root/arch/mips/pci/pci-octeon.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pcibios_map_irq
  2. pcibios_plat_dev_init
  3. octeon_get_pci_interrupts
  4. octeon_pci_pcibios_map_irq
  5. octeon_read_config
  6. octeon_write_config
  7. octeon_pci_initialize
  8. octeon_pci_setup

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * Copyright (C) 2005-2009 Cavium Networks
   7  */
   8 #include <linux/kernel.h>
   9 #include <linux/init.h>
  10 #include <linux/pci.h>
  11 #include <linux/interrupt.h>
  12 #include <linux/time.h>
  13 #include <linux/delay.h>
  14 #include <linux/platform_device.h>
  15 #include <linux/swiotlb.h>
  16 
  17 #include <asm/time.h>
  18 
  19 #include <asm/octeon/octeon.h>
  20 #include <asm/octeon/cvmx-npi-defs.h>
  21 #include <asm/octeon/cvmx-pci-defs.h>
  22 #include <asm/octeon/pci-octeon.h>
  23 
  24 #define USE_OCTEON_INTERNAL_ARBITER
  25 
  26 /*
  27  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  28  * addresses. Use PCI endian swapping 1 so no address swapping is
  29  * necessary. The Linux io routines will endian swap the data.
  30  */
  31 #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
  32 #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
  33 
  34 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  35 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
  36 
  37 u64 octeon_bar1_pci_phys;
  38 
  39 /**
  40  * This is the bit decoding used for the Octeon PCI controller addresses
  41  */
  42 union octeon_pci_address {
  43         uint64_t u64;
  44         struct {
  45                 uint64_t upper:2;
  46                 uint64_t reserved:13;
  47                 uint64_t io:1;
  48                 uint64_t did:5;
  49                 uint64_t subdid:3;
  50                 uint64_t reserved2:4;
  51                 uint64_t endian_swap:2;
  52                 uint64_t reserved3:10;
  53                 uint64_t bus:8;
  54                 uint64_t dev:5;
  55                 uint64_t func:3;
  56                 uint64_t reg:8;
  57         } s;
  58 };
  59 
  60 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
  61 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  62 
  63 /**
  64  * Map a PCI device to the appropriate interrupt line
  65  *
  66  * @dev:    The Linux PCI device structure for the device to map
  67  * @slot:   The slot number for this device on __BUS 0__. Linux
  68  *               enumerates through all the bridges and figures out the
  69  *               slot on Bus 0 where this device eventually hooks to.
  70  * @pin:    The PCI interrupt pin read from the device, then swizzled
  71  *               as it goes through each bridge.
  72  * Returns Interrupt number for the device
  73  */
  74 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  75 {
  76         if (octeon_pcibios_map_irq)
  77                 return octeon_pcibios_map_irq(dev, slot, pin);
  78         else
  79                 panic("octeon_pcibios_map_irq not set.");
  80 }
  81 
  82 
  83 /*
  84  * Called to perform platform specific PCI setup
  85  */
  86 int pcibios_plat_dev_init(struct pci_dev *dev)
  87 {
  88         uint16_t config;
  89         uint32_t dconfig;
  90         int pos;
  91         /*
  92          * Force the Cache line setting to 64 bytes. The standard
  93          * Linux bus scan doesn't seem to set it. Octeon really has
  94          * 128 byte lines, but Intel bridges get really upset if you
  95          * try and set values above 64 bytes. Value is specified in
  96          * 32bit words.
  97          */
  98         pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
  99         /* Set latency timers for all devices */
 100         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
 101 
 102         /* Enable reporting System errors and parity errors on all devices */
 103         /* Enable parity checking and error reporting */
 104         pci_read_config_word(dev, PCI_COMMAND, &config);
 105         config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
 106         pci_write_config_word(dev, PCI_COMMAND, config);
 107 
 108         if (dev->subordinate) {
 109                 /* Set latency timers on sub bridges */
 110                 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
 111                 /* More bridge error detection */
 112                 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
 113                 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
 114                 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
 115         }
 116 
 117         /* Enable the PCIe normal error reporting */
 118         config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
 119         config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
 120         config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
 121         config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
 122         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
 123 
 124         /* Find the Advanced Error Reporting capability */
 125         pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 126         if (pos) {
 127                 /* Clear Uncorrectable Error Status */
 128                 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 129                                       &dconfig);
 130                 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 131                                        dconfig);
 132                 /* Enable reporting of all uncorrectable errors */
 133                 /* Uncorrectable Error Mask - turned on bits disable errors */
 134                 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
 135                 /*
 136                  * Leave severity at HW default. This only controls if
 137                  * errors are reported as uncorrectable or
 138                  * correctable, not if the error is reported.
