root/arch/mips/kernel/pm-cps.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cps_pm_support_state
  2. coupled_barrier
  3. cps_pm_enter_state
  4. cps_gen_cache_routine
  5. cps_gen_flush_fsb
  6. cps_gen_set_top_bit
  7. cps_gen_entry_code
  8. cps_pm_online_cpu
  9. cps_pm_power_notifier
  10. cps_pm_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (C) 2014 Imagination Technologies
   4  * Author: Paul Burton <paul.burton@mips.com>
   5  */
   6 
   7 #include <linux/cpuhotplug.h>
   8 #include <linux/init.h>
   9 #include <linux/percpu.h>
  10 #include <linux/slab.h>
  11 #include <linux/suspend.h>
  12 
  13 #include <asm/asm-offsets.h>
  14 #include <asm/cacheflush.h>
  15 #include <asm/cacheops.h>
  16 #include <asm/idle.h>
  17 #include <asm/mips-cps.h>
  18 #include <asm/mipsmtregs.h>
  19 #include <asm/pm.h>
  20 #include <asm/pm-cps.h>
  21 #include <asm/smp-cps.h>
  22 #include <asm/uasm.h>
  23 
  24 /*
  25  * cps_nc_entry_fn - type of a generated non-coherent state entry function
  26  * @online: the count of online coupled VPEs
  27  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
  28  *
  29  * The code entering & exiting non-coherent states is generated at runtime
  30  * using uasm, in order to ensure that the compiler cannot insert a stray
  31  * memory access at an unfortunate time and to allow the generation of optimal
  32  * core-specific code particularly for cache routines. If coupled_coherence
  33  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
  34  * returns the number of VPEs that were in the wait state at the point this
  35  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
  36  * the entry function for CPS_PM_NC_WAIT.
  37  */
  38 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
  39 
  40 /*
  41  * The entry point of the generated non-coherent idle state entry/exit
  42  * functions. Actually per-core rather than per-CPU.
  43  */
  44 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
  45                                   nc_asm_enter);
  46 
  47 /* Bitmap indicating which states are supported by the system */
  48 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
  49 
  50 /*
  51  * Indicates the number of coupled VPEs ready to operate in a non-coherent
  52  * state. Actually per-core rather than per-CPU.
  53  */
  54 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
  55 
  56 /* Indicates online CPUs coupled with the current CPU */
  57 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
  58 
  59 /*
  60  * Used to synchronize entry to deep idle states. Actually per-core rather
  61  * than per-CPU.
  62  */
  63 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
  64 
  65 /* Saved CPU state across the CPS_PM_POWER_GATED state */
  66 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
  67 
  68 /* A somewhat arbitrary number of labels & relocs for uasm */
  69 static struct uasm_label labels[32];
  70 static struct uasm_reloc relocs[32];
  71 
  72 enum mips_reg {
  73         zero, at, v0, v1, a0, a1, a2, a3,
  74         t0, t1, t2, t3, t4, t5, t6, t7,
  75         s0, s1, s2, s3, s4, s5, s6, s7,
  76         t8, t9, k0, k1, gp, sp, fp, ra,
  77 };
  78 
  79 bool cps_pm_support_state(enum cps_pm_state state)
  80 {
  81         return test_bit(state, state_support);
  82 }
  83 
  84 static void coupled_barrier(atomic_t *a, unsigned online)
  85 {
  86         /*
  87          * This function is effectively the same as
  88          * cpuidle_coupled_parallel_barrier, which can't be used here since
  89          * there's no cpuidle device.
