary */
 602         limit = MACEPAR_CONTEXT_DATA_BOUND -
 603                 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
 604         parport_ip32_dma_setup_context(limit);
 605         parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
 606 
 607         /* Real start of DMA transfer */
 608         ctrl |= MACEPAR_CTLSTAT_ENABLE;
 609         writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 610 
 611         return 0;
 612 }
 613 
 614 /**
 615  * parport_ip32_dma_stop - ends a running DMA transfer
 616  * @p:          partport to work on
 617  *
 618  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
 619  * correctly balanced.
 620  */
 621 static void parport_ip32_dma_stop(struct parport *p)
 622 {
 623         u64 ctx_a;
 624         u64 ctx_b;
 625         u64 ctrl;
 626         u64 diag;
 627         size_t res[2];  /* {[0] = res_a, [1] = res_b} */
 628 
 629         pr_trace(NULL, "()");
 630 
 631         /* Disable IRQs */
 632         spin_lock_irq(&parport_ip32_dma.lock);
 633         if (parport_ip32_dma.irq_on) {
 634                 pr_debug(PPIP32 "IRQ off (stop)\n");
 635                 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
 636                 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
 637                 parport_ip32_dma.irq_on = 0;
 638         }
 639         spin_unlock_irq(&parport_ip32_dma.lock);
 640         /* Force IRQ synchronization, even if the IRQs were disabled
 641          * elsewhere. */
 642         synchronize_irq(MACEISA_PAR_CTXA_IRQ);
 643         synchronize_irq(MACEISA_PAR_CTXB_IRQ);
 644 
 645         /* Stop DMA transfer */
 646         ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
 647         ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
 648         writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 649 
 650         /* Adjust residue (parport_ip32_dma.left) */
 651         ctx_a = readq(&mace->perif.ctrl.parport.context_a);
 652         ctx_b = readq(&mace->perif.ctrl.parport.context_b);
 653         ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
 654         diag = readq(&mace->perif.ctrl.parport.diagnostic);
 655         res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
 656                 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
 657                      MACEPAR_CONTEXT_DATALEN_SHIFT) :
 658                 0;
 659         res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
 660                 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
 661                      MACEPAR_CONTEXT_DATALEN_SHIFT) :
 662                 0;
 663         if (diag & MACEPAR_DIAG_DMACTIVE)
 664                 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
 665                         1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
 666                              MACEPAR_DIAG_CTRSHIFT);
 667         parport_ip32_dma.left += res[0] + res[1];
 668 
 669         /* Reset DMA controller, and re-enable IRQs */
 670         ctrl = MACEPAR_CTLSTAT_RESET;
 671         writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 672         pr_debug(PPIP32 "IRQ on (stop)\n");
 673         enable_irq(MACEISA_PAR_CTXA_IRQ);
 674         enable_irq(MACEISA_PAR_CTXB_IRQ);
 675         parport_ip32_dma.irq_on = 1;
 676 
 677         dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf,
 678                          parport_ip32_dma.len, parport_ip32_dma.dir);
 679 }
 680 
 681 /**
 682  * parport_ip32_dma_get_residue - get residue from last DMA transfer
 683  *
 684  * Returns the number of bytes remaining from last DMA transfer.
 685  */
 686 static inline size_t parport_ip32_dma_get_residue(void)
 687 {
 688         return parport_ip32_dma.left;
 689 }
 690 
 691 /**
 692  * parport_ip32_dma_register - initialize DMA engine
 693  *
 694  * Returns zero for success.
 695  */
 696 static int parport_ip32_dma_register(void)
 697 {
 698         int err;
 699 
 700         spin_lock_init(&parport_ip32_dma.lock);
 701         parport_ip32_dma.irq_on = 1;
 702 
 703         /* Reset DMA controller */
 704         writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
 705 
 706         /* Request IRQs */
 707         err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
 708                           0, "parport_ip32", NULL);
 709         if (err)
 710                 goto fail_a;
 711         err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
 712                           0, "parport_ip32", NULL);
 713         if (err)
 714                 goto fail_b;
 715 #if DEBUG_PARPORT_IP32
 716         /* FIXME - what is this IRQ for? */
 717         err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
 718                           0, "parport_ip32", NULL);
 719         if (err)
 720                 goto fail_merr;
 721 #endif
 722         return 0;
 723 
 724 #if DEBUG_PARPORT_IP32
 725 fail_merr:
 726         free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
 727 #endif
 728 fail_b:
 729         free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
 730 fail_a:
 731         return err;
 732 }
 733 
 734 /**
 735  * parport_ip32_dma_unregister - release and free resources for DMA engine
 736  */
 737 static void parport_ip32_dma_unregister(void)
 738 {
 739 #if DEBUG_PARPORT_IP32
 740         free_irq(MACEISA_PAR_MERR_IRQ, NULL);
 741 #endif
 742         free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
 743         free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
 744 }
 745 
 746 /*--- Interrupt handlers and associates --------------------------------*/
 747 
 748 /**
 749  * parport_ip32_wakeup - wakes up code waiting for an interrupt
 750  * @p:          pointer to &struct parport
 751  */
 752 static inline void parport_ip32_wakeup(struct parport *p)
 753 {
 754         struct parport_ip32_private * const priv = p->physport->private_data;
 755         complete(&priv->irq_complete);
 756 }
 757 
 758 /**
 759  * parport_ip32_interrupt - interrupt handler
 760  * @irq:        interrupt number
 761  * @dev_id:     pointer to &struct parport
 762  *
 763  * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
 764  * %PARPORT_IP32_IRQ_FWD.
 765  */
 766 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
 767 {
 768         struct parport * const p = dev_id;
 769         struct parport_ip32_private * const priv = p->physport->private_data;
 770         enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
 771 
 772         switch (irq_mode) {
 773         case PARPORT_IP32_IRQ_FWD:
 774                 return parport_irq_handler(irq, dev_id);
 775 
 776         case PARPORT_IP32_IRQ_HERE:
 777                 parport_ip32_wakeup(p);
 778                 break;
 779         }
 780 
 781         return IRQ_HANDLED;
 782 }
 783 
 784 /*--- Some utility function to manipulate ECR register -----------------*/
 785 
 786 /**
 787  * parport_ip32_read_econtrol - read contents of the ECR register
 788  * @p:          pointer to &struct parport
 789  */
 790 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
 791 {
 792         struct parport_ip32_private * const priv = p->physport->private_data;
 793         return readb(priv->regs.ecr);
 794 }
 795 
 796 /**
 797  * parport_ip32_write_econtrol - write new contents to the ECR register
 798  * @p:          pointer to &struct parport
 799  * @c:          new value to write
 800  */
 801 static inline void parport_ip32_write_econtrol(struct parport *p,
 802                                                unsigned int c)
 803 {
 804         struct parport_ip32_private * const priv = p->physport->private_data;
 805         writeb(c, priv->regs.ecr);
 806 }
 807 
 808 /**
 809  * parport_ip32_frob_econtrol - change bits from the ECR register
 810  * @p:          pointer to &struct parport
 811  * @mask:       bit mask of bits to change
 812  * @val:        new value for changed bits
 813  *
 814  * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
 815  * in @val, and write the result to the ECR.