 139                  */
 140                 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
 141                 /* Clear Correctable Error Status */
 142                 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
 143                 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
 144                 /* Enable reporting of all correctable errors */
 145                 /* Correctable Error Mask - turned on bits disable errors */
 146                 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
 147                 /* Advanced Error Capabilities */
 148                 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
 149                 /* ECRC Generation Enable */
 150                 if (config & PCI_ERR_CAP_ECRC_GENC)
 151                         config |= PCI_ERR_CAP_ECRC_GENE;
 152                 /* ECRC Check Enable */
 153                 if (config & PCI_ERR_CAP_ECRC_CHKC)
 154                         config |= PCI_ERR_CAP_ECRC_CHKE;
 155                 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
 156                 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
 157                 /* Report all errors to the root complex */
 158                 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
 159                                        PCI_ERR_ROOT_CMD_COR_EN |
 160                                        PCI_ERR_ROOT_CMD_NONFATAL_EN |
 161                                        PCI_ERR_ROOT_CMD_FATAL_EN);
 162                 /* Clear the Root status register */
 163                 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
 164                 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
 165         }
 166 
 167         return 0;
 168 }
 169 
 170 /**
 171  * Return the mapping of PCI device number to IRQ line. Each
 172  * character in the return string represents the interrupt
 173  * line for the device at that position. Device 1 maps to the
 174  * first character, etc. The characters A-D are used for PCI
 175  * interrupts.
 176  *
 177  * Returns PCI interrupt mapping
 178  */
 179 const char *octeon_get_pci_interrupts(void)
 180 {
 181         /*
 182          * Returning an empty string causes the interrupts to be
 183          * routed based on the PCI specification. From the PCI spec:
 184          *
 185          * INTA# of Device Number 0 is connected to IRQW on the system
 186          * board.  (Device Number has no significance regarding being
 187          * located on the system board or in a connector.) INTA# of
 188          * Device Number 1 is connected to IRQX on the system
 189          * board. INTA# of Device Number 2 is connected to IRQY on the
 190          * system board. INTA# of Device Number 3 is connected to IRQZ
 191          * on the system board. The table below describes how each
 192          * agent's INTx# lines are connected to the system board
 193          * interrupt lines. The following equation can be used to
 194          * determine to which INTx# signal on the system board a given
 195          * device's INTx# line(s) is connected.
 196          *
 197          * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
 198          * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
 199          * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
 200          * INTD# = 3)
 201          */
 202         if (of_machine_is_compatible("dlink,dsr-500n"))
 203                 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
 204         switch (octeon_bootinfo->board_type) {
 205         case CVMX_BOARD_TYPE_NAO38:
 206                 /* This is really the NAC38 */
 207                 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
 208         case CVMX_BOARD_TYPE_EBH3100:
 209         case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 210         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 211                 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
 212         case CVMX_BOARD_TYPE_BBGW_REF:
 213                 return "AABCD";
 214         case CVMX_BOARD_TYPE_CUST_DSR1000N:
 215                 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
 216         case CVMX_BOARD_TYPE_THUNDER:
 217         case CVMX_BOARD_TYPE_EBH3000:
 218         default:
 219                 return "";
 220         }
 221 }
 222 
 223 /**
 224  * Map a PCI device to the appropriate interrupt line
 225  *
 226  * @dev:    The Linux PCI device structure for the device to map
 227  * @slot:   The slot number for this device on __BUS 0__. Linux
 228  *               enumerates through all the bridges and figures out the
 229  *               slot on Bus 0 where this device eventually hooks to.
