root/arch/mips/cavium-octeon/setup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. octeon_kexec_smp_down
  2. kexec_bootmem_init
  3. octeon_kexec_prepare
  4. octeon_generic_shutdown
  5. octeon_shutdown
  6. octeon_crash_shutdown
  7. octeon_crash_smp_send_stop
  8. octeon_is_simulation
  9. octeon_is_pci_host
  10. octeon_get_clock_rate
  11. octeon_get_io_clock_rate
  12. octeon_write_lcd
  13. octeon_get_boot_uart
  14. octeon_get_boot_coremask
  15. octeon_check_cpu_bist
  16. octeon_restart
  17. octeon_kill_core
  18. octeon_halt
  19. init_octeon_system_type
  20. octeon_board_type_string
  21. octeon_user_io_init
  22. prom_init
  23. memory_exclude_page
  24. fw_init_cmdline
  25. plat_get_fdt
  26. plat_mem_setup
  27. prom_putchar
  28. prom_free_prom_memory
  29. device_tree_init
  30. disable_octeon_edac
  31. edac_devinit
  32. octeon_no_pci_init
  33. octeon_no_pci_release

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * Copyright (C) 2004-2007 Cavium Networks
   7  * Copyright (C) 2008, 2009 Wind River Systems
   8  *   written by Ralf Baechle <ralf@linux-mips.org>
   9  */
  10 #include <linux/compiler.h>
  11 #include <linux/vmalloc.h>
  12 #include <linux/init.h>
  13 #include <linux/kernel.h>
  14 #include <linux/console.h>
  15 #include <linux/delay.h>
  16 #include <linux/export.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/io.h>
  19 #include <linux/serial.h>
  20 #include <linux/smp.h>
  21 #include <linux/types.h>
  22 #include <linux/string.h>       /* for memset */
  23 #include <linux/tty.h>
  24 #include <linux/time.h>
  25 #include <linux/platform_device.h>
  26 #include <linux/serial_core.h>
  27 #include <linux/serial_8250.h>
  28 #include <linux/of_fdt.h>
  29 #include <linux/libfdt.h>
  30 #include <linux/kexec.h>
  31 
  32 #include <asm/processor.h>
  33 #include <asm/reboot.h>
  34 #include <asm/smp-ops.h>
  35 #include <asm/irq_cpu.h>
  36 #include <asm/mipsregs.h>
  37 #include <asm/bootinfo.h>
  38 #include <asm/sections.h>
  39 #include <asm/fw/fw.h>
  40 #include <asm/setup.h>
  41 #include <asm/prom.h>
  42 #include <asm/time.h>
  43 
  44 #include <asm/octeon/octeon.h>
  45 #include <asm/octeon/pci-octeon.h>
  46 #include <asm/octeon/cvmx-rst-defs.h>
  47 
  48 /*
  49  * TRUE for devices having registers with little-endian byte
  50  * order, FALSE for registers with native-endian byte order.
  51  * PCI mandates little-endian, USB and SATA are configuraable,
  52  * but we chose little-endian for these.
  53  */
  54 const bool octeon_should_swizzle_table[256] = {
  55         [0x00] = true,  /* bootbus/CF */
  56         [0x1b] = true,  /* PCI mmio window */
  57         [0x1c] = true,  /* PCI mmio window */
  58         [0x1d] = true,  /* PCI mmio window */
  59         [0x1e] = true,  /* PCI mmio window */
  60         [0x68] = true,  /* OCTEON III USB */
  61         [0x69] = true,  /* OCTEON III USB */
  62         [0x6c] = true,  /* OCTEON III SATA */
  63         [0x6f] = true,  /* OCTEON II USB */
  64 };
  65 EXPORT_SYMBOL(octeon_should_swizzle_table);
  66 
  67 #ifdef CONFIG_PCI
  68 extern void pci_console_init(const char *arg);
  69 #endif
  70 
  71 static unsigned long long max_memory = ULLONG_MAX;
  72 static unsigned long long reserve_low_mem;
  73 
  74 DEFINE_SEMAPHORE(octeon_bootbus_sem);
  75 EXPORT_SYMBOL(octeon_bootbus_sem);
  76 
  77 static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
  78 
  79 struct cvmx_bootinfo *octeon_bootinfo;
  80 EXPORT_SYMBOL(octeon_bootinfo);
  81 
  82 #ifdef CONFIG_KEXEC
  83 #ifdef CONFIG_SMP
  84 /*
  85  * Wait for relocation code is prepared and send
  86  * secondary CPUs to spin until kernel is relocated.
