root/arch/mips/cavium-octeon/octeon-platform.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. octeon2_usb_reset
  2. octeon2_usb_clocks_start
  3. octeon2_usb_clocks_stop
  4. octeon_ehci_power_on
  5. octeon_ehci_power_off
  6. octeon_ehci_hw_start
  7. octeon_ehci_device_init
  8. octeon_ohci_power_on
  9. octeon_ohci_power_off
  10. octeon_ohci_hw_start
  11. octeon_ohci_device_init
  12. octeon_rng_device_init
  13. octeon_has_88e1145
  14. octeon_has_fixed_link
  15. octeon_fdt_set_phy
  16. octeon_fdt_set_mac_addr
  17. octeon_fdt_rm_ethernet
  18. _octeon_rx_tx_delay
  19. octeon_rx_tx_delay
  20. octeon_fdt_pip_port
  21. octeon_fdt_pip_iface
  22. octeon_fill_mac_addresses
  23. octeon_prune_device_tree
  24. octeon_publish_devices

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * Copyright (C) 2004-2017 Cavium, Inc.
   7  * Copyright (C) 2008 Wind River Systems
   8  */
   9 
  10 #include <linux/etherdevice.h>
  11 #include <linux/of_platform.h>
  12 #include <linux/of_fdt.h>
  13 #include <linux/libfdt.h>
  14 
  15 #include <asm/octeon/octeon.h>
  16 #include <asm/octeon/cvmx-helper-board.h>
  17 
  18 #ifdef CONFIG_USB
  19 #include <linux/usb/ehci_def.h>
  20 #include <linux/usb/ehci_pdriver.h>
  21 #include <linux/usb/ohci_pdriver.h>
  22 #include <asm/octeon/cvmx-uctlx-defs.h>
  23 
  24 #define CVMX_UAHCX_EHCI_USBCMD  (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
  25 #define CVMX_UAHCX_OHCI_USBCMD  (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
  26 
  27 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
  28 
  29 static int octeon2_usb_clock_start_cnt;
  30 
  31 static int __init octeon2_usb_reset(void)
  32 {
  33         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
  34         u32 ucmd;
  35 
  36         if (!OCTEON_IS_OCTEON2())
  37                 return 0;
  38 
  39         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
  40         if (clk_rst_ctl.s.hrst) {
  41                 ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
  42                 ucmd &= ~CMD_RUN;
  43                 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
  44                 mdelay(2);
  45                 ucmd |= CMD_RESET;
  46                 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
  47                 ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
  48                 ucmd |= CMD_RUN;
  49                 cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
  50         }
  51 
  52         return 0;
  53 }
  54 arch_initcall(octeon2_usb_reset);
  55 
  56 static void octeon2_usb_clocks_start(struct device *dev)
  57 {
  58         u64 div;
  59         union cvmx_uctlx_if_ena if_ena;
  60         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
  61         union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
  62         int i;
  63         unsigned long io_clk_64_to_ns;
  64         u32 clock_rate = 12000000;
  65         bool is_crystal_clock = false;
  66 
  67 
  68         mutex_lock(&octeon2_usb_clocks_mutex);
  69 
  70         octeon2_usb_clock_start_cnt++;
  71         if (octeon2_usb_clock_start_cnt != 1)
  72                 goto exit;
  73 
  74         io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
  75 
  76         if (dev->of_node) {
  77                 struct device_node *uctl_node;
  78                 const char *clock_type;
  79 
  80                 uctl_node = of_get_parent(dev->of_node);
  81                 if (!uctl_node) {
  82                         dev_err(dev, "No UCTL device node\n");
  83                         goto exit;
  84                 }
  85                 i = of_property_read_u32(uctl_node,
  86                                          "refclk-frequency", &clock_rate);
  87                 if (i) {
  88                         dev_err(dev, "No UCTL \"refclk-frequency\"\n");
  89                         goto exit;
  90                 }
  91                 i = of_property_read_string(uctl_node,
  92                                             "refclk-type", &clock_type);
  93 
  94                 if (!i && strcmp("crystal", clock_type) == 0)
  95                         is_crystal_clock = true;
  96         }
  97 
  98         /*
  99          * Step 1: Wait for voltages stable.  That surely happened
 100          * before starting the kernel.
 101          *
 102          * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
 103          */
 104         if_ena.u64 = 0;
 105         if_ena.s.en = 1;
 106         cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
 107 
 108         for (i = 0; i <= 1; i++) {
 109                 port_ctl_status.u64 =
 110                         cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
 111                 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
 112                 port_ctl_status.s.txvreftune = 15;
 113                 port_ctl_status.s.txrisetune = 1;
 114                 port_ctl_status.s.txpreemphasistune = 1;
 115                 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
 116                                port_ctl_status.u64);
 117         }
 118 
 119         /* Step 3: Configure the reference clock, PHY, and HCLK */
 120         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
 121 
 122         /*
 123          * If the UCTL looks like it has already been started, skip
 124          * the initialization, otherwise bus errors are obtained.
