root/fs/btrfs/raid56.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. start_async_work
  2. btrfs_alloc_stripe_hash_table
  3. cache_rbio_pages
  4. rbio_bucket
  5. steal_rbio
  6. merge_rbio
  7. __remove_rbio_from_cache
  8. remove_rbio_from_cache
  9. btrfs_clear_rbio_cache
  10. btrfs_free_stripe_hash_table
  11. cache_rbio
  12. run_xor
  13. rbio_is_full
  14. rbio_can_merge
  15. rbio_stripe_page_index
  16. rbio_stripe_page
  17. rbio_pstripe_page
  18. rbio_qstripe_page
  19. lock_stripe_add
  20. unlock_stripe
  21. __free_raid_bio
  22. rbio_endio_bio_list
  23. rbio_orig_end_io
  24. raid_write_end_io
  25. page_in_rbio
  26. rbio_nr_pages
  27. alloc_rbio
  28. alloc_rbio_pages
  29. alloc_rbio_parity_pages
  30. rbio_add_io_page
  31. validate_rbio_for_rmw
  32. index_rbio_pages
  33. finish_rmw
  34. find_bio_stripe
  35. find_logical_bio_stripe
  36. fail_rbio_index
  37. fail_bio_stripe
  38. set_bio_pages_uptodate
  39. raid_rmw_end_io
  40. raid56_rmw_stripe
  41. full_stripe_write
  42. partial_stripe_write
  43. __raid56_parity_write
  44. plug_cmp
  45. run_plug
  46. unplug_work
  47. btrfs_raid_unplug
  48. raid56_parity_write
  49. __raid_recover_end_io
  50. raid_recover_end_io
  51. __raid56_parity_recover
  52. raid56_parity_recover
  53. rmw_work
  54. read_rebuild_work
  55. raid56_parity_alloc_scrub_rbio
  56. raid56_add_scrub_pages
  57. alloc_rbio_essential_pages
  58. finish_parity_scrub
  59. is_data_stripe
  60. validate_rbio_for_parity_scrub
  61. raid56_parity_scrub_end_io
  62. raid56_parity_scrub_stripe
  63. scrub_parity_work
  64. raid56_parity_submit_scrub_rbio
  65. raid56_alloc_missing_rbio
  66. raid56_submit_missing_rbio

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) 2012 Fusion-io  All rights reserved.
   4  * Copyright (C) 2012 Intel Corp. All rights reserved.
   5  */
   6 
   7 #include <linux/sched.h>
   8 #include <linux/bio.h>
   9 #include <linux/slab.h>
  10 #include <linux/blkdev.h>
  11 #include <linux/raid/pq.h>
  12 #include <linux/hash.h>
  13 #include <linux/list_sort.h>
  14 #include <linux/raid/xor.h>
  15 #include <linux/mm.h>
  16 #include "ctree.h"
  17 #include "disk-io.h"
  18 #include "volumes.h"
  19 #include "raid56.h"
  20 #include "async-thread.h"
  21 
  22 /* set when additional merges to this rbio are not allowed */
  23 #define RBIO_RMW_LOCKED_BIT     1
  24 
  25 /*
  26  * set when this rbio is sitting in the hash, but it is just a cache
  27  * of past RMW
  28  */
  29 #define RBIO_CACHE_BIT          2
  30 
  31 /*
  32  * set when it is safe to trust the stripe_pages for caching
  33  */
  34 #define RBIO_CACHE_READY_BIT    3
  35 
  36 #define RBIO_CACHE_SIZE 1024
  37 
  38 #define BTRFS_STRIPE_HASH_TABLE_BITS                            11
  39 
  40 /* Used by the raid56 code to lock stripes for read/modify/write */
  41 struct btrfs_stripe_hash {
  42         struct list_head hash_list;
  43         spinlock_t lock;
  44 };
  45 
  46 /* Used by the raid56 code to lock stripes for read/modify/write */
  47 struct btrfs_stripe_hash_table {
  48         struct list_head stripe_cache;
  49         spinlock_t cache_lock;
  50         int cache_size;
  51         struct btrfs_stripe_hash table[];
  52 };
  53 
  54 enum btrfs_rbio_ops {
  55         BTRFS_RBIO_WRITE,
  56         BTRFS_RBIO_READ_REBUILD,
  57         BTRFS_RBIO_PARITY_SCRUB,
  58         BTRFS_RBIO_REBUILD_MISSING,
  59 };
  60 
  61 struct btrfs_raid_bio {
  62         struct btrfs_fs_info *fs_info;
  63         struct btrfs_bio *bbio;
  64 
  65         /* while we're doing rmw on a stripe
  66          * we put it into a hash table so we can
  67          * lock the stripe and merge more rbios
  68          * into it.