  87  */
  88 static void octeon_kexec_smp_down(void *ignored)
  89 {
  90         int cpu = smp_processor_id();
  91 
  92         local_irq_disable();
  93         set_cpu_online(cpu, false);
  94         while (!atomic_read(&kexec_ready_to_reboot))
  95                 cpu_relax();
  96 
  97         asm volatile (
  98         "       sync                                            \n"
  99         "       synci   ($0)                                    \n");
 100 
 101         kexec_reboot();
 102 }
 103 #endif
 104 
 105 #define OCTEON_DDR0_BASE    (0x0ULL)
 106 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
 107 #define OCTEON_DDR1_BASE    (0x410000000ULL)
 108 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
 109 #define OCTEON_DDR2_BASE    (0x020000000ULL)
 110 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
 111 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
 112 
 113 static struct kimage *kimage_ptr;
 114 
 115 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
 116 {
 117         int64_t addr;
 118         struct cvmx_bootmem_desc *bootmem_desc;
 119 
 120         bootmem_desc = cvmx_bootmem_get_desc();
 121 
 122         if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
 123                 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
 124                 pr_err("Error: requested memory too large,"
 125                        "truncating to maximum size\n");
 126         }
 127 
 128         bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
 129         bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
 130 
 131         addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
 132         bootmem_desc->head_addr = 0;
 133 
 134         if (mem_size <= OCTEON_DDR0_SIZE) {
 135                 __cvmx_bootmem_phy_free(addr,
 136                                 mem_size - reserve_low_mem -
 137                                 low_reserved_bytes, 0);
 138                 return;
 139         }
 140 
 141         __cvmx_bootmem_phy_free(addr,
 142                         OCTEON_DDR0_SIZE - reserve_low_mem -
 143                         low_reserved_bytes, 0);
 144 
 145         mem_size -= OCTEON_DDR0_SIZE;
 146 
 147         if (mem_size > OCTEON_DDR1_SIZE) {
 148                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
 149                 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
 150                                 mem_size - OCTEON_DDR1_SIZE, 0);
 151         } else
 152                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
 153 }
 154 
 155 static int octeon_kexec_prepare(struct kimage *image)
 156 {
 157         int i;
 158         char *bootloader = "kexec";
 159 
 160         octeon_boot_desc_ptr->argc = 0;
 161         for (i = 0; i < image->nr_segments; i++) {
 162                 if (!strncmp(bootloader, (char *)image->segment[i].buf,
 163                                 strlen(bootloader))) {
 164                         /*
 165                          * convert command line string to array
 166                          * of parameters (as bootloader does).
 167                          */
 168                         int argc = 0, offt;
 169                         char *str = (char *)image->segment[i].buf;
 170                         char *ptr = strchr(str, ' ');
 171                         while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
 172                                 *ptr = '\0';
 173                                 if (ptr[1] != ' ') {
 174                                         offt = (int)(ptr - str + 1);
 175                                         octeon_boot_desc_ptr->argv[argc] =
 176                                                 image->segment[i].mem + offt;
 177                                         argc++;
 178                                 }
 179                                 ptr = strchr(ptr + 1, ' ');
 180                         }
 181                         octeon_boot_desc_ptr->argc = argc;
 182                         break;
 183                 }
 184         }
 185 
 186         /*
 187          * Information about segments will be needed during pre-boot memory
 188          * initialization.
 189          */
 190         kimage_ptr = image;
 191         return 0;
 192 }
 193 
 194 static void octeon_generic_shutdown(void)
 195 {
 196         int i;
 197 #ifdef CONFIG_SMP
 198         int cpu;
 199 #endif
 200         struct cvmx_bootmem_desc *bootmem_desc;
 201         void *named_block_array_ptr;
 202 
 203         bootmem_desc = cvmx_bootmem_get_desc();
 204         named_block_array_ptr =
 205                 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
 206 
 207 #ifdef CONFIG_SMP
 208         /* disable watchdogs */
 209         for_each_online_cpu(cpu)
 210                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 211 #else
 212         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 213 #endif
 214         if (kimage_ptr != kexec_crash_image) {
 215                 memset(named_block_array_ptr,
 216                         0x0,
 217                         CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
 218                         sizeof(struct cvmx_bootmem_named_block_desc));
 219                 /*
 220                  * Mark all memory (except low 0x100000 bytes) as free.
 221                  * It is the same thing that bootloader does.
 222                  */
 223                 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
 224                                 0x100000);
 225                 /*
 226                  * Allocate all segments to avoid their corruption during boot.
 227                  */
 228                 for (i = 0; i < kimage_ptr->nr_segments; i++)
 229                         cvmx_bootmem_alloc_address(
 230                                 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
 231                                 kimage_ptr->segment[i].mem - PAGE_SIZE,
 232                                 PAGE_SIZE);
 233         } else {
 234                 /*
 235                  * Do not mark all memory as free. Free only named sections
 236                  * leaving the rest of memory unchanged.
 237                  */
 238                 struct cvmx_bootmem_named_block_desc *ptr =
 239                         (struct cvmx_bootmem_named_block_desc *)
 240                         named_block_array_ptr;
 241 
 242                 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
 243                         if (ptr[i].size)
 244                                 cvmx_bootmem_free_named(ptr[i].name);
 245         }
 246         kexec_args[2] = 1UL; /* running on octeon_main_processor */
 247         kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
 248 #ifdef CONFIG_SMP
 249         secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
 250         secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
 251 #endif
 252 }
 253 
 254 static void octeon_shutdown(void)
 255 {
 256         octeon_generic_shutdown();
 257 #ifdef CONFIG_SMP
 258         smp_call_function(octeon_kexec_smp_down, NULL, 0);
 259         smp_wmb();
 260         while (num_online_cpus() > 1) {
 261                 cpu_relax();
 262                 mdelay(1);
 263         }
 264 #endif
 265 }
 266 
 267 static void octeon_crash_shutdown(struct pt_regs *regs)
 268 {
 269         octeon_generic_shutdown();
 270         default_machine_crash_shutdown(regs);
 271 }
 272 
 273 #ifdef CONFIG_SMP
 274 void octeon_crash_smp_send_stop(void)
 275 {
 276         int cpu;
 277 
 278         /* disable watchdogs */
 279         for_each_online_cpu(cpu)
 280                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 281 }
 282 #endif
 283 
 284 #endif /* CONFIG_KEXEC */
 285 
 286 #ifdef CONFIG_CAVIUM_RESERVE32
 287 uint64_t octeon_reserve32_memory;
 288 EXPORT_SYMBOL(octeon_reserve32_memory);
 289 #endif
 290 
 291 #ifdef CONFIG_KEXEC
 292 /* crashkernel cmdline parameter is parsed _after_ memory setup
 293  * we also parse it here (workaround for EHB5200) */
 294 static uint64_t crashk_size, crashk_base;
 295 #endif
 296 
 297 static int octeon_uart;
 298 
 299 extern asmlinkage void handle_int(void);
 300 
 301 /**
 302  * Return non zero if we are currently running in the Octeon simulator
 303  *
 304  * Returns
 305  */
 306 int octeon_is_simulation(void)
 307 {
 308         return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
 309 }
 310 EXPORT_SYMBOL(octeon_is_simulation);
 311 
 312 /**
 313  * Return true if Octeon is in PCI Host mode. This means
 314  * Linux can control the PCI bus.