 125          */
 126         if (clk_rst_ctl.s.hrst)
 127                 goto end_clock;
 128         /* 3a */
 129         clk_rst_ctl.s.p_por = 1;
 130         clk_rst_ctl.s.hrst = 0;
 131         clk_rst_ctl.s.p_prst = 0;
 132         clk_rst_ctl.s.h_clkdiv_rst = 0;
 133         clk_rst_ctl.s.o_clkdiv_rst = 0;
 134         clk_rst_ctl.s.h_clkdiv_en = 0;
 135         clk_rst_ctl.s.o_clkdiv_en = 0;
 136         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 137 
 138         /* 3b */
 139         clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
 140         switch (clock_rate) {
 141         default:
 142                 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
 143                         clock_rate);
 144                 /* Fall through */
 145         case 12000000:
 146                 clk_rst_ctl.s.p_refclk_div = 0;
 147                 break;
 148         case 24000000:
 149                 clk_rst_ctl.s.p_refclk_div = 1;
 150                 break;
 151         case 48000000:
 152                 clk_rst_ctl.s.p_refclk_div = 2;
 153                 break;
 154         }
 155         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 156 
 157         /* 3c */
 158         div = octeon_get_io_clock_rate() / 130000000ull;
 159 
 160         switch (div) {
 161         case 0:
 162                 div = 1;
 163                 break;
 164         case 1:
 165         case 2:
 166         case 3:
 167         case 4:
 168                 break;
 169         case 5:
 170                 div = 4;
 171                 break;
 172         case 6:
 173         case 7:
 174                 div = 6;
 175                 break;
 176         case 8:
 177         case 9:
 178         case 10:
 179         case 11:
 180                 div = 8;
 181                 break;
 182         default:
 183                 div = 12;
 184                 break;
 185         }
 186         clk_rst_ctl.s.h_div = div;
 187         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 188         /* Read it back, */
 189         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
 190         clk_rst_ctl.s.h_clkdiv_en = 1;
 191         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 192         /* 3d */
 193         clk_rst_ctl.s.h_clkdiv_rst = 1;
 194         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 195 
 196         /* 3e: delay 64 io clocks */
 197         ndelay(io_clk_64_to_ns);
 198 
 199         /*
 200          * Step 4: Program the power-on reset field in the UCTL
 201          * clock-reset-control register.
 202          */
 203         clk_rst_ctl.s.p_por = 0;
 204         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 205 
 206         /* Step 5:    Wait 3 ms for the PHY clock to start. */
 207         mdelay(3);
 208 
 209         /* Steps 6..9 for ATE only, are skipped. */
 210 
 211         /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
 212         /* 10a */
 213         clk_rst_ctl.s.o_clkdiv_rst = 1;
 214         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 215 
 216         /* 10b */
 217         clk_rst_ctl.s.o_clkdiv_en = 1;
 218         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 219 
 220         /* 10c */
 221         ndelay(io_clk_64_to_ns);
 222 
 223         /*
 224          * Step 11: Program the PHY reset field:
 225          * UCTL0_CLK_RST_CTL[P_PRST] = 1
 226          */
 227         clk_rst_ctl.s.p_prst = 1;
 228         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 229 
 230         /* Step 11b */
 231         udelay(1);
 232 
 233         /* Step 11c */
 234         clk_rst_ctl.s.p_prst = 0;
 235         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 236 
 237         /* Step 11d */
 238         mdelay(1);
 239 
 240         /* Step 11e */
 241         clk_rst_ctl.s.p_prst = 1;
 242         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 243 
 244         /* Step 12: Wait 1 uS. */
 245         udelay(1);
 246 
 247         /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
 248         clk_rst_ctl.s.hrst = 1;
 249         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 250 
 251 end_clock:
 252         /* Set uSOF cycle period to 60,000 bits. */
 253         cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
 254 
 255 exit:
 256         mutex_unlock(&octeon2_usb_clocks_mutex);
 257 }
 258 
 259 static void octeon2_usb_clocks_stop(void)
 260 {
 261         mutex_lock(&octeon2_usb_clocks_mutex);
 262         octeon2_usb_clock_start_cnt--;
 263         mutex_unlock(&octeon2_usb_clocks_mutex);
 264 }
 265 
 266 static int octeon_ehci_power_on(struct platform_device *pdev)
 267 {
 268         octeon2_usb_clocks_start(&pdev->dev);
 269         return 0;
 270 }
 271 
 272 static void octeon_ehci_power_off(struct platform_device *pdev)
 273 {
 274         octeon2_usb_clocks_stop();
 275 }
 276 
 277 static struct usb_ehci_pdata octeon_ehci_pdata = {
 278         /* Octeon EHCI matches CPU endianness. */
 279 #ifdef __BIG_ENDIAN
 280         .big_endian_mmio        = 1,
 281 #endif
 282         /*
 283          * We can DMA from anywhere. But the descriptors must be in
 284          * the lower 4GB.