  69          */
  70         struct list_head hash_list;
  71 
  72         /*
  73          * LRU list for the stripe cache
  74          */
  75         struct list_head stripe_cache;
  76 
  77         /*
  78          * for scheduling work in the helper threads
  79          */
  80         struct btrfs_work work;
  81 
  82         /*
  83          * bio list and bio_list_lock are used
  84          * to add more bios into the stripe
  85          * in hopes of avoiding the full rmw
  86          */
  87         struct bio_list bio_list;
  88         spinlock_t bio_list_lock;
  89 
  90         /* also protected by the bio_list_lock, the
  91          * plug list is used by the plugging code
  92          * to collect partial bios while plugged.  The
  93          * stripe locking code also uses it to hand off
  94          * the stripe lock to the next pending IO
  95          */
  96         struct list_head plug_list;
  97 
  98         /*
  99          * flags that tell us if it is safe to
 100          * merge with this bio
 101          */
 102         unsigned long flags;
 103 
 104         /* size of each individual stripe on disk */
 105         int stripe_len;
 106 
 107         /* number of data stripes (no p/q) */
 108         int nr_data;
 109 
 110         int real_stripes;
 111 
 112         int stripe_npages;
 113         /*
 114          * set if we're doing a parity rebuild
 115          * for a read from higher up, which is handled
 116          * differently from a parity rebuild as part of
 117          * rmw
 118          */
 119         enum btrfs_rbio_ops operation;
 120 
 121         /* first bad stripe */
 122         int faila;
 123 
 124         /* second bad stripe (for raid6 use) */
 125         int failb;
 126 
 127         int scrubp;
 128         /*
 129          * number of pages needed to represent the full
 130          * stripe
 131          */
 132         int nr_pages;
 133 
 134         /*
 135          * size of all the bios in the bio_list.  This
 136          * helps us decide if the rbio maps to a full
 137          * stripe or not
 138          */
 139         int bio_list_bytes;
 140 
 141         int generic_bio_cnt;
 142 
 143         refcount_t refs;
 144 
 145         atomic_t stripes_pending;
 146 
 147         atomic_t error;
 148         /*
 149          * these are two arrays of pointers.  We allocate the
 150          * rbio big enough to hold them both and setup their
 151          * locations when the rbio is allocated
 152          */
 153 
 154         /* pointers to pages that we allocated for
 155          * reading/writing stripes directly from the disk (including P/Q)
 156          */
 157         struct page **stripe_pages;
 158 
 159         /*
 160          * pointers to the pages in the bio_list.  Stored
 161          * here for faster lookup
 162          */
 163         struct page **bio_pages;
 164 
 165         /*
 166          * bitmap to record which horizontal stripe has data
 167          */
 168         unsigned long *dbitmap;
 169 
 170         /* allocated with real_stripes-many pointers for finish_*() calls */
 171         void **finish_pointers;
 172 
 173         /* allocated with stripe_npages-many bits for finish_*() calls */
 174         unsigned long *finish_pbitmap;
 175 };
 176 
 177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 179 static void rmw_work(struct btrfs_work *work);
 180 static void read_rebuild_work(struct btrfs_work *work);
 181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 186 
 187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 188                                          int need_check);
 189 static void scrub_parity_work(struct btrfs_work *work);
 190 
 191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 192 {
 193         btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 194         btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
 195 }
 196 
 197 /*
 198  * the stripe hash table is used for locking, and to collect
 199  * bios in hopes of making a full stripe
 200  */
 201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 202 {
 203         struct btrfs_stripe_hash_table *table;
 204         struct btrfs_stripe_hash_table *x;
 205         struct btrfs_stripe_hash *cur;
 206         struct btrfs_stripe_hash *h;
 207         int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 208         int i;
 209         int table_size;
 210 
 211         if (info->stripe_hash_table)
 212                 return 0;
 213 
 214         /*
 215          * The table is large, starting with order 4 and can go as high as
 216          * order 7 in case lock debugging is turned on.
 217          *
 218          * Try harder to allocate and fallback to vmalloc to lower the chance
 219          * of a failing mount.