 816  */
 817 static inline void parport_ip32_frob_econtrol(struct parport *p,
 818                                               unsigned int mask,
 819                                               unsigned int val)
 820 {
 821         unsigned int c;
 822         c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
 823         parport_ip32_write_econtrol(p, c);
 824 }
 825 
 826 /**
 827  * parport_ip32_set_mode - change mode of ECP port
 828  * @p:          pointer to &struct parport
 829  * @mode:       new mode to write in ECR
 830  *
 831  * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
 832  * mode @mode.  Go through PS2 mode if needed.
 833  */
 834 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
 835 {
 836         unsigned int omode;
 837 
 838         mode &= ECR_MODE_MASK;
 839         omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
 840 
 841         if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
 842               || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
 843                 /* We have to go through PS2 mode */
 844                 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
 845                 parport_ip32_write_econtrol(p, ecr);
 846         }
 847         parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
 848 }
 849 
 850 /*--- Basic functions needed for parport -------------------------------*/
 851 
 852 /**
 853  * parport_ip32_read_data - return current contents of the DATA register
 854  * @p:          pointer to &struct parport
 855  */
 856 static inline unsigned char parport_ip32_read_data(struct parport *p)
 857 {
 858         struct parport_ip32_private * const priv = p->physport->private_data;
 859         return readb(priv->regs.data);
 860 }
 861 
 862 /**
 863  * parport_ip32_write_data - set new contents for the DATA register
 864  * @p:          pointer to &struct parport
 865  * @d:          new value to write
 866  */
 867 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
 868 {
 869         struct parport_ip32_private * const priv = p->physport->private_data;
 870         writeb(d, priv->regs.data);
 871 }
 872 
 873 /**
 874  * parport_ip32_read_status - return current contents of the DSR register
 875  * @p:          pointer to &struct parport
 876  */
 877 static inline unsigned char parport_ip32_read_status(struct parport *p)
 878 {
 879         struct parport_ip32_private * const priv = p->physport->private_data;
 880         return readb(priv->regs.dsr);
 881 }
 882 
 883 /**
 884  * __parport_ip32_read_control - return cached contents of the DCR register
 885  * @p:          pointer to &struct parport
 886  */
 887 static inline unsigned int __parport_ip32_read_control(struct parport *p)
 888 {
 889         struct parport_ip32_private * const priv = p->physport->private_data;
 890         return priv->dcr_cache; /* use soft copy */
 891 }
 892 
 893 /**
 894  * __parport_ip32_write_control - set new contents for the DCR register
 895  * @p:          pointer to &struct parport
 896  * @c:          new value to write
 897  */
 898 static inline void __parport_ip32_write_control(struct parport *p,
 899                                                 unsigned int c)
 900 {
 901         struct parport_ip32_private * const priv = p->physport->private_data;
 902         CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
 903         c &= priv->dcr_writable; /* only writable bits */
 904         writeb(c, priv->regs.dcr);
 905         priv->dcr_cache = c;            /* update soft copy */
 906 }
 907 
 908 /**
 909  * __parport_ip32_frob_control - change bits from the DCR register
 910  * @p:          pointer to &struct parport
 911  * @mask:       bit mask of bits to change
 912  * @val:        new value for changed bits
 913  *
 914  * This is equivalent to read from the DCR, mask out the bits in @mask,
 915  * exclusive-or with the bits in @val, and write the result to the DCR.
 916  * Actually, the cached contents of the DCR is used.
 917  */
 918 static inline void __parport_ip32_frob_control(struct parport *p,
 919                                                unsigned int mask,
 920                                                unsigned int val)
 921 {
 922         unsigned int c;
 923         c = (__parport_ip32_read_control(p) & ~mask) ^ val;
 924         __parport_ip32_write_control(p, c);
 925 }
 926 
 927 /**
 928  * parport_ip32_read_control - return cached contents of the DCR register
 929  * @p:          pointer to &struct parport
 930  *
 931  * The return value is masked so as to only return the value of %DCR_STROBE,
 932  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 933  */
 934 static inline unsigned char parport_ip32_read_control(struct parport *p)
 935 {
 936         const unsigned int rm =
 937                 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 938         return __parport_ip32_read_control(p) & rm;
 939 }
 940 
 941 /**
 942  * parport_ip32_write_control - set new contents for the DCR register
 943  * @p:          pointer to &struct parport
 944  * @c:          new value to write
 945  *
 946  * The value is masked so as to only change the value of %DCR_STROBE,
 947  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 948  */
 949 static inline void parport_ip32_write_control(struct parport *p,
 950                                               unsigned char c)
 951 {
 952         const unsigned int wm =
 953                 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 954         CHECK_EXTRA_BITS(p, c, wm);
 955         __parport_ip32_frob_control(p, wm, c & wm);
 956 }
 957 
 958 /**
 959  * parport_ip32_frob_control - change bits from the DCR register
 960  * @p:          pointer to &struct parport
 961  * @mask:       bit mask of bits to change
 962  * @val:        new value for changed bits
 963  *
 964  * This differs from __parport_ip32_frob_control() in that it only allows to
 965  * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 966  */
 967 static inline unsigned char parport_ip32_frob_control(struct parport *p,
 968                                                       unsigned char mask,
 969                                                       unsigned char val)
 970 {
 971         const unsigned int wm =
 972                 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 973         CHECK_EXTRA_BITS(p, mask, wm);
 974         CHECK_EXTRA_BITS(p, val, wm);
 975         __parport_ip32_frob_control(p, mask & wm, val & wm);
 976         return parport_ip32_read_control(p);
 977 }
 978 
 979 /**
 980  * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
 981  * @p:          pointer to &struct parport
 982  */
 983 static inline void parport_ip32_disable_irq(struct parport *p)
 984 {
 985         __parport_ip32_frob_control(p, DCR_IRQ, 0);
 986 }
 987 
 988 /**
 989  * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
 990  * @p:          pointer to &struct parport
 991  */
 992 static inline void parport_ip32_enable_irq(struct parport *p)
 993 {
 994         __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
 995 }
 996 
 997 /**
 998  * parport_ip32_data_forward - enable host-to-peripheral communications
 999  * @p:          pointer to &struct parport
1000  *
1001  * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1002  */
1003 static inline void parport_ip32_data_forward(struct parport *p)
1004 {
1005         __parport_ip32_frob_control(p, DCR_DIR, 0);
1006 }
1007 
1008 /**
1009  * parport_ip32_data_reverse - enable peripheral-to-host communications
1010  * @p:          pointer to &struct parport
1011  *
1012  * Place the data bus in a high impedance state, if @p->modes has the
1013  * PARPORT_MODE_TRISTATE bit set.