 285          */
 286         .dma_mask_64    = 0,
 287         .power_on       = octeon_ehci_power_on,
 288         .power_off      = octeon_ehci_power_off,
 289 };
 290 
 291 static void __init octeon_ehci_hw_start(struct device *dev)
 292 {
 293         union cvmx_uctlx_ehci_ctl ehci_ctl;
 294 
 295         octeon2_usb_clocks_start(dev);
 296 
 297         ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
 298         /* Use 64-bit addressing. */
 299         ehci_ctl.s.ehci_64b_addr_en = 1;
 300         ehci_ctl.s.l2c_addr_msb = 0;
 301 #ifdef __BIG_ENDIAN
 302         ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
 303         ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
 304 #else
 305         ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
 306         ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
 307         ehci_ctl.s.inv_reg_a2 = 1;
 308 #endif
 309         cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
 310 
 311         octeon2_usb_clocks_stop();
 312 }
 313 
 314 static int __init octeon_ehci_device_init(void)
 315 {
 316         struct platform_device *pd;
 317         struct device_node *ehci_node;
 318         int ret = 0;
 319 
 320         ehci_node = of_find_node_by_name(NULL, "ehci");
 321         if (!ehci_node)
 322                 return 0;
 323 
 324         pd = of_find_device_by_node(ehci_node);
 325         of_node_put(ehci_node);
 326         if (!pd)
 327                 return 0;
 328 
 329         pd->dev.platform_data = &octeon_ehci_pdata;
 330         octeon_ehci_hw_start(&pd->dev);
 331 
 332         return ret;
 333 }
 334 device_initcall(octeon_ehci_device_init);
 335 
 336 static int octeon_ohci_power_on(struct platform_device *pdev)
 337 {
 338         octeon2_usb_clocks_start(&pdev->dev);
 339         return 0;
 340 }
 341 
 342 static void octeon_ohci_power_off(struct platform_device *pdev)
 343 {
 344         octeon2_usb_clocks_stop();
 345 }
 346 
 347 static struct usb_ohci_pdata octeon_ohci_pdata = {
 348         /* Octeon OHCI matches CPU endianness. */
 349 #ifdef __BIG_ENDIAN
 350         .big_endian_mmio        = 1,
 351 #endif
 352         .power_on       = octeon_ohci_power_on,
 353         .power_off      = octeon_ohci_power_off,
 354 };
 355 
 356 static void __init octeon_ohci_hw_start(struct device *dev)
 357 {
 358         union cvmx_uctlx_ohci_ctl ohci_ctl;
 359 
 360         octeon2_usb_clocks_start(dev);
 361 
 362         ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
 363         ohci_ctl.s.l2c_addr_msb = 0;
 364 #ifdef __BIG_ENDIAN
 365         ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
 366         ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
 367 #else
 368         ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
 369         ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
 370         ohci_ctl.s.inv_reg_a2 = 1;
 371 #endif
 372         cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
 373 
 374         octeon2_usb_clocks_stop();
 375 }
 376 
 377 static int __init octeon_ohci_device_init(void)
 378 {
 379         struct platform_device *pd;
 380         struct device_node *ohci_node;
 381         int ret = 0;
 382 
 383         ohci_node = of_find_node_by_name(NULL, "ohci");
 384         if (!ohci_node)
 385                 return 0;
 386 
 387         pd = of_find_device_by_node(ohci_node);
 388         of_node_put(ohci_node);
 389         if (!pd)
 390                 return 0;
 391 
 392         pd->dev.platform_data = &octeon_ohci_pdata;
 393         octeon_ohci_hw_start(&pd->dev);
 394 
 395         return ret;
 396 }
 397 device_initcall(octeon_ohci_device_init);
 398 
 399 #endif /* CONFIG_USB */
 400 
 401 /* Octeon Random Number Generator.  */
 402 static int __init octeon_rng_device_init(void)
 403 {
 404         struct platform_device *pd;
 405         int ret = 0;
 406 
 407         struct resource rng_resources[] = {
 408                 {
 409                         .flags  = IORESOURCE_MEM,
 410                         .start  = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
 411                         .end    = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
 412                 }, {
 413                         .flags  = IORESOURCE_MEM,
 414                         .start  = cvmx_build_io_address(8, 0),
 415                         .end    = cvmx_build_io_address(8, 0) + 0x7
 416                 }
 417         };
 418 
 419         pd = platform_device_alloc("octeon_rng", -1);
 420         if (!pd) {
 421                 ret = -ENOMEM;
 422                 goto out;
 423         }
 424 
 425         ret = platform_device_add_resources(pd, rng_resources,
 426                                             ARRAY_SIZE(rng_resources));
 427         if (ret)
 428                 goto fail;
 429 
 430         ret = platform_device_add(pd);
 431         if (ret)
 432                 goto fail;
 433 
 434         return ret;
 435 fail:
 436         platform_device_put(pd);
 437 
 438 out:
 439         return ret;
 440 }
 441 device_initcall(octeon_rng_device_init);
 442 
 443 static const struct of_device_id octeon_ids[] __initconst = {
 444         { .compatible = "simple-bus", },
 445         { .compatible = "cavium,octeon-6335-uctl", },
 446         { .compatible = "cavium,octeon-5750-usbn", },
 447         { .compatible = "cavium,octeon-3860-bootbus", },
 448         { .compatible = "cavium,mdio-mux", },