 315  *
 316  * Returns Non zero if Octeon in host mode.
 317  */
 318 int octeon_is_pci_host(void)
 319 {
 320 #ifdef CONFIG_PCI
 321         return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
 322 #else
 323         return 0;
 324 #endif
 325 }
 326 
 327 /**
 328  * Get the clock rate of Octeon
 329  *
 330  * Returns Clock rate in HZ
 331  */
 332 uint64_t octeon_get_clock_rate(void)
 333 {
 334         struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
 335 
 336         return sysinfo->cpu_clock_hz;
 337 }
 338 EXPORT_SYMBOL(octeon_get_clock_rate);
 339 
 340 static u64 octeon_io_clock_rate;
 341 
 342 u64 octeon_get_io_clock_rate(void)
 343 {
 344         return octeon_io_clock_rate;
 345 }
 346 EXPORT_SYMBOL(octeon_get_io_clock_rate);
 347 
 348 
 349 /**
 350  * Write to the LCD display connected to the bootbus. This display
 351  * exists on most Cavium evaluation boards. If it doesn't exist, then
 352  * this function doesn't do anything.
 353  *
 354  * @s:      String to write
 355  */
 356 static void octeon_write_lcd(const char *s)
 357 {
 358         if (octeon_bootinfo->led_display_base_addr) {
 359                 void __iomem *lcd_address =
 360                         ioremap_nocache(octeon_bootinfo->led_display_base_addr,
 361                                         8);
 362                 int i;
 363                 for (i = 0; i < 8; i++, s++) {
 364                         if (*s)
 365                                 iowrite8(*s, lcd_address + i);
 366                         else
 367                                 iowrite8(' ', lcd_address + i);
 368                 }
 369                 iounmap(lcd_address);
 370         }
 371 }
 372 
 373 /**
 374  * Return the console uart passed by the bootloader
 375  *
 376  * Returns uart   (0 or 1)
 377  */
 378 static int octeon_get_boot_uart(void)
 379 {
 380         return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
 381                 1 : 0;
 382 }
 383 
 384 /**
 385  * Get the coremask Linux was booted on.
 386  *
 387  * Returns Core mask
 388  */
 389 int octeon_get_boot_coremask(void)
 390 {
 391         return octeon_boot_desc_ptr->core_mask;
 392 }
 393 
 394 /**
 395  * Check the hardware BIST results for a CPU
 396  */
 397 void octeon_check_cpu_bist(void)
 398 {
 399         const int coreid = cvmx_get_core_num();
 400         unsigned long long mask;
 401         unsigned long long bist_val;
 402 
 403         /* Check BIST results for COP0 registers */
 404         mask = 0x1f00000000ull;
 405         bist_val = read_octeon_c0_icacheerr();
 406         if (bist_val & mask)
 407                 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
 408                        coreid, bist_val);
 409 
 410         bist_val = read_octeon_c0_dcacheerr();
 411         if (bist_val & 1)
 412                 pr_err("Core%d L1 Dcache parity error: "
 413                        "CacheErr(dcache) = 0x%llx\n",
 414                        coreid, bist_val);
 415 
 416         mask = 0xfc00000000000000ull;
 417         bist_val = read_c0_cvmmemctl();
 418         if (bist_val & mask)
 419                 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
 420                        coreid, bist_val);
 421 
 422         write_octeon_c0_dcacheerr(0);
 423 }
 424 
 425 /**
 426  * Reboot Octeon
 427  *
 428  * @command: Command to pass to the bootloader. Currently ignored.
 429  */
 430 static void octeon_restart(char *command)
 431 {
 432         /* Disable all watchdogs before soft reset. They don't get cleared */
 433 #ifdef CONFIG_SMP
 434         int cpu;
 435         for_each_online_cpu(cpu)
 436                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 437 #else
 438         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 439 #endif
 440 
 441         mb();
 442         while (1)
 443                 if (OCTEON_IS_OCTEON3())
 444                         cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
 445                 else
 446                         cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
 447 }
 448 
 449 
 450 /**
 451  * Permanently stop a core.
 452  *
 453  * @arg: Ignored.
