root/arch/mips/kernel/traps.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. show_raw_backtrace
  2. set_raw_show_trace
  3. show_backtrace
  4. show_stacktrace
  5. show_stack
  6. show_code
  7. __show_regs
  8. show_regs
  9. show_registers
  10. die
  11. search_dbe_tables
  12. do_be
  13. simulate_ll
  14. simulate_sc
  15. simulate_llsc
  16. simulate_rdhwr
  17. simulate_rdhwr_normal
  18. simulate_rdhwr_mm
  19. simulate_sync
  20. do_ov
  21. force_fcr31_sig
  22. process_fpemu_return
  23. simulate_fp
  24. do_fpe
  25. mt_ase_fp_affinity
  26. simulate_fp
  27. do_trap_or_bp
  28. do_bp
  29. do_tr
  30. do_ri
  31. register_cu2_notifier
  32. cu2_notifier_call_chain
  33. default_cu2_call
  34. enable_restore_fp_context
  35. enable_restore_fp_context
  36. do_cpu
  37. do_msa_fpe
  38. do_msa
  39. do_mdmx
  40. do_watch
  41. do_mcheck
  42. do_mt
  43. do_dsp
  44. do_reserved
  45. nol1parity
  46. nol2parity
  47. parity_protection_init
  48. cache_parity_error
  49. do_ftlb
  50. ejtag_exception_handler
  51. register_nmi_notifier
  52. nmi_exception_handler
  53. set_except_vector
  54. do_default_vi
  55. set_vi_srs_handler
  56. set_vi_handler
  57. ulri_disable
  58. configure_status
  59. configure_hwrena
  60. configure_exception_vector
  61. per_cpu_trap_init
  62. set_handler
  63. set_uncached_handler
  64. set_rdhwr_noopt
  65. trap_init
  66. trap_pm_notifier
  67. trap_pm_init

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7  * Copyright (C) 1995, 1996 Paul M. Antoine
   8  * Copyright (C) 1998 Ulf Carlsson
   9  * Copyright (C) 1999 Silicon Graphics, Inc.
  10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13  * Copyright (C) 2014, Imagination Technologies Ltd.
  14  */
  15 #include <linux/bitops.h>
  16 #include <linux/bug.h>
  17 #include <linux/compiler.h>
  18 #include <linux/context_tracking.h>
  19 #include <linux/cpu_pm.h>
  20 #include <linux/kexec.h>
  21 #include <linux/init.h>
  22 #include <linux/kernel.h>
  23 #include <linux/module.h>
  24 #include <linux/extable.h>
  25 #include <linux/mm.h>
  26 #include <linux/sched/mm.h>
  27 #include <linux/sched/debug.h>
  28 #include <linux/smp.h>
  29 #include <linux/spinlock.h>
  30 #include <linux/kallsyms.h>
  31 #include <linux/memblock.h>
  32 #include <linux/interrupt.h>
  33 #include <linux/ptrace.h>
  34 #include <linux/kgdb.h>
  35 #include <linux/kdebug.h>
  36 #include <linux/kprobes.h>
  37 #include <linux/notifier.h>
  38 #include <linux/kdb.h>
  39 #include <linux/irq.h>
  40 #include <linux/perf_event.h>
  41 
  42 #include <asm/addrspace.h>
  43 #include <asm/bootinfo.h>
  44 #include <asm/branch.h>
  45 #include <asm/break.h>
  46 #include <asm/cop2.h>
  47 #include <asm/cpu.h>
  48 #include <asm/cpu-type.h>
  49 #include <asm/dsp.h>
  50 #include <asm/fpu.h>
  51 #include <asm/fpu_emulator.h>
  52 #include <asm/idle.h>
  53 #include <asm/isa-rev.h>
  54 #include <asm/mips-cps.h>
  55 #include <asm/mips-r2-to-r6-emul.h>
  56 #include <asm/mipsregs.h>
  57 #include <asm/mipsmtregs.h>
  58 #include <asm/module.h>
  59 #include <asm/msa.h>
  60 #include <asm/pgtable.h>
  61 #include <asm/ptrace.h>
  62 #include <asm/sections.h>
  63 #include <asm/siginfo.h>
  64 #include <asm/tlbdebug.h>
  65 #include <asm/traps.h>
  66 #include <linux/uaccess.h>
  67 #include <asm/watch.h>
  68 #include <asm/mmu_context.h>
  69 #include <asm/types.h>
  70 #include <asm/stacktrace.h>
  71 #include <asm/tlbex.h>
  72 #include <asm/uasm.h>
  73 
  74 extern void check_wait(void);
  75 extern asmlinkage void rollback_handle_int(void);
  76 extern asmlinkage void handle_int(void);
  77 extern asmlinkage void handle_adel(void);
  78 extern asmlinkage void handle_ades(void);
  79 extern asmlinkage void handle_ibe(void);
  80 extern asmlinkage void handle_dbe(void);
  81 extern asmlinkage void handle_sys(void);
  82 extern asmlinkage void handle_bp(void);
  83 extern asmlinkage void handle_ri(void);
  84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  85 extern asmlinkage void handle_ri_rdhwr(void);
  86 extern asmlinkage void handle_cpu(void);
  87 extern asmlinkage void handle_ov(void);
  88 extern asmlinkage void handle_tr(void);
  89 extern asmlinkage void handle_msa_fpe(void);
  90 extern asmlinkage void handle_fpe(void);
  91 extern asmlinkage void handle_ftlb(void);
  92 extern asmlinkage void handle_msa(void);
  93 extern asmlinkage void handle_mdmx(void);
  94 extern asmlinkage void handle_watch(void);
  95 extern asmlinkage void handle_mt(void);
  96 extern asmlinkage void handle_dsp(void);
  97 extern asmlinkage void handle_mcheck(void);
  98 extern asmlinkage void handle_reserved(void);
  99 extern void tlb_do_page_fault_0(void);
 100 
 101 void (*board_be_init)(void);
 102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 103 void (*board_nmi_handler_setup)(void);
 104 void (*board_ejtag_handler_setup)(void);
 105 void (*board_bind_eic_interrupt)(int irq, int regset);
 106 void (*board_ebase_setup)(void);
 107 void(*board_cache_error_setup)(void);
 108 
 109 static void show_raw_backtrace(unsigned long reg29)
 110 {
 111         unsigned long *sp = (unsigned long *)(reg29 & ~3);
 112         unsigned long addr;
 113 
 114         printk("Call Trace:");
 115 #ifdef CONFIG_KALLSYMS
 116         printk("\n");
 117 #endif
 118         while (!kstack_end(sp)) {
 119                 unsigned long __user *p =
 120                         (unsigned long __user *)(unsigned long)sp++;
 121                 if (__get_user(addr, p)) {
 122                         printk(" (Bad stack address)");
 123                         break;
 124                 }
 125                 if (__kernel_text_address(addr))
 126                         print_ip_sym(addr);
 127         }
 128         printk("\n");
 129 }
 130 
 131 #ifdef CONFIG_KALLSYMS
 132 int raw_show_trace;
 133 static int __init set_raw_show_trace(char *str)
 134 {
 135         raw_show_trace = 1;
 136         return 1;
 137 }
 138 __setup("raw_show_trace", set_raw_show_trace);
 139 #endif
 140 
 141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 142 {
 143         unsigned long sp = regs->regs[29];
 144         unsigned long ra = regs->regs[31];
 145         unsigned long pc = regs->cp0_epc;
 146 
 147         if (!task)
 148                 task = current;
 149 
 150         if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
 151                 show_raw_backtrace(sp);
 152                 return;
 153         }
 154         printk("Call Trace:\n");
 155         do {
 156                 print_ip_sym(pc);
 157                 pc = unwind_stack(task, &sp, pc, &ra);
 158         } while (pc);
 159         pr_cont("\n");
 160 }
 161 
 162 /*
 163  * This routine abuses get_user()/put_user() to reference pointers
 164  * with at least a bit of error checking ...
 165  */
 166 static void show_stacktrace(struct task_struct *task,
 167         const struct pt_regs *regs)
 168 {
 169         const int field = 2 * sizeof(unsigned long);
 170         long stackdata;
 171         int i;
 172         unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 173 
 174         printk("Stack :");
 175         i = 0;
 176         while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 177                 if (i && ((i % (64 / field)) == 0)) {
 178                         pr_cont("\n");
 179                         printk("       ");
 180                 }
 181                 if (i > 39) {
 182                         pr_cont(" ...");
 183                         break;
 184                 }
 185 
 186                 if (__get_user(stackdata, sp++)) {
 187                         pr_cont(" (Bad stack address)");
 188                         break;
 189                 }
 190 
 191                 pr_cont(" %0*lx", field, stackdata);
 192                 i++;
 193         }
 194         pr_cont("\n");
 195         show_backtrace(task, regs);
 196 }
 197 
 198 void show_stack(struct task_struct *task, unsigned long *sp)
 199 {
 200         struct pt_regs regs;
 201         mm_segment_t old_fs = get_fs();
 202 
 203         regs.cp0_status = KSU_KERNEL;
 204         if (sp) {
 205                 regs.regs[29] = (unsigned long)sp;
 206                 regs.regs[31] = 0;
 207                 regs.cp0_epc = 0;
 208         } else {
 209                 if (task && task != current) {
 210                         regs.regs[29] = task->thread.reg29;
 211                         regs.regs[31] = 0;
 212                         regs.cp0_epc = task->thread.reg31;
 213 #ifdef CONFIG_KGDB_KDB
 214                 } else if (atomic_read(&kgdb_active) != -1 &&
 215                            kdb_current_regs) {
 216                         memcpy(&regs, kdb_current_regs, sizeof(regs));
 217 #endif /* CONFIG_KGDB_KDB */
 218                 } else {
 219                         prepare_frametrace(&regs);
 220                 }
 221         }
 222         /*
 223          * show_stack() deals exclusively with kernel mode, so be sure to access
 224          * the stack in the kernel (not user) address space.