  90          */
  91 
  92         if (!coupled_coherence)
  93                 return;
  94 
  95         smp_mb__before_atomic();
  96         atomic_inc(a);
  97 
  98         while (atomic_read(a) < online)
  99                 cpu_relax();
 100 
 101         if (atomic_inc_return(a) == online * 2) {
 102                 atomic_set(a, 0);
 103                 return;
 104         }
 105 
 106         while (atomic_read(a) > online)
 107                 cpu_relax();
 108 }
 109 
 110 int cps_pm_enter_state(enum cps_pm_state state)
 111 {
 112         unsigned cpu = smp_processor_id();
 113         unsigned core = cpu_core(&current_cpu_data);
 114         unsigned online, left;
 115         cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
 116         u32 *core_ready_count, *nc_core_ready_count;
 117         void *nc_addr;
 118         cps_nc_entry_fn entry;
 119         struct core_boot_config *core_cfg;
 120         struct vpe_boot_config *vpe_cfg;
 121 
 122         /* Check that there is an entry function for this state */
 123         entry = per_cpu(nc_asm_enter, core)[state];
 124         if (!entry)
 125                 return -EINVAL;
 126 
 127         /* Calculate which coupled CPUs (VPEs) are online */
 128 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
 129         if (cpu_online(cpu)) {
 130                 cpumask_and(coupled_mask, cpu_online_mask,
 131                             &cpu_sibling_map[cpu]);
 132                 online = cpumask_weight(coupled_mask);
 133                 cpumask_clear_cpu(cpu, coupled_mask);
 134         } else
 135 #endif
 136         {
 137                 cpumask_clear(coupled_mask);
 138                 online = 1;
 139         }
 140 
 141         /* Setup the VPE to run mips_cps_pm_restore when started again */
 142         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
 143                 /* Power gating relies upon CPS SMP */
 144                 if (!mips_cps_smp_in_use())
 145                         return -EINVAL;
 146 
 147                 core_cfg = &mips_cps_core_bootcfg[core];
 148                 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
 149                 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
 150                 vpe_cfg->gp = (unsigned long)current_thread_info();
 151                 vpe_cfg->sp = 0;
 152         }
 153 
 154         /* Indicate that this CPU might not be coherent */
 155         cpumask_clear_cpu(cpu, &cpu_coherent_mask);
 156         smp_mb__after_atomic();
 157 
 158         /* Create a non-coherent mapping of the core ready_count */
 159         core_ready_count = per_cpu(ready_count, core);
 160         nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
 161                                    (unsigned long)core_ready_count);
 162         nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
 163         nc_core_ready_count = nc_addr;
 164 
 165         /* Ensure ready_count is zero-initialised before the assembly runs */
 166         WRITE_ONCE(*nc_core_ready_count, 0);
 167         coupled_barrier(&per_cpu(pm_barrier, core), online);
 168 
 169         /* Run the generated entry code */
 170         left = entry(online, nc_core_ready_count);
 171 
 172         /* Remove the non-coherent mapping of ready_count */
 173         kunmap_noncoherent();
 174 
 175         /* Indicate that this CPU is definitely coherent */
 176         cpumask_set_cpu(cpu, &cpu_coherent_mask);
 177 
 178         /*
 179          * If this VPE is the first to leave the non-coherent wait state then
 180          * it needs to wake up any coupled VPEs still running their wait
 181          * instruction so that they return to cpuidle, which can then complete
 182          * coordination between the coupled VPEs & provide the governor with
 183          * a chance to reflect on the length of time the VPEs were in the
 184          * idle state.