 230  * @pin:    The PCI interrupt pin read from the device, then swizzled
 231  *               as it goes through each bridge.
 232  * Returns Interrupt number for the device
 233  */
 234 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
 235                                       u8 slot, u8 pin)
 236 {
 237         int irq_num;
 238         const char *interrupts;
 239         int dev_num;
 240 
 241         /* Get the board specific interrupt mapping */
 242         interrupts = octeon_get_pci_interrupts();
 243 
 244         dev_num = dev->devfn >> 3;
 245         if (dev_num < strlen(interrupts))
 246                 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
 247                         OCTEON_IRQ_PCI_INT0;
 248         else
 249                 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
 250         return irq_num;
 251 }
 252 
 253 
 254 /*
 255  * Read a value from configuration space
 256  */
 257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
 258                               int reg, int size, u32 *val)
 259 {
 260         union octeon_pci_address pci_addr;
 261 
 262         pci_addr.u64 = 0;
 263         pci_addr.s.upper = 2;
 264         pci_addr.s.io = 1;
 265         pci_addr.s.did = 3;
 266         pci_addr.s.subdid = 1;
 267         pci_addr.s.endian_swap = 1;
 268         pci_addr.s.bus = bus->number;
 269         pci_addr.s.dev = devfn >> 3;
 270         pci_addr.s.func = devfn & 0x7;
 271         pci_addr.s.reg = reg;
 272 
 273         switch (size) {
 274         case 4:
 275                 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
 276                 return PCIBIOS_SUCCESSFUL;
 277         case 2:
 278                 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
 279                 return PCIBIOS_SUCCESSFUL;
 280         case 1:
 281                 *val = cvmx_read64_uint8(pci_addr.u64);
 282                 return PCIBIOS_SUCCESSFUL;
 283         }
 284         return PCIBIOS_FUNC_NOT_SUPPORTED;
 285 }
 286 
 287 
 288 /*
 289  * Write a value to PCI configuration space
 290  */
 291 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
 292                                int reg, int size, u32 val)
 293 {
 294         union octeon_pci_address pci_addr;
 295 
 296         pci_addr.u64 = 0;
 297         pci_addr.s.upper = 2;
 298         pci_addr.s.io = 1;
 299         pci_addr.s.did = 3;
 300         pci_addr.s.subdid = 1;
 301         pci_addr.s.endian_swap = 1;
 302         pci_addr.s.bus = bus->number;
 303         pci_addr.s.dev = devfn >> 3;
 304         pci_addr.s.func = devfn & 0x7;
 305         pci_addr.s.reg = reg;
 306 
 307         switch (size) {
 308         case 4:
 309                 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
 310                 return PCIBIOS_SUCCESSFUL;
 311         case 2:
 312                 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
 313                 return PCIBIOS_SUCCESSFUL;
 314         case 1:
 315                 cvmx_write64_uint8(pci_addr.u64, val);
 316                 return PCIBIOS_SUCCESSFUL;
 317         }
 318         return PCIBIOS_FUNC_NOT_SUPPORTED;
 319 }
 320 
 321 
 322 static struct pci_ops octeon_pci_ops = {
 323         .read   = octeon_read_config,
 324         .write  = octeon_write_config,
 325 };
 326 
 327 static struct resource octeon_pci_mem_resource = {
 328         .start = 0,
 329         .end = 0,
 330         .name = "Octeon PCI MEM",
 331         .flags = IORESOURCE_MEM,
 332 };
 333 
 334 /*
 335  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
 336  * bridge
 337  */
 338 static struct resource octeon_pci_io_resource = {
 339         .start = 0x4000,
 340         .end = OCTEON_PCI_IOSPACE_SIZE - 1,
 341         .name = "Octeon PCI IO",
 342         .flags = IORESOURCE_IO,
 343 };
 344 
 345 static struct pci_controller octeon_pci_controller = {
 346         .pci_ops = &octeon_pci_ops,
 347         .mem_resource = &octeon_pci_mem_resource,
 348         .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
 349         .io_resource = &octeon_pci_io_resource,
 350         .io_offset = 0,
 351         .io_map_base = OCTEON_PCI_IOSPACE_BASE,
 352 };
 353 
 354 
 355 /*
 356  * Low level initialize the Octeon PCI controller
 357  */
 358 static void octeon_pci_initialize(void)
 359 {
 360         union cvmx_pci_cfg01 cfg01;
 361         union cvmx_npi_ctl_status ctl_status;
 362         union cvmx_pci_ctl_status_2 ctl_status_2;
 363         union cvmx_pci_cfg19 cfg19;
 364         union cvmx_pci_cfg16 cfg16;
 365         union cvmx_pci_cfg22 cfg22;
 366         union cvmx_pci_cfg56 cfg56;
 367 
 368         /* Reset the PCI Bus */
 369         cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
 370         cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 371 
 372         udelay(2000);           /* Hold PCI reset for 2 ms */
 373 
 374         ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
 375         ctl_status.s.max_word = 1;
 376         ctl_status.s.timer = 1;
 377         cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
 378 