 454  */
 455 static void octeon_kill_core(void *arg)
 456 {
 457         if (octeon_is_simulation())
 458                 /* A break instruction causes the simulator stop a core */
 459                 asm volatile ("break" ::: "memory");
 460 
 461         local_irq_disable();
 462         /* Disable watchdog on this core. */
 463         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 464         /* Spin in a low power mode. */
 465         while (true)
 466                 asm volatile ("wait" ::: "memory");
 467 }
 468 
 469 
 470 /**
 471  * Halt the system
 472  */
 473 static void octeon_halt(void)
 474 {
 475         smp_call_function(octeon_kill_core, NULL, 0);
 476 
 477         switch (octeon_bootinfo->board_type) {
 478         case CVMX_BOARD_TYPE_NAO38:
 479                 /* Driving a 1 to GPIO 12 shuts off this board */
 480                 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
 481                 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
 482                 break;
 483         default:
 484                 octeon_write_lcd("PowerOff");
 485                 break;
 486         }
 487 
 488         octeon_kill_core(NULL);
 489 }
 490 
 491 static char __read_mostly octeon_system_type[80];
 492 
 493 static void __init init_octeon_system_type(void)
 494 {
 495         char const *board_type;
 496 
 497         board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
 498         if (board_type == NULL) {
 499                 struct device_node *root;
 500                 int ret;
 501 
 502                 root = of_find_node_by_path("/");
 503                 ret = of_property_read_string(root, "model", &board_type);
 504                 of_node_put(root);
 505                 if (ret)
 506                         board_type = "Unsupported Board";
 507         }
 508 
 509         snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
 510                  board_type, octeon_model_get_string(read_c0_prid()));
 511 }
 512 
 513 /**
 514  * Return a string representing the system type
 515  *
 516  * Returns
 517  */
 518 const char *octeon_board_type_string(void)
 519 {
 520         return octeon_system_type;
 521 }
 522 
 523 const char *get_system_type(void)
 524         __attribute__ ((alias("octeon_board_type_string")));
 525 
 526 void octeon_user_io_init(void)
 527 {
 528         union octeon_cvmemctl cvmmemctl;
 529 
 530         /* Get the current settings for CP0_CVMMEMCTL_REG */
 531         cvmmemctl.u64 = read_c0_cvmmemctl();
 532         /* R/W If set, marked write-buffer entries time out the same
 533          * as as other entries; if clear, marked write-buffer entries
 534          * use the maximum timeout. */
 535         cvmmemctl.s.dismarkwblongto = 1;
 536         /* R/W If set, a merged store does not clear the write-buffer
 537          * entry timeout state. */
 538         cvmmemctl.s.dismrgclrwbto = 0;
 539         /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
 540          * word location for an IOBDMA. The other 8 bits come from the
 541          * SCRADDR field of the IOBDMA. */
 542         cvmmemctl.s.iobdmascrmsb = 0;
 543         /* R/W If set, SYNCWS and SYNCS only order marked stores; if
 544          * clear, SYNCWS and SYNCS only order unmarked
 545          * stores. SYNCWSMARKED has no effect when DISSYNCWS is
 546          * set. */
 547         cvmmemctl.s.syncwsmarked = 0;
 548         /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
 549         cvmmemctl.s.dissyncws = 0;
 550         /* R/W If set, no stall happens on write buffer full. */
 551         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
 552                 cvmmemctl.s.diswbfst = 1;
 553         else
 554                 cvmmemctl.s.diswbfst = 0;
 555         /* R/W If set (and SX set), supervisor-level loads/stores can
 556          * use XKPHYS addresses with <48>==0 */
 557         cvmmemctl.s.xkmemenas = 0;
 558 
 559         /* R/W If set (and UX set), user-level loads/stores can use
 560          * XKPHYS addresses with VA<48>==0 */
 561         cvmmemctl.s.xkmemenau = 0;
 562 
 563         /* R/W If set (and SX set), supervisor-level loads/stores can
 564          * use XKPHYS addresses with VA<48>==1 */
 565         cvmmemctl.s.xkioenas = 0;
 566 
 567         /* R/W If set (and UX set), user-level loads/stores can use
 568          * XKPHYS addresses with VA<48>==1 */
 569         cvmmemctl.s.xkioenau = 0;
 570 
 571         /* R/W If set, all stores act as SYNCW (NOMERGE must be set
 572          * when this is set) RW, reset to 0. */
 573         cvmmemctl.s.allsyncw = 0;
 574 
 575         /* R/W If set, no stores merge, and all stores reach the
 576          * coherent bus in order. */
 577         cvmmemctl.s.nomerge = 0;
 578         /* R/W Selects the bit in the counter used for DID time-outs 0
 579          * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
 580          * between 1x and 2x this interval. For example, with
 581          * DIDTTO=3, expiration interval is between 16K and 32K. */
 582         cvmmemctl.s.didtto = 0;
 583         /* R/W If set, the (mem) CSR clock never turns off. */
 584         cvmmemctl.s.csrckalwys = 0;
 585         /* R/W If set, mclk never turns off. */
 586         cvmmemctl.s.mclkalwys = 0;
 587         /* R/W Selects the bit in the counter used for write buffer
 588          * flush time-outs (WBFLT+11) is the bit position in an
 589          * internal counter used to determine expiration. The write
 590          * buffer expires between 1x and 2x this interval. For
 591          * example, with WBFLT = 0, a write buffer expires between 2K
 592          * and 4K cycles after the write buffer entry is allocated. */
 593         cvmmemctl.s.wbfltime = 0;
 594         /* R/W If set, do not put Istream in the L2 cache. */
 595         cvmmemctl.s.istrnol2 = 0;
 596 
 597         /*
 598          * R/W The write buffer threshold. As per erratum Core-14752
 599          * for CN63XX, a sc/scd might fail if the write buffer is
 600          * full.  Lowering WBTHRESH greatly lowers the chances of the
 601          * write buffer ever being full and triggering the erratum.