 225          */
 226         set_fs(KERNEL_DS);
 227         show_stacktrace(task, &regs);
 228         set_fs(old_fs);
 229 }
 230 
 231 static void show_code(unsigned int __user *pc)
 232 {
 233         long i;
 234         unsigned short __user *pc16 = NULL;
 235 
 236         printk("Code:");
 237 
 238         if ((unsigned long)pc & 1)
 239                 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 240         for(i = -3 ; i < 6 ; i++) {
 241                 unsigned int insn;
 242                 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 243                         pr_cont(" (Bad address in epc)\n");
 244                         break;
 245                 }
 246                 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 247         }
 248         pr_cont("\n");
 249 }
 250 
 251 static void __show_regs(const struct pt_regs *regs)
 252 {
 253         const int field = 2 * sizeof(unsigned long);
 254         unsigned int cause = regs->cp0_cause;
 255         unsigned int exccode;
 256         int i;
 257 
 258         show_regs_print_info(KERN_DEFAULT);
 259 
 260         /*
 261          * Saved main processor registers
 262          */
 263         for (i = 0; i < 32; ) {
 264                 if ((i % 4) == 0)
 265                         printk("$%2d   :", i);
 266                 if (i == 0)
 267                         pr_cont(" %0*lx", field, 0UL);
 268                 else if (i == 26 || i == 27)
 269                         pr_cont(" %*s", field, "");
 270                 else
 271                         pr_cont(" %0*lx", field, regs->regs[i]);
 272 
 273                 i++;
 274                 if ((i % 4) == 0)
 275                         pr_cont("\n");
 276         }
 277 
 278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
 279         printk("Acx    : %0*lx\n", field, regs->acx);
 280 #endif
 281         if (MIPS_ISA_REV < 6) {
 282                 printk("Hi    : %0*lx\n", field, regs->hi);
 283                 printk("Lo    : %0*lx\n", field, regs->lo);
 284         }
 285 
 286         /*
 287          * Saved cp0 registers
 288          */
 289         printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 290                (void *) regs->cp0_epc);
 291         printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 292                (void *) regs->regs[31]);
 293 
 294         printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 295 
 296         if (cpu_has_3kex) {
 297                 if (regs->cp0_status & ST0_KUO)
 298                         pr_cont("KUo ");
 299                 if (regs->cp0_status & ST0_IEO)
 300                         pr_cont("IEo ");
 301                 if (regs->cp0_status & ST0_KUP)
 302                         pr_cont("KUp ");
 303                 if (regs->cp0_status & ST0_IEP)
 304                         pr_cont("IEp ");
 305                 if (regs->cp0_status & ST0_KUC)
 306                         pr_cont("KUc ");
 307                 if (regs->cp0_status & ST0_IEC)
 308                         pr_cont("IEc ");
 309         } else if (cpu_has_4kex) {
 310                 if (regs->cp0_status & ST0_KX)
 311                         pr_cont("KX ");
 312                 if (regs->cp0_status & ST0_SX)
 313                         pr_cont("SX ");
 314                 if (regs->cp0_status & ST0_UX)
 315                         pr_cont("UX ");
 316                 switch (regs->cp0_status & ST0_KSU) {
 317                 case KSU_USER:
 318                         pr_cont("USER ");
 319                         break;
 320                 case KSU_SUPERVISOR:
 321                         pr_cont("SUPERVISOR ");
 322                         break;
 323                 case KSU_KERNEL:
 324                         pr_cont("KERNEL ");
 325                         break;
 326                 default:
 327                         pr_cont("BAD_MODE ");
 328                         break;
 329                 }
 330                 if (regs->cp0_status & ST0_ERL)
 331                         pr_cont("ERL ");
 332                 if (regs->cp0_status & ST0_EXL)
 333                         pr_cont("EXL ");
 334                 if (regs->cp0_status & ST0_IE)
 335                         pr_cont("IE ");
 336         }
 337         pr_cont("\n");
 338 
 339         exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 340         printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 341 
 342         if (1 <= exccode && exccode <= 5)
 343                 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 344 
 345         printk("PrId  : %08x (%s)\n", read_c0_prid(),
 346                cpu_name_string());
 347 }
 348 
 349 /*
 350  * FIXME: really the generic show_regs should take a const pointer argument.
 351  */
 352 void show_regs(struct pt_regs *regs)
 353 {
 354         __show_regs(regs);
 355         dump_stack();
 356 }
 357 
 358 void show_registers(struct pt_regs *regs)
 359 {
 360         const int field = 2 * sizeof(unsigned long);
 361         mm_segment_t old_fs = get_fs();
 362 
 363         __show_regs(regs);
 364         print_modules();
 365         printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 366                current->comm, current->pid, current_thread_info(), current,
 367               field, current_thread_info()->tp_value);
 368         if (cpu_has_userlocal) {
 369                 unsigned long tls;
 370 
 371                 tls = read_c0_userlocal();
 372                 if (tls != current_thread_info()->tp_value)
 373                         printk("*HwTLS: %0*lx\n", field, tls);
 374         }
 375 
 376         if (!user_mode(regs))
 377                 /* Necessary for getting the correct stack content */
 378                 set_fs(KERNEL_DS);
 379         show_stacktrace(current, regs);
 380         show_code((unsigned int __user *) regs->cp0_epc);
 381         printk("\n");
 382         set_fs(old_fs);
 383 }
 384 
 385 static DEFINE_RAW_SPINLOCK(die_lock);
 386 
 387 void __noreturn die(const char *str, struct pt_regs *regs)
 388 {
 389         static int die_counter;
 390         int sig = SIGSEGV;
 391 
 392         oops_enter();
 393 
 394         if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 395                        SIGSEGV) == NOTIFY_STOP)
 396                 sig = 0;
 397 
 398         console_verbose();
 399         raw_spin_lock_irq(&die_lock);
 400         bust_spinlocks(1);
 401 
 402         printk("%s[#%d]:\n", str, ++die_counter);
 403         show_registers(regs);
 404         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 405         raw_spin_unlock_irq(&die_lock);
 406 
 407         oops_exit();
 408 
 409         if (in_interrupt())
 410                 panic("Fatal exception in interrupt");
 411 
 412         if (panic_on_oops)
 413                 panic("Fatal exception");
 414 
 415         if (regs && kexec_should_crash(current))
 416                 crash_kexec(regs);
 417 
 418         do_exit(sig);
 419 }
 420 
 421 extern struct exception_table_entry __start___dbe_table[];
 422 extern struct exception_table_entry __stop___dbe_table[];
 423 
 424 __asm__(
 425 "       .section        __dbe_table, \"a\"\n"
 426 "       .previous                       \n");
 427 
 428 /* Given an address, look for it in the exception tables. */
 429 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 430 {
 431         const struct exception_table_entry *e;
 432 
 433         e = search_extable(__start___dbe_table,
 434                            __stop___dbe_table - __start___dbe_table, addr);
 435         if (!e)
 436                 e = search_module_dbetables(addr);
 437         return e;
 438 }
 439 
 440 asmlinkage void do_be(struct pt_regs *regs)
 441 {
 442         const int field = 2 * sizeof(unsigned long);
 443         const struct exception_table_entry *fixup = NULL;
 444         int data = regs->cp0_cause & 4;
 445         int action = MIPS_BE_FATAL;
 446         enum ctx_state prev_state;
 447 
 448         prev_state = exception_enter();
 449         /* XXX For now.  Fixme, this searches the wrong table ...  */
 450         if (data && !user_mode(regs))
 451                 fixup = search_dbe_tables(exception_epc(regs));
 452 
 453         if (fixup)
 454                 action = MIPS_BE_FIXUP;
 455 
 456         if (board_be_handler)
 457                 action = board_be_handler(regs, fixup != NULL);
 458         else
 459                 mips_cm_error_report();
 460 
 461         switch (action) {
 462         case MIPS_BE_DISCARD:
 463                 goto out;
 464         case MIPS_BE_FIXUP:
 465                 if (fixup) {
 466                         regs->cp0_epc = fixup->nextinsn;
 467                         goto out;
 468                 }
 469                 break;
 470         default:
 471                 break;
 472         }
 473 
 474         /*
 475          * Assume it would be too dangerous to continue ...
 476          */
 477         printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 478                data ? "Data" : "Instruction",
 479                field, regs->cp0_epc, field, regs->regs[31]);
 480         if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 481                        SIGBUS) == NOTIFY_STOP)
 482                 goto out;
 483 
 484         die_if_kernel("Oops", regs);
 485         force_sig(SIGBUS);
 486 
 487 out:
 488         exception_exit(prev_state);
 489 }
 490 
 491 /*
 492  * ll/sc, rdhwr, sync emulation
 493  */
 494 
 495 #define OPCODE 0xfc000000
 496 #define BASE   0x03e00000
 497 #define RT     0x001f0000
 498 #define OFFSET 0x0000ffff
 499 #define LL     0xc0000000
 500 #define SC     0xe0000000
 501 #define SPEC0  0x00000000
 502 #define SPEC3  0x7c000000
 503 #define RD     0x0000f800
 504 #define FUNC   0x0000003f
 505 #define SYNC   0x0000000f
 506 #define RDHWR  0x0000003b
 507 
 508 /*  microMIPS definitions   */
 509 #define MM_POOL32A_FUNC 0xfc00ffff
 510 #define MM_RDHWR        0x00006b3c
 511 #define MM_RS           0x001f0000
 512 #define MM_RT           0x03e00000
 513 
 514 /*
 515  * The ll_bit is cleared by r*_switch.S
 516  */
 517 
 518 unsigned int ll_bit;
 519 struct task_struct *ll_task;
 520 
 521 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 522 {
 523         unsigned long value, __user *vaddr;
 524         long offset;
 525 
 526         /*
 527          * analyse the ll instruction that just caused a ri exception
 528          * and put the referenced address to addr.
 529          */
 530 
 531         /* sign extend offset */
 532         offset = opcode & OFFSET;
 533         offset <<= 16;
 534         offset >>= 16;
 535 
 536         vaddr = (unsigned long __user *)
 537                 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 538 
 539         if ((unsigned long)vaddr & 3)
 540                 return SIGBUS;
 541         if (get_user(value, vaddr))
 542                 return SIGSEGV;
 543 
 544         preempt_disable();
 545 
 546         if (ll_task == NULL || ll_task == current) {
 547                 ll_bit = 1;
 548         } else {
 549                 ll_bit = 0;
 550         }
 551         ll_task = current;
 552 
 553         preempt_enable();
 554 
 555         regs->regs[(opcode & RT) >> 16] = value;
 556 
 557         return 0;
 558 }
 559 
 560 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 561 {
 562         unsigned long __user *vaddr;
 563         unsigned long reg;
 564         long offset;
 565 
 566         /*
 567          * analyse the sc instruction that just caused a ri exception
 568          * and put the referenced address to addr.