1014  */
1015 static inline void parport_ip32_data_reverse(struct parport *p)
1016 {
1017         __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1018 }
1019 
1020 /**
1021  * parport_ip32_init_state - for core parport code
1022  * @dev:        pointer to &struct pardevice
1023  * @s:          pointer to &struct parport_state to initialize
1024  */
1025 static void parport_ip32_init_state(struct pardevice *dev,
1026                                     struct parport_state *s)
1027 {
1028         s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1029         s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1030 }
1031 
1032 /**
1033  * parport_ip32_save_state - for core parport code
1034  * @p:          pointer to &struct parport
1035  * @s:          pointer to &struct parport_state to save state to
1036  */
1037 static void parport_ip32_save_state(struct parport *p,
1038                                     struct parport_state *s)
1039 {
1040         s->u.ip32.dcr = __parport_ip32_read_control(p);
1041         s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1042 }
1043 
1044 /**
1045  * parport_ip32_restore_state - for core parport code
1046  * @p:          pointer to &struct parport
1047  * @s:          pointer to &struct parport_state to restore state from
1048  */
1049 static void parport_ip32_restore_state(struct parport *p,
1050                                        struct parport_state *s)
1051 {
1052         parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1053         parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1054         __parport_ip32_write_control(p, s->u.ip32.dcr);
1055 }
1056 
1057 /*--- EPP mode functions -----------------------------------------------*/
1058 
1059 /**
1060  * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1061  * @p:          pointer to &struct parport
1062  *
1063  * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1064  */
1065 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1066 {
1067         struct parport_ip32_private * const priv = p->physport->private_data;
1068         unsigned int cleared;
1069 
1070         if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1071                 cleared = 1;
1072         else {
1073                 unsigned int r;
1074                 /* To clear timeout some chips require double read */
1075                 parport_ip32_read_status(p);
1076                 r = parport_ip32_read_status(p);
1077                 /* Some reset by writing 1 */
1078                 writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1079                 /* Others by writing 0 */
1080                 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1081 
1082                 r = parport_ip32_read_status(p);
1083                 cleared = !(r & DSR_TIMEOUT);
1084         }
1085 
1086         pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1087         return cleared;
1088 }
1089 
1090 /**
1091  * parport_ip32_epp_read - generic EPP read function
1092  * @eppreg:     I/O register to read from
1093  * @p:          pointer to &struct parport
1094  * @buf:        buffer to store read data
1095  * @len:        length of buffer @buf
1096  * @flags:      may be PARPORT_EPP_FAST
1097  */
1098 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1099                                     struct parport *p, void *buf,
1100                                     size_t len, int flags)
1101 {
1102         struct parport_ip32_private * const priv = p->physport->private_data;
1103         size_t got;
1104         parport_ip32_set_mode(p, ECR_MODE_EPP);
1105         parport_ip32_data_reverse(p);
1106         parport_ip32_write_control(p, DCR_nINIT);
1107         if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1108                 readsb(eppreg, buf, len);
1109                 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1110                         parport_ip32_clear_epp_timeout(p);
1111                         return -EIO;
1112                 }
1113                 got = len;
1114         } else {
1115                 u8 *bufp = buf;
1116                 for (got = 0; got < len; got++) {
1117                         *bufp++ = readb(eppreg);
1118                         if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1119                                 parport_ip32_clear_epp_timeout(p);
1120                                 break;
1121                         }
1122                 }
1123         }
1124         parport_ip32_data_forward(p);
1125         parport_ip32_set_mode(p, ECR_MODE_PS2);
1126         return got;
1127 }
1128 
1129 /**
1130  * parport_ip32_epp_write - generic EPP write function
1131  * @eppreg:     I/O register to write to
1132  * @p:          pointer to &struct parport
1133  * @buf:        buffer of data to write
1134  * @len:        length of buffer @buf
1135  * @flags:      may be PARPORT_EPP_FAST
1136  */
1137 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1138                                      struct parport *p, const void *buf,
1139                                      size_t len, int flags)
1140 {
1141         struct parport_ip32_private * const priv = p->physport->private_data;
1142         size_t written;
1143         parport_ip32_set_mode(p, ECR_MODE_EPP);
1144         parport_ip32_data_forward(p);
1145         parport_ip32_write_control(p, DCR_nINIT);
1146         if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1147                 writesb(eppreg, buf, len);
1148                 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1149                         parport_ip32_clear_epp_timeout(p);
1150                         return -EIO;
1151                 }
1152                 written = len;
1153         } else {
1154                 const u8 *bufp = buf;
1155                 for (written = 0; written < len; written++) {
1156                         writeb(*bufp++, eppreg);
1157                         if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1158                                 parport_ip32_clear_epp_timeout(p);
1159                                 break;
1160                         }
1161                 }
1162         }
1163         parport_ip32_set_mode(p, ECR_MODE_PS2);
1164         return written;
1165 }
1166 
1167 /**
1168  * parport_ip32_epp_read_data - read a block of data in EPP mode
1169  * @p:          pointer to &struct parport
1170  * @buf:        buffer to store read data
1171  * @len:        length of buffer @buf
1172  * @flags:      may be PARPORT_EPP_FAST
1173  */
1174 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1175                                          size_t len, int flags)
1176 {
1177         struct parport_ip32_private * const priv = p->physport->private_data;
1178         return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1179 }
1180 
1181 /**
1182  * parport_ip32_epp_write_data - write a block of data in EPP mode
1183  * @p:          pointer to &struct parport
1184  * @buf:        buffer of data to write
1185  * @len:        length of buffer @buf
1186  * @flags:      may be PARPORT_EPP_FAST
1187  */
1188 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1189                                           size_t len, int flags)
1190 {
1191         struct parport_ip32_private * const priv = p->physport->private_data;
1192         return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1193 }
1194 
1195 /**
1196  * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1197  * @p:          pointer to &struct parport
1198  * @buf:        buffer to store read data
1199  * @len:        length of buffer @buf
1200  * @flags:      may be PARPORT_EPP_FAST
1201  */
1202 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1203                                          size_t len, int flags)
1204 {
1205         struct parport_ip32_private * const priv = p->physport->private_data;
1206         return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1207 }
1208 
1209 /**
1210  * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1211  * @p:          pointer to &struct parport
1212  * @buf:        buffer of data to write
1213  * @len:        length of buffer @buf
1214  * @flags:      may be PARPORT_EPP_FAST
1215  */
1216 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1217                                           size_t len, int flags)
1218 {
1219         struct parport_ip32_private * const priv = p->physport->private_data;
1220         return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1221 }
1222 
1223 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1224 
1225 /**
1226  * parport_ip32_fifo_wait_break - check if the waiting function should return
1227  * @p:          pointer to &struct parport
1228  * @expire:     timeout expiring date, in jiffies
1229  *
1230  * parport_ip32_fifo_wait_break() checks if the waiting function should return
1231  * immediately or not.  The break conditions are:
1232  *      - expired timeout;
1233  *      - a pending signal;
1234  *      - nFault asserted low.
1235  * This function also calls cond_resched().