 185          */
 186         if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
 187                 arch_send_call_function_ipi_mask(coupled_mask);
 188 
 189         return 0;
 190 }
 191 
 192 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
 193                                   struct uasm_reloc **pr,
 194                                   const struct cache_desc *cache,
 195                                   unsigned op, int lbl)
 196 {
 197         unsigned cache_size = cache->ways << cache->waybit;
 198         unsigned i;
 199         const unsigned unroll_lines = 32;
 200 
 201         /* If the cache isn't present this function has it easy */
 202         if (cache->flags & MIPS_CACHE_NOT_PRESENT)
 203                 return;
 204 
 205         /* Load base address */
 206         UASM_i_LA(pp, t0, (long)CKSEG0);
 207 
 208         /* Calculate end address */
 209         if (cache_size < 0x8000)
 210                 uasm_i_addiu(pp, t1, t0, cache_size);
 211         else
 212                 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
 213 
 214         /* Start of cache op loop */
 215         uasm_build_label(pl, *pp, lbl);
 216 
 217         /* Generate the cache ops */
 218         for (i = 0; i < unroll_lines; i++) {
 219                 if (cpu_has_mips_r6) {
 220                         uasm_i_cache(pp, op, 0, t0);
 221                         uasm_i_addiu(pp, t0, t0, cache->linesz);
 222                 } else {
 223                         uasm_i_cache(pp, op, i * cache->linesz, t0);
 224                 }
 225         }
 226 
 227         if (!cpu_has_mips_r6)
 228                 /* Update the base address */
 229                 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
 230 
 231         /* Loop if we haven't reached the end address yet */
 232         uasm_il_bne(pp, pr, t0, t1, lbl);
 233         uasm_i_nop(pp);
 234 }
 235 
 236 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
 237                              struct uasm_reloc **pr,
 238                              const struct cpuinfo_mips *cpu_info,
 239                              int lbl)
 240 {
 241         unsigned i, fsb_size = 8;
 242         unsigned num_loads = (fsb_size * 3) / 2;
 243         unsigned line_stride = 2;
 244         unsigned line_size = cpu_info->dcache.linesz;
 245         unsigned perf_counter, perf_event;
 246         unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
 247 
 248         /*
 249          * Determine whether this CPU requires an FSB flush, and if so which
 250          * performance counter/event reflect stalls due to a full FSB.
 251          */
 252         switch (__get_cpu_type(cpu_info->cputype)) {
 253         case CPU_INTERAPTIV:
 254                 perf_counter = 1;
 255                 perf_event = 51;
 256                 break;
 257 
 258         case CPU_PROAPTIV:
 259                 /* Newer proAptiv cores don't require this workaround */
 260                 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
 261                         return 0;
 262 
 263                 /* On older ones it's unavailable */
 264                 return -1;
 265 
 266         default:
 267                 /* Assume that the CPU does not need this workaround */
 268                 return 0;
 269         }
 270 
 271         /*
 272          * Ensure that the fill/store buffer (FSB) is not holding the results
 273          * of a prefetch, since if it is then the CPC sequencer may become
 274          * stuck in the D3 (ClrBus) state whilst entering a low power state.
 275          */
 276 
 277         /* Preserve perf counter setup */
 278         uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
 279         uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
 280 
 281         /* Setup perf counter to count FSB full pipeline stalls */
 282         uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
 283         uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
 284         uasm_i_ehb(pp);
 285         uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
 286         uasm_i_ehb(pp);
 287 
 288         /* Base address for loads */
 289         UASM_i_LA(pp, t0, (long)CKSEG0);
 290 
 291         /* Start of clear loop */
 292         uasm_build_label(pl, *pp, lbl);
 293 
 294         /* Perform some loads to fill the FSB */
 295         for (i = 0; i < num_loads; i++)
 296                 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
 297 
 298         /*
 299          * Invalidate the new D-cache entries so that the cache will need
 300          * refilling (via the FSB) if the loop is executed again.
