root/drivers/pcmcia/pcmcia_cis.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pccard_read_tuple
  2. pccard_loop_tuple
  3. pcmcia_io_cfg_data_width
  4. pcmcia_do_loop_config
  5. pcmcia_loop_config
  6. pcmcia_do_loop_tuple
  7. pcmcia_loop_tuple
  8. pcmcia_do_get_tuple
  9. pcmcia_get_tuple
  10. pcmcia_do_get_mac
  11. pcmcia_get_mac_from_cis

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * PCMCIA high-level CIS access functions
   4  *
   5  * The initial developer of the original code is David A. Hinds
   6  * <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
   7  * are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
   8  *
   9  * Copyright (C) 1999        David A. Hinds
  10  * Copyright (C) 2004-2010   Dominik Brodowski
  11  */
  12 
  13 #include <linux/slab.h>
  14 #include <linux/module.h>
  15 #include <linux/kernel.h>
  16 #include <linux/netdevice.h>
  17 
  18 #include <pcmcia/cisreg.h>
  19 #include <pcmcia/cistpl.h>
  20 #include <pcmcia/ss.h>
  21 #include <pcmcia/ds.h>
  22 #include "cs_internal.h"
  23 
  24 
  25 /**
  26  * pccard_read_tuple() - internal CIS tuple access
  27  * @s:          the struct pcmcia_socket where the card is inserted
  28  * @function:   the device function we loop for
  29  * @code:       which CIS code shall we look for?
  30  * @parse:      buffer where the tuple shall be parsed (or NULL, if no parse)
  31  *
  32  * pccard_read_tuple() reads out one tuple and attempts to parse it
  33  */
  34 int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
  35                 cisdata_t code, void *parse)
  36 {
  37         tuple_t tuple;
  38         cisdata_t *buf;
  39         int ret;
  40 
  41         buf = kmalloc(256, GFP_KERNEL);
  42         if (buf == NULL) {
  43                 dev_warn(&s->dev, "no memory to read tuple\n");
  44                 return -ENOMEM;
  45         }
  46         tuple.DesiredTuple = code;
  47         tuple.Attributes = 0;
  48         if (function == BIND_FN_ALL)
  49                 tuple.Attributes = TUPLE_RETURN_COMMON;
  50         ret = pccard_get_first_tuple(s, function, &tuple);
  51         if (ret != 0)
  52                 goto done;
  53         tuple.TupleData = buf;
  54         tuple.TupleOffset = 0;
  55         tuple.TupleDataMax = 255;
  56         ret = pccard_get_tuple_data(s, &tuple);
  57         if (ret != 0)
  58                 goto done;
  59         ret = pcmcia_parse_tuple(&tuple, parse);
  60 done:
  61         kfree(buf);
  62         return ret;
  63 }
  64 
  65 
  66 /**
  67  * pccard_loop_tuple() - loop over tuples in the CIS
  68  * @s:          the struct pcmcia_socket where the card is inserted
  69  * @function:   the device function we loop for
  70  * @code:       which CIS code shall we look for?
  71  * @parse:      buffer where the tuple shall be parsed (or NULL, if no parse)
  72  * @priv_data:  private data to be passed to the loop_tuple function.
  73  * @loop_tuple: function to call for each CIS entry of type @function. IT
  74  *              gets passed the raw tuple, the paresed tuple (if @parse is
  75  *              set) and @priv_data.
  76  *
  77  * pccard_loop_tuple() loops over all CIS entries of type @function, and
  78  * calls the @loop_tuple function for each entry. If the call to @loop_tuple
  79  * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
  80  */
  81 int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
  82                       cisdata_t code, cisparse_t *parse, void *priv_data,
  83                       int (*loop_tuple) (tuple_t *tuple,
  84                                          cisparse_t *parse,
  85                                          void *priv_data))
  86 {
  87         tuple_t tuple;
  88         cisdata_t *buf;
  89         int ret;
  90 
  91         buf = kzalloc(256, GFP_KERNEL);
  92         if (buf == NULL) {
  93                 dev_warn(&s->dev, "no memory to read tuple\n");
  94                 return -ENOMEM;
  95         }
  96 
  97         tuple.TupleData = buf;
  98         tuple.TupleDataMax = 255;
  99         tuple.TupleOffset = 0;
 100         tuple.DesiredTuple = code;
 101         tuple.Attributes = 0;
 102 
 103         ret = pccard_get_first_tuple(s, function, &tuple);
 104         while (!ret) {
 105                 if (pccard_get_tuple_data(s, &tuple))
 106                         goto next_entry;
 107 
 108                 if (parse)
 109                         if (pcmcia_parse_tuple(&tuple, parse))
 110                                 goto next_entry;
 111 
 112                 ret = loop_tuple(&tuple, parse, priv_data);
 113                 if (!ret)
 114                         break;
 115 
 116 next_entry:
 117                 ret = pccard_get_next_tuple(s, function, &tuple);
 118         }
 119 
 120         kfree(buf);
 121         return ret;
 122 }
 123 
 124 
 125 /**
 126  * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
 127  */
 128 static int pcmcia_io_cfg_data_width(unsigned int flags)
 129 {
 130         if (!(flags & CISTPL_IO_8BIT))
 131                 return IO_DATA_PATH_WIDTH_16;
 132         if (!(flags & CISTPL_IO_16BIT))
 133                 return IO_DATA_PATH_WIDTH_8;
 134         return IO_DATA_PATH_WIDTH_AUTO;
 135 }
 136 
 137 
 138 struct pcmcia_cfg_mem {
 139         struct pcmcia_device *p_dev;
 140         int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
 141         void *priv_data;
 142         cisparse_t parse;
 143         cistpl_cftable_entry_t dflt;
 144 };
 145 
 146 /**
 147  * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
 148  *
 149  * pcmcia_do_loop_config() is the internal callback for the call from
 150  * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
 151  * by a struct pcmcia_cfg_mem.