 602          */
 603         if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
 604                 cvmmemctl.s.wbthresh = 4;
 605         else
 606                 cvmmemctl.s.wbthresh = 10;
 607 
 608         /* R/W If set, CVMSEG is available for loads/stores in
 609          * kernel/debug mode. */
 610 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
 611         cvmmemctl.s.cvmsegenak = 1;
 612 #else
 613         cvmmemctl.s.cvmsegenak = 0;
 614 #endif
 615         /* R/W If set, CVMSEG is available for loads/stores in
 616          * supervisor mode. */
 617         cvmmemctl.s.cvmsegenas = 0;
 618         /* R/W If set, CVMSEG is available for loads/stores in user
 619          * mode. */
 620         cvmmemctl.s.cvmsegenau = 0;
 621 
 622         write_c0_cvmmemctl(cvmmemctl.u64);
 623 
 624         /* Setup of CVMSEG is done in kernel-entry-init.h */
 625         if (smp_processor_id() == 0)
 626                 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
 627                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
 628                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
 629 
 630         if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
 631                 union cvmx_iob_fau_timeout fau_timeout;
 632 
 633                 /* Set a default for the hardware timeouts */
 634                 fau_timeout.u64 = 0;
 635                 fau_timeout.s.tout_val = 0xfff;
 636                 /* Disable tagwait FAU timeout */
 637                 fau_timeout.s.tout_enb = 0;
 638                 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
 639         }
 640 
 641         if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
 642              !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
 643             OCTEON_IS_MODEL(OCTEON_CN70XX)) {
 644                 union cvmx_pow_nw_tim nm_tim;
 645 
 646                 nm_tim.u64 = 0;
 647                 /* 4096 cycles */
 648                 nm_tim.s.nw_tim = 3;
 649                 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
 650         }
 651 
 652         write_octeon_c0_icacheerr(0);
 653         write_c0_derraddr1(0);
 654 }
 655 
 656 /**
 657  * Early entry point for arch setup
 658  */
 659 void __init prom_init(void)
 660 {
 661         struct cvmx_sysinfo *sysinfo;
 662         const char *arg;
 663         char *p;
 664         int i;
 665         u64 t;
 666         int argc;
 667 #ifdef CONFIG_CAVIUM_RESERVE32
 668         int64_t addr = -1;
 669 #endif
 670         /*
 671          * The bootloader passes a pointer to the boot descriptor in
 672          * $a3, this is available as fw_arg3.
 673          */
 674         octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
 675         octeon_bootinfo =
 676                 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
 677         cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
 678 
 679         sysinfo = cvmx_sysinfo_get();
 680         memset(sysinfo, 0, sizeof(*sysinfo));
 681         sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
 682         sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
 683 
 684         if ((octeon_bootinfo->major_version > 1) ||
 685             (octeon_bootinfo->major_version == 1 &&
 686              octeon_bootinfo->minor_version >= 4))
 687                 cvmx_coremask_copy(&sysinfo->core_mask,
 688                                    &octeon_bootinfo->ext_core_mask);
 689         else
 690                 cvmx_coremask_set64(&sysinfo->core_mask,
 691                                     octeon_bootinfo->core_mask);
 692 
 693         /* Some broken u-boot pass garbage in upper bits, clear them out */
 694         if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
 695                 for (i = 512; i < 1024; i++)
 696                         cvmx_coremask_clear_core(&sysinfo->core_mask, i);
 697 
 698         sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
 699         sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
 700         sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
 701         sysinfo->board_type = octeon_bootinfo->board_type;
 702         sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
 703         sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
 704         memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
 705                sizeof(sysinfo->mac_addr_base));
 706         sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
 707         memcpy(sysinfo->board_serial_number,
 708                octeon_bootinfo->board_serial_number,
 709                sizeof(sysinfo->board_serial_number));
 710         sysinfo->compact_flash_common_base_addr =
 711                 octeon_bootinfo->compact_flash_common_base_addr;
 712         sysinfo->compact_flash_attribute_base_addr =
 713                 octeon_bootinfo->compact_flash_attribute_base_addr;
 714         sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
 715         sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
 716         sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
 717 
 718         if (OCTEON_IS_OCTEON2()) {
 719                 /* I/O clock runs at a different rate than the CPU. */
 720                 union cvmx_mio_rst_boot rst_boot;
 721                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 722                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
 723         } else if (OCTEON_IS_OCTEON3()) {
 724                 /* I/O clock runs at a different rate than the CPU. */
 725                 union cvmx_rst_boot rst_boot;
 726                 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
 727                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
 728         } else {
 729                 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
 730         }
 731 
 732         t = read_c0_cvmctl();
 733         if ((t & (1ull << 27)) == 0) {
 734                 /*
 735                  * Setup the multiplier save/restore code if
 736                  * CvmCtl[NOMUL] clear.
 737                  */
 738                 void *save;
 739                 void *save_end;
 740                 void *restore;
 741                 void *restore_end;
 742                 int save_len;
 743                 int restore_len;
 744                 int save_max = (char *)octeon_mult_save_end -
 745                         (char *)octeon_mult_save;
 746                 int restore_max = (char *)octeon_mult_restore_end -
 747                         (char *)octeon_mult_restore;
 748                 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
 749                         save = octeon_mult_save3;
 750                         save_end = octeon_mult_save3_end;
 751                         restore = octeon_mult_restore3;
 752                         restore_end = octeon_mult_restore3_end;
 753                 } else {
 754                         save = octeon_mult_save2;
 755                         save_end = octeon_mult_save2_end;
 756                         restore = octeon_mult_restore2;
 757                         restore_end = octeon_mult_restore2_end;
 758                 }
 759                 save_len = (char *)save_end - (char *)save;
 760                 restore_len = (char *)restore_end - (char *)restore;
 761                 if (!WARN_ON(save_len > save_max ||
 762                                 restore_len > restore_max)) {
 763                         memcpy(octeon_mult_save, save, save_len);
 764                         memcpy(octeon_mult_restore, restore, restore_len);
 765                 }
 766         }
 767 
 768         /*
 769          * Only enable the LED controller if we're running on a CN38XX, CN58XX,
 770          * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
 771          */
 772         if (!octeon_is_simulation() &&
 773             octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
 774                 cvmx_write_csr(CVMX_LED_EN, 0);
 775                 cvmx_write_csr(CVMX_LED_PRT, 0);
 776                 cvmx_write_csr(CVMX_LED_DBG, 0);
 777                 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
 778                 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
 779                 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
 780                 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
 781                 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
 782                 cvmx_write_csr(CVMX_LED_EN, 1);
 783         }
 784 #ifdef CONFIG_CAVIUM_RESERVE32
 785         /*
 786          * We need to temporarily allocate all memory in the reserve32
 787          * region. This makes sure the kernel doesn't allocate this
 788          * memory when it is getting memory from the
 789          * bootloader. Later, after the memory allocations are
 790          * complete, the reserve32 will be freed.