 379         /* Deassert PCI reset and advertize PCX Host Mode Device Capability
 380            (64b) */
 381         cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
 382         cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 383 
 384         udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
 385 
 386         ctl_status_2.u32 = 0;
 387         ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
 388                                            before any PCI reads. */
 389         ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
 390         ctl_status_2.s.bar2_enb = 1;
 391         ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
 392         ctl_status_2.s.bar2_esx = 1;
 393         ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
 394         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 395                 /* BAR1 hole */
 396                 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
 397                 ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
 398                 ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
 399                 ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
 400                 ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
 401                 ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
 402         }
 403 
 404         octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
 405         udelay(2000);           /* Wait 2 ms before doing PCI reads */
 406 
 407         ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
 408         pr_notice("PCI Status: %s %s-bit\n",
 409                   ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
 410                   ctl_status_2.s.ap_64ad ? "64" : "32");
 411 
 412         if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
 413                 union cvmx_pci_cnt_reg cnt_reg_start;
 414                 union cvmx_pci_cnt_reg cnt_reg_end;
 415                 unsigned long cycles, pci_clock;
 416 
 417                 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 418                 cycles = read_c0_cvmcount();
 419                 udelay(1000);
 420                 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 421                 cycles = read_c0_cvmcount() - cycles;
 422                 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
 423                             (cycles / (mips_hpt_frequency / 1000000));
 424                 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
 425         }
 426 
 427         /*
 428          * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
 429          * in PCI-X mode to allow four outstanding splits. Otherwise,
 430          * should not change from its reset value. Don't write PCI_CFG19
 431          * in PCI mode (0x82000001 reset value), write it to 0x82000004
 432          * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
 433          * MRBCM -> must be one.
 434          */
 435         if (ctl_status_2.s.ap_pcix) {
 436                 cfg19.u32 = 0;
 437                 /*
 438                  * Target Delayed/Split request outstanding maximum
 439                  * count. [1..31] and 0=32.  NOTE: If the user
 440                  * programs these bits beyond the Designed Maximum
 441                  * outstanding count, then the designed maximum table
 442                  * depth will be used instead.  No additional
 443                  * Deferred/Split transactions will be accepted if
 444                  * this outstanding maximum count is
 445                  * reached. Furthermore, no additional deferred/split
 446                  * transactions will be accepted if the I/O delay/ I/O
 447                  * Split Request outstanding maximum is reached.
 448                  */
 449                 cfg19.s.tdomc = 4;
 450                 /*
 451                  * Master Deferred Read Request Outstanding Max Count
 452                  * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
 453                  * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
 454                  * 5 2 110 6 3 111 7 3 For example, if these bits are
 455                  * programmed to 100, the core can support 2 DAC
 456                  * cycles, 4 SAC cycles or a combination of 1 DAC and
 457                  * 2 SAC cycles. NOTE: For the PCI-X maximum
 458                  * outstanding split transactions, refer to
 459                  * CRE0[22:20].
 460                  */
 461                 cfg19.s.mdrrmc = 2;
 462                 /*
 463                  * Master Request (Memory Read) Byte Count/Byte Enable
 464                  * select. 0 = Byte Enables valid. In PCI mode, a
 465                  * burst transaction cannot be performed using Memory
 466                  * Read command=4?h6. 1 = DWORD Byte Count valid
 467                  * (default). In PCI Mode, the memory read byte
 468                  * enables are automatically generated by the
 469                  * core. Note: N3 Master Request transaction sizes are
 470                  * always determined through the
 471                  * am_attr[<35:32>|<7:0>] field.