1236  */
1237 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1238                                                  unsigned long expire)
1239 {
1240         cond_resched();
1241         if (time_after(jiffies, expire)) {
1242                 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1243                 return 1;
1244         }
1245         if (signal_pending(current)) {
1246                 pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1247                 return 1;
1248         }
1249         if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1250                 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1251                 return 1;
1252         }
1253         return 0;
1254 }
1255 
1256 /**
1257  * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1258  * @p:          pointer to &struct parport
1259  *
1260  * Returns the number of bytes that can safely be written in the FIFO.  A
1261  * return value of zero means that the calling function should terminate as
1262  * fast as possible.
1263  */
1264 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1265 {
1266         struct parport_ip32_private * const priv = p->physport->private_data;
1267         struct parport * const physport = p->physport;
1268         unsigned long expire;
1269         unsigned int count;
1270         unsigned int ecr;
1271 
1272         expire = jiffies + physport->cad->timeout;
1273         count = 0;
1274         while (1) {
1275                 if (parport_ip32_fifo_wait_break(p, expire))
1276                         break;
1277 
1278                 /* Check FIFO state.  We do nothing when the FIFO is nor full,
1279                  * nor empty.  It appears that the FIFO full bit is not always
1280                  * reliable, the FIFO state is sometimes wrongly reported, and
1281                  * the chip gets confused if we give it another byte. */
1282                 ecr = parport_ip32_read_econtrol(p);
1283                 if (ecr & ECR_F_EMPTY) {
1284                         /* FIFO is empty, fill it up */
1285                         count = priv->fifo_depth;
1286                         break;
1287                 }
1288 
1289                 /* Wait a moment... */
1290                 udelay(FIFO_POLLING_INTERVAL);
1291         } /* while (1) */
1292 
1293         return count;
1294 }
1295 
1296 /**
1297  * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1298  * @p:          pointer to &struct parport
1299  *
1300  * Returns the number of bytes that can safely be written in the FIFO.  A
1301  * return value of zero means that the calling function should terminate as
1302  * fast as possible.
1303  */
1304 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1305 {
1306         static unsigned int lost_interrupt = 0;
1307         struct parport_ip32_private * const priv = p->physport->private_data;
1308         struct parport * const physport = p->physport;
1309         unsigned long nfault_timeout;
1310         unsigned long expire;
1311         unsigned int count;
1312         unsigned int ecr;
1313 
1314         nfault_timeout = min((unsigned long)physport->cad->timeout,
1315                              msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1316         expire = jiffies + physport->cad->timeout;
1317         count = 0;
1318         while (1) {
1319                 if (parport_ip32_fifo_wait_break(p, expire))
1320                         break;
1321 
1322                 /* Initialize mutex used to take interrupts into account */
1323                 reinit_completion(&priv->irq_complete);
1324 
1325                 /* Enable serviceIntr */
1326                 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1327 
1328                 /* Enabling serviceIntr while the FIFO is empty does not
1329                  * always generate an interrupt, so check for emptiness
1330                  * now. */
1331                 ecr = parport_ip32_read_econtrol(p);
1332                 if (!(ecr & ECR_F_EMPTY)) {
1333                         /* FIFO is not empty: wait for an interrupt or a
1334                          * timeout to occur */
1335                         wait_for_completion_interruptible_timeout(
1336                                 &priv->irq_complete, nfault_timeout);
1337                         ecr = parport_ip32_read_econtrol(p);
1338                         if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1339                             && !lost_interrupt) {
1340                                 printk(KERN_WARNING PPIP32
1341                                        "%s: lost interrupt in %s\n",
1342                                        p->name, __func__);
1343                                 lost_interrupt = 1;
1344                         }
1345                 }
1346 
1347                 /* Disable serviceIntr */
1348                 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1349 
1350                 /* Check FIFO state */
1351                 if (ecr & ECR_F_EMPTY) {
1352                         /* FIFO is empty, fill it up */
1353                         count = priv->fifo_depth;
1354                         break;
1355                 } else if (ecr & ECR_SERVINTR) {
1356                         /* FIFO is not empty, but we know that can safely push
1357                          * writeIntrThreshold bytes into it */
1358                         count = priv->writeIntrThreshold;
1359                         break;
1360                 }
1361                 /* FIFO is not empty, and we did not get any interrupt.
1362                  * Either it's time to check for nFault, or a signal is
1363                  * pending.  This is verified in
1364                  * parport_ip32_fifo_wait_break(), so we continue the loop. */
1365         } /* while (1) */
1366 
1367         return count;
1368 }
1369 
1370 /**
1371  * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1372  * @p:          pointer to &struct parport
1373  * @buf:        buffer of data to write
1374  * @len:        length of buffer @buf
1375  *
1376  * Uses PIO to write the contents of the buffer @buf into the parallel port
1377  * FIFO.  Returns the number of bytes that were actually written.  It can work
1378  * with or without the help of interrupts.  The parallel port must be
1379  * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1380  */
1381 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1382                                                 const void *buf, size_t len)
1383 {
1384         struct parport_ip32_private * const priv = p->physport->private_data;
1385         const u8 *bufp = buf;
1386         size_t left = len;
1387 
1388         priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1389 
1390         while (left > 0) {
1391                 unsigned int count;
1392 
1393                 count = (p->irq == PARPORT_IRQ_NONE) ?
1394                         parport_ip32_fwp_wait_polling(p) :
1395                         parport_ip32_fwp_wait_interrupt(p);
1396                 if (count == 0)
1397                         break;  /* Transmission should be stopped */
1398                 if (count > left)
1399                         count = left;
1400                 if (count == 1) {
1401                         writeb(*bufp, priv->regs.fifo);
1402                         bufp++, left--;
1403                 } else {
1404                         writesb(priv->regs.fifo, bufp, count);
1405                         bufp += count, left -= count;
1406                 }
1407         }
1408 
1409         priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1410 
1411         return len - left;
1412 }
1413 
1414 /**
1415  * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1416  * @p:          pointer to &struct parport
1417  * @buf:        buffer of data to write
1418  * @len:        length of buffer @buf
1419  *
1420  * Uses DMA to write the contents of the buffer @buf into the parallel port
1421  * FIFO.  Returns the number of bytes that were actually written.  The
1422  * parallel port must be correctly initialized before calling
1423  * parport_ip32_fifo_write_block_dma().
1424  */
1425 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1426                                                 const void *buf, size_t len)
1427 {
1428         struct parport_ip32_private * const priv = p->physport->private_data;
1429         struct parport * const physport = p->physport;
1430         unsigned long nfault_timeout;
1431         unsigned long expire;
1432         size_t written;
1433         unsigned int ecr;
1434 
1435         priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1436 
1437         parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len);
1438         reinit_completion(&priv->irq_complete);
1439         parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1440 
1441         nfault_timeout = min((unsigned long)physport->cad->timeout,
1442                              msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1443         expire = jiffies + physport->cad->timeout;
1444         while (1) {
1445                 if (parport_ip32_fifo_wait_break(p, expire))
1446                         break;
1447                 wait_for_completion_interruptible_timeout(&priv->irq_complete,
1448                                                           nfault_timeout);
1449                 ecr = parport_ip32_read_econtrol(p);
1450                 if (ecr & ECR_SERVINTR)
1451                         break;  /* DMA transfer just finished */
1452         }
1453         parport_ip32_dma_stop(p);
1454         written = len - parport_ip32_dma_get_residue();
1455 
1456         priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1457 
1458         return written;
1459 }
1460 
1461 /**
1462  * parport_ip32_fifo_write_block - write a block of data
1463  * @p:          pointer to &struct parport
1464  * @buf:        buffer of data to write
1465  * @len:        length of buffer @buf
1466  *
1467  * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1468  * p FIFO.  Returns the number of bytes that were actually written.