 220          */
 221         table_size = sizeof(*table) + sizeof(*h) * num_entries;
 222         table = kvzalloc(table_size, GFP_KERNEL);
 223         if (!table)
 224                 return -ENOMEM;
 225 
 226         spin_lock_init(&table->cache_lock);
 227         INIT_LIST_HEAD(&table->stripe_cache);
 228 
 229         h = table->table;
 230 
 231         for (i = 0; i < num_entries; i++) {
 232                 cur = h + i;
 233                 INIT_LIST_HEAD(&cur->hash_list);
 234                 spin_lock_init(&cur->lock);
 235         }
 236 
 237         x = cmpxchg(&info->stripe_hash_table, NULL, table);
 238         if (x)
 239                 kvfree(x);
 240         return 0;
 241 }
 242 
 243 /*
 244  * caching an rbio means to copy anything from the
 245  * bio_pages array into the stripe_pages array.  We
 246  * use the page uptodate bit in the stripe cache array
 247  * to indicate if it has valid data
 248  *
 249  * once the caching is done, we set the cache ready
 250  * bit.
 251  */
 252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 253 {
 254         int i;
 255         char *s;
 256         char *d;
 257         int ret;
 258 
 259         ret = alloc_rbio_pages(rbio);
 260         if (ret)
 261                 return;
 262 
 263         for (i = 0; i < rbio->nr_pages; i++) {
 264                 if (!rbio->bio_pages[i])
 265                         continue;
 266 
 267                 s = kmap(rbio->bio_pages[i]);
 268                 d = kmap(rbio->stripe_pages[i]);
 269 
 270                 copy_page(d, s);
 271 
 272                 kunmap(rbio->bio_pages[i]);
 273                 kunmap(rbio->stripe_pages[i]);
 274                 SetPageUptodate(rbio->stripe_pages[i]);
 275         }
 276         set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 277 }
 278 
 279 /*
 280  * we hash on the first logical address of the stripe
 281  */
 282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
 283 {
 284         u64 num = rbio->bbio->raid_map[0];
 285 
 286         /*
 287          * we shift down quite a bit.  We're using byte
 288          * addressing, and most of the lower bits are zeros.
 289          * This tends to upset hash_64, and it consistently
 290          * returns just one or two different values.
 291          *
 292          * shifting off the lower bits fixes things.
 293          */
 294         return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 295 }
 296 
 297 /*
 298  * stealing an rbio means taking all the uptodate pages from the stripe
 299  * array in the source rbio and putting them into the destination rbio
 300  */
 301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 302 {
 303         int i;
 304         struct page *s;
 305         struct page *d;
 306 
 307         if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 308                 return;
 309 
 310         for (i = 0; i < dest->nr_pages; i++) {
 311                 s = src->stripe_pages[i];
 312                 if (!s || !PageUptodate(s)) {
 313                         continue;
 314                 }
 315 
 316                 d = dest->stripe_pages[i];
 317                 if (d)
 318                         __free_page(d);
 319 
 320                 dest->stripe_pages[i] = s;
 321                 src->stripe_pages[i] = NULL;
 322         }
 323 }
 324 
 325 /*
 326  * merging means we take the bio_list from the victim and
 327  * splice it into the destination.  The victim should
 328  * be discarded afterwards.
 329  *
 330  * must be called with dest->rbio_list_lock held
 331  */
 332 static void merge_rbio(struct btrfs_raid_bio *dest,
 333                        struct btrfs_raid_bio *victim)
 334 {
 335         bio_list_merge(&dest->bio_list, &victim->bio_list);
 336         dest->bio_list_bytes += victim->bio_list_bytes;
 337         dest->generic_bio_cnt += victim->generic_bio_cnt;
 338         bio_list_init(&victim->bio_list);
 339 }
 340 
 341 /*
 342  * used to prune items that are in the cache.  The caller
 343  * must hold the hash table lock.
 344  */
 345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 346 {
 347         int bucket = rbio_bucket(rbio);
 348         struct btrfs_stripe_hash_table *table;
 349         struct btrfs_stripe_hash *h;
 350         int freeit = 0;
 351 
 352         /*
 353          * check the bit again under the hash table lock.