 791          *
 792          * Allocate memory for RESERVED32 aligned on 2MB boundary. This
 793          * is in case we later use hugetlb entries with it.
 794          */
 795         addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
 796                                                 0, 0, 2 << 20,
 797                                                 "CAVIUM_RESERVE32", 0);
 798         if (addr < 0)
 799                 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
 800         else
 801                 octeon_reserve32_memory = addr;
 802 #endif
 803 
 804 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
 805         if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
 806                 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
 807         } else {
 808                 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
 809 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
 810                 /* TLB refill */
 811                 cvmx_l2c_lock_mem_region(ebase, 0x100);
 812 #endif
 813 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
 814                 /* General exception */
 815                 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
 816 #endif
 817 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
 818                 /* Interrupt handler */
 819                 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
 820 #endif
 821 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
 822                 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
 823                 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
 824 #endif
 825 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
 826                 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
 827 #endif
 828         }
 829 #endif
 830 
 831         octeon_check_cpu_bist();
 832 
 833         octeon_uart = octeon_get_boot_uart();
 834 
 835 #ifdef CONFIG_SMP
 836         octeon_write_lcd("LinuxSMP");
 837 #else
 838         octeon_write_lcd("Linux");
 839 #endif
 840 
 841         octeon_setup_delays();
 842 
 843         /*
 844          * BIST should always be enabled when doing a soft reset. L2
 845          * Cache locking for instance is not cleared unless BIST is
 846          * enabled.  Unfortunately due to a chip errata G-200 for
 847          * Cn38XX and CN31XX, BIST msut be disabled on these parts.
 848          */
 849         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 850             OCTEON_IS_MODEL(OCTEON_CN31XX))
 851                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
 852         else
 853                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
 854 
 855         /* Default to 64MB in the simulator to speed things up */
 856         if (octeon_is_simulation())
 857                 max_memory = 64ull << 20;
 858 
 859         arg = strstr(arcs_cmdline, "mem=");
 860         if (arg) {
 861                 max_memory = memparse(arg + 4, &p);
 862                 if (max_memory == 0)
 863                         max_memory = 32ull << 30;
 864                 if (*p == '@')
 865                         reserve_low_mem = memparse(p + 1, &p);
 866         }
 867 
 868         arcs_cmdline[0] = 0;
 869         argc = octeon_boot_desc_ptr->argc;
 870         for (i = 0; i < argc; i++) {
 871                 const char *arg =
 872                         cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
 873                 if ((strncmp(arg, "MEM=", 4) == 0) ||
 874                     (strncmp(arg, "mem=", 4) == 0)) {
 875                         max_memory = memparse(arg + 4, &p);
 876                         if (max_memory == 0)
 877                                 max_memory = 32ull << 30;
 878                         if (*p == '@')
 879                                 reserve_low_mem = memparse(p + 1, &p);
 880 #ifdef CONFIG_KEXEC
 881                 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
 882                         crashk_size = memparse(arg+12, &p);
 883                         if (*p == '@')
 884                                 crashk_base = memparse(p+1, &p);
 885                         strcat(arcs_cmdline, " ");
 886                         strcat(arcs_cmdline, arg);
 887                         /*
 888                          * To do: switch parsing to new style, something like:
 889                          * parse_crashkernel(arg, sysinfo->system_dram_size,
 890                          *                &crashk_size, &crashk_base);
 891                          */
 892 #endif
 893                 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
 894                            sizeof(arcs_cmdline) - 1) {
 895                         strcat(arcs_cmdline, " ");
 896                         strcat(arcs_cmdline, arg);
 897                 }
 898         }
 899 
 900         if (strstr(arcs_cmdline, "console=") == NULL) {
 901                 if (octeon_uart == 1)
 902                         strcat(arcs_cmdline, " console=ttyS1,115200");
 903                 else
 904                         strcat(arcs_cmdline, " console=ttyS0,115200");
 905         }
 906 
 907         mips_hpt_frequency = octeon_get_clock_rate();
 908 
 909         octeon_init_cvmcount();
 910 
 911         _machine_restart = octeon_restart;
 912         _machine_halt = octeon_halt;
 913 
 914 #ifdef CONFIG_KEXEC
 915         _machine_kexec_shutdown = octeon_shutdown;
 916         _machine_crash_shutdown = octeon_crash_shutdown;
 917         _machine_kexec_prepare = octeon_kexec_prepare;
 918 #ifdef CONFIG_SMP
 919         _crash_smp_send_stop = octeon_crash_smp_send_stop;
 920 #endif
 921 #endif
 922 
 923         octeon_user_io_init();
 924         octeon_setup_smp();
 925 }
 926 
 927 /* Exclude a single page from the regions obtained in plat_mem_setup. */
 928 #ifndef CONFIG_CRASH_DUMP
 929 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
 930 {
 931         if (addr > *mem && addr < *mem + *size) {
 932                 u64 inc = addr - *mem;
 933                 add_memory_region(*mem, inc, BOOT_MEM_RAM);
 934                 *mem += inc;
 935                 *size -= inc;
 936         }
 937 
 938         if (addr == *mem && *size > PAGE_SIZE) {
 939                 *mem += PAGE_SIZE;
 940                 *size -= PAGE_SIZE;
 941         }
 942 }
 943 #endif /* CONFIG_CRASH_DUMP */
 944 
 945 void __init fw_init_cmdline(void)
 946 {
 947         int i;
 948 
 949         octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
 950         for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
 951                 const char *arg =
 952                         cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