 569          */
 570 
 571         /* sign extend offset */
 572         offset = opcode & OFFSET;
 573         offset <<= 16;
 574         offset >>= 16;
 575 
 576         vaddr = (unsigned long __user *)
 577                 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 578         reg = (opcode & RT) >> 16;
 579 
 580         if ((unsigned long)vaddr & 3)
 581                 return SIGBUS;
 582 
 583         preempt_disable();
 584 
 585         if (ll_bit == 0 || ll_task != current) {
 586                 regs->regs[reg] = 0;
 587                 preempt_enable();
 588                 return 0;
 589         }
 590 
 591         preempt_enable();
 592 
 593         if (put_user(regs->regs[reg], vaddr))
 594                 return SIGSEGV;
 595 
 596         regs->regs[reg] = 1;
 597 
 598         return 0;
 599 }
 600 
 601 /*
 602  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 603  * opcodes are supposed to result in coprocessor unusable exceptions if
 604  * executed on ll/sc-less processors.  That's the theory.  In practice a
 605  * few processors such as NEC's VR4100 throw reserved instruction exceptions
 606  * instead, so we're doing the emulation thing in both exception handlers.
 607  */
 608 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 609 {
 610         if ((opcode & OPCODE) == LL) {
 611                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 612                                 1, regs, 0);
 613                 return simulate_ll(regs, opcode);
 614         }
 615         if ((opcode & OPCODE) == SC) {
 616                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 617                                 1, regs, 0);
 618                 return simulate_sc(regs, opcode);
 619         }
 620 
 621         return -1;                      /* Must be something else ... */
 622 }
 623 
 624 /*
 625  * Simulate trapping 'rdhwr' instructions to provide user accessible
 626  * registers not implemented in hardware.
 627  */
 628 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 629 {
 630         struct thread_info *ti = task_thread_info(current);
 631 
 632         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 633                         1, regs, 0);
 634         switch (rd) {
 635         case MIPS_HWR_CPUNUM:           /* CPU number */
 636                 regs->regs[rt] = smp_processor_id();
 637                 return 0;
 638         case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
 639                 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 640                                      current_cpu_data.icache.linesz);
 641                 return 0;
 642         case MIPS_HWR_CC:               /* Read count register */
 643                 regs->regs[rt] = read_c0_count();
 644                 return 0;
 645         case MIPS_HWR_CCRES:            /* Count register resolution */
 646                 switch (current_cpu_type()) {
 647                 case CPU_20KC:
 648                 case CPU_25KF:
 649                         regs->regs[rt] = 1;
 650                         break;
 651                 default:
 652                         regs->regs[rt] = 2;
 653                 }
 654                 return 0;
 655         case MIPS_HWR_ULR:              /* Read UserLocal register */
 656                 regs->regs[rt] = ti->tp_value;
 657                 return 0;
 658         default:
 659                 return -1;
 660         }
 661 }
 662 
 663 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 664 {
 665         if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 666                 int rd = (opcode & RD) >> 11;
 667                 int rt = (opcode & RT) >> 16;
 668 
 669                 simulate_rdhwr(regs, rd, rt);
 670                 return 0;
 671         }
 672 
 673         /* Not ours.  */
 674         return -1;
 675 }
 676 
 677 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 678 {
 679         if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 680                 int rd = (opcode & MM_RS) >> 16;
 681                 int rt = (opcode & MM_RT) >> 21;
 682                 simulate_rdhwr(regs, rd, rt);
 683                 return 0;
 684         }
 685 
 686         /* Not ours.  */
 687         return -1;
 688 }
 689 
 690 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 691 {
 692         if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 693                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 694                                 1, regs, 0);
 695                 return 0;
 696         }
 697 
 698         return -1;                      /* Must be something else ... */
 699 }
 700 
 701 asmlinkage void do_ov(struct pt_regs *regs)
 702 {
 703         enum ctx_state prev_state;
 704 
 705         prev_state = exception_enter();
 706         die_if_kernel("Integer overflow", regs);
 707 
 708         force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
 709         exception_exit(prev_state);
 710 }
 711 
 712 #ifdef CONFIG_MIPS_FP_SUPPORT
 713 
 714 /*
 715  * Send SIGFPE according to FCSR Cause bits, which must have already
 716  * been masked against Enable bits.  This is impotant as Inexact can
 717  * happen together with Overflow or Underflow, and `ptrace' can set
 718  * any bits.
 719  */
 720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
 721                      struct task_struct *tsk)
 722 {
 723         int si_code = FPE_FLTUNK;
 724 
 725         if (fcr31 & FPU_CSR_INV_X)
 726                 si_code = FPE_FLTINV;
 727         else if (fcr31 & FPU_CSR_DIV_X)
 728                 si_code = FPE_FLTDIV;
 729         else if (fcr31 & FPU_CSR_OVF_X)
 730                 si_code = FPE_FLTOVF;
 731         else if (fcr31 & FPU_CSR_UDF_X)
 732                 si_code = FPE_FLTUND;
 733         else if (fcr31 & FPU_CSR_INE_X)
 734                 si_code = FPE_FLTRES;
 735 
 736         force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
 737 }
 738 
 739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 740 {
 741         int si_code;
 742         struct vm_area_struct *vma;
 743 
 744         switch (sig) {
 745         case 0:
 746                 return 0;
 747 
 748         case SIGFPE:
 749                 force_fcr31_sig(fcr31, fault_addr, current);
 750                 return 1;
 751 
 752         case SIGBUS:
 753                 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
 754                 return 1;
 755 
 756         case SIGSEGV:
 757                 down_read(&current->mm->mmap_sem);
 758                 vma = find_vma(current->mm, (unsigned long)fault_addr);
 759                 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
 760                         si_code = SEGV_ACCERR;
 761                 else
 762                         si_code = SEGV_MAPERR;
 763                 up_read(&current->mm->mmap_sem);
 764                 force_sig_fault(SIGSEGV, si_code, fault_addr);
 765                 return 1;
 766 
 767         default:
 768                 force_sig(sig);
 769                 return 1;
 770         }
 771 }
 772 
 773 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 774                        unsigned long old_epc, unsigned long old_ra)
 775 {
 776         union mips_instruction inst = { .word = opcode };
 777         void __user *fault_addr;
 778         unsigned long fcr31;
 779         int sig;
 780 
 781         /* If it's obviously not an FP instruction, skip it */
 782         switch (inst.i_format.opcode) {
 783         case cop1_op:
 784         case cop1x_op:
 785         case lwc1_op:
 786         case ldc1_op:
 787         case swc1_op:
 788         case sdc1_op:
 789                 break;
 790 
 791         default:
 792                 return -1;
 793         }
 794 
 795         /*
 796          * do_ri skipped over the instruction via compute_return_epc, undo
 797          * that for the FPU emulator.
 798          */
 799         regs->cp0_epc = old_epc;
 800         regs->regs[31] = old_ra;
 801 
 802         /* Run the emulator */
 803         sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 804                                        &fault_addr);
 805 
 806         /*
 807          * We can't allow the emulated instruction to leave any
 808          * enabled Cause bits set in $fcr31.
 809          */
 810         fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 811         current->thread.fpu.fcr31 &= ~fcr31;
 812 
 813         /* Restore the hardware register state */
 814         own_fpu(1);
 815 
 816         /* Send a signal if required.  */
 817         process_fpemu_return(sig, fault_addr, fcr31);
 818 
 819         return 0;
 820 }
 821 
 822 /*
 823  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 824  */
 825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 826 {
 827         enum ctx_state prev_state;
 828         void __user *fault_addr;
 829         int sig;
 830 
 831         prev_state = exception_enter();
 832         if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 833                        SIGFPE) == NOTIFY_STOP)
 834                 goto out;
 835 
 836         /* Clear FCSR.Cause before enabling interrupts */
 837         write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
 838         local_irq_enable();
 839 
 840         die_if_kernel("FP exception in kernel code", regs);
 841 
 842         if (fcr31 & FPU_CSR_UNI_X) {
 843                 /*
 844                  * Unimplemented operation exception.  If we've got the full
 845                  * software emulator on-board, let's use it...
 846                  *
 847                  * Force FPU to dump state into task/thread context.  We're
 848                  * moving a lot of data here for what is probably a single
 849                  * instruction, but the alternative is to pre-decode the FP
 850                  * register operands before invoking the emulator, which seems
 851                  * a bit extreme for what should be an infrequent event.
 852                  */
 853 
 854                 /* Run the emulator */
 855                 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 856                                                &fault_addr);
 857 
 858                 /*
 859                  * We can't allow the emulated instruction to leave any
 860                  * enabled Cause bits set in $fcr31.
 861                  */
 862                 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 863                 current->thread.fpu.fcr31 &= ~fcr31;
 864 
 865                 /* Restore the hardware register state */
 866                 own_fpu(1);     /* Using the FPU again.  */
 867         } else {
 868                 sig = SIGFPE;
 869                 fault_addr = (void __user *) regs->cp0_epc;
 870         }
 871 
 872         /* Send a signal if required.  */
 873         process_fpemu_return(sig, fault_addr, fcr31);
 874 
 875 out:
 876         exception_exit(prev_state);
 877 }
 878 
 879 /*
 880  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 881  * emulated more than some threshold number of instructions, force migration to
 882  * a "CPU" that has FP support.
 883  */
 884 static void mt_ase_fp_affinity(void)
 885 {
 886 #ifdef CONFIG_MIPS_MT_FPAFF
 887         if (mt_fpemul_threshold > 0 &&
 888              ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 889                 /*
 890                  * If there's no FPU present, or if the application has already
 891                  * restricted the allowed set to exclude any CPUs with FPUs,
 892                  * we'll skip the procedure.