 449         { .compatible = "gpio-leds", },
 450         { .compatible = "cavium,octeon-7130-usb-uctl", },
 451         {},
 452 };
 453 
 454 static bool __init octeon_has_88e1145(void)
 455 {
 456         return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
 457                !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
 458                !OCTEON_IS_MODEL(OCTEON_CN56XX);
 459 }
 460 
 461 static bool __init octeon_has_fixed_link(int ipd_port)
 462 {
 463         switch (cvmx_sysinfo_get()->board_type) {
 464         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 465         case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 466         case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
 467         case CVMX_BOARD_TYPE_CUST_NB5:
 468         case CVMX_BOARD_TYPE_EBH3100:
 469                 /* Port 1 on these boards is always gigabit. */
 470                 return ipd_port == 1;
 471         case CVMX_BOARD_TYPE_BBGW_REF:
 472                 /* Ports 0 and 1 connect to the switch. */
 473                 return ipd_port == 0 || ipd_port == 1;
 474         }
 475         return false;
 476 }
 477 
 478 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
 479 {
 480         const __be32 *phy_handle;
 481         const __be32 *alt_phy_handle;
 482         const __be32 *reg;
 483         u32 phandle;
 484         int phy;
 485         int alt_phy;
 486         const char *p;
 487         int current_len;
 488         char new_name[20];
 489 
 490         phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
 491         if (!phy_handle)
 492                 return;
 493 
 494         phandle = be32_to_cpup(phy_handle);
 495         phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
 496 
 497         alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
 498         if (alt_phy_handle) {
 499                 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
 500 
 501                 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
 502         } else {
 503                 alt_phy = -1;
 504         }
 505 
 506         if (phy_addr < 0 || phy < 0) {
 507                 /* Delete the PHY things */
 508                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
 509                 /* This one may fail */
 510                 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
 511                 if (phy >= 0)
 512                         fdt_nop_node(initial_boot_params, phy);
 513                 if (alt_phy >= 0)
 514                         fdt_nop_node(initial_boot_params, alt_phy);
 515                 return;
 516         }
 517 
 518         if (phy_addr >= 256 && alt_phy > 0) {
 519                 const struct fdt_property *phy_prop;
 520                 struct fdt_property *alt_prop;
 521                 fdt32_t phy_handle_name;
 522 
 523                 /* Use the alt phy node instead.*/
 524                 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
 525                 phy_handle_name = phy_prop->nameoff;
 526                 fdt_nop_node(initial_boot_params, phy);
 527                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
 528                 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
 529                 alt_prop->nameoff = phy_handle_name;
 530                 phy = alt_phy;
 531         }
 532 
 533         phy_addr &= 0xff;
 534 
 535         if (octeon_has_88e1145()) {
 536                 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
 537                 memset(new_name, 0, sizeof(new_name));
 538                 strcpy(new_name, "marvell,88e1145");
 539                 p = fdt_getprop(initial_boot_params, phy, "compatible",
 540                                 &current_len);
 541                 if (p && current_len >= strlen(new_name))
 542                         fdt_setprop_inplace(initial_boot_params, phy,
 543                                         "compatible", new_name, current_len);
 544         }
 545 
 546         reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
 547         if (phy_addr == be32_to_cpup(reg))
 548                 return;
 549 
 550         fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
 551 
 552         snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
 553 
 554         p = fdt_get_name(initial_boot_params, phy, &current_len);
 555         if (p && current_len == strlen(new_name))
 556                 fdt_set_name(initial_boot_params, phy, new_name);
 557         else
 558                 pr_err("Error: could not rename ethernet phy: <%s>", p);
 559 }
 560 
 561 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
 562 {
 563         const u8 *old_mac;
 564         int old_len;
 565         u8 new_mac[6];
 566         u64 mac = *pmac;
 567         int r;
 568 
 569         old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
 570                               &old_len);
 571         if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
 572                 return;
 573 
 574         new_mac[0] = (mac >> 40) & 0xff;
 575         new_mac[1] = (mac >> 32) & 0xff;
 576         new_mac[2] = (mac >> 24) & 0xff;
 577         new_mac[3] = (mac >> 16) & 0xff;
 578         new_mac[4] = (mac >> 8) & 0xff;
 579         new_mac[5] = mac & 0xff;
 580 
 581         r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
 582                                 new_mac, sizeof(new_mac));