 953                 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
 954                            sizeof(arcs_cmdline) - 1) {
 955                         strcat(arcs_cmdline, " ");
 956                         strcat(arcs_cmdline, arg);
 957                 }
 958         }
 959 }
 960 
 961 void __init *plat_get_fdt(void)
 962 {
 963         octeon_bootinfo =
 964                 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
 965         return phys_to_virt(octeon_bootinfo->fdt_addr);
 966 }
 967 
 968 void __init plat_mem_setup(void)
 969 {
 970         uint64_t mem_alloc_size;
 971         uint64_t total;
 972         uint64_t crashk_end;
 973 #ifndef CONFIG_CRASH_DUMP
 974         int64_t memory;
 975         uint64_t kernel_start;
 976         uint64_t kernel_size;
 977 #endif
 978 
 979         total = 0;
 980         crashk_end = 0;
 981 
 982         /*
 983          * The Mips memory init uses the first memory location for
 984          * some memory vectors. When SPARSEMEM is in use, it doesn't
 985          * verify that the size is big enough for the final
 986          * vectors. Making the smallest chuck 4MB seems to be enough
 987          * to consistently work.
 988          */
 989         mem_alloc_size = 4 << 20;
 990         if (mem_alloc_size > max_memory)
 991                 mem_alloc_size = max_memory;
 992 
 993 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
 994 #ifdef CONFIG_CRASH_DUMP
 995         add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
 996         total += max_memory;
 997 #else
 998 #ifdef CONFIG_KEXEC
 999         if (crashk_size > 0) {
1000                 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
1001                 crashk_end = crashk_base + crashk_size;
1002         }
1003 #endif
1004         /*
1005          * When allocating memory, we want incrementing addresses from
1006          * bootmem_alloc so the code in add_memory_region can merge
1007          * regions next to each other.
1008          */
1009         cvmx_bootmem_lock();
1010         while (total < max_memory) {
1011                 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1012                                                 __pa_symbol(&_end), -1,
1013                                                 0x100000,
1014                                                 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1015                 if (memory >= 0) {
1016                         u64 size = mem_alloc_size;
1017 #ifdef CONFIG_KEXEC
1018                         uint64_t end;
1019 #endif
1020 
1021                         /*
1022                          * exclude a page at the beginning and end of
1023                          * the 256MB PCIe 'hole' so the kernel will not
1024                          * try to allocate multi-page buffers that
1025                          * span the discontinuity.
1026                          */
1027                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1028                                             &memory, &size);
1029                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1030                                             CVMX_PCIE_BAR1_PHYS_SIZE,
1031                                             &memory, &size);
1032 #ifdef CONFIG_KEXEC
1033                         end = memory + mem_alloc_size;
1034 
1035                         /*
1036                          * This function automatically merges address regions
1037                          * next to each other if they are received in
1038                          * incrementing order
1039                          */
1040                         if (memory < crashk_base && end >  crashk_end) {
1041                                 /* region is fully in */
1042                                 add_memory_region(memory,
1043                                                   crashk_base - memory,
1044                                                   BOOT_MEM_RAM);
1045                                 total += crashk_base - memory;
1046                                 add_memory_region(crashk_end,
1047                                                   end - crashk_end,
1048                                                   BOOT_MEM_RAM);
1049                                 total += end - crashk_end;
1050                                 continue;
1051                         }
1052 
1053                         if (memory >= crashk_base && end <= crashk_end)
1054                                 /*
1055                                  * Entire memory region is within the new
1056                                  *  kernel's memory, ignore it.
1057                                  */
1058                                 continue;
1059 
1060                         if (memory > crashk_base && memory < crashk_end &&
1061                             end > crashk_end) {
1062                                 /*
1063                                  * Overlap with the beginning of the region,
1064                                  * reserve the beginning.
1065                                   */
1066                                 mem_alloc_size -= crashk_end - memory;
1067                                 memory = crashk_end;
1068                         } else if (memory < crashk_base && end > crashk_base &&
1069                                    end < crashk_end)
1070                                 /*
1071                                  * Overlap with the beginning of the region,
1072                                  * chop of end.
1073                                  */
1074                                 mem_alloc_size -= end - crashk_base;
1075 #endif
1076                         add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1077                         total += mem_alloc_size;
1078                         /* Recovering mem_alloc_size */
1079                         mem_alloc_size = 4 << 20;
1080                 } else {
1081                         break;
1082                 }
1083         }
1084         cvmx_bootmem_unlock();
1085         /* Add the memory region for the kernel. */
1086         kernel_start = (unsigned long) _text;
1087         kernel_size = _end - _text;
1088 
1089         /* Adjust for physical offset. */
1090         kernel_start &= ~0xffffffff80000000ULL;
1091         add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1092 #endif /* CONFIG_CRASH_DUMP */
1093 
1094 #ifdef CONFIG_CAVIUM_RESERVE32
1095         /*
1096          * Now that we've allocated the kernel memory it is safe to
1097          * free the reserved region. We free it here so that builtin
1098          * drivers can use the memory.