 893                  */
 894                 if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
 895                         cpumask_t tmask;
 896 
 897                         current->thread.user_cpus_allowed
 898                                 = current->cpus_mask;
 899                         cpumask_and(&tmask, &current->cpus_mask,
 900                                     &mt_fpu_cpumask);
 901                         set_cpus_allowed_ptr(current, &tmask);
 902                         set_thread_flag(TIF_FPUBOUND);
 903                 }
 904         }
 905 #endif /* CONFIG_MIPS_MT_FPAFF */
 906 }
 907 
 908 #else /* !CONFIG_MIPS_FP_SUPPORT */
 909 
 910 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 911                        unsigned long old_epc, unsigned long old_ra)
 912 {
 913         return -1;
 914 }
 915 
 916 #endif /* !CONFIG_MIPS_FP_SUPPORT */
 917 
 918 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 919         const char *str)
 920 {
 921         char b[40];
 922 
 923 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 924         if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 925                          SIGTRAP) == NOTIFY_STOP)
 926                 return;
 927 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 928 
 929         if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 930                        SIGTRAP) == NOTIFY_STOP)
 931                 return;
 932 
 933         /*
 934          * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 935          * insns, even for trap and break codes that indicate arithmetic
 936          * failures.  Weird ...
 937          * But should we continue the brokenness???  --macro
 938          */
 939         switch (code) {
 940         case BRK_OVERFLOW:
 941         case BRK_DIVZERO:
 942                 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 943                 die_if_kernel(b, regs);
 944                 force_sig_fault(SIGFPE,
 945                                 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
 946                                 (void __user *) regs->cp0_epc);
 947                 break;
 948         case BRK_BUG:
 949                 die_if_kernel("Kernel bug detected", regs);
 950                 force_sig(SIGTRAP);
 951                 break;
 952         case BRK_MEMU:
 953                 /*
 954                  * This breakpoint code is used by the FPU emulator to retake
 955                  * control of the CPU after executing the instruction from the
 956                  * delay slot of an emulated branch.
 957                  *
 958                  * Terminate if exception was recognized as a delay slot return
 959                  * otherwise handle as normal.
 960                  */
 961                 if (do_dsemulret(regs))
 962                         return;
 963 
 964                 die_if_kernel("Math emu break/trap", regs);
 965                 force_sig(SIGTRAP);
 966                 break;
 967         default:
 968                 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 969                 die_if_kernel(b, regs);
 970                 if (si_code) {
 971                         force_sig_fault(SIGTRAP, si_code, NULL);
 972                 } else {
 973                         force_sig(SIGTRAP);
 974                 }
 975         }
 976 }
 977 
 978 asmlinkage void do_bp(struct pt_regs *regs)
 979 {
 980         unsigned long epc = msk_isa16_mode(exception_epc(regs));
 981         unsigned int opcode, bcode;
 982         enum ctx_state prev_state;
 983         mm_segment_t seg;
 984 
 985         seg = get_fs();
 986         if (!user_mode(regs))
 987                 set_fs(KERNEL_DS);
 988 
 989         prev_state = exception_enter();
 990         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 991         if (get_isa16_mode(regs->cp0_epc)) {
 992                 u16 instr[2];
 993 
 994                 if (__get_user(instr[0], (u16 __user *)epc))
 995                         goto out_sigsegv;
 996 
 997                 if (!cpu_has_mmips) {
 998                         /* MIPS16e mode */
 999                         bcode = (instr[0] >> 5) & 0x3f;
1000                 } else if (mm_insn_16bit(instr[0])) {
1001                         /* 16-bit microMIPS BREAK */
1002                         bcode = instr[0] & 0xf;
1003                 } else {
1004                         /* 32-bit microMIPS BREAK */
1005                         if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1006                                 goto out_sigsegv;
1007                         opcode = (instr[0] << 16) | instr[1];
1008                         bcode = (opcode >> 6) & ((1 << 20) - 1);
1009                 }
1010         } else {
1011                 if (__get_user(opcode, (unsigned int __user *)epc))
1012                         goto out_sigsegv;
1013                 bcode = (opcode >> 6) & ((1 << 20) - 1);
1014         }
1015 
1016         /*
1017          * There is the ancient bug in the MIPS assemblers that the break
1018          * code starts left to bit 16 instead to bit 6 in the opcode.
1019          * Gas is bug-compatible, but not always, grrr...
1020          * We handle both cases with a simple heuristics.  --macro
1021          */
1022         if (bcode >= (1 << 10))
1023                 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1024 
1025         /*
1026          * notify the kprobe handlers, if instruction is likely to
1027          * pertain to them.
1028          */
1029         switch (bcode) {
1030         case BRK_UPROBE:
1031                 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1032                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1033                         goto out;
1034                 else
1035                         break;
1036         case BRK_UPROBE_XOL:
1037                 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1038                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1039                         goto out;
1040                 else
1041                         break;
1042         case BRK_KPROBE_BP:
1043                 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1044                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1045                         goto out;
1046                 else
1047                         break;
1048         case BRK_KPROBE_SSTEPBP:
1049                 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1050                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1051                         goto out;
1052                 else
1053                         break;
1054         default:
1055                 break;
1056         }
1057 
1058         do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1059 
1060 out:
1061         set_fs(seg);
1062         exception_exit(prev_state);
1063         return;
1064 
1065 out_sigsegv:
1066         force_sig(SIGSEGV);
1067         goto out;
1068 }
1069 
1070 asmlinkage void do_tr(struct pt_regs *regs)
1071 {
1072         u32 opcode, tcode = 0;
1073         enum ctx_state prev_state;
1074         u16 instr[2];
1075         mm_segment_t seg;
1076         unsigned long epc = msk_isa16_mode(exception_epc(regs));
1077 
1078         seg = get_fs();
1079         if (!user_mode(regs))
1080                 set_fs(KERNEL_DS);
1081 
1082         prev_state = exception_enter();
1083         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1084         if (get_isa16_mode(regs->cp0_epc)) {
1085                 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1086                     __get_user(instr[1], (u16 __user *)(epc + 2)))
1087                         goto out_sigsegv;
1088                 opcode = (instr[0] << 16) | instr[1];
1089                 /* Immediate versions don't provide a code.  */
1090                 if (!(opcode & OPCODE))
1091                         tcode = (opcode >> 12) & ((1 << 4) - 1);
1092         } else {
1093                 if (__get_user(opcode, (u32 __user *)epc))
1094                         goto out_sigsegv;
1095                 /* Immediate versions don't provide a code.  */
1096                 if (!(opcode & OPCODE))
1097                         tcode = (opcode >> 6) & ((1 << 10) - 1);
1098         }
1099 
1100         do_trap_or_bp(regs, tcode, 0, "Trap");
1101 
1102 out:
1103         set_fs(seg);
1104         exception_exit(prev_state);
1105         return;
1106 
1107 out_sigsegv:
1108         force_sig(SIGSEGV);
1109         goto out;
1110 }
1111 
1112 asmlinkage void do_ri(struct pt_regs *regs)
1113 {
1114         unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1115         unsigned long old_epc = regs->cp0_epc;
1116         unsigned long old31 = regs->regs[31];
1117         enum ctx_state prev_state;
1118         unsigned int opcode = 0;
1119         int status = -1;
1120 
1121         /*
1122          * Avoid any kernel code. Just emulate the R2 instruction
1123          * as quickly as possible.
1124          */
1125         if (mipsr2_emulation && cpu_has_mips_r6 &&
1126             likely(user_mode(regs)) &&
1127             likely(get_user(opcode, epc) >= 0)) {
1128                 unsigned long fcr31 = 0;
1129 
1130                 status = mipsr2_decoder(regs, opcode, &fcr31);
1131                 switch (status) {
1132                 case 0:
1133                 case SIGEMT:
1134                         return;
1135                 case SIGILL:
1136                         goto no_r2_instr;
1137                 default:
1138                         process_fpemu_return(status,
1139                                              &current->thread.cp0_baduaddr,
1140                                              fcr31);
1141                         return;
1142                 }
1143         }
1144 
1145 no_r2_instr:
1146 
1147         prev_state = exception_enter();
1148         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1149 
1150         if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1151                        SIGILL) == NOTIFY_STOP)
1152                 goto out;
1153 
1154         die_if_kernel("Reserved instruction in kernel code", regs);
1155 
1156         if (unlikely(compute_return_epc(regs) < 0))
1157                 goto out;
1158 
1159         if (!get_isa16_mode(regs->cp0_epc)) {
1160                 if (unlikely(get_user(opcode, epc) < 0))
1161                         status = SIGSEGV;
1162 
1163                 if (!cpu_has_llsc && status < 0)
1164                         status = simulate_llsc(regs, opcode);
1165 
1166                 if (status < 0)
1167                         status = simulate_rdhwr_normal(regs, opcode);
1168 
1169                 if (status < 0)
1170                         status = simulate_sync(regs, opcode);
1171 
1172                 if (status < 0)
1173                         status = simulate_fp(regs, opcode, old_epc, old31);
1174         } else if (cpu_has_mmips) {
1175                 unsigned short mmop[2] = { 0 };
1176 
1177                 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1178                         status = SIGSEGV;
1179                 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1180                         status = SIGSEGV;
1181                 opcode = mmop[0];
1182                 opcode = (opcode << 16) | mmop[1];
1183 
1184                 if (status < 0)
1185                         status = simulate_rdhwr_mm(regs, opcode);
1186         }
1187 
1188         if (status < 0)
1189                 status = SIGILL;
1190 
1191         if (unlikely(status > 0)) {
1192                 regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1193                 regs->regs[31] = old31;
1194                 force_sig(status);
1195         }
1196 
1197 out:
1198         exception_exit(prev_state);
1199 }
1200 
1201 /*
1202  * No lock; only written during early bootup by CPU 0.