 583 
 584         if (r) {
 585                 pr_err("Setting \"local-mac-address\" failed %d", r);
 586                 return;
 587         }
 588         *pmac = mac + 1;
 589 }
 590 
 591 static void __init octeon_fdt_rm_ethernet(int node)
 592 {
 593         const __be32 *phy_handle;
 594 
 595         phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
 596         if (phy_handle) {
 597                 u32 ph = be32_to_cpup(phy_handle);
 598                 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
 599 
 600                 if (p >= 0)
 601                         fdt_nop_node(initial_boot_params, p);
 602         }
 603         fdt_nop_node(initial_boot_params, node);
 604 }
 605 
 606 static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
 607 {
 608         fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
 609                                  rx_delay);
 610         fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
 611                                  tx_delay);
 612 }
 613 
 614 static void __init octeon_rx_tx_delay(int eth, int iface, int port)
 615 {
 616         switch (cvmx_sysinfo_get()->board_type) {
 617         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 618                 if (iface == 0) {
 619                         if (port == 0) {
 620                                 /*
 621                                  * Boards with gigabit WAN ports need a
 622                                  * different setting that is compatible with
 623                                  * 100 Mbit settings
 624                                  */
 625                                 _octeon_rx_tx_delay(eth, 0xc, 0x0c);
 626                                 return;
 627                         } else if (port == 1) {
 628                                 /* Different config for switch port. */
 629                                 _octeon_rx_tx_delay(eth, 0x0, 0x0);
 630                                 return;
 631                         }
 632                 }
 633                 break;
 634         case CVMX_BOARD_TYPE_UBNT_E100:
 635                 if (iface == 0 && port <= 2) {
 636                         _octeon_rx_tx_delay(eth, 0x0, 0x10);
 637                         return;
 638                 }
 639                 break;
 640         }
 641         fdt_nop_property(initial_boot_params, eth, "rx-delay");
 642         fdt_nop_property(initial_boot_params, eth, "tx-delay");
 643 }
 644 
 645 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
 646 {
 647         char name_buffer[20];
 648         int eth;
 649         int phy_addr;
 650         int ipd_port;
 651         int fixed_link;
 652 
 653         snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
 654         eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
 655         if (eth < 0)
 656                 return;
 657         if (p > max) {
 658                 pr_debug("Deleting port %x:%x\n", i, p);
 659                 octeon_fdt_rm_ethernet(eth);
 660                 return;
 661         }
 662         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
 663                 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
 664         else
 665                 ipd_port = 16 * i + p;
 666 
 667         phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
 668         octeon_fdt_set_phy(eth, phy_addr);
 669 
 670         fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
 671         if (fixed_link < 0)
 672                 WARN_ON(octeon_has_fixed_link(ipd_port));
 673         else if (!octeon_has_fixed_link(ipd_port))
 674                 fdt_nop_node(initial_boot_params, fixed_link);
 675         octeon_rx_tx_delay(eth, i, p);
 676 }
 677 
 678 static void __init octeon_fdt_pip_iface(int pip, int idx)
 679 {
 680         char name_buffer[20];
 681         int iface;
 682         int p;
 683         int count = 0;
 684 
 685         snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
 686         iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
 687         if (iface < 0)
 688                 return;
 689 
 690         if (cvmx_helper_interface_enumerate(idx) == 0)
 691                 count = cvmx_helper_ports_on_interface(idx);
 692 
 693         for (p = 0; p < 16; p++)
 694                 octeon_fdt_pip_port(iface, idx, p, count - 1);
 695 }
 696 
 697 void __init octeon_fill_mac_addresses(void)
 698 {
 699         const char *alias_prop;
 700         char name_buffer[20];
 701         u64 mac_addr_base;
 702         int aliases;
 703         int pip;
 704         int i;
 705 
 706         aliases = fdt_path_offset(initial_boot_params, "/aliases");
 707         if (aliases < 0)
 708                 return;
 709 
 710         mac_addr_base =
 711                 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
 712                 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
 713                 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
 714                 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
 715                 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
 716                  (octeon_bootinfo->mac_addr_base[5] & 0xffull);
 717 
 718         for (i = 0; i < 2; i++) {
 719                 int mgmt;
 720 
 721                 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
 722                 alias_prop = fdt_getprop(initial_boot_params, aliases,