1099          */
1100         if (octeon_reserve32_memory)
1101                 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1102 #endif /* CONFIG_CAVIUM_RESERVE32 */
1103 
1104         if (total == 0)
1105                 panic("Unable to allocate memory from "
1106                       "cvmx_bootmem_phy_alloc");
1107 }
1108 
1109 /*
1110  * Emit one character to the boot UART.  Exported for use by the
1111  * watchdog timer.
1112  */
1113 void prom_putchar(char c)
1114 {
1115         uint64_t lsrval;
1116 
1117         /* Spin until there is room */
1118         do {
1119                 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1120         } while ((lsrval & 0x20) == 0);
1121 
1122         /* Write the byte */
1123         cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1124 }
1125 EXPORT_SYMBOL(prom_putchar);
1126 
1127 void __init prom_free_prom_memory(void)
1128 {
1129         if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1130                 /* Check for presence of Core-14449 fix.  */
1131                 u32 insn;
1132                 u32 *foo;
1133 
1134                 foo = &insn;
1135 
1136                 asm volatile("# before" : : : "memory");
1137                 prefetch(foo);
1138                 asm volatile(
1139                         ".set push\n\t"
1140                         ".set noreorder\n\t"
1141                         "bal 1f\n\t"
1142                         "nop\n"
1143                         "1:\tlw %0,-12($31)\n\t"
1144                         ".set pop\n\t"
1145                         : "=r" (insn) : : "$31", "memory");
1146 
1147                 if ((insn >> 26) != 0x33)
1148                         panic("No PREF instruction at Core-14449 probe point.");
1149 
1150                 if (((insn >> 16) & 0x1f) != 28)
1151                         panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1152                               "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1153                               insn);
1154         }
1155 }
1156 
1157 void __init octeon_fill_mac_addresses(void);
1158 
1159 void __init device_tree_init(void)
1160 {
1161         const void *fdt;
1162         bool do_prune;
1163         bool fill_mac;
1164 
1165         if (fw_passed_dtb) {
1166                 fdt = (void *)fw_passed_dtb;
1167                 do_prune = false;
1168                 fill_mac = true;
1169                 pr_info("Using appended Device Tree.\n");
1170         } else if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1171                 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1172                 if (fdt_check_header(fdt))
1173                         panic("Corrupt Device Tree passed to kernel.");
1174                 do_prune = false;
1175                 fill_mac = false;
1176                 pr_info("Using passed Device Tree.\n");
1177         } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1178                 fdt = &__dtb_octeon_68xx_begin;
1179                 do_prune = true;
1180                 fill_mac = true;
1181         } else {
1182                 fdt = &__dtb_octeon_3xxx_begin;
1183                 do_prune = true;
1184                 fill_mac = true;
1185         }
1186 
1187         initial_boot_params = (void *)fdt;
1188 
1189         if (do_prune) {
1190                 octeon_prune_device_tree();
1191                 pr_info("Using internal Device Tree.\n");
1192         }
1193         if (fill_mac)
1194                 octeon_fill_mac_addresses();
1195         unflatten_and_copy_device_tree();
1196         init_octeon_system_type();
1197 }
1198 
1199 static int __initdata disable_octeon_edac_p;
1200 
1201 static int __init disable_octeon_edac(char *str)
1202 {
1203         disable_octeon_edac_p = 1;
1204         return 0;
1205 }
1206 early_param("disable_octeon_edac", disable_octeon_edac);
1207 
1208 static char *edac_device_names[] = {
1209         "octeon_l2c_edac",
1210         "octeon_pc_edac",
1211 };
1212 
1213 static int __init edac_devinit(void)
1214 {
1215         struct platform_device *dev;
1216         int i, err = 0;
1217         int num_lmc;
1218         char *name;
1219 
1220         if (disable_octeon_edac_p)
1221                 return 0;
1222 
1223         for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1224                 name = edac_device_names[i];
1225                 dev = platform_device_register_simple(name, -1, NULL, 0);
1226                 if (IS_ERR(dev)) {
1227                         pr_err("Registration of %s failed!\n", name);
1228                         err = PTR_ERR(dev);
1229                 }
1230         }
1231 
1232         num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1233                 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1234         for (i = 0; i < num_lmc; i++) {
1235                 dev = platform_device_register_simple("octeon_lmc_edac",
1236                                                       i, NULL, 0);
1237                 if (IS_ERR(dev)) {
1238                         pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1239                         err = PTR_ERR(dev);
1240                 }
1241         }
1242 
1243         return err;
1244 }
1245 device_initcall(edac_devinit);
1246 
1247 static void __initdata *octeon_dummy_iospace;
1248 
1249 static int __init octeon_no_pci_init(void)
1250 {
1251         /*
1252          * Initially assume there is no PCI. The PCI/PCIe platform code will
1253          * later re-initialize these to correct values if they are present.
1254          */
1255         octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1256         set_io_port_base((unsigned long)octeon_dummy_iospace);
1257         ioport_resource.start = MAX_RESOURCE;
1258         ioport_resource.end = 0;
1259         return 0;
1260 }
1261 core_initcall(octeon_no_pci_init);
1262 
1263 static int __init octeon_no_pci_release(void)
1264 {
1265         /*
1266          * Release the allocated memory if a real IO space is there.
1267          */
1268         if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1269                 vfree(octeon_dummy_iospace);
1270         return 0;
1271 }
1272 late_initcall(octeon_no_pci_release);

/* [<][>][^][v][top][bottom][index][help] */