 354          */
 355         if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 356                 return;
 357 
 358         table = rbio->fs_info->stripe_hash_table;
 359         h = table->table + bucket;
 360 
 361         /* hold the lock for the bucket because we may be
 362          * removing it from the hash table
 363          */
 364         spin_lock(&h->lock);
 365 
 366         /*
 367          * hold the lock for the bio list because we need
 368          * to make sure the bio list is empty
 369          */
 370         spin_lock(&rbio->bio_list_lock);
 371 
 372         if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 373                 list_del_init(&rbio->stripe_cache);
 374                 table->cache_size -= 1;
 375                 freeit = 1;
 376 
 377                 /* if the bio list isn't empty, this rbio is
 378                  * still involved in an IO.  We take it out
 379                  * of the cache list, and drop the ref that
 380                  * was held for the list.
 381                  *
 382                  * If the bio_list was empty, we also remove
 383                  * the rbio from the hash_table, and drop
 384                  * the corresponding ref
 385                  */
 386                 if (bio_list_empty(&rbio->bio_list)) {
 387                         if (!list_empty(&rbio->hash_list)) {
 388                                 list_del_init(&rbio->hash_list);
 389                                 refcount_dec(&rbio->refs);
 390                                 BUG_ON(!list_empty(&rbio->plug_list));
 391                         }
 392                 }
 393         }
 394 
 395         spin_unlock(&rbio->bio_list_lock);
 396         spin_unlock(&h->lock);
 397 
 398         if (freeit)
 399                 __free_raid_bio(rbio);
 400 }
 401 
 402 /*
 403  * prune a given rbio from the cache
 404  */
 405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 406 {
 407         struct btrfs_stripe_hash_table *table;
 408         unsigned long flags;
 409 
 410         if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 411                 return;
 412 
 413         table = rbio->fs_info->stripe_hash_table;
 414 
 415         spin_lock_irqsave(&table->cache_lock, flags);
 416         __remove_rbio_from_cache(rbio);
 417         spin_unlock_irqrestore(&table->cache_lock, flags);
 418 }
 419 
 420 /*
 421  * remove everything in the cache
 422  */
 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 424 {
 425         struct btrfs_stripe_hash_table *table;
 426         unsigned long flags;
 427         struct btrfs_raid_bio *rbio;
 428 
 429         table = info->stripe_hash_table;
 430 
 431         spin_lock_irqsave(&table->cache_lock, flags);
 432         while (!list_empty(&table->stripe_cache)) {
 433                 rbio = list_entry(table->stripe_cache.next,
 434                                   struct btrfs_raid_bio,
 435                                   stripe_cache);
 436                 __remove_rbio_from_cache(rbio);
 437         }
 438         spin_unlock_irqrestore(&table->cache_lock, flags);
 439 }
 440 
 441 /*
 442  * remove all cached entries and free the hash table
 443  * used by unmount
 444  */
 445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 446 {
 447         if (!info->stripe_hash_table)
 448                 return;
 449         btrfs_clear_rbio_cache(info);
 450         kvfree(info->stripe_hash_table);
 451         info->stripe_hash_table = NULL;
 452 }
 453 
 454 /*
 455  * insert an rbio into the stripe cache.  It
 456  * must have already been prepared by calling
 457  * cache_rbio_pages
 458  *
 459  * If this rbio was already cached, it gets
 460  * moved to the front of the lru.
 461  *
 462  * If the size of the rbio cache is too big, we
 463  * prune an item.
 464  */
 465 static void cache_rbio(struct btrfs_raid_bio *rbio)
 466 {
 467         struct btrfs_stripe_hash_table *table;
 468         unsigned long flags;
 469 
 470         if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 471                 return;
 472 
 473         table = rbio->fs_info->stripe_hash_table;
 474 
 475         spin_lock_irqsave(&table->cache_lock, flags);
 476         spin_lock(&rbio->bio_list_lock);
 477 
 478         /* bump our ref if we were not in the list before */
 479         if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 480                 refcount_inc(&rbio->refs);
 481 
 482         if (!list_empty(&rbio->stripe_cache)){
 483                 list_move(&rbio->stripe_cache, &table->stripe_cache);
 484         } else {
 485                 list_add(&rbio->stripe_cache, &table->stripe_cache);
 486                 table->cache_size += 1;
 487         }
 488 
 489         spin_unlock(&rbio->bio_list_lock);
 490 
 491         if (table->cache_size > RBIO_CACHE_SIZE) {
 492                 struct btrfs_raid_bio *found;
 493 
 494                 found = list_entry(table->stripe_cache.prev,
 495                                   struct btrfs_raid_bio,
 496                                   stripe_cache);
 497 
 498                 if (found != rbio)
 499                         __remove_rbio_from_cache(found);
 500         }
 501 
 502         spin_unlock_irqrestore(&table->cache_lock, flags);
 503 }
 504 
 505 /*
 506  * helper function to run the xor_blocks api.  It is only
 507  * able to do MAX_XOR_BLOCKS at a time, so we need to
 508  * loop through.