 723                                          name_buffer, NULL);
 724                 if (!alias_prop)
 725                         continue;
 726                 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
 727                 if (mgmt < 0)
 728                         continue;
 729                 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
 730         }
 731 
 732         alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
 733         if (!alias_prop)
 734                 return;
 735 
 736         pip = fdt_path_offset(initial_boot_params, alias_prop);
 737         if (pip < 0)
 738                 return;
 739 
 740         for (i = 0; i <= 4; i++) {
 741                 int iface;
 742                 int p;
 743 
 744                 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
 745                 iface = fdt_subnode_offset(initial_boot_params, pip,
 746                                            name_buffer);
 747                 if (iface < 0)
 748                         continue;
 749                 for (p = 0; p < 16; p++) {
 750                         int eth;
 751 
 752                         snprintf(name_buffer, sizeof(name_buffer),
 753                                  "ethernet@%x", p);
 754                         eth = fdt_subnode_offset(initial_boot_params, iface,
 755                                                  name_buffer);
 756                         if (eth < 0)
 757                                 continue;
 758                         octeon_fdt_set_mac_addr(eth, &mac_addr_base);
 759                 }
 760         }
 761 }
 762 
 763 int __init octeon_prune_device_tree(void)
 764 {
 765         int i, max_port, uart_mask;
 766         const char *pip_path;
 767         const char *alias_prop;
 768         char name_buffer[20];
 769         int aliases;
 770 
 771         if (fdt_check_header(initial_boot_params))
 772                 panic("Corrupt Device Tree.");
 773 
 774         WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
 775              "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
 776              cvmx_board_type_to_string(octeon_bootinfo->board_type));
 777 
 778         aliases = fdt_path_offset(initial_boot_params, "/aliases");
 779         if (aliases < 0) {
 780                 pr_err("Error: No /aliases node in device tree.");
 781                 return -EINVAL;
 782         }
 783 
 784         if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
 785                 max_port = 2;
 786         else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
 787                 max_port = 1;
 788         else
 789                 max_port = 0;
 790 
 791         if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
 792                 max_port = 0;
 793 
 794         for (i = 0; i < 2; i++) {
 795                 int mgmt;
 796 
 797                 snprintf(name_buffer, sizeof(name_buffer),
 798                          "mix%d", i);
 799                 alias_prop = fdt_getprop(initial_boot_params, aliases,
 800                                         name_buffer, NULL);
 801                 if (alias_prop) {
 802                         mgmt = fdt_path_offset(initial_boot_params, alias_prop);
 803                         if (mgmt < 0)
 804                                 continue;
 805                         if (i >= max_port) {
 806                                 pr_debug("Deleting mix%d\n", i);
 807                                 octeon_fdt_rm_ethernet(mgmt);
 808                                 fdt_nop_property(initial_boot_params, aliases,
 809                                                  name_buffer);
 810                         } else {
 811                                 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
 812 
 813                                 octeon_fdt_set_phy(mgmt, phy_addr);
 814                         }
 815                 }
 816         }
 817 
 818         pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
 819         if (pip_path) {
 820                 int pip = fdt_path_offset(initial_boot_params, pip_path);
 821 
 822                 if (pip  >= 0)
 823                         for (i = 0; i <= 4; i++)
 824                                 octeon_fdt_pip_iface(pip, i);
 825         }
 826 
 827         /* I2C */
 828         if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
 829             OCTEON_IS_MODEL(OCTEON_CN63XX) ||
 830             OCTEON_IS_MODEL(OCTEON_CN68XX) ||
 831             OCTEON_IS_MODEL(OCTEON_CN56XX))
 832                 max_port = 2;
 833         else
 834                 max_port = 1;
 835 
 836         for (i = 0; i < 2; i++) {
 837                 int i2c;
 838 
 839                 snprintf(name_buffer, sizeof(name_buffer),
 840                          "twsi%d", i);
 841                 alias_prop = fdt_getprop(initial_boot_params, aliases,
 842                                         name_buffer, NULL);
 843 
 844                 if (alias_prop) {
 845                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
 846                         if (i2c < 0)
 847                                 continue;
 848                         if (i >= max_port) {
 849                                 pr_debug("Deleting twsi%d\n", i);
 850                                 fdt_nop_node(initial_boot_params, i2c);