 301          */
 302         for (i = 0; i < num_loads; i++) {
 303                 uasm_i_cache(pp, Hit_Invalidate_D,
 304                              i * line_size * line_stride, t0);
 305                 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
 306                              i * line_size * line_stride, t0);
 307         }
 308 
 309         /* Barrier ensuring previous cache invalidates are complete */
 310         uasm_i_sync(pp, STYPE_SYNC);
 311         uasm_i_ehb(pp);
 312 
 313         /* Check whether the pipeline stalled due to the FSB being full */
 314         uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
 315 
 316         /* Loop if it didn't */
 317         uasm_il_beqz(pp, pr, t1, lbl);
 318         uasm_i_nop(pp);
 319 
 320         /* Restore perf counter 1. The count may well now be wrong... */
 321         uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
 322         uasm_i_ehb(pp);
 323         uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
 324         uasm_i_ehb(pp);
 325 
 326         return 0;
 327 }
 328 
 329 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
 330                                 struct uasm_reloc **pr,
 331                                 unsigned r_addr, int lbl)
 332 {
 333         uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
 334         uasm_build_label(pl, *pp, lbl);
 335         uasm_i_ll(pp, t1, 0, r_addr);
 336         uasm_i_or(pp, t1, t1, t0);
 337         uasm_i_sc(pp, t1, 0, r_addr);
 338         uasm_il_beqz(pp, pr, t1, lbl);
 339         uasm_i_nop(pp);
 340 }
 341 
 342 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
 343 {
 344         struct uasm_label *l = labels;
 345         struct uasm_reloc *r = relocs;
 346         u32 *buf, *p;
 347         const unsigned r_online = a0;
 348         const unsigned r_nc_count = a1;
 349         const unsigned r_pcohctl = t7;
 350         const unsigned max_instrs = 256;
 351         unsigned cpc_cmd;
 352         int err;
 353         enum {
 354                 lbl_incready = 1,
 355                 lbl_poll_cont,
 356                 lbl_secondary_hang,
 357                 lbl_disable_coherence,
 358                 lbl_flush_fsb,
 359                 lbl_invicache,
 360                 lbl_flushdcache,
 361                 lbl_hang,
 362                 lbl_set_cont,
 363                 lbl_secondary_cont,
 364                 lbl_decready,
 365         };
 366 
 367         /* Allocate a buffer to hold the generated code */
 368         p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
 369         if (!buf)
 370                 return NULL;
 371 
 372         /* Clear labels & relocs ready for (re)use */
 373         memset(labels, 0, sizeof(labels));
 374         memset(relocs, 0, sizeof(relocs));
 375 
 376         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
 377                 /* Power gating relies upon CPS SMP */
 378                 if (!mips_cps_smp_in_use())
 379                         goto out_err;
 380 
 381                 /*
 382                  * Save CPU state. Note the non-standard calling convention
 383                  * with the return address placed in v0 to avoid clobbering
 384                  * the ra register before it is saved.
 385                  */
 386                 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
 387                 uasm_i_jalr(&p, v0, t0);
 388                 uasm_i_nop(&p);
 389         }
 390 
 391         /*
 392          * Load addresses of required CM & CPC registers. This is done early
 393          * because they're needed in both the enable & disable coherence steps
 394          * but in the coupled case the enable step will only run on one VPE.
 395          */
 396         UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
 397 
 398         if (coupled_coherence) {
 399                 /* Increment ready_count */
 400                 uasm_i_sync(&p, STYPE_SYNC_MB);
 401                 uasm_build_label(&l, p, lbl_incready);
 402                 uasm_i_ll(&p, t1, 0, r_nc_count);
 403                 uasm_i_addiu(&p, t2, t1, 1);
 404                 uasm_i_sc(&p, t2, 0, r_nc_count);
 405                 uasm_il_beqz(&p, &r, t2, lbl_incready);
 406                 uasm_i_addiu(&p, t1, t1, 1);
 407 
 408                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
 409                 uasm_i_sync(&p, STYPE_SYNC_MB);
 410 
 411                 /*
 412                  * If this is the last VPE to become ready for non-coherence
 413                  * then it should branch below.
 414                  */
 415                 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
 416                 uasm_i_nop(&p);
 417 
 418                 if (state < CPS_PM_POWER_GATED) {
 419                         /*
 420                          * Otherwise this is not the last VPE to become ready
 421                          * for non-coherence. It needs to wait until coherence
 422                          * has been disabled before proceeding, which it will do
 423                          * by polling for the top bit of ready_count being set.