 152  */
 153 static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
 154 {
 155         struct pcmcia_cfg_mem *cfg_mem = priv;
 156         struct pcmcia_device *p_dev = cfg_mem->p_dev;
 157         cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
 158         cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
 159         unsigned int flags = p_dev->config_flags;
 160         unsigned int vcc = p_dev->socket->socket.Vcc;
 161 
 162         dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
 163                 cfg->index, flags);
 164 
 165         /* default values */
 166         cfg_mem->p_dev->config_index = cfg->index;
 167         if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
 168                 cfg_mem->dflt = *cfg;
 169 
 170         /* check for matching Vcc? */
 171         if (flags & CONF_AUTO_CHECK_VCC) {
 172                 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
 173                         if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
 174                                 return -ENODEV;
 175                 } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
 176                         if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
 177                                 return -ENODEV;
 178                 }
 179         }
 180 
 181         /* set Vpp? */
 182         if (flags & CONF_AUTO_SET_VPP) {
 183                 if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
 184                         p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
 185                 else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
 186                         p_dev->vpp =
 187                                 dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
 188         }
 189 
 190         /* enable audio? */
 191         if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
 192                 p_dev->config_flags |= CONF_ENABLE_SPKR;
 193 
 194 
 195         /* IO window settings? */
 196         if (flags & CONF_AUTO_SET_IO) {
 197                 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
 198                 int i = 0;
 199 
 200                 p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
 201                 p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
 202                 if (io->nwin == 0)
 203                         return -ENODEV;
 204 
 205                 p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
 206                 p_dev->resource[0]->flags |=
 207                                         pcmcia_io_cfg_data_width(io->flags);
 208                 if (io->nwin > 1) {
 209                         /* For multifunction cards, by convention, we
 210                          * configure the network function with window 0,
 211                          * and serial with window 1 */
 212                         i = (io->win[1].len > io->win[0].len);
 213                         p_dev->resource[1]->flags = p_dev->resource[0]->flags;
 214                         p_dev->resource[1]->start = io->win[1-i].base;
 215                         p_dev->resource[1]->end = io->win[1-i].len;
 216                 }
 217                 p_dev->resource[0]->start = io->win[i].base;
 218                 p_dev->resource[0]->end = io->win[i].len;
 219                 p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
 220         }
 221 
 222         /* MEM window settings? */
 223         if (flags & CONF_AUTO_SET_IOMEM) {
 224                 /* so far, we only set one memory window */
 225                 cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
 226 
 227                 p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
 228                 if (mem->nwin == 0)
 229                         return -ENODEV;
 230 
 231                 p_dev->resource[2]->start = mem->win[0].host_addr;
 232                 p_dev->resource[2]->end = mem->win[0].len;
 233                 if (p_dev->resource[2]->end < 0x1000)
 234                         p_dev->resource[2]->end = 0x1000;
 235                 p_dev->card_addr = mem->win[0].card_addr;
 236         }
 237 
 238         dev_dbg(&p_dev->dev,
 239                 "checking configuration %x: %pr %pr %pr (%d lines)\n",
 240                 p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
 241                 p_dev->resource[2], p_dev->io_lines);
 242 
 243         return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
 244 }
 245 
 246 /**
 247  * pcmcia_loop_config() - loop over configuration options
 248  * @p_dev:      the struct pcmcia_device which we need to loop for.
 249  * @conf_check: function to call for each configuration option.
 250  *              It gets passed the struct pcmcia_device and private data
 251  *              being passed to pcmcia_loop_config()
 252  * @priv_data:  private data to be passed to the conf_check function.
 253  *
 254  * pcmcia_loop_config() loops over all configuration options, and calls
 255  * the driver-specific conf_check() for each one, checking whether
 256  * it is a valid one. Returns 0 on success or errorcode otherwise.