 472                  */
 473                 cfg19.s.mrbcm = 1;
 474                 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
 475         }
 476 
 477 
 478         cfg01.u32 = 0;
 479         cfg01.s.msae = 1;       /* Memory Space Access Enable */
 480         cfg01.s.me = 1;         /* Master Enable */
 481         cfg01.s.pee = 1;        /* PERR# Enable */
 482         cfg01.s.see = 1;        /* System Error Enable */
 483         cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
 484 
 485         octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
 486 
 487 #ifdef USE_OCTEON_INTERNAL_ARBITER
 488         /*
 489          * When OCTEON is a PCI host, most systems will use OCTEON's
 490          * internal arbiter, so must enable it before any PCI/PCI-X
 491          * traffic can occur.
 492          */
 493         {
 494                 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
 495 
 496                 pci_int_arb_cfg.u64 = 0;
 497                 pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
 498                 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
 499         }
 500 #endif  /* USE_OCTEON_INTERNAL_ARBITER */
 501 
 502         /*
 503          * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
 504          * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
 505          * 1..7.
 506          */
 507         cfg16.u32 = 0;
 508         cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
 509         octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
 510 
 511         /*
 512          * Should be written to 0x4ff00. MTTV -> must be zero.
 513          * FLUSH -> must be 1. MRV -> should be 0xFF.
 514          */
 515         cfg22.u32 = 0;
 516         /* Master Retry Value [1..255] and 0=infinite */
 517         cfg22.s.mrv = 0xff;
 518         /*
 519          * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
 520          * N3K operation.
 521          */
 522         cfg22.s.flush = 1;
 523         octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
 524 
 525         /*
 526          * MOST Indicates the maximum number of outstanding splits (in -1
 527          * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
 528          * affected by the MOST selection.  Should generally be written
 529          * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
 530          * depending on the desired MOST of 3, 2, 1, or 0, respectively.
 531          */
 532         cfg56.u32 = 0;
 533         cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
 534         cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
 535         cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
 536         cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
 537         cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
 538                                    [0=512B,1=1024B,2=2048B,3=4096B] */
 539         cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
 540                                    .. 7=32] */
 541 
 542         octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
 543 
 544         /*
 545          * Affects PCI performance when OCTEON services reads to its
 546          * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
 547          * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
 548          * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
 549          * these values need to be changed so they won't possibly prefetch off
 550          * of the end of memory if PCI is DMAing a buffer at the end of
 551          * memory. Note that these values differ from their reset values.
 552          */
 553         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
 554         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
 555         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
 556 }
 557 
 558 
 559 /*
 560  * Initialize the Octeon PCI controller
 561  */
 562 static int __init octeon_pci_setup(void)
 563 {
 564         union cvmx_npi_mem_access_subidx mem_access;
 565         int index;
 566 
 567         /* Only these chips have PCI */
 568         if (octeon_has_feature(OCTEON_FEATURE_PCIE))
 569                 return 0;
 570 
 571         if (!octeon_is_pci_host()) {
 572                 pr_notice("Not in host mode, PCI Controller not initialized\n");
 573                 return 0;
 574         }
 575 
 576         /* Point pcibios_map_irq() to the PCI version of it */
 577         octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
 578 
 579         /* Only use the big bars on chips that support it */
 580         if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
 581             OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 582             OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
 583                 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
 584         else
 585                 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
 586 
 587         /* PCI I/O and PCI MEM values */
 588         set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
 589         ioport_resource.start = 0;
 590         ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
 591 
 592         pr_notice("%s Octeon big bar support\n",
 593                   (octeon_dma_bar_type ==
 594                   OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
 595 
 596         octeon_pci_initialize();
 597 
 598         mem_access.u64 = 0;
 599         mem_access.s.esr = 1;   /* Endian-Swap on read. */
 600         mem_access.s.esw = 1;   /* Endian-Swap on write. */
 601         mem_access.s.nsr = 0;   /* No-Snoop on read. */
 602         mem_access.s.nsw = 0;   /* No-Snoop on write. */
 603         mem_access.s.ror = 0;   /* Relax Read on read. */
 604         mem_access.s.row = 0;   /* Relax Order on write. */
 605         mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
 606         cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
 607 
 608         /*
 609          * Remap the Octeon BAR 2 above all 32 bit devices
 610          * (0x8000000000ul).  This is done here so it is remapped
 611          * before the readl()'s below. We don't want BAR2 overlapping
 612          * with BAR0/BAR1 during these reads.