1469  */
1470 static size_t parport_ip32_fifo_write_block(struct parport *p,
1471                                             const void *buf, size_t len)
1472 {
1473         size_t written = 0;
1474         if (len)
1475                 /* FIXME - Maybe some threshold value should be set for @len
1476                  * under which we revert to PIO mode? */
1477                 written = (p->modes & PARPORT_MODE_DMA) ?
1478                         parport_ip32_fifo_write_block_dma(p, buf, len) :
1479                         parport_ip32_fifo_write_block_pio(p, buf, len);
1480         return written;
1481 }
1482 
1483 /**
1484  * parport_ip32_drain_fifo - wait for FIFO to empty
1485  * @p:          pointer to &struct parport
1486  * @timeout:    timeout, in jiffies
1487  *
1488  * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1489  * 0 if the timeout @timeout is reached before, or if a signal is pending.
1490  */
1491 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1492                                             unsigned long timeout)
1493 {
1494         unsigned long expire = jiffies + timeout;
1495         unsigned int polling_interval;
1496         unsigned int counter;
1497 
1498         /* Busy wait for approx. 200us */
1499         for (counter = 0; counter < 40; counter++) {
1500                 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1501                         break;
1502                 if (time_after(jiffies, expire))
1503                         break;
1504                 if (signal_pending(current))
1505                         break;
1506                 udelay(5);
1507         }
1508         /* Poll slowly.  Polling interval starts with 1 millisecond, and is
1509          * increased exponentially until 128.  */
1510         polling_interval = 1; /* msecs */
1511         while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1512                 if (time_after_eq(jiffies, expire))
1513                         break;
1514                 msleep_interruptible(polling_interval);
1515                 if (signal_pending(current))
1516                         break;
1517                 if (polling_interval < 128)
1518                         polling_interval *= 2;
1519         }
1520 
1521         return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1522 }
1523 
1524 /**
1525  * parport_ip32_get_fifo_residue - reset FIFO
1526  * @p:          pointer to &struct parport
1527  * @mode:       current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1528  *
1529  * This function resets FIFO, and returns the number of bytes remaining in it.
1530  */
1531 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1532                                                   unsigned int mode)
1533 {
1534         struct parport_ip32_private * const priv = p->physport->private_data;
1535         unsigned int residue;
1536         unsigned int cnfga;
1537 
1538         /* FIXME - We are missing one byte if the printer is off-line.  I
1539          * don't know how to detect this.  It looks that the full bit is not
1540          * always reliable.  For the moment, the problem is avoided in most
1541          * cases by testing for BUSY in parport_ip32_compat_write_data().
1542          */
1543         if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1544                 residue = 0;
1545         else {
1546                 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1547 
1548                 /* Stop all transfers.
1549                  *
1550                  * Microsoft's document instructs to drive DCR_STROBE to 0,
1551                  * but it doesn't work (at least in Compatibility mode, not
1552                  * tested in ECP mode).  Switching directly to Test mode (as
1553                  * in parport_pc) is not an option: it does confuse the port,
1554                  * ECP service interrupts are no more working after that.  A
1555                  * hard reset is then needed to revert to a sane state.
1556                  *
1557                  * Let's hope that the FIFO is really stuck and that the
1558                  * peripheral doesn't wake up now.
1559                  */
1560                 parport_ip32_frob_control(p, DCR_STROBE, 0);
1561 
1562                 /* Fill up FIFO */
1563                 for (residue = priv->fifo_depth; residue > 0; residue--) {
1564                         if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1565                                 break;
1566                         writeb(0x00, priv->regs.fifo);
1567                 }
1568         }
1569         if (residue)
1570                 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1571                           p->name, residue,
1572                           (residue == 1) ? " was" : "s were");
1573 
1574         /* Now reset the FIFO */
1575         parport_ip32_set_mode(p, ECR_MODE_PS2);
1576 
1577         /* Host recovery for ECP mode */
1578         if (mode == ECR_MODE_ECP) {
1579                 parport_ip32_data_reverse(p);
1580                 parport_ip32_frob_control(p, DCR_nINIT, 0);
1581                 if (parport_wait_peripheral(p, DSR_PERROR, 0))
1582                         pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1583                                   p->name, __func__);
1584                 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1585                 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1586                 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1587                         pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1588                                   p->name, __func__);
1589         }
1590 
1591         /* Adjust residue if needed */
1592         parport_ip32_set_mode(p, ECR_MODE_CFG);
1593         cnfga = readb(priv->regs.cnfgA);
1594         if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1595                 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1596                           p->name, cnfga);
1597                 pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1598                           p->name);
1599                 residue++;
1600         }
1601 
1602         /* Don't care about partial PWords since we do not support
1603          * PWord != 1 byte. */
1604 
1605         /* Back to forward PS2 mode. */
1606         parport_ip32_set_mode(p, ECR_MODE_PS2);
1607         parport_ip32_data_forward(p);
1608 
1609         return residue;
1610 }
1611 
1612 /**
1613  * parport_ip32_compat_write_data - write a block of data in SPP mode
1614  * @p:          pointer to &struct parport
1615  * @buf:        buffer of data to write
1616  * @len:        length of buffer @buf
1617  * @flags:      ignored
1618  */
1619 static size_t parport_ip32_compat_write_data(struct parport *p,
1620                                              const void *buf, size_t len,
1621                                              int flags)
1622 {
1623         static unsigned int ready_before = 1;
1624         struct parport_ip32_private * const priv = p->physport->private_data;
1625         struct parport * const physport = p->physport;
1626         size_t written = 0;
1627 
1628         /* Special case: a timeout of zero means we cannot call schedule().