 509  */
 510 static void run_xor(void **pages, int src_cnt, ssize_t len)
 511 {
 512         int src_off = 0;
 513         int xor_src_cnt = 0;
 514         void *dest = pages[src_cnt];
 515 
 516         while(src_cnt > 0) {
 517                 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 518                 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 519 
 520                 src_cnt -= xor_src_cnt;
 521                 src_off += xor_src_cnt;
 522         }
 523 }
 524 
 525 /*
 526  * Returns true if the bio list inside this rbio covers an entire stripe (no
 527  * rmw required).
 528  */
 529 static int rbio_is_full(struct btrfs_raid_bio *rbio)
 530 {
 531         unsigned long flags;
 532         unsigned long size = rbio->bio_list_bytes;
 533         int ret = 1;
 534 
 535         spin_lock_irqsave(&rbio->bio_list_lock, flags);
 536         if (size != rbio->nr_data * rbio->stripe_len)
 537                 ret = 0;
 538         BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 539         spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 540 
 541         return ret;
 542 }
 543 
 544 /*
 545  * returns 1 if it is safe to merge two rbios together.
 546  * The merging is safe if the two rbios correspond to
 547  * the same stripe and if they are both going in the same
 548  * direction (read vs write), and if neither one is
 549  * locked for final IO
 550  *
 551  * The caller is responsible for locking such that
 552  * rmw_locked is safe to test
 553  */
 554 static int rbio_can_merge(struct btrfs_raid_bio *last,
 555                           struct btrfs_raid_bio *cur)
 556 {
 557         if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 558             test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 559                 return 0;
 560 
 561         /*
 562          * we can't merge with cached rbios, since the
 563          * idea is that when we merge the destination
 564          * rbio is going to run our IO for us.  We can
 565          * steal from cached rbios though, other functions
 566          * handle that.
 567          */
 568         if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 569             test_bit(RBIO_CACHE_BIT, &cur->flags))
 570                 return 0;
 571 
 572         if (last->bbio->raid_map[0] !=
 573             cur->bbio->raid_map[0])
 574                 return 0;
 575 
 576         /* we can't merge with different operations */
 577         if (last->operation != cur->operation)
 578                 return 0;
 579         /*
 580          * We've need read the full stripe from the drive.
 581          * check and repair the parity and write the new results.
 582          *
 583          * We're not allowed to add any new bios to the
 584          * bio list here, anyone else that wants to
 585          * change this stripe needs to do their own rmw.
 586          */
 587         if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 588                 return 0;
 589 
 590         if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 591                 return 0;
 592 
 593         if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 594                 int fa = last->faila;
 595                 int fb = last->failb;
 596                 int cur_fa = cur->faila;
 597                 int cur_fb = cur->failb;
 598 
 599                 if (last->faila >= last->failb) {
 600                         fa = last->failb;
 601                         fb = last->faila;
 602                 }
 603 
 604                 if (cur->faila >= cur->failb) {
 605                         cur_fa = cur->failb;
 606                         cur_fb = cur->faila;
 607                 }
 608 
 609                 if (fa != cur_fa || fb != cur_fb)
 610                         return 0;
 611         }
 612         return 1;
 613 }
 614 
 615 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 616                                   int index)
 617 {
 618         return stripe * rbio->stripe_npages + index;
 619 }
 620 
 621 /*
 622  * these are just the pages from the rbio array, not from anything
 623  * the FS sent down to us
 624  */
 625 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 626                                      int index)
 627 {
 628         return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 629 }
 630 
 631 /*
 632  * helper to index into the pstripe
 633  */
 634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 635 {
 636         return rbio_stripe_page(rbio, rbio->nr_data, index);
 637 }
 638 
 639 /*
 640  * helper to index into the qstripe, returns null
 641  * if there is no qstripe
 642  */
 643 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 644 {
 645         if (rbio->nr_data + 1 == rbio->real_stripes)
 646                 return NULL;
 647         return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 648 }
 649 
 650 /*
 651  * The first stripe in the table for a logical address
 652  * has the lock.  rbios are added in one of three ways:
 653  *
 654  * 1) Nobody has the stripe locked yet.  The rbio is given
 655  * the lock and 0 is returned.  The caller must start the IO
 656  * themselves.