 424                          */
 425                         uasm_i_addiu(&p, t1, zero, -1);
 426                         uasm_build_label(&l, p, lbl_poll_cont);
 427                         uasm_i_lw(&p, t0, 0, r_nc_count);
 428                         uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
 429                         uasm_i_ehb(&p);
 430                         if (cpu_has_mipsmt)
 431                                 uasm_i_yield(&p, zero, t1);
 432                         uasm_il_b(&p, &r, lbl_poll_cont);
 433                         uasm_i_nop(&p);
 434                 } else {
 435                         /*
 436                          * The core will lose power & this VPE will not continue
 437                          * so it can simply halt here.
 438                          */
 439                         if (cpu_has_mipsmt) {
 440                                 /* Halt the VPE via C0 tchalt register */
 441                                 uasm_i_addiu(&p, t0, zero, TCHALT_H);
 442                                 uasm_i_mtc0(&p, t0, 2, 4);
 443                         } else if (cpu_has_vp) {
 444                                 /* Halt the VP via the CPC VP_STOP register */
 445                                 unsigned int vpe_id;
 446 
 447                                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 448                                 uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
 449                                 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
 450                                 uasm_i_sw(&p, t0, 0, t1);
 451                         } else {
 452                                 BUG();
 453                         }
 454                         uasm_build_label(&l, p, lbl_secondary_hang);
 455                         uasm_il_b(&p, &r, lbl_secondary_hang);
 456                         uasm_i_nop(&p);
 457                 }
 458         }
 459 
 460         /*
 461          * This is the point of no return - this VPE will now proceed to
 462          * disable coherence. At this point we *must* be sure that no other
 463          * VPE within the core will interfere with the L1 dcache.
 464          */
 465         uasm_build_label(&l, p, lbl_disable_coherence);
 466 
 467         /* Invalidate the L1 icache */
 468         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
 469                               Index_Invalidate_I, lbl_invicache);
 470 
 471         /* Writeback & invalidate the L1 dcache */
 472         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
 473                               Index_Writeback_Inv_D, lbl_flushdcache);
 474 
 475         /* Barrier ensuring previous cache invalidates are complete */
 476         uasm_i_sync(&p, STYPE_SYNC);
 477         uasm_i_ehb(&p);
 478 
 479         if (mips_cm_revision() < CM_REV_CM3) {
 480                 /*
 481                 * Disable all but self interventions. The load from COHCTL is
 482                 * defined by the interAptiv & proAptiv SUMs as ensuring that the
 483                 *  operation resulting from the preceding store is complete.
 484                 */
 485                 uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
 486                 uasm_i_sw(&p, t0, 0, r_pcohctl);
 487                 uasm_i_lw(&p, t0, 0, r_pcohctl);
 488 
 489                 /* Barrier to ensure write to coherence control is complete */
 490                 uasm_i_sync(&p, STYPE_SYNC);
 491                 uasm_i_ehb(&p);
 492         }
 493 
 494         /* Disable coherence */
 495         uasm_i_sw(&p, zero, 0, r_pcohctl);
 496         uasm_i_lw(&p, t0, 0, r_pcohctl);
 497 
 498         if (state >= CPS_PM_CLOCK_GATED) {
 499                 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
 500                                         lbl_flush_fsb);
 501                 if (err)
 502                         goto out_err;
 503 
 504                 /* Determine the CPC command to issue */
 505                 switch (state) {
 506                 case CPS_PM_CLOCK_GATED:
 507                         cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
 508                         break;
 509                 case CPS_PM_POWER_GATED:
 510                         cpc_cmd = CPC_Cx_CMD_PWRDOWN;
 511                         break;
 512                 default:
 513                         BUG();
 514                         goto out_err;
 515                 }
 516 
 517                 /* Issue the CPC command */
 518                 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
 519                 uasm_i_addiu(&p, t1, zero, cpc_cmd);
 520                 uasm_i_sw(&p, t1, 0, t0);
 521 
 522                 if (state == CPS_PM_POWER_GATED) {
 523                         /* If anything goes wrong just hang */
 524                         uasm_build_label(&l, p, lbl_hang);
 525                         uasm_il_b(&p, &r, lbl_hang);
 526                         uasm_i_nop(&p);
 527 
 528                         /*
 529                          * There's no point generating more code, the core is
 530                          * powered down & if powered back up will run from the
 531                          * reset vector not from here.