1629          * Also if O_NONBLOCK is set then use the default implementation. */
1630         if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1631                 return parport_ieee1284_write_compat(p, buf, len, flags);
1632 
1633         /* Reset FIFO, go in forward mode, and disable ackIntEn */
1634         parport_ip32_set_mode(p, ECR_MODE_PS2);
1635         parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1636         parport_ip32_data_forward(p);
1637         parport_ip32_disable_irq(p);
1638         parport_ip32_set_mode(p, ECR_MODE_PPF);
1639         physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1640 
1641         /* Wait for peripheral to become ready */
1642         if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1643                                        DSR_nBUSY | DSR_nFAULT)) {
1644                 /* Avoid to flood the logs */
1645                 if (ready_before)
1646                         printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1647                                p->name, __func__);
1648                 ready_before = 0;
1649                 goto stop;
1650         }
1651         ready_before = 1;
1652 
1653         written = parport_ip32_fifo_write_block(p, buf, len);
1654 
1655         /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1656         parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1657 
1658         /* Check for a potential residue */
1659         written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1660 
1661         /* Then, wait for BUSY to get low. */
1662         if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1663                 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1664                        p->name, __func__);
1665 
1666 stop:
1667         /* Reset FIFO */
1668         parport_ip32_set_mode(p, ECR_MODE_PS2);
1669         physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1670 
1671         return written;
1672 }
1673 
1674 /*
1675  * FIXME - Insert here parport_ip32_ecp_read_data().
1676  */
1677 
1678 /**
1679  * parport_ip32_ecp_write_data - write a block of data in ECP mode
1680  * @p:          pointer to &struct parport
1681  * @buf:        buffer of data to write
1682  * @len:        length of buffer @buf
1683  * @flags:      ignored
1684  */
1685 static size_t parport_ip32_ecp_write_data(struct parport *p,
1686                                           const void *buf, size_t len,
1687                                           int flags)
1688 {
1689         static unsigned int ready_before = 1;
1690         struct parport_ip32_private * const priv = p->physport->private_data;
1691         struct parport * const physport = p->physport;
1692         size_t written = 0;
1693 
1694         /* Special case: a timeout of zero means we cannot call schedule().
1695          * Also if O_NONBLOCK is set then use the default implementation. */
1696         if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1697                 return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1698 
1699         /* Negotiate to forward mode if necessary. */
1700         if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1701                 /* Event 47: Set nInit high. */
1702                 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1703                                              DCR_nINIT | DCR_AUTOFD);
1704 
1705                 /* Event 49: PError goes high. */
1706                 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1707                         printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1708                                p->name, __func__);
1709                         physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1710                         return 0;
1711                 }
1712         }
1713 
1714         /* Reset FIFO, go in forward mode, and disable ackIntEn */
1715         parport_ip32_set_mode(p, ECR_MODE_PS2);
1716         parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1717         parport_ip32_data_forward(p);
1718         parport_ip32_disable_irq(p);
1719         parport_ip32_set_mode(p, ECR_MODE_ECP);
1720         physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1721 
1722         /* Wait for peripheral to become ready */
1723         if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1724                                        DSR_nBUSY | DSR_nFAULT)) {
1725                 /* Avoid to flood the logs */
1726                 if (ready_before)
1727                         printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1728                                p->name, __func__);
1729                 ready_before = 0;
1730                 goto stop;
1731         }
1732         ready_before = 1;
1733 
1734         written = parport_ip32_fifo_write_block(p, buf, len);
1735 
1736         /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1737         parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1738 
1739         /* Check for a potential residue */
1740         written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1741 
1742         /* Then, wait for BUSY to get low. */
1743         if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1744                 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1745                        p->name, __func__);
1746 
1747 stop:
1748         /* Reset FIFO */
1749         parport_ip32_set_mode(p, ECR_MODE_PS2);
1750         physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1751 
1752         return written;
1753 }
1754 
1755 /*
1756  * FIXME - Insert here parport_ip32_ecp_write_addr().
1757  */
1758 
1759 /*--- Default parport operations ---------------------------------------*/
1760 
1761 static const struct parport_operations parport_ip32_ops __initconst = {
1762         .write_data             = parport_ip32_write_data,
1763         .read_data              = parport_ip32_read_data,
1764 
1765         .write_control          = parport_ip32_write_control,
1766         .read_control           = parport_ip32_read_control,
1767         .frob_control           = parport_ip32_frob_control,
1768 
1769         .read_status            = parport_ip32_read_status,
1770 
1771         .enable_irq             = parport_ip32_enable_irq,
1772         .disable_irq            = parport_ip32_disable_irq,
1773 
1774         .data_forward           = parport_ip32_data_forward,
1775         .data_reverse           = parport_ip32_data_reverse,
1776 
1777         .init_state             = parport_ip32_init_state,
1778         .save_state             = parport_ip32_save_state,
1779         .restore_state          = parport_ip32_restore_state,
1780 
1781         .epp_write_data         = parport_ieee1284_epp_write_data,
1782         .epp_read_data          = parport_ieee1284_epp_read_data,
1783         .epp_write_addr         = parport_ieee1284_epp_write_addr,
1784         .epp_read_addr          = parport_ieee1284_epp_read_addr,
1785 
1786         .ecp_write_data         = parport_ieee1284_ecp_write_data,
1787         .ecp_read_data          = parport_ieee1284_ecp_read_data,
1788         .ecp_write_addr         = parport_ieee1284_ecp_write_addr,
1789 
1790         .compat_write_data      = parport_ieee1284_write_compat,
1791         .nibble_read_data       = parport_ieee1284_read_nibble,
1792         .byte_read_data         = parport_ieee1284_read_byte,
1793 
1794         .owner                  = THIS_MODULE,
1795 };
1796 
1797 /*--- Device detection -------------------------------------------------*/
1798 
1799 /**
1800  * parport_ip32_ecp_supported - check for an ECP port
1801  * @p:          pointer to the &parport structure
1802  *
1803  * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1804  * checks if an Extended Control Register seems to be present.  On successful
1805  * return, the port is placed in SPP mode.
1806  */
1807 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1808 {
1809         struct parport_ip32_private * const priv = p->physport->private_data;
1810         unsigned int ecr;
1811 
1812         ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1813         writeb(ecr, priv->regs.ecr);
1814         if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1815                 goto fail;
1816 
1817         pr_probe(p, "Found working ECR register\n");
1818         parport_ip32_set_mode(p, ECR_MODE_SPP);
1819         parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1820         return 1;
1821 
1822 fail:
1823         pr_probe(p, "ECR register not found\n");
1824         return 0;
1825 }
1826 
1827 /**
1828  * parport_ip32_fifo_supported - check for FIFO parameters
1829  * @p:          pointer to the &parport structure
1830  *
1831  * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1832  * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1833  * On return, the port is placed in SPP mode.