1203  */
1204 static RAW_NOTIFIER_HEAD(cu2_chain);
1205 
1206 int __ref register_cu2_notifier(struct notifier_block *nb)
1207 {
1208         return raw_notifier_chain_register(&cu2_chain, nb);
1209 }
1210 
1211 int cu2_notifier_call_chain(unsigned long val, void *v)
1212 {
1213         return raw_notifier_call_chain(&cu2_chain, val, v);
1214 }
1215 
1216 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1217         void *data)
1218 {
1219         struct pt_regs *regs = data;
1220 
1221         die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1222                               "instruction", regs);
1223         force_sig(SIGILL);
1224 
1225         return NOTIFY_OK;
1226 }
1227 
1228 #ifdef CONFIG_MIPS_FP_SUPPORT
1229 
1230 static int enable_restore_fp_context(int msa)
1231 {
1232         int err, was_fpu_owner, prior_msa;
1233         bool first_fp;
1234 
1235         /* Initialize context if it hasn't been used already */
1236         first_fp = init_fp_ctx(current);
1237 
1238         if (first_fp) {
1239                 preempt_disable();
1240                 err = own_fpu_inatomic(1);
1241                 if (msa && !err) {
1242                         enable_msa();
1243                         set_thread_flag(TIF_USEDMSA);
1244                         set_thread_flag(TIF_MSA_CTX_LIVE);
1245                 }
1246                 preempt_enable();
1247                 return err;
1248         }
1249 
1250         /*
1251          * This task has formerly used the FP context.
1252          *
1253          * If this thread has no live MSA vector context then we can simply
1254          * restore the scalar FP context. If it has live MSA vector context
1255          * (that is, it has or may have used MSA since last performing a
1256          * function call) then we'll need to restore the vector context. This
1257          * applies even if we're currently only executing a scalar FP
1258          * instruction. This is because if we were to later execute an MSA
1259          * instruction then we'd either have to:
1260          *
1261          *  - Restore the vector context & clobber any registers modified by
1262          *    scalar FP instructions between now & then.
1263          *
1264          * or
1265          *
1266          *  - Not restore the vector context & lose the most significant bits
1267          *    of all vector registers.
1268          *
1269          * Neither of those options is acceptable. We cannot restore the least
1270          * significant bits of the registers now & only restore the most
1271          * significant bits later because the most significant bits of any
1272          * vector registers whose aliased FP register is modified now will have
1273          * been zeroed. We'd have no way to know that when restoring the vector
1274          * context & thus may load an outdated value for the most significant
1275          * bits of a vector register.
1276          */
1277         if (!msa && !thread_msa_context_live())
1278                 return own_fpu(1);
1279 
1280         /*
1281          * This task is using or has previously used MSA. Thus we require
1282          * that Status.FR == 1.
1283          */
1284         preempt_disable();
1285         was_fpu_owner = is_fpu_owner();
1286         err = own_fpu_inatomic(0);
1287         if (err)
1288                 goto out;
1289 
1290         enable_msa();
1291         write_msa_csr(current->thread.fpu.msacsr);
1292         set_thread_flag(TIF_USEDMSA);
1293 
1294         /*
1295          * If this is the first time that the task is using MSA and it has
1296          * previously used scalar FP in this time slice then we already nave
1297          * FP context which we shouldn't clobber. We do however need to clear
1298          * the upper 64b of each vector register so that this task has no
1299          * opportunity to see data left behind by another.
1300          */
1301         prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1302         if (!prior_msa && was_fpu_owner) {
1303                 init_msa_upper();
1304 
1305                 goto out;
1306         }
1307 
1308         if (!prior_msa) {
1309                 /*
1310                  * Restore the least significant 64b of each vector register
1311                  * from the existing scalar FP context.
1312                  */
1313                 _restore_fp(current);
1314 
1315                 /*
1316                  * The task has not formerly used MSA, so clear the upper 64b
1317                  * of each vector register such that it cannot see data left
1318                  * behind by another task.
1319                  */
1320                 init_msa_upper();
1321         } else {
1322                 /* We need to restore the vector context. */
1323                 restore_msa(current);
1324 
1325                 /* Restore the scalar FP control & status register */
1326                 if (!was_fpu_owner)
1327                         write_32bit_cp1_register(CP1_STATUS,
1328                                                  current->thread.fpu.fcr31);
1329         }
1330 
1331 out:
1332         preempt_enable();
1333 
1334         return 0;
1335 }
1336 
1337 #else /* !CONFIG_MIPS_FP_SUPPORT */
1338 
1339 static int enable_restore_fp_context(int msa)
1340 {
1341         return SIGILL;
1342 }
1343 
1344 #endif /* CONFIG_MIPS_FP_SUPPORT */
1345 
1346 asmlinkage void do_cpu(struct pt_regs *regs)
1347 {
1348         enum ctx_state prev_state;
1349         unsigned int __user *epc;
1350         unsigned long old_epc, old31;
1351         unsigned int opcode;
1352         unsigned int cpid;
1353         int status;
1354 
1355         prev_state = exception_enter();
1356         cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1357 
1358         if (cpid != 2)
1359                 die_if_kernel("do_cpu invoked from kernel context!", regs);
1360 
1361         switch (cpid) {
1362         case 0:
1363                 epc = (unsigned int __user *)exception_epc(regs);
1364                 old_epc = regs->cp0_epc;
1365                 old31 = regs->regs[31];
1366                 opcode = 0;
1367                 status = -1;
1368 
1369                 if (unlikely(compute_return_epc(regs) < 0))
1370                         break;
1371 
1372                 if (!get_isa16_mode(regs->cp0_epc)) {
1373                         if (unlikely(get_user(opcode, epc) < 0))
1374                                 status = SIGSEGV;
1375 
1376                         if (!cpu_has_llsc && status < 0)
1377                                 status = simulate_llsc(regs, opcode);
1378                 }
1379 
1380                 if (status < 0)
1381                         status = SIGILL;
1382 
1383                 if (unlikely(status > 0)) {
1384                         regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1385                         regs->regs[31] = old31;
1386                         force_sig(status);
1387                 }
1388 
1389                 break;
1390 
1391 #ifdef CONFIG_MIPS_FP_SUPPORT
1392         case 3:
1393                 /*
1394                  * The COP3 opcode space and consequently the CP0.Status.CU3
1395                  * bit and the CP0.Cause.CE=3 encoding have been removed as
1396                  * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1397                  * up the space has been reused for COP1X instructions, that
1398                  * are enabled by the CP0.Status.CU1 bit and consequently
1399                  * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1400                  * exceptions.  Some FPU-less processors that implement one
1401                  * of these ISAs however use this code erroneously for COP1X
1402                  * instructions.  Therefore we redirect this trap to the FP
1403                  * emulator too.
1404                  */
1405                 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1406                         force_sig(SIGILL);
1407                         break;
1408                 }
1409                 /* Fall through.  */
1410 
1411         case 1: {
1412                 void __user *fault_addr;
1413                 unsigned long fcr31;
1414                 int err, sig;
1415 
1416                 err = enable_restore_fp_context(0);
1417 
1418                 if (raw_cpu_has_fpu && !err)
1419                         break;
1420 
1421                 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1422                                                &fault_addr);
1423 
1424                 /*
1425                  * We can't allow the emulated instruction to leave
1426                  * any enabled Cause bits set in $fcr31.
1427                  */
1428                 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1429                 current->thread.fpu.fcr31 &= ~fcr31;
1430 
1431                 /* Send a signal if required.  */
1432                 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1433                         mt_ase_fp_affinity();
1434 
1435                 break;
1436         }
1437 #else /* CONFIG_MIPS_FP_SUPPORT */
1438         case 1:
1439         case 3:
1440                 force_sig(SIGILL);
1441                 break;
1442 #endif /* CONFIG_MIPS_FP_SUPPORT */
1443 
1444         case 2:
1445                 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1446                 break;
1447         }
1448 
1449         exception_exit(prev_state);
1450 }
1451 
1452 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1453 {
1454         enum ctx_state prev_state;
1455 
1456         prev_state = exception_enter();
1457         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1458         if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1459                        current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1460                 goto out;
1461 
1462         /* Clear MSACSR.Cause before enabling interrupts */
1463         write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1464         local_irq_enable();
1465 
1466         die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1467         force_sig(SIGFPE);
1468 out:
1469         exception_exit(prev_state);
1470 }
1471 
1472 asmlinkage void do_msa(struct pt_regs *regs)
1473 {
1474         enum ctx_state prev_state;
1475         int err;
1476 
1477         prev_state = exception_enter();
1478 
1479         if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1480                 force_sig(SIGILL);
1481                 goto out;
1482         }
1483 
1484         die_if_kernel("do_msa invoked from kernel context!", regs);
1485 
1486         err = enable_restore_fp_context(1);
1487         if (err)
1488                 force_sig(SIGILL);
1489 out:
1490         exception_exit(prev_state);
1491 }
1492 
1493 asmlinkage void do_mdmx(struct pt_regs *regs)
1494 {
1495         enum ctx_state prev_state;
1496 
1497         prev_state = exception_enter();
1498         force_sig(SIGILL);
1499         exception_exit(prev_state);
1500 }
1501 
1502 /*
1503  * Called with interrupts disabled.
1504  */
1505 asmlinkage void do_watch(struct pt_regs *regs)
1506 {
1507         enum ctx_state prev_state;
1508 
1509         prev_state = exception_enter();
1510         /*
1511          * Clear WP (bit 22) bit of cause register so we don't loop
1512          * forever.
1513          */
1514         clear_c0_cause(CAUSEF_WP);
1515 
1516         /*
1517          * If the current thread has the watch registers loaded, save
1518          * their values and send SIGTRAP.  Otherwise another thread
1519          * left the registers set, clear them and continue.