 532                          */
 533                         goto gen_done;
 534                 }
 535 
 536                 /* Barrier to ensure write to CPC command is complete */
 537                 uasm_i_sync(&p, STYPE_SYNC);
 538                 uasm_i_ehb(&p);
 539         }
 540 
 541         if (state == CPS_PM_NC_WAIT) {
 542                 /*
 543                  * At this point it is safe for all VPEs to proceed with
 544                  * execution. This VPE will set the top bit of ready_count
 545                  * to indicate to the other VPEs that they may continue.
 546                  */
 547                 if (coupled_coherence)
 548                         cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
 549                                             lbl_set_cont);
 550 
 551                 /*
 552                  * VPEs which did not disable coherence will continue
 553                  * executing, after coherence has been disabled, from this
 554                  * point.
 555                  */
 556                 uasm_build_label(&l, p, lbl_secondary_cont);
 557 
 558                 /* Now perform our wait */
 559                 uasm_i_wait(&p, 0);
 560         }
 561 
 562         /*
 563          * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
 564          * will run this. The first will actually re-enable coherence & the
 565          * rest will just be performing a rather unusual nop.
 566          */
 567         uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
 568                                 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
 569                                 : CM3_GCR_Cx_COHERENCE_COHEN);
 570 
 571         uasm_i_sw(&p, t0, 0, r_pcohctl);
 572         uasm_i_lw(&p, t0, 0, r_pcohctl);
 573 
 574         /* Barrier to ensure write to coherence control is complete */
 575         uasm_i_sync(&p, STYPE_SYNC);
 576         uasm_i_ehb(&p);
 577 
 578         if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
 579                 /* Decrement ready_count */
 580                 uasm_build_label(&l, p, lbl_decready);
 581                 uasm_i_sync(&p, STYPE_SYNC_MB);
 582                 uasm_i_ll(&p, t1, 0, r_nc_count);
 583                 uasm_i_addiu(&p, t2, t1, -1);
 584                 uasm_i_sc(&p, t2, 0, r_nc_count);
 585                 uasm_il_beqz(&p, &r, t2, lbl_decready);
 586                 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
 587 
 588                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
 589                 uasm_i_sync(&p, STYPE_SYNC_MB);
 590         }
 591 
 592         if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
 593                 /*
 594                  * At this point it is safe for all VPEs to proceed with
 595                  * execution. This VPE will set the top bit of ready_count
 596                  * to indicate to the other VPEs that they may continue.
 597                  */
 598                 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
 599 
 600                 /*
 601                  * This core will be reliant upon another core sending a
 602                  * power-up command to the CPC in order to resume operation.
 603                  * Thus an arbitrary VPE can't trigger the core leaving the
 604                  * idle state and the one that disables coherence might as well
 605                  * be the one to re-enable it. The rest will continue from here
 606                  * after that has been done.