1834  */
1835 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1836 {
1837         struct parport_ip32_private * const priv = p->physport->private_data;
1838         unsigned int configa, configb;
1839         unsigned int pword;
1840         unsigned int i;
1841 
1842         /* Configuration mode */
1843         parport_ip32_set_mode(p, ECR_MODE_CFG);
1844         configa = readb(priv->regs.cnfgA);
1845         configb = readb(priv->regs.cnfgB);
1846 
1847         /* Find out PWord size */
1848         switch (configa & CNFGA_ID_MASK) {
1849         case CNFGA_ID_8:
1850                 pword = 1;
1851                 break;
1852         case CNFGA_ID_16:
1853                 pword = 2;
1854                 break;
1855         case CNFGA_ID_32:
1856                 pword = 4;
1857                 break;
1858         default:
1859                 pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1860                          (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1861                 goto fail;
1862                 break;
1863         }
1864         if (pword != 1) {
1865                 pr_probe(p, "Unsupported PWord size: %u\n", pword);
1866                 goto fail;
1867         }
1868         priv->pword = pword;
1869         pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1870 
1871         /* Check for compression support */
1872         writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1873         if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1874                 pr_probe(p, "Hardware compression detected (unsupported)\n");
1875         writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1876 
1877         /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1878         parport_ip32_set_mode(p, ECR_MODE_TST);
1879 
1880         /* FIFO must be empty now */
1881         if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1882                 pr_probe(p, "FIFO not reset\n");
1883                 goto fail;
1884         }
1885 
1886         /* Find out FIFO depth. */
1887         priv->fifo_depth = 0;
1888         for (i = 0; i < 1024; i++) {
1889                 if (readb(priv->regs.ecr) & ECR_F_FULL) {
1890                         /* FIFO full */
1891                         priv->fifo_depth = i;
1892                         break;
1893                 }
1894                 writeb((u8)i, priv->regs.fifo);
1895         }
1896         if (i >= 1024) {
1897                 pr_probe(p, "Can't fill FIFO\n");
1898                 goto fail;
1899         }
1900         if (!priv->fifo_depth) {
1901                 pr_probe(p, "Can't get FIFO depth\n");
1902                 goto fail;
1903         }
1904         pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1905 
1906         /* Enable interrupts */
1907         parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1908 
1909         /* Find out writeIntrThreshold: number of PWords we know we can write
1910          * if we get an interrupt. */
1911         priv->writeIntrThreshold = 0;
1912         for (i = 0; i < priv->fifo_depth; i++) {
1913                 if (readb(priv->regs.fifo) != (u8)i) {
1914                         pr_probe(p, "Invalid data in FIFO\n");
1915                         goto fail;
1916                 }
1917                 if (!priv->writeIntrThreshold
1918                     && readb(priv->regs.ecr) & ECR_SERVINTR)
1919                         /* writeIntrThreshold reached */
1920                         priv->writeIntrThreshold = i + 1;
1921                 if (i + 1 < priv->fifo_depth
1922                     && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1923                         /* FIFO empty before the last byte? */
1924                         pr_probe(p, "Data lost in FIFO\n");
1925                         goto fail;
1926                 }
1927         }
1928         if (!priv->writeIntrThreshold) {
1929                 pr_probe(p, "Can't get writeIntrThreshold\n");
1930                 goto fail;
1931         }
1932         pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1933 
1934         /* FIFO must be empty now */
1935         if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1936                 pr_probe(p, "Can't empty FIFO\n");
1937                 goto fail;
1938         }
1939 
1940         /* Reset FIFO */
1941         parport_ip32_set_mode(p, ECR_MODE_PS2);
1942         /* Set reverse direction (must be in PS2 mode) */
1943         parport_ip32_data_reverse(p);
1944         /* Test FIFO, no interrupt, no DMA */
1945         parport_ip32_set_mode(p, ECR_MODE_TST);
1946         /* Enable interrupts */
1947         parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1948 
1949         /* Find out readIntrThreshold: number of PWords we can read if we get
1950          * an interrupt. */
1951         priv->readIntrThreshold = 0;
1952         for (i = 0; i < priv->fifo_depth; i++) {
1953                 writeb(0xaa, priv->regs.fifo);
1954                 if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1955                         /* readIntrThreshold reached */
1956                         priv->readIntrThreshold = i + 1;
1957                         break;
1958                 }
1959         }
1960         if (!priv->readIntrThreshold) {
1961                 pr_probe(p, "Can't get readIntrThreshold\n");
1962                 goto fail;
1963         }
1964         pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1965 
1966         /* Reset ECR */
1967         parport_ip32_set_mode(p, ECR_MODE_PS2);
1968         parport_ip32_data_forward(p);
1969         parport_ip32_set_mode(p, ECR_MODE_SPP);
1970         return 1;
1971 
1972 fail:
1973         priv->fifo_depth = 0;
1974         parport_ip32_set_mode(p, ECR_MODE_SPP);
1975         return 0;
1976 }
1977 
1978 /*--- Initialization code ----------------------------------------------*/
1979 
1980 /**
1981  * parport_ip32_make_isa_registers - compute (ISA) register addresses
1982  * @regs:       pointer to &struct parport_ip32_regs to fill
1983  * @base:       base address of standard and EPP registers
1984  * @base_hi:    base address of ECP registers
1985  * @regshift:   how much to shift register offset by
1986  *
1987  * Compute register addresses, according to the ISA standard.  The addresses
1988  * of the standard and EPP registers are computed from address @base.  The
1989  * addresses of the ECP registers are computed from address @base_hi.
1990  */
1991 static void __init
1992 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
1993                                 void __iomem *base, void __iomem *base_hi,
1994                                 unsigned int regshift)
1995 {
1996 #define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
1997 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1998         *regs = (struct parport_ip32_regs){
1999                 .data           = r_base(0),
2000                 .dsr            = r_base(1),
2001                 .dcr            = r_base(2),
2002                 .eppAddr        = r_base(3),
2003                 .eppData0       = r_base(4),
2004                 .eppData1       = r_base(5),
2005                 .eppData2       = r_base(6),
2006                 .eppData3       = r_base(7),
2007                 .ecpAFifo       = r_base(0),
2008                 .fifo           = r_base_hi(0),
2009                 .cnfgA          = r_base_hi(0),
2010                 .cnfgB          = r_base_hi(1),
2011                 .ecr            = r_base_hi(2)
2012         };
2013 #undef r_base_hi
2014 #undef r_base
2015 }
2016 
2017 /**
2018  * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2019  *
2020  * Returns the new allocated &parport structure.  On error, an error code is
2021  * encoded in return value with the ERR_PTR function.