 851                                 fdt_nop_property(initial_boot_params, aliases,
 852                                                  name_buffer);
 853                         }
 854                 }
 855         }
 856 
 857         /* SMI/MDIO */
 858         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
 859                 max_port = 4;
 860         else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
 861                  OCTEON_IS_MODEL(OCTEON_CN63XX) ||
 862                  OCTEON_IS_MODEL(OCTEON_CN56XX))
 863                 max_port = 2;
 864         else
 865                 max_port = 1;
 866 
 867         for (i = 0; i < 2; i++) {
 868                 int i2c;
 869 
 870                 snprintf(name_buffer, sizeof(name_buffer),
 871                          "smi%d", i);
 872                 alias_prop = fdt_getprop(initial_boot_params, aliases,
 873                                         name_buffer, NULL);
 874                 if (alias_prop) {
 875                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
 876                         if (i2c < 0)
 877                                 continue;
 878                         if (i >= max_port) {
 879                                 pr_debug("Deleting smi%d\n", i);
 880                                 fdt_nop_node(initial_boot_params, i2c);
 881                                 fdt_nop_property(initial_boot_params, aliases,
 882                                                  name_buffer);
 883                         }
 884                 }
 885         }
 886 
 887         /* Serial */
 888         uart_mask = 3;
 889 
 890         /* Right now CN52XX is the only chip with a third uart */
 891         if (OCTEON_IS_MODEL(OCTEON_CN52XX))
 892                 uart_mask |= 4; /* uart2 */
 893 
 894         for (i = 0; i < 3; i++) {
 895                 int uart;
 896 
 897                 snprintf(name_buffer, sizeof(name_buffer),
 898                          "uart%d", i);
 899                 alias_prop = fdt_getprop(initial_boot_params, aliases,
 900                                         name_buffer, NULL);
 901 
 902                 if (alias_prop) {
 903                         uart = fdt_path_offset(initial_boot_params, alias_prop);
 904                         if (uart_mask & (1 << i)) {
 905                                 __be32 f;
 906 
 907                                 f = cpu_to_be32(octeon_get_io_clock_rate());
 908                                 fdt_setprop_inplace(initial_boot_params,
 909                                                     uart, "clock-frequency",
 910                                                     &f, sizeof(f));
 911                                 continue;
 912                         }
 913                         pr_debug("Deleting uart%d\n", i);
 914                         fdt_nop_node(initial_boot_params, uart);
 915                         fdt_nop_property(initial_boot_params, aliases,
 916                                          name_buffer);
 917                 }
 918         }
 919 
 920         /* Compact Flash */
 921         alias_prop = fdt_getprop(initial_boot_params, aliases,
 922                                  "cf0", NULL);
 923         if (alias_prop) {
 924                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
 925                 unsigned long base_ptr, region_base, region_size;
 926                 unsigned long region1_base = 0;
 927                 unsigned long region1_size = 0;
 928                 int cs, bootbus;
 929                 bool is_16bit = false;
 930                 bool is_true_ide = false;
 931                 __be32 new_reg[6];
 932                 __be32 *ranges;
 933                 int len;
 934 
 935                 int cf = fdt_path_offset(initial_boot_params, alias_prop);
 936 
 937                 base_ptr = 0;
 938                 if (octeon_bootinfo->major_version == 1
 939                         && octeon_bootinfo->minor_version >= 1) {
 940                         if (octeon_bootinfo->compact_flash_common_base_addr)
 941                                 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
 942                 } else {
 943                         base_ptr = 0x1d000800;
 944                 }
 945 
 946                 if (!base_ptr)
 947                         goto no_cf;
 948 
 949                 /* Find CS0 region. */
 950                 for (cs = 0; cs < 8; cs++) {
 951                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
 952                         region_base = mio_boot_reg_cfg.s.base << 16;
 953                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
 954                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
 955                                 && base_ptr < region_base + region_size) {
 956                                 is_16bit = mio_boot_reg_cfg.s.width;
 957                                 break;
 958                         }
 959                 }
 960                 if (cs >= 7) {
 961                         /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
 962                         goto no_cf;
 963                 }
 964 
 965                 if (!(base_ptr & 0xfffful)) {
 966                         /*
 967                          * Boot loader signals availability of DMA (true_ide
 968                          * mode) by setting low order bits of base_ptr to
 969                          * zero.
