root/arch/mips/include/asm/dma.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. claim_dma_lock
  2. release_dma_lock
  3. enable_dma
  4. disable_dma
  5. clear_dma_ff
  6. set_dma_mode
  7. set_dma_page
  8. set_dma_addr
  9. set_dma_count
  10. get_dma_residue

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
   4  * Written by Hennus Bergman, 1992.
   5  * High DMA channel support & info by Hannu Savolainen
   6  * and John Boyd, Nov. 1992.
   7  *
   8  * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
   9  * and can only be used for expansion cards. Onboard DMA controllers, such
  10  * as the R4030 on Jazz boards behave totally different!
  11  */
  12 
  13 #ifndef _ASM_DMA_H
  14 #define _ASM_DMA_H
  15 
  16 #include <asm/io.h>                     /* need byte IO */
  17 #include <linux/spinlock.h>             /* And spinlocks */
  18 #include <linux/delay.h>
  19 
  20 
  21 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
  22 #define dma_outb        outb_p
  23 #else
  24 #define dma_outb        outb
  25 #endif
  26 
  27 #define dma_inb         inb
  28 
  29 /*
  30  * NOTES about DMA transfers:
  31  *
  32  *  controller 1: channels 0-3, byte operations, ports 00-1F
  33  *  controller 2: channels 4-7, word operations, ports C0-DF
  34  *
  35  *  - ALL registers are 8 bits only, regardless of transfer size
  36  *  - channel 4 is not used - cascades 1 into 2.
  37  *  - channels 0-3 are byte - addresses/counts are for physical bytes
  38  *  - channels 5-7 are word - addresses/counts are for physical words
  39  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  40  *  - transfer count loaded to registers is 1 less than actual count
  41  *  - controller 2 offsets are all even (2x offsets for controller 1)
  42  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
  43  *  - page registers for 0-3 use bit 0, represent 64K pages
  44  *
  45  * DMA transfers are limited to the lower 16MB of _physical_ memory.
  46  * Note that addresses loaded into registers must be _physical_ addresses,
  47  * not logical addresses (which may differ if paging is active).
  48  *
  49  *  Address mapping for channels 0-3:
  50  *
  51  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
  52  *    |  ...  |   |  ... |   |  ... |
  53  *    |  ...  |   |  ... |   |  ... |
  54  *    |  ...  |   |  ... |   |  ... |
  55  *   P7  ...  P0  A7 ... A0  A7 ... A0
  56  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
  57  *
  58  *  Address mapping for channels 5-7:
  59  *
  60  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
  61  *    |  ...  |   \   \   ... \  \  \  ... \  \
  62  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
  63  *    |  ...  |     \   \   ... \  \  \  ... \
  64  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
  65  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
  66  *
  67  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  68  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  69  * the hardware level, so odd-byte transfers aren't possible).
  70  *
  71  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  72  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
  73  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
  74  *
  75  */
  76 
  77 #ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN
  78 #define MAX_DMA_CHANNELS        8
  79 #endif
  80 
  81 /*
  82  * The maximum address in KSEG0 that we can perform a DMA transfer to on this
  83  * platform.  This describes only the PC style part of the DMA logic like on
  84  * Deskstations or Acer PICA but not the much more versatile DMA logic used
  85  * for the local devices on Acer PICA or Magnums.
  86  */
  87 #if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)
  88 /* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */
  89 #define MAX_DMA_ADDRESS         PAGE_OFFSET
  90 #else
  91 #define MAX_DMA_ADDRESS         (PAGE_OFFSET + 0x01000000)
  92 #endif
  93 #define MAX_DMA_PFN             PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))
  94 
  95 #ifndef MAX_DMA32_PFN
  96 #define MAX_DMA32_PFN           (1UL << (32 - PAGE_SHIFT))
  97 #endif
  98 
  99 /* 8237 DMA controllers */
 100 #define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
 101 #define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
 102 
 103 /* DMA controller registers */
 104 #define DMA1_CMD_REG            0x08    /* command register (w) */
 105 #define DMA1_STAT_REG           0x08    /* status register (r) */
 106 #define DMA1_REQ_REG            0x09    /* request register (w) */
 107 #define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
 108 #define DMA1_MODE_REG           0x0B    /* mode register (w) */
 109 #define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
 110 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
 111 #define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
 112 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
 113 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
 114 
 115 #define DMA2_CMD_REG            0xD0    /* command register (w) */
 116 #define DMA2_STAT_REG           0xD0    /* status register (r) */
 117 #define DMA2_REQ_REG            0xD2    /* request register (w) */
 118 #define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
 119 #define DMA2_MODE_REG           0xD6    /* mode register (w) */
 120 #define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
 121 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
 122 #define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
 123 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
 124 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
 125 
 126 #define DMA_ADDR_0              0x00    /* DMA address registers */
 127 #define DMA_ADDR_1              0x02
 128 #define DMA_ADDR_2              0x04
 129 #define DMA_ADDR_3              0x06
 130 #define DMA_ADDR_4              0xC0
 131 #define DMA_ADDR_5              0xC4
 132 #define DMA_ADDR_6              0xC8
 133 #define DMA_ADDR_7              0xCC
 134 
 135 #define DMA_CNT_0               0x01    /* DMA count registers */
 136 #define DMA_CNT_1               0x03
 137 #define DMA_CNT_2               0x05
 138 #define DMA_CNT_3               0x07
 139 #define DMA_CNT_4               0xC2
 140 #define DMA_CNT_5               0xC6
 141 #define DMA_CNT_6               0xCA
 142 #define DMA_CNT_7               0xCE
 143 
 144 #define DMA_PAGE_0              0x87    /* DMA page registers */
 145 #define DMA_PAGE_1              0x83
 146 #define DMA_PAGE_2              0x81
 147 #define DMA_PAGE_3              0x82
 148 #define DMA_PAGE_5              0x8B
 149 #define DMA_PAGE_6              0x89
 150 #define DMA_PAGE_7              0x8A
 151 
 152 #define DMA_MODE_READ   0x44    /* I/O to memory, no autoinit, increment, single mode */
 153 #define DMA_MODE_WRITE  0x48    /* memory to I/O, no autoinit, increment, single mode */
 154 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
 155 
 156 #define DMA_AUTOINIT    0x10
 157 
 158 extern spinlock_t  dma_spin_lock;
 159 
 160 static __inline__ unsigned long claim_dma_lock(void)
 161 {
 162         unsigned long flags;
 163         spin_lock_irqsave(&dma_spin_lock, flags);
 164         return flags;
 165 }
 166 
 167 static __inline__ void release_dma_lock(unsigned long flags)
 168 {
 169         spin_unlock_irqrestore(&dma_spin_lock, flags);
 170 }
 171 
 172 /* enable/disable a specific DMA channel */
 173 static __inline__ void enable_dma(unsigned int dmanr)
 174 {
 175         if (dmanr<=3)
 176                 dma_outb(dmanr,  DMA1_MASK_REG);
 177         else
 178                 dma_outb(dmanr & 3,  DMA2_MASK_REG);
 179 }
 180 
 181 static __inline__ void disable_dma(unsigned int dmanr)
 182 {
 183         if (dmanr<=3)
 184                 dma_outb(dmanr | 4,  DMA1_MASK_REG);
 185         else
 186                 dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
 187 }
 188 
 189 /* Clear the 'DMA Pointer Flip Flop'.