2022  */
2023 static __init struct parport *parport_ip32_probe_port(void)
2024 {
2025         struct parport_ip32_regs regs;
2026         struct parport_ip32_private *priv = NULL;
2027         struct parport_operations *ops = NULL;
2028         struct parport *p = NULL;
2029         int err;
2030 
2031         parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2032                                         &mace->isa.ecp1284, 8 /* regshift */);
2033 
2034         ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2035         priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2036         p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2037         if (ops == NULL || priv == NULL || p == NULL) {
2038                 err = -ENOMEM;
2039                 goto fail;
2040         }
2041         p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2042         p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2043         p->private_data = priv;
2044 
2045         *ops = parport_ip32_ops;
2046         *priv = (struct parport_ip32_private){
2047                 .regs                   = regs,
2048                 .dcr_writable           = DCR_DIR | DCR_SELECT | DCR_nINIT |
2049                                           DCR_AUTOFD | DCR_STROBE,
2050                 .irq_mode               = PARPORT_IP32_IRQ_FWD,
2051         };
2052         init_completion(&priv->irq_complete);
2053 
2054         /* Probe port. */
2055         if (!parport_ip32_ecp_supported(p)) {
2056                 err = -ENODEV;
2057                 goto fail;
2058         }
2059         parport_ip32_dump_state(p, "begin init", 0);
2060 
2061         /* We found what looks like a working ECR register.  Simply assume
2062          * that all modes are correctly supported.  Enable basic modes. */
2063         p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2064         p->modes |= PARPORT_MODE_TRISTATE;
2065 
2066         if (!parport_ip32_fifo_supported(p)) {
2067                 printk(KERN_WARNING PPIP32
2068                        "%s: error: FIFO disabled\n", p->name);
2069                 /* Disable hardware modes depending on a working FIFO. */
2070                 features &= ~PARPORT_IP32_ENABLE_SPP;
2071                 features &= ~PARPORT_IP32_ENABLE_ECP;
2072                 /* DMA is not needed if FIFO is not supported.  */
2073                 features &= ~PARPORT_IP32_ENABLE_DMA;
2074         }
2075 
2076         /* Request IRQ */
2077         if (features & PARPORT_IP32_ENABLE_IRQ) {
2078                 int irq = MACEISA_PARALLEL_IRQ;
2079                 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2080                         printk(KERN_WARNING PPIP32
2081                                "%s: error: IRQ disabled\n", p->name);
2082                         /* DMA cannot work without interrupts. */
2083                         features &= ~PARPORT_IP32_ENABLE_DMA;
2084                 } else {
2085                         pr_probe(p, "Interrupt support enabled\n");
2086                         p->irq = irq;
2087                         priv->dcr_writable |= DCR_IRQ;
2088                 }
2089         }
2090 
2091         /* Allocate DMA resources */
2092         if (features & PARPORT_IP32_ENABLE_DMA) {
2093                 if (parport_ip32_dma_register())
2094                         printk(KERN_WARNING PPIP32
2095                                "%s: error: DMA disabled\n", p->name);
2096                 else {
2097                         pr_probe(p, "DMA support enabled\n");
2098                         p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2099                         p->modes |= PARPORT_MODE_DMA;
2100                 }
2101         }
2102 
2103         if (features & PARPORT_IP32_ENABLE_SPP) {
2104                 /* Enable compatibility FIFO mode */
2105                 p->ops->compat_write_data = parport_ip32_compat_write_data;
2106                 p->modes |= PARPORT_MODE_COMPAT;
2107                 pr_probe(p, "Hardware support for SPP mode enabled\n");
2108         }
2109         if (features & PARPORT_IP32_ENABLE_EPP) {
2110                 /* Set up access functions to use EPP hardware. */
2111                 p->ops->epp_read_data = parport_ip32_epp_read_data;
2112                 p->ops->epp_write_data = parport_ip32_epp_write_data;
2113                 p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2114                 p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2115                 p->modes |= PARPORT_MODE_EPP;
2116                 pr_probe(p, "Hardware support for EPP mode enabled\n");
2117         }
2118         if (features & PARPORT_IP32_ENABLE_ECP) {
2119                 /* Enable ECP FIFO mode */
2120                 p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2121                 /* FIXME - not implemented */
2122 /*              p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2123 /*              p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2124                 p->modes |= PARPORT_MODE_ECP;
2125                 pr_probe(p, "Hardware support for ECP mode enabled\n");
2126         }
2127 
2128         /* Initialize the port with sensible values */
2129         parport_ip32_set_mode(p, ECR_MODE_PS2);
2130         parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2131         parport_ip32_data_forward(p);
2132         parport_ip32_disable_irq(p);
2133         parport_ip32_write_data(p, 0x00);
2134         parport_ip32_dump_state(p, "end init", 0);
2135 
2136         /* Print out what we found */
2137         printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2138                p->name, p->base, p->base_hi);
2139         if (p->irq != PARPORT_IRQ_NONE)
2140                 printk(", irq %d", p->irq);
2141         printk(" [");
2142 #define printmode(x)    if (p->modes & PARPORT_MODE_##x)                \
2143                                 printk("%s%s", f++ ? "," : "", #x)
2144         {
2145                 unsigned int f = 0;
2146                 printmode(PCSPP);
2147                 printmode(TRISTATE);
2148                 printmode(COMPAT);
2149                 printmode(EPP);
2150                 printmode(ECP);
2151                 printmode(DMA);
2152         }
2153 #undef printmode
2154         printk("]\n");
2155 
2156         parport_announce_port(p);
2157         return p;
2158 
2159 fail:
2160         if (p)
2161                 parport_put_port(p);
2162         kfree(priv);
2163         kfree(ops);
2164         return ERR_PTR(err);
2165 }
2166 
2167 /**
2168  * parport_ip32_unregister_port - unregister a parallel port
2169  * @p:          pointer to the &struct parport
2170  *
2171  * Unregisters a parallel port and free previously allocated resources
2172  * (memory, IRQ, ...).
2173  */
2174 static __exit void parport_ip32_unregister_port(struct parport *p)
2175 {
2176         struct parport_ip32_private * const priv = p->physport->private_data;
2177         struct parport_operations *ops = p->ops;
2178 
2179         parport_remove_port(p);
2180         if (p->modes & PARPORT_MODE_DMA)
2181                 parport_ip32_dma_unregister();
2182         if (p->irq != PARPORT_IRQ_NONE)
2183                 free_irq(p->irq, p);
2184         parport_put_port(p);
2185         kfree(priv);
2186         kfree(ops);
2187 }
2188 
2189 /**
2190  * parport_ip32_init - module initialization function
2191  */
2192 static int __init parport_ip32_init(void)
2193 {
2194         pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2195         this_port = parport_ip32_probe_port();
2196         return PTR_ERR_OR_ZERO(this_port);
2197 }
2198 
2199 /**
2200  * parport_ip32_exit - module termination function
2201  */
2202 static void __exit parport_ip32_exit(void)
2203 {
2204         parport_ip32_unregister_port(this_port);
2205 }
2206 
2207 /*--- Module stuff -----------------------------------------------------*/
2208 
2209 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2210 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2211 MODULE_LICENSE("GPL");
2212 MODULE_VERSION("0.6");          /* update in parport_ip32_init() too */
2213 
2214 module_init(parport_ip32_init);
2215 module_exit(parport_ip32_exit);
2216 
2217 module_param(verbose_probing, bool, S_IRUGO);
2218 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2219 
2220 module_param(features, uint, S_IRUGO);
2221 MODULE_PARM_DESC(features,
2222                  "Bit mask of features to enable"
2223                  ", bit 0: IRQ support"
2224                  ", bit 1: DMA support"
2225                  ", bit 2: hardware SPP mode"
2226                  ", bit 3: hardware EPP mode"
2227                  ", bit 4: hardware ECP mode");
2228 
2229 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2230 /*
2231  * Local Variables:
2232  * mode: c
2233  * c-file-style: "linux"
2234  * indent-tabs-mode: t
2235  * tab-width: 8
2236  * fill-column: 78
2237  * ispell-local-dictionary: "american"
2238  * End:
2239  */

/* [<][>][^][v][top][bottom][index][help] */