 257  */
 258 int pcmcia_loop_config(struct pcmcia_device *p_dev,
 259                        int      (*conf_check)   (struct pcmcia_device *p_dev,
 260                                                  void *priv_data),
 261                        void *priv_data)
 262 {
 263         struct pcmcia_cfg_mem *cfg_mem;
 264         int ret;
 265 
 266         cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
 267         if (cfg_mem == NULL)
 268                 return -ENOMEM;
 269 
 270         cfg_mem->p_dev = p_dev;
 271         cfg_mem->conf_check = conf_check;
 272         cfg_mem->priv_data = priv_data;
 273 
 274         ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
 275                                 CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
 276                                 cfg_mem, pcmcia_do_loop_config);
 277 
 278         kfree(cfg_mem);
 279         return ret;
 280 }
 281 EXPORT_SYMBOL(pcmcia_loop_config);
 282 
 283 
 284 struct pcmcia_loop_mem {
 285         struct pcmcia_device *p_dev;
 286         void *priv_data;
 287         int (*loop_tuple) (struct pcmcia_device *p_dev,
 288                            tuple_t *tuple,
 289                            void *priv_data);
 290 };
 291 
 292 /**
 293  * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
 294  *
 295  * pcmcia_do_loop_tuple() is the internal callback for the call from
 296  * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
 297  * by a struct pcmcia_cfg_mem.
 298  */
 299 static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
 300 {
 301         struct pcmcia_loop_mem *loop = priv;
 302 
 303         return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
 304 };
 305 
 306 /**
 307  * pcmcia_loop_tuple() - loop over tuples in the CIS
 308  * @p_dev:      the struct pcmcia_device which we need to loop for.
 309  * @code:       which CIS code shall we look for?
 310  * @priv_data:  private data to be passed to the loop_tuple function.
 311  * @loop_tuple: function to call for each CIS entry of type @function. IT
 312  *              gets passed the raw tuple and @priv_data.
 313  *
 314  * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
 315  * calls the @loop_tuple function for each entry. If the call to @loop_tuple
 316  * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
 317  */
 318 int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
 319                       int (*loop_tuple) (struct pcmcia_device *p_dev,
 320                                          tuple_t *tuple,
 321                                          void *priv_data),
 322                       void *priv_data)
 323 {
 324         struct pcmcia_loop_mem loop = {
 325                 .p_dev = p_dev,
 326                 .loop_tuple = loop_tuple,
 327                 .priv_data = priv_data};
 328 
 329         return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
 330                                  &loop, pcmcia_do_loop_tuple);
 331 }
 332 EXPORT_SYMBOL(pcmcia_loop_tuple);
 333 
 334 
 335 struct pcmcia_loop_get {
 336         size_t len;
 337         cisdata_t **buf;
 338 };
 339 
 340 /**
 341  * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
 342  *
 343  * pcmcia_do_get_tuple() is the internal callback for the call from
 344  * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
 345  * the first tuple, return 0 unconditionally. Create a memory buffer large
 346  * enough to hold the content of the tuple, and fill it with the tuple data.
 347  * The caller is responsible to free the buffer.
 348  */
 349 static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
 350                                void *priv)
 351 {
 352         struct pcmcia_loop_get *get = priv;
 353 
 354         *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
 355         if (*get->buf) {
 356                 get->len = tuple->TupleDataLen;
 357                 memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
 358         } else
 359                 dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
 360         return 0;
 361 }
 362 
 363 /**
 364  * pcmcia_get_tuple() - get first tuple from CIS
 365  * @p_dev:      the struct pcmcia_device which we need to loop for.
 366  * @code:       which CIS code shall we look for?
 367  * @buf:        pointer to store the buffer to.
 368  *
 369  * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
 370  * It returns the buffer length (or zero). The caller is responsible to free
 371  * the buffer passed in @buf.
 372  */
 373 size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
 374                         unsigned char **buf)
 375 {
 376         struct pcmcia_loop_get get = {
 377                 .len = 0,
 378                 .buf = buf,
 379         };
 380 
 381         *get.buf = NULL;
 382         pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
 383 
 384         return get.len;
 385 }
 386 EXPORT_SYMBOL(pcmcia_get_tuple);
 387 
 388 
 389 /**
 390  * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
 391  *
 392  * pcmcia_do_get_mac() is the internal callback for the call from
 393  * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
 394  * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
 395  * to struct net_device->dev_addr[i].
 396  */
 397 static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
 398                              void *priv)
 399 {
 400         struct net_device *dev = priv;
 401         int i;
 402 
 403         if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
 404                 return -EINVAL;
 405         if (tuple->TupleDataLen < ETH_ALEN + 2) {
 406                 dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
 407                         "LAN_NODE_ID\n");
 408                 return -EINVAL;
 409         }
 410 
 411         if (tuple->TupleData[1] != ETH_ALEN) {
 412                 dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
 413                 return -EINVAL;
 414         }
 415         for (i = 0; i < 6; i++)
 416                 dev->dev_addr[i] = tuple->TupleData[i+2];
 417         return 0;
 418 }
 419 
 420 /**
 421  * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
 422  * @p_dev:      the struct pcmcia_device for which we want the address.
 423  * @dev:        a properly prepared struct net_device to store the info to.
 424  *
 425  * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
 426  * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
 427  * must be set up properly by the driver (see examples!).
 428  */
 429 int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
 430 {
 431         return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
 432 }
 433 EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
 434 

/* [<][>][^][v][top][bottom][index][help] */