 190  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
 191  * Use this once to initialize the FF to a known state.
 192  * After that, keep track of it. :-)
 193  * --- In order to do that, the DMA routines below should ---
 194  * --- only be used while holding the DMA lock ! ---
 195  */
 196 static __inline__ void clear_dma_ff(unsigned int dmanr)
 197 {
 198         if (dmanr<=3)
 199                 dma_outb(0,  DMA1_CLEAR_FF_REG);
 200         else
 201                 dma_outb(0,  DMA2_CLEAR_FF_REG);
 202 }
 203 
 204 /* set mode (above) for a specific DMA channel */
 205 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
 206 {
 207         if (dmanr<=3)
 208                 dma_outb(mode | dmanr,  DMA1_MODE_REG);
 209         else
 210                 dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
 211 }
 212 
 213 /* Set only the page register bits of the transfer address.
 214  * This is used for successive transfers when we know the contents of
 215  * the lower 16 bits of the DMA current address register, but a 64k boundary
 216  * may have been crossed.
 217  */
 218 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
 219 {
 220         switch(dmanr) {
 221                 case 0:
 222                         dma_outb(pagenr, DMA_PAGE_0);
 223                         break;
 224                 case 1:
 225                         dma_outb(pagenr, DMA_PAGE_1);
 226                         break;
 227                 case 2:
 228                         dma_outb(pagenr, DMA_PAGE_2);
 229                         break;
 230                 case 3:
 231                         dma_outb(pagenr, DMA_PAGE_3);
 232                         break;
 233                 case 5:
 234                         dma_outb(pagenr & 0xfe, DMA_PAGE_5);
 235                         break;
 236                 case 6:
 237                         dma_outb(pagenr & 0xfe, DMA_PAGE_6);
 238                         break;
 239                 case 7:
 240                         dma_outb(pagenr & 0xfe, DMA_PAGE_7);
 241                         break;
 242         }
 243 }
 244 
 245 
 246 /* Set transfer address & page bits for specific DMA channel.
 247  * Assumes dma flipflop is clear.
 248  */
 249 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
 250 {
 251         set_dma_page(dmanr, a>>16);
 252         if (dmanr <= 3)  {
 253             dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 254             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 255         }  else  {
 256             dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 257             dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 258         }
 259 }
 260 
 261 
 262 /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
 263  * a specific DMA channel.
 264  * You must ensure the parameters are valid.
 265  * NOTE: from a manual: "the number of transfers is one more
 266  * than the initial word count"! This is taken into account.
 267  * Assumes dma flip-flop is clear.
 268  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
 269  */
 270 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
 271 {
 272         count--;
 273         if (dmanr <= 3)  {
 274             dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 275             dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 276         } else {
 277             dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 278             dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 279         }
 280 }
 281 
 282 
 283 /* Get DMA residue count. After a DMA transfer, this
 284  * should return zero. Reading this while a DMA transfer is
 285  * still in progress will return unpredictable results.
 286  * If called before the channel has been used, it may return 1.
 287  * Otherwise, it returns the number of _bytes_ left to transfer.
 288  *
 289  * Assumes DMA flip-flop is clear.
 290  */
 291 static __inline__ int get_dma_residue(unsigned int dmanr)
 292 {
 293         unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
 294                                          : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
 295 
 296         /* using short to get 16-bit wrap around */
 297         unsigned short count;
 298 
 299         count = 1 + dma_inb(io_port);
 300         count += dma_inb(io_port) << 8;
 301 
 302         return (dmanr<=3)? count : (count<<1);
 303 }
 304 
 305 
 306 /* These are in kernel/dma.c: */
 307 extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
 308 extern void free_dma(unsigned int dmanr);       /* release it again */
 309 
 310 /* From PCI */
 311 
 312 #ifdef CONFIG_PCI
 313 extern int isa_dma_bridge_buggy;
 314 #else
 315 #define isa_dma_bridge_buggy    (0)
 316 #endif
 317 
 318 #endif /* _ASM_DMA_H */

/* [<][>][^][v][top][bottom][index][help] */