1520          */
1521         if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1522                 mips_read_watch_registers();
1523                 local_irq_enable();
1524                 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1525         } else {
1526                 mips_clear_watch_registers();
1527                 local_irq_enable();
1528         }
1529         exception_exit(prev_state);
1530 }
1531 
1532 asmlinkage void do_mcheck(struct pt_regs *regs)
1533 {
1534         int multi_match = regs->cp0_status & ST0_TS;
1535         enum ctx_state prev_state;
1536         mm_segment_t old_fs = get_fs();
1537 
1538         prev_state = exception_enter();
1539         show_regs(regs);
1540 
1541         if (multi_match) {
1542                 dump_tlb_regs();
1543                 pr_info("\n");
1544                 dump_tlb_all();
1545         }
1546 
1547         if (!user_mode(regs))
1548                 set_fs(KERNEL_DS);
1549 
1550         show_code((unsigned int __user *) regs->cp0_epc);
1551 
1552         set_fs(old_fs);
1553 
1554         /*
1555          * Some chips may have other causes of machine check (e.g. SB1
1556          * graduation timer)
1557          */
1558         panic("Caught Machine Check exception - %scaused by multiple "
1559               "matching entries in the TLB.",
1560               (multi_match) ? "" : "not ");
1561 }
1562 
1563 asmlinkage void do_mt(struct pt_regs *regs)
1564 {
1565         int subcode;
1566 
1567         subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1568                         >> VPECONTROL_EXCPT_SHIFT;
1569         switch (subcode) {
1570         case 0:
1571                 printk(KERN_DEBUG "Thread Underflow\n");
1572                 break;
1573         case 1:
1574                 printk(KERN_DEBUG "Thread Overflow\n");
1575                 break;
1576         case 2:
1577                 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1578                 break;
1579         case 3:
1580                 printk(KERN_DEBUG "Gating Storage Exception\n");
1581                 break;
1582         case 4:
1583                 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1584                 break;
1585         case 5:
1586                 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1587                 break;
1588         default:
1589                 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1590                         subcode);
1591                 break;
1592         }
1593         die_if_kernel("MIPS MT Thread exception in kernel", regs);
1594 
1595         force_sig(SIGILL);
1596 }
1597 
1598 
1599 asmlinkage void do_dsp(struct pt_regs *regs)
1600 {
1601         if (cpu_has_dsp)
1602                 panic("Unexpected DSP exception");
1603 
1604         force_sig(SIGILL);
1605 }
1606 
1607 asmlinkage void do_reserved(struct pt_regs *regs)
1608 {
1609         /*
1610          * Game over - no way to handle this if it ever occurs.  Most probably
1611          * caused by a new unknown cpu type or after another deadly
1612          * hard/software error.
1613          */
1614         show_regs(regs);
1615         panic("Caught reserved exception %ld - should not happen.",
1616               (regs->cp0_cause & 0x7f) >> 2);
1617 }
1618 
1619 static int __initdata l1parity = 1;
1620 static int __init nol1parity(char *s)
1621 {
1622         l1parity = 0;
1623         return 1;
1624 }
1625 __setup("nol1par", nol1parity);
1626 static int __initdata l2parity = 1;
1627 static int __init nol2parity(char *s)
1628 {
1629         l2parity = 0;
1630         return 1;
1631 }
1632 __setup("nol2par", nol2parity);
1633 
1634 /*
1635  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1636  * it different ways.
1637  */
1638 static inline void parity_protection_init(void)
1639 {
1640 #define ERRCTL_PE       0x80000000
1641 #define ERRCTL_L2P      0x00800000
1642 
1643         if (mips_cm_revision() >= CM_REV_CM3) {
1644                 ulong gcr_ectl, cp0_ectl;
1645 
1646                 /*
1647                  * With CM3 systems we need to ensure that the L1 & L2
1648                  * parity enables are set to the same value, since this
1649                  * is presumed by the hardware engineers.
1650                  *
1651                  * If the user disabled either of L1 or L2 ECC checking,
1652                  * disable both.
1653                  */
1654                 l1parity &= l2parity;
1655                 l2parity &= l1parity;
1656 
1657                 /* Probe L1 ECC support */
1658                 cp0_ectl = read_c0_ecc();
1659                 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1660                 back_to_back_c0_hazard();
1661                 cp0_ectl = read_c0_ecc();
1662 
1663                 /* Probe L2 ECC support */
1664                 gcr_ectl = read_gcr_err_control();
1665 
1666                 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1667                     !(cp0_ectl & ERRCTL_PE)) {
1668                         /*
1669                          * One of L1 or L2 ECC checking isn't supported,
1670                          * so we cannot enable either.
1671                          */
1672                         l1parity = l2parity = 0;
1673                 }
1674 
1675                 /* Configure L1 ECC checking */
1676                 if (l1parity)
1677                         cp0_ectl |= ERRCTL_PE;
1678                 else
1679                         cp0_ectl &= ~ERRCTL_PE;
1680                 write_c0_ecc(cp0_ectl);
1681                 back_to_back_c0_hazard();
1682                 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1683 
1684                 /* Configure L2 ECC checking */
1685                 if (l2parity)
1686                         gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1687                 else
1688                         gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1689                 write_gcr_err_control(gcr_ectl);
1690                 gcr_ectl = read_gcr_err_control();
1691                 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1692                 WARN_ON(!!gcr_ectl != l2parity);
1693 
1694                 pr_info("Cache parity protection %sabled\n",
1695                         l1parity ? "en" : "dis");
1696                 return;
1697         }
1698 
1699         switch (current_cpu_type()) {
1700         case CPU_24K:
1701         case CPU_34K:
1702         case CPU_74K:
1703         case CPU_1004K:
1704         case CPU_1074K:
1705         case CPU_INTERAPTIV:
1706         case CPU_PROAPTIV:
1707         case CPU_P5600:
1708         case CPU_QEMU_GENERIC:
1709         case CPU_P6600:
1710                 {
1711                         unsigned long errctl;
1712                         unsigned int l1parity_present, l2parity_present;
1713 
1714                         errctl = read_c0_ecc();
1715                         errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1716 
1717                         /* probe L1 parity support */
1718                         write_c0_ecc(errctl | ERRCTL_PE);
1719                         back_to_back_c0_hazard();
1720                         l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1721 
1722                         /* probe L2 parity support */
1723                         write_c0_ecc(errctl|ERRCTL_L2P);
1724                         back_to_back_c0_hazard();
1725                         l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1726 
1727                         if (l1parity_present && l2parity_present) {
1728                                 if (l1parity)
1729                                         errctl |= ERRCTL_PE;
1730                                 if (l1parity ^ l2parity)
1731                                         errctl |= ERRCTL_L2P;
1732                         } else if (l1parity_present) {
1733                                 if (l1parity)
1734                                         errctl |= ERRCTL_PE;
1735                         } else if (l2parity_present) {
1736                                 if (l2parity)
1737                                         errctl |= ERRCTL_L2P;
1738                         } else {
1739                                 /* No parity available */
1740                         }
1741 
1742                         printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1743 
1744                         write_c0_ecc(errctl);
1745                         back_to_back_c0_hazard();
1746                         errctl = read_c0_ecc();
1747                         printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1748 
1749                         if (l1parity_present)
1750                                 printk(KERN_INFO "Cache parity protection %sabled\n",
1751                                        (errctl & ERRCTL_PE) ? "en" : "dis");
1752 
1753                         if (l2parity_present) {
1754                                 if (l1parity_present && l1parity)
1755                                         errctl ^= ERRCTL_L2P;
1756                                 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1757                                        (errctl & ERRCTL_L2P) ? "en" : "dis");
1758                         }
1759                 }
1760                 break;
1761 
1762         case CPU_5KC:
1763         case CPU_5KE:
1764         case CPU_LOONGSON1:
1765                 write_c0_ecc(0x80000000);
1766                 back_to_back_c0_hazard();
1767                 /* Set the PE bit (bit 31) in the c0_errctl register. */
1768                 printk(KERN_INFO "Cache parity protection %sabled\n",
1769                        (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1770                 break;
1771         case CPU_20KC:
1772         case CPU_25KF:
1773                 /* Clear the DE bit (bit 16) in the c0_status register. */
1774                 printk(KERN_INFO "Enable cache parity protection for "
1775                        "MIPS 20KC/25KF CPUs.\n");
1776                 clear_c0_status(ST0_DE);
1777                 break;
1778         default:
1779                 break;
1780         }
1781 }
1782 
1783 asmlinkage void cache_parity_error(void)
1784 {
1785         const int field = 2 * sizeof(unsigned long);
1786         unsigned int reg_val;
1787 
1788         /* For the moment, report the problem and hang. */
1789         printk("Cache error exception:\n");
1790         printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1791         reg_val = read_c0_cacheerr();
1792         printk("c0_cacheerr == %08x\n", reg_val);
1793 
1794         printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795                reg_val & (1<<30) ? "secondary" : "primary",
1796                reg_val & (1<<31) ? "data" : "insn");
1797         if ((cpu_has_mips_r2_r6) &&
1798             ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1799                 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1800                         reg_val & (1<<29) ? "ED " : "",
1801                         reg_val & (1<<28) ? "ET " : "",
1802                         reg_val & (1<<27) ? "ES " : "",
1803                         reg_val & (1<<26) ? "EE " : "",
1804                         reg_val & (1<<25) ? "EB " : "",
1805                         reg_val & (1<<24) ? "EI " : "",
1806                         reg_val & (1<<23) ? "E1 " : "",
1807                         reg_val & (1<<22) ? "E0 " : "");
1808         } else {
1809                 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1810                         reg_val & (1<<29) ? "ED " : "",
1811                         reg_val & (1<<28) ? "ET " : "",
1812                         reg_val & (1<<26) ? "EE " : "",
1813                         reg_val & (1<<25) ? "EB " : "",
1814                         reg_val & (1<<24) ? "EI " : "",
1815                         reg_val & (1<<23) ? "E1 " : "",
1816                         reg_val & (1<<22) ? "E0 " : "");
1817         }
1818         printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1819 
1820 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1821         if (reg_val & (1<<22))
1822                 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1823 
1824         if (reg_val & (1<<23))
1825                 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1826 #endif
1827 
1828         panic("Can't handle the cache error!");
1829 }
1830 
1831 asmlinkage void do_ftlb(void)
1832 {
1833         const int field = 2 * sizeof(unsigned long);
1834         unsigned int reg_val;
1835 
1836         /* For the moment, report the problem and hang. */
1837         if ((cpu_has_mips_r2_r6) &&
1838             (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1839             ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1840                 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1841                        read_c0_ecc());
1842                 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1843                 reg_val = read_c0_cacheerr();
1844                 pr_err("c0_cacheerr == %08x\n", reg_val);
1845 
1846                 if ((reg_val & 0xc0000000) == 0xc0000000) {
1847                         pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1848                 } else {
1849                         pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1850                                reg_val & (1<<30) ? "secondary" : "primary",
1851                                reg_val & (1<<31) ? "data" : "insn");
1852                 }
1853         } else {
1854                 pr_err("FTLB error exception\n");
1855         }
1856         /* Just print the cacheerr bits for now */
1857         cache_parity_error();
1858 }
1859 
1860 /*
1861  * SDBBP EJTAG debug exception handler.
1862  * We skip the instruction and return to the next instruction.