 970                          */
 971 
 972                         /* Asume that CS1 immediately follows. */
 973                         mio_boot_reg_cfg.u64 =
 974                                 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
 975                         region1_base = mio_boot_reg_cfg.s.base << 16;
 976                         region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
 977                         if (!mio_boot_reg_cfg.s.en)
 978                                 goto no_cf;
 979                         is_true_ide = true;
 980 
 981                 } else {
 982                         fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
 983                         fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
 984                         if (!is_16bit) {
 985                                 __be32 width = cpu_to_be32(8);
 986 
 987                                 fdt_setprop_inplace(initial_boot_params, cf,
 988                                                 "cavium,bus-width", &width, sizeof(width));
 989                         }
 990                 }
 991                 new_reg[0] = cpu_to_be32(cs);
 992                 new_reg[1] = cpu_to_be32(0);
 993                 new_reg[2] = cpu_to_be32(0x10000);
 994                 new_reg[3] = cpu_to_be32(cs + 1);
 995                 new_reg[4] = cpu_to_be32(0);
 996                 new_reg[5] = cpu_to_be32(0x10000);
 997                 fdt_setprop_inplace(initial_boot_params, cf,
 998                                     "reg",  new_reg, sizeof(new_reg));
 999 
1000                 bootbus = fdt_parent_offset(initial_boot_params, cf);
1001                 if (bootbus < 0)
1002                         goto no_cf;
1003                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1004                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1005                         goto no_cf;
1006 
1007                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1008                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1009                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1010                 if (is_true_ide) {
1011                         cs++;
1012                         ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1013                         ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1014                         ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1015                 }
1016                 goto end_cf;
1017 no_cf:
1018                 fdt_nop_node(initial_boot_params, cf);
1019 
1020 end_cf:
1021                 ;
1022         }
1023 
1024         /* 8 char LED */
1025         alias_prop = fdt_getprop(initial_boot_params, aliases,
1026                                  "led0", NULL);
1027         if (alias_prop) {
1028                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1029                 unsigned long base_ptr, region_base, region_size;
1030                 int cs, bootbus;
1031                 __be32 new_reg[6];
1032                 __be32 *ranges;
1033                 int len;
1034                 int led = fdt_path_offset(initial_boot_params, alias_prop);
1035 
1036                 base_ptr = octeon_bootinfo->led_display_base_addr;
1037                 if (base_ptr == 0)
1038                         goto no_led;
1039                 /* Find CS0 region. */
1040                 for (cs = 0; cs < 8; cs++) {
1041                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1042                         region_base = mio_boot_reg_cfg.s.base << 16;
1043                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1044                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1045                                 && base_ptr < region_base + region_size)
1046                                 break;
1047                 }
1048 
1049                 if (cs > 7)
1050                         goto no_led;
1051 
1052                 new_reg[0] = cpu_to_be32(cs);
1053                 new_reg[1] = cpu_to_be32(0x20);
1054                 new_reg[2] = cpu_to_be32(0x20);
1055                 new_reg[3] = cpu_to_be32(cs);
1056                 new_reg[4] = cpu_to_be32(0);
1057                 new_reg[5] = cpu_to_be32(0x20);
1058                 fdt_setprop_inplace(initial_boot_params, led,
1059                                     "reg",  new_reg, sizeof(new_reg));
1060 
1061                 bootbus = fdt_parent_offset(initial_boot_params, led);
1062                 if (bootbus < 0)
1063                         goto no_led;
1064                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1065                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1066                         goto no_led;
1067 
1068                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1069                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1070                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1071                 goto end_led;
1072 
1073 no_led:
1074                 fdt_nop_node(initial_boot_params, led);
1075 end_led:
1076                 ;
1077         }
1078 
1079 #ifdef CONFIG_USB
1080         /* OHCI/UHCI USB */
1081         alias_prop = fdt_getprop(initial_boot_params, aliases,
1082                                  "uctl", NULL);
1083         if (alias_prop) {
1084                 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1085 
1086                 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1087                                   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1088                         pr_debug("Deleting uctl\n");
1089                         fdt_nop_node(initial_boot_params, uctl);
1090                         fdt_nop_property(initial_boot_params, aliases, "uctl");
1091                 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1092                            octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1093                         /* Missing "refclk-type" defaults to crystal. */
1094                         fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1095                 }
1096         }
1097 
1098         /* DWC2 USB */
1099         alias_prop = fdt_getprop(initial_boot_params, aliases,
1100                                  "usbn", NULL);
1101         if (alias_prop) {
1102                 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1103 
1104                 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1105                                   !octeon_has_feature(OCTEON_FEATURE_USB))) {
1106                         pr_debug("Deleting usbn\n");
1107                         fdt_nop_node(initial_boot_params, usbn);
1108                         fdt_nop_property(initial_boot_params, aliases, "usbn");
1109                 } else  {
1110                         __be32 new_f[1];
1111                         enum cvmx_helper_board_usb_clock_types c;
1112 
1113                         c = __cvmx_helper_board_usb_get_clock_type();
1114                         switch (c) {
1115                         case USB_CLOCK_TYPE_REF_48:
1116                                 new_f[0] = cpu_to_be32(48000000);
1117                                 fdt_setprop_inplace(initial_boot_params, usbn,
1118                                                     "refclk-frequency",  new_f, sizeof(new_f));
1119                                 /* Fall through ...*/
1120                         case USB_CLOCK_TYPE_REF_12:
1121                                 /* Missing "refclk-type" defaults to external. */
1122                                 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1123                                 break;
1124                         default:
1125                                 break;
1126                         }
1127                 }
1128         }
1129 #endif
1130 
1131         return 0;
1132 }
1133 
1134 static int __init octeon_publish_devices(void)
1135 {
1136         return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1137 }
1138 arch_initcall(octeon_publish_devices);

/* [<][>][^][v][top][bottom][index][help] */