 607                  */
 608                 uasm_build_label(&l, p, lbl_secondary_cont);
 609 
 610                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
 611                 uasm_i_sync(&p, STYPE_SYNC_MB);
 612         }
 613 
 614         /* The core is coherent, time to return to C code */
 615         uasm_i_jr(&p, ra);
 616         uasm_i_nop(&p);
 617 
 618 gen_done:
 619         /* Ensure the code didn't exceed the resources allocated for it */
 620         BUG_ON((p - buf) > max_instrs);
 621         BUG_ON((l - labels) > ARRAY_SIZE(labels));
 622         BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
 623 
 624         /* Patch branch offsets */
 625         uasm_resolve_relocs(relocs, labels);
 626 
 627         /* Flush the icache */
 628         local_flush_icache_range((unsigned long)buf, (unsigned long)p);
 629 
 630         return buf;
 631 out_err:
 632         kfree(buf);
 633         return NULL;
 634 }
 635 
 636 static int cps_pm_online_cpu(unsigned int cpu)
 637 {
 638         enum cps_pm_state state;
 639         unsigned core = cpu_core(&cpu_data[cpu]);
 640         void *entry_fn, *core_rc;
 641 
 642         for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
 643                 if (per_cpu(nc_asm_enter, core)[state])
 644                         continue;
 645                 if (!test_bit(state, state_support))
 646                         continue;
 647 
 648                 entry_fn = cps_gen_entry_code(cpu, state);
 649                 if (!entry_fn) {
 650                         pr_err("Failed to generate core %u state %u entry\n",
 651                                core, state);
 652                         clear_bit(state, state_support);
 653                 }
 654 
 655                 per_cpu(nc_asm_enter, core)[state] = entry_fn;
 656         }
 657 
 658         if (!per_cpu(ready_count, core)) {
 659                 core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
 660                 if (!core_rc) {
 661                         pr_err("Failed allocate core %u ready_count\n", core);
 662                         return -ENOMEM;
 663                 }
 664                 per_cpu(ready_count, core) = core_rc;
 665         }
 666 
 667         return 0;
 668 }
 669 
 670 static int cps_pm_power_notifier(struct notifier_block *this,
 671                                  unsigned long event, void *ptr)
 672 {
 673         unsigned int stat;
 674 
 675         switch (event) {
 676         case PM_SUSPEND_PREPARE:
 677                 stat = read_cpc_cl_stat_conf();
 678                 /*
 679                  * If we're attempting to suspend the system and power down all
 680                  * of the cores, the JTAG detect bit indicates that the CPC will
 681                  * instead put the cores into clock-off state. In this state
 682                  * a connected debugger can cause the CPU to attempt
 683                  * interactions with the powered down system. At best this will
 684                  * fail. At worst, it can hang the NoC, requiring a hard reset.
 685                  * To avoid this, just block system suspend if a JTAG probe
 686                  * is detected.
 687                  */
 688                 if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
 689                         pr_warn("JTAG probe is connected - abort suspend\n");
 690                         return NOTIFY_BAD;
 691                 }
 692                 return NOTIFY_DONE;
 693         default:
 694                 return NOTIFY_DONE;
 695         }
 696 }
 697 
 698 static int __init cps_pm_init(void)
 699 {
 700         /* A CM is required for all non-coherent states */
 701         if (!mips_cm_present()) {
 702                 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
 703                 return 0;
 704         }
 705 
 706         /*
 707          * If interrupts were enabled whilst running a wait instruction on a
 708          * non-coherent core then the VPE may end up processing interrupts
 709          * whilst non-coherent. That would be bad.
 710          */
 711         if (cpu_wait == r4k_wait_irqoff)
 712                 set_bit(CPS_PM_NC_WAIT, state_support);
 713         else
 714                 pr_warn("pm-cps: non-coherent wait unavailable\n");
 715 
 716         /* Detect whether a CPC is present */
 717         if (mips_cpc_present()) {
 718                 /* Detect whether clock gating is implemented */
 719                 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
 720                         set_bit(CPS_PM_CLOCK_GATED, state_support);
 721                 else
 722                         pr_warn("pm-cps: CPC does not support clock gating\n");
 723 
 724                 /* Power gating is available with CPS SMP & any CPC */
 725                 if (mips_cps_smp_in_use())
 726                         set_bit(CPS_PM_POWER_GATED, state_support);
 727                 else
 728                         pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
 729         } else {
 730                 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
 731         }
 732 
 733         pm_notifier(cps_pm_power_notifier, 0);
 734 
 735         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
 736                                  cps_pm_online_cpu, NULL);
 737 }
 738 arch_initcall(cps_pm_init);

/* [<][>][^][v][top][bottom][index][help] */