1863  */
1864 void ejtag_exception_handler(struct pt_regs *regs)
1865 {
1866         const int field = 2 * sizeof(unsigned long);
1867         unsigned long depc, old_epc, old_ra;
1868         unsigned int debug;
1869 
1870         printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1871         depc = read_c0_depc();
1872         debug = read_c0_debug();
1873         printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1874         if (debug & 0x80000000) {
1875                 /*
1876                  * In branch delay slot.
1877                  * We cheat a little bit here and use EPC to calculate the
1878                  * debug return address (DEPC). EPC is restored after the
1879                  * calculation.
1880                  */
1881                 old_epc = regs->cp0_epc;
1882                 old_ra = regs->regs[31];
1883                 regs->cp0_epc = depc;
1884                 compute_return_epc(regs);
1885                 depc = regs->cp0_epc;
1886                 regs->cp0_epc = old_epc;
1887                 regs->regs[31] = old_ra;
1888         } else
1889                 depc += 4;
1890         write_c0_depc(depc);
1891 
1892 #if 0
1893         printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1894         write_c0_debug(debug | 0x100);
1895 #endif
1896 }
1897 
1898 /*
1899  * NMI exception handler.
1900  * No lock; only written during early bootup by CPU 0.
1901  */
1902 static RAW_NOTIFIER_HEAD(nmi_chain);
1903 
1904 int register_nmi_notifier(struct notifier_block *nb)
1905 {
1906         return raw_notifier_chain_register(&nmi_chain, nb);
1907 }
1908 
1909 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1910 {
1911         char str[100];
1912 
1913         nmi_enter();
1914         raw_notifier_call_chain(&nmi_chain, 0, regs);
1915         bust_spinlocks(1);
1916         snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1917                  smp_processor_id(), regs->cp0_epc);
1918         regs->cp0_epc = read_c0_errorepc();
1919         die(str, regs);
1920         nmi_exit();
1921 }
1922 
1923 #define VECTORSPACING 0x100     /* for EI/VI mode */
1924 
1925 unsigned long ebase;
1926 EXPORT_SYMBOL_GPL(ebase);
1927 unsigned long exception_handlers[32];
1928 unsigned long vi_handlers[64];
1929 
1930 void __init *set_except_vector(int n, void *addr)
1931 {
1932         unsigned long handler = (unsigned long) addr;
1933         unsigned long old_handler;
1934 
1935 #ifdef CONFIG_CPU_MICROMIPS
1936         /*
1937          * Only the TLB handlers are cache aligned with an even
1938          * address. All other handlers are on an odd address and
1939          * require no modification. Otherwise, MIPS32 mode will
1940          * be entered when handling any TLB exceptions. That
1941          * would be bad...since we must stay in microMIPS mode.
1942          */
1943         if (!(handler & 0x1))
1944                 handler |= 1;
1945 #endif
1946         old_handler = xchg(&exception_handlers[n], handler);
1947 
1948         if (n == 0 && cpu_has_divec) {
1949 #ifdef CONFIG_CPU_MICROMIPS
1950                 unsigned long jump_mask = ~((1 << 27) - 1);
1951 #else
1952                 unsigned long jump_mask = ~((1 << 28) - 1);
1953 #endif
1954                 u32 *buf = (u32 *)(ebase + 0x200);
1955                 unsigned int k0 = 26;
1956                 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1957                         uasm_i_j(&buf, handler & ~jump_mask);
1958                         uasm_i_nop(&buf);
1959                 } else {
1960                         UASM_i_LA(&buf, k0, handler);
1961                         uasm_i_jr(&buf, k0);
1962                         uasm_i_nop(&buf);
1963                 }
1964                 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1965         }
1966         return (void *)old_handler;
1967 }
1968 
1969 static void do_default_vi(void)
1970 {
1971         show_regs(get_irq_regs());
1972         panic("Caught unexpected vectored interrupt.");
1973 }
1974 
1975 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1976 {
1977         unsigned long handler;
1978         unsigned long old_handler = vi_handlers[n];
1979         int srssets = current_cpu_data.srsets;
1980         u16 *h;
1981         unsigned char *b;
1982 
1983         BUG_ON(!cpu_has_veic && !cpu_has_vint);
1984 
1985         if (addr == NULL) {
1986                 handler = (unsigned long) do_default_vi;
1987                 srs = 0;
1988         } else
1989                 handler = (unsigned long) addr;
1990         vi_handlers[n] = handler;
1991 
1992         b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1993 
1994         if (srs >= srssets)
1995                 panic("Shadow register set %d not supported", srs);
1996 
1997         if (cpu_has_veic) {
1998                 if (board_bind_eic_interrupt)
1999                         board_bind_eic_interrupt(n, srs);
2000         } else if (cpu_has_vint) {
2001                 /* SRSMap is only defined if shadow sets are implemented */
2002                 if (srssets > 1)
2003                         change_c0_srsmap(0xf << n*4, srs << n*4);
2004         }
2005 
2006         if (srs == 0) {
2007                 /*
2008                  * If no shadow set is selected then use the default handler
2009                  * that does normal register saving and standard interrupt exit
2010                  */
2011                 extern char except_vec_vi, except_vec_vi_lui;
2012                 extern char except_vec_vi_ori, except_vec_vi_end;
2013                 extern char rollback_except_vec_vi;
2014                 char *vec_start = using_rollback_handler() ?
2015                         &rollback_except_vec_vi : &except_vec_vi;
2016 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2017                 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2018                 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2019 #else
2020                 const int lui_offset = &except_vec_vi_lui - vec_start;
2021                 const int ori_offset = &except_vec_vi_ori - vec_start;
2022 #endif
2023                 const int handler_len = &except_vec_vi_end - vec_start;
2024 
2025                 if (handler_len > VECTORSPACING) {
2026                         /*
2027                          * Sigh... panicing won't help as the console
2028                          * is probably not configured :(
2029                          */
2030                         panic("VECTORSPACING too small");
2031                 }
2032 
2033                 set_handler(((unsigned long)b - ebase), vec_start,
2034 #ifdef CONFIG_CPU_MICROMIPS
2035                                 (handler_len - 1));
2036 #else
2037                                 handler_len);
2038 #endif
2039                 h = (u16 *)(b + lui_offset);
2040                 *h = (handler >> 16) & 0xffff;
2041                 h = (u16 *)(b + ori_offset);
2042                 *h = (handler & 0xffff);
2043                 local_flush_icache_range((unsigned long)b,
2044                                          (unsigned long)(b+handler_len));
2045         }
2046         else {
2047                 /*
2048                  * In other cases jump directly to the interrupt handler. It
2049                  * is the handler's responsibility to save registers if required
2050                  * (eg hi/lo) and return from the exception using "eret".
2051                  */
2052                 u32 insn;
2053 
2054                 h = (u16 *)b;
2055                 /* j handler */
2056 #ifdef CONFIG_CPU_MICROMIPS
2057                 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2058 #else
2059                 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2060 #endif
2061                 h[0] = (insn >> 16) & 0xffff;
2062                 h[1] = insn & 0xffff;
2063                 h[2] = 0;
2064                 h[3] = 0;
2065                 local_flush_icache_range((unsigned long)b,
2066                                          (unsigned long)(b+8));
2067         }
2068 
2069         return (void *)old_handler;
2070 }
2071 
2072 void *set_vi_handler(int n, vi_handler_t addr)
2073 {
2074         return set_vi_srs_handler(n, addr, 0);
2075 }
2076 
2077 extern void tlb_init(void);
2078 
2079 /*
2080  * Timer interrupt
2081  */
2082 int cp0_compare_irq;
2083 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2084 int cp0_compare_irq_shift;
2085 
2086 /*
2087  * Performance counter IRQ or -1 if shared with timer
2088  */
2089 int cp0_perfcount_irq;
2090 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2091 
2092 /*
2093  * Fast debug channel IRQ or -1 if not present
2094  */
2095 int cp0_fdc_irq;
2096 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2097 
2098 static int noulri;
2099 
2100 static int __init ulri_disable(char *s)
2101 {
2102         pr_info("Disabling ulri\n");
2103         noulri = 1;
2104 
2105         return 1;
2106 }
2107 __setup("noulri", ulri_disable);
2108 
2109 /* configure STATUS register */
2110 static void configure_status(void)
2111 {
2112         /*
2113          * Disable coprocessors and select 32-bit or 64-bit addressing
2114          * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2115          * flag that some firmware may have left set and the TS bit (for
2116          * IP27).  Set XX for ISA IV code to work.