 613          */
 614         octeon_npi_write32(CVMX_NPI_PCI_CFG08,
 615                            (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
 616         octeon_npi_write32(CVMX_NPI_PCI_CFG09,
 617                            (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
 618 
 619         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 620                 /* Remap the Octeon BAR 0 to 0-2GB */
 621                 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
 622                 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 623 
 624                 /*
 625                  * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
 626                  * BAR 1 hole).
 627                  */
 628                 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
 629                 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 630 
 631                 /* BAR1 movable mappings set for identity mapping */
 632                 octeon_bar1_pci_phys = 0x80000000ull;
 633                 for (index = 0; index < 32; index++) {
 634                         union cvmx_pci_bar1_indexx bar1_index;
 635 
 636                         bar1_index.u32 = 0;
 637                         /* Address bits[35:22] sent to L2C */
 638                         bar1_index.s.addr_idx =
 639                                 (octeon_bar1_pci_phys >> 22) + index;
 640                         /* Don't put PCI accesses in L2. */
 641                         bar1_index.s.ca = 1;
 642                         /* Endian Swap Mode */
 643                         bar1_index.s.end_swp = 1;
 644                         /* Set '1' when the selected address range is valid. */
 645                         bar1_index.s.addr_v = 1;
 646                         octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 647                                            bar1_index.u32);
 648                 }
 649 
 650                 /* Devices go after BAR1 */
 651                 octeon_pci_mem_resource.start =
 652                         OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
 653                         (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
 654                 octeon_pci_mem_resource.end =
 655                         octeon_pci_mem_resource.start + (1ul << 30);
 656         } else {
 657                 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
 658                 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
 659                 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 660 
 661                 /* Remap the Octeon BAR 1 to map 0-128MB */
 662                 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
 663                 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 664 
 665                 /* BAR1 movable regions contiguous to cover the swiotlb */
 666                 octeon_bar1_pci_phys =
 667                         virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
 668 
 669                 for (index = 0; index < 32; index++) {
 670                         union cvmx_pci_bar1_indexx bar1_index;
 671 
 672                         bar1_index.u32 = 0;
 673                         /* Address bits[35:22] sent to L2C */
 674                         bar1_index.s.addr_idx =
 675                                 (octeon_bar1_pci_phys >> 22) + index;
 676                         /* Don't put PCI accesses in L2. */
 677                         bar1_index.s.ca = 1;
 678                         /* Endian Swap Mode */
 679                         bar1_index.s.end_swp = 1;
 680                         /* Set '1' when the selected address range is valid. */
 681                         bar1_index.s.addr_v = 1;
 682                         octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 683                                            bar1_index.u32);
 684                 }
 685 
 686                 /* Devices go after BAR0 */
 687                 octeon_pci_mem_resource.start =
 688                         OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
 689                         (4ul << 10);
 690                 octeon_pci_mem_resource.end =
 691                         octeon_pci_mem_resource.start + (1ul << 30);
 692         }
 693 
 694         register_pci_controller(&octeon_pci_controller);
 695 
 696         /*
 697          * Clear any errors that might be pending from before the bus
 698          * was setup properly.
 699          */
 700         cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
 701 
 702         if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
 703                                                    -1, NULL, 0)))
 704                 pr_err("Registration of co_pci_edac failed!\n");
 705 
 706         octeon_pci_dma_init();
 707 
 708         return 0;
 709 }
 710 
 711 arch_initcall(octeon_pci_setup);

/* [<][>][^][v][top][bottom][index][help] */