2117          */
2118         unsigned int status_set = ST0_CU0;
2119 #ifdef CONFIG_64BIT
2120         status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2121 #endif
2122         if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2123                 status_set |= ST0_XX;
2124         if (cpu_has_dsp)
2125                 status_set |= ST0_MX;
2126 
2127         change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2128                          status_set);
2129 }
2130 
2131 unsigned int hwrena;
2132 EXPORT_SYMBOL_GPL(hwrena);
2133 
2134 /* configure HWRENA register */
2135 static void configure_hwrena(void)
2136 {
2137         hwrena = cpu_hwrena_impl_bits;
2138 
2139         if (cpu_has_mips_r2_r6)
2140                 hwrena |= MIPS_HWRENA_CPUNUM |
2141                           MIPS_HWRENA_SYNCISTEP |
2142                           MIPS_HWRENA_CC |
2143                           MIPS_HWRENA_CCRES;
2144 
2145         if (!noulri && cpu_has_userlocal)
2146                 hwrena |= MIPS_HWRENA_ULR;
2147 
2148         if (hwrena)
2149                 write_c0_hwrena(hwrena);
2150 }
2151 
2152 static void configure_exception_vector(void)
2153 {
2154         if (cpu_has_mips_r2_r6) {
2155                 unsigned long sr = set_c0_status(ST0_BEV);
2156                 /* If available, use WG to set top bits of EBASE */
2157                 if (cpu_has_ebase_wg) {
2158 #ifdef CONFIG_64BIT
2159                         write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2160 #else
2161                         write_c0_ebase(ebase | MIPS_EBASE_WG);
2162 #endif
2163                 }
2164                 write_c0_ebase(ebase);
2165                 write_c0_status(sr);
2166         }
2167         if (cpu_has_veic || cpu_has_vint) {
2168                 /* Setting vector spacing enables EI/VI mode  */
2169                 change_c0_intctl(0x3e0, VECTORSPACING);
2170         }
2171         if (cpu_has_divec) {
2172                 if (cpu_has_mipsmt) {
2173                         unsigned int vpflags = dvpe();
2174                         set_c0_cause(CAUSEF_IV);
2175                         evpe(vpflags);
2176                 } else
2177                         set_c0_cause(CAUSEF_IV);
2178         }
2179 }
2180 
2181 void per_cpu_trap_init(bool is_boot_cpu)
2182 {
2183         unsigned int cpu = smp_processor_id();
2184 
2185         configure_status();
2186         configure_hwrena();
2187 
2188         configure_exception_vector();
2189 
2190         /*
2191          * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2192          *
2193          *  o read IntCtl.IPTI to determine the timer interrupt
2194          *  o read IntCtl.IPPCI to determine the performance counter interrupt
2195          *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2196          */
2197         if (cpu_has_mips_r2_r6) {
2198                 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2199                 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2200                 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2201                 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2202                 if (!cp0_fdc_irq)
2203                         cp0_fdc_irq = -1;
2204 
2205         } else {
2206                 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2207                 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2208                 cp0_perfcount_irq = -1;
2209                 cp0_fdc_irq = -1;
2210         }
2211 
2212         if (cpu_has_mmid)
2213                 cpu_data[cpu].asid_cache = 0;
2214         else if (!cpu_data[cpu].asid_cache)
2215                 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2216 
2217         mmgrab(&init_mm);
2218         current->active_mm = &init_mm;
2219         BUG_ON(current->mm);
2220         enter_lazy_tlb(&init_mm, current);
2221 
2222         /* Boot CPU's cache setup in setup_arch(). */
2223         if (!is_boot_cpu)
2224                 cpu_cache_init();
2225         tlb_init();
2226         TLBMISS_HANDLER_SETUP();
2227 }
2228 
2229 /* Install CPU exception handler */
2230 void set_handler(unsigned long offset, void *addr, unsigned long size)
2231 {
2232 #ifdef CONFIG_CPU_MICROMIPS
2233         memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2234 #else
2235         memcpy((void *)(ebase + offset), addr, size);
2236 #endif
2237         local_flush_icache_range(ebase + offset, ebase + offset + size);
2238 }
2239 
2240 static const char panic_null_cerr[] =
2241         "Trying to set NULL cache error exception handler\n";
2242 
2243 /*
2244  * Install uncached CPU exception handler.
2245  * This is suitable only for the cache error exception which is the only
2246  * exception handler that is being run uncached.
2247  */
2248 void set_uncached_handler(unsigned long offset, void *addr,
2249         unsigned long size)
2250 {
2251         unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2252 
2253         if (!addr)
2254                 panic(panic_null_cerr);
2255 
2256         memcpy((void *)(uncached_ebase + offset), addr, size);
2257 }
2258 
2259 static int __initdata rdhwr_noopt;
2260 static int __init set_rdhwr_noopt(char *str)
2261 {
2262         rdhwr_noopt = 1;
2263         return 1;
2264 }
2265 
2266 __setup("rdhwr_noopt", set_rdhwr_noopt);
2267 
2268 void __init trap_init(void)
2269 {
2270         extern char except_vec3_generic;
2271         extern char except_vec4;
2272         extern char except_vec3_r4000;
2273         unsigned long i, vec_size;
2274         phys_addr_t ebase_pa;
2275 
2276         check_wait();
2277 
2278         if (!cpu_has_mips_r2_r6) {
2279                 ebase = CAC_BASE;
2280                 ebase_pa = virt_to_phys((void *)ebase);
2281                 vec_size = 0x400;
2282 
2283                 memblock_reserve(ebase_pa, vec_size);
2284         } else {
2285                 if (cpu_has_veic || cpu_has_vint)
2286                         vec_size = 0x200 + VECTORSPACING*64;
2287                 else
2288                         vec_size = PAGE_SIZE;
2289 
2290                 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2291                 if (!ebase_pa)
2292                         panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2293                               __func__, vec_size, 1 << fls(vec_size));
2294 
2295                 /*
2296                  * Try to ensure ebase resides in KSeg0 if possible.
2297                  *
2298                  * It shouldn't generally be in XKPhys on MIPS64 to avoid
2299                  * hitting a poorly defined exception base for Cache Errors.
2300                  * The allocation is likely to be in the low 512MB of physical,
2301                  * in which case we should be able to convert to KSeg0.
2302                  *
2303                  * EVA is special though as it allows segments to be rearranged
2304                  * and to become uncached during cache error handling.
2305                  */
2306                 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2307                         ebase = CKSEG0ADDR(ebase_pa);
2308                 else
2309                         ebase = (unsigned long)phys_to_virt(ebase_pa);
2310         }
2311 
2312         if (cpu_has_mmips) {
2313                 unsigned int config3 = read_c0_config3();
2314 
2315                 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2316                         write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2317                 else
2318                         write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2319         }
2320 
2321         if (board_ebase_setup)
2322                 board_ebase_setup();
2323         per_cpu_trap_init(true);
2324         memblock_set_bottom_up(false);
2325 
2326         /*
2327          * Copy the generic exception handlers to their final destination.
2328          * This will be overridden later as suitable for a particular
2329          * configuration.
2330          */
2331         set_handler(0x180, &except_vec3_generic, 0x80);
2332 
2333         /*
2334          * Setup default vectors
2335          */
2336         for (i = 0; i <= 31; i++)
2337                 set_except_vector(i, handle_reserved);
2338 
2339         /*
2340          * Copy the EJTAG debug exception vector handler code to it's final
2341          * destination.
2342          */
2343         if (cpu_has_ejtag && board_ejtag_handler_setup)
2344                 board_ejtag_handler_setup();
2345 
2346         /*
2347          * Only some CPUs have the watch exceptions.
2348          */
2349         if (cpu_has_watch)
2350                 set_except_vector(EXCCODE_WATCH, handle_watch);
2351 
2352         /*
2353          * Initialise interrupt handlers
2354          */
2355         if (cpu_has_veic || cpu_has_vint) {
2356                 int nvec = cpu_has_veic ? 64 : 8;
2357                 for (i = 0; i < nvec; i++)
2358                         set_vi_handler(i, NULL);
2359         }
2360         else if (cpu_has_divec)
2361                 set_handler(0x200, &except_vec4, 0x8);
2362 
2363         /*
2364          * Some CPUs can enable/disable for cache parity detection, but does
2365          * it different ways.
2366          */
2367         parity_protection_init();
2368 
2369         /*
2370          * The Data Bus Errors / Instruction Bus Errors are signaled
2371          * by external hardware.  Therefore these two exceptions
2372          * may have board specific handlers.
2373          */
2374         if (board_be_init)
2375                 board_be_init();
2376 
2377         set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2378                                         rollback_handle_int : handle_int);
2379         set_except_vector(EXCCODE_MOD, handle_tlbm);
2380         set_except_vector(EXCCODE_TLBL, handle_tlbl);
2381         set_except_vector(EXCCODE_TLBS, handle_tlbs);
2382 
2383         set_except_vector(EXCCODE_ADEL, handle_adel);
2384         set_except_vector(EXCCODE_ADES, handle_ades);
2385 
2386         set_except_vector(EXCCODE_IBE, handle_ibe);
2387         set_except_vector(EXCCODE_DBE, handle_dbe);
2388 
2389         set_except_vector(EXCCODE_SYS, handle_sys);
2390         set_except_vector(EXCCODE_BP, handle_bp);
2391 
2392         if (rdhwr_noopt)
2393                 set_except_vector(EXCCODE_RI, handle_ri);
2394         else {
2395                 if (cpu_has_vtag_icache)
2396                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2397                 else if (current_cpu_type() == CPU_LOONGSON3)
2398                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2399                 else
2400                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2401         }
2402 
2403         set_except_vector(EXCCODE_CPU, handle_cpu);
2404         set_except_vector(EXCCODE_OV, handle_ov);
2405         set_except_vector(EXCCODE_TR, handle_tr);
2406         set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2407 
2408         if (board_nmi_handler_setup)
2409                 board_nmi_handler_setup();
2410 
2411         if (cpu_has_fpu && !cpu_has_nofpuex)
2412                 set_except_vector(EXCCODE_FPE, handle_fpe);
2413 
2414         set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2415 
2416         if (cpu_has_rixiex) {
2417                 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2418                 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2419         }
2420 
2421         set_except_vector(EXCCODE_MSADIS, handle_msa);
2422         set_except_vector(EXCCODE_MDMX, handle_mdmx);
2423 
2424         if (cpu_has_mcheck)
2425                 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2426 
2427         if (cpu_has_mipsmt)
2428                 set_except_vector(EXCCODE_THREAD, handle_mt);
2429 
2430         set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2431 
2432         if (board_cache_error_setup)
2433                 board_cache_error_setup();
2434 
2435         if (cpu_has_vce)
2436                 /* Special exception: R4[04]00 uses also the divec space. */
2437                 set_handler(0x180, &except_vec3_r4000, 0x100);
2438         else if (cpu_has_4kex)
2439                 set_handler(0x180, &except_vec3_generic, 0x80);
2440         else
2441                 set_handler(0x080, &except_vec3_generic, 0x80);
2442 
2443         local_flush_icache_range(ebase, ebase + vec_size);
2444 
2445         sort_extable(__start___dbe_table, __stop___dbe_table);
2446 
2447         cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2448 }
2449 
2450 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2451                             void *v)
2452 {
2453         switch (cmd) {
2454         case CPU_PM_ENTER_FAILED:
2455         case CPU_PM_EXIT:
2456                 configure_status();
2457                 configure_hwrena();
2458                 configure_exception_vector();
2459 
2460                 /* Restore register with CPU number for TLB handlers */
2461                 TLBMISS_HANDLER_RESTORE();
2462 
2463                 break;
2464         }
2465 
2466         return NOTIFY_OK;
2467 }
2468 
2469 static struct notifier_block trap_pm_notifier_block = {
2470         .notifier_call = trap_pm_notifier,
2471 };
2472 
2473 static int __init trap_pm_init(void)
2474 {
2475         return cpu_pm_register_notifier(&trap_pm_notifier_block);
2476 }
2477 arch_initcall(trap_pm_init);

/* [<][>][^][v][top][bottom][index][help] */