 657  *
 658  * 2) Someone has the stripe locked, but we're able to merge
 659  * with the lock owner.  The rbio is freed and the IO will
 660  * start automatically along with the existing rbio.  1 is returned.
 661  *
 662  * 3) Someone has the stripe locked, but we're not able to merge.
 663  * The rbio is added to the lock owner's plug list, or merged into
 664  * an rbio already on the plug list.  When the lock owner unlocks,
 665  * the next rbio on the list is run and the IO is started automatically.
 666  * 1 is returned
 667  *
 668  * If we return 0, the caller still owns the rbio and must continue with
 669  * IO submission.  If we return 1, the caller must assume the rbio has
 670  * already been freed.
 671  */
 672 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 673 {
 674         int bucket = rbio_bucket(rbio);
 675         struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 676         struct btrfs_raid_bio *cur;
 677         struct btrfs_raid_bio *pending;
 678         unsigned long flags;
 679         struct btrfs_raid_bio *freeit = NULL;
 680         struct btrfs_raid_bio *cache_drop = NULL;
 681         int ret = 0;
 682 
 683         spin_lock_irqsave(&h->lock, flags);
 684         list_for_each_entry(cur, &h->hash_list, hash_list) {
 685                 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 686                         spin_lock(&cur->bio_list_lock);
 687 
 688                         /* can we steal this cached rbio's pages? */
 689                         if (bio_list_empty(&cur->bio_list) &&
 690                             list_empty(&cur->plug_list) &&
 691                             test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 692                             !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 693                                 list_del_init(&cur->hash_list);
 694                                 refcount_dec(&cur->refs);
 695 
 696                                 steal_rbio(cur, rbio);
 697                                 cache_drop = cur;
 698                                 spin_unlock(&cur->bio_list_lock);
 699 
 700                                 goto lockit;
 701                         }
 702 
 703                         /* can we merge into the lock owner? */
 704                         if (rbio_can_merge(cur, rbio)) {
 705                                 merge_rbio(cur, rbio);
 706                                 spin_unlock(&cur->bio_list_lock);
 707                                 freeit = rbio;
 708                                 ret = 1;
 709                                 goto out;
 710                         }
 711 
 712 
 713                         /*
 714                          * we couldn't merge with the running
 715                          * rbio, see if we can merge with the
 716                          * pending ones.  We don't have to
 717                          * check for rmw_locked because there
 718                          * is no way they are inside finish_rmw
 719                          * right now
 720                          */
 721                         list_for_each_entry(pending, &cur->plug_list,
 722                                             plug_list) {
 723                                 if (rbio_can_merge(pending, rbio)) {
 724                                         merge_rbio(pending, rbio);
 725                                         spin_unlock(&cur->bio_list_lock);
 726                                         freeit = rbio;
 727                                         ret = 1;
 728                                         goto out;
 729                                 }
 730                         }
 731 
 732                         /* no merging, put us on the tail of the plug list,
 733                          * our rbio will be started with the currently
 734                          * running rbio unlocks
 735                          */
 736                         list_add_tail(&rbio->plug_list, &cur->plug_list);
 737                         spin_unlock(&cur->bio_list_lock);
 738                         ret = 1;
 739                         goto out;
 740                 }
 741         }
 742 lockit:
 743         refcount_inc(&rbio->refs);
 744         list_add(&rbio->hash_list, &h->hash_list);
 745 out:
 746         spin_unlock_irqrestore(&h->lock, flags);
 747         if (cache_drop)
 748                 remove_rbio_from_cache(cache_drop);
 749         if (freeit)
 750                 __free_raid_bio(freeit);
 751         return ret;
 752 }
 753 
 754 /*
 755  * called as rmw or parity rebuild is completed.  If the plug list has more
 756  * rbios waiting for this stripe, the next one on the list will be started
 757  */
 758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 759 {
 760         int bucket;
 761         struct btrfs_stripe_hash *h;
 762         unsigned long flags;
 763         int keep_cache = 0;
 764 
 765         bucket = rbio_bucket(rbio);
 766         h = rbio->fs_info->stripe_hash_table->table + bucket;
 767 
 768         if (list_empty(&rbio->plug_list))
 769                 cache_rbio(rbio);
 770 
 771         spin_lock_irqsave(&h->lock, flags);
 772         spin_lock(&rbio->bio_list_lock);
 773 
 774         if (!list_empty(&rbio->hash_list)) {
 775                 /*
 776                  * if we're still cached and there is no other IO
 777                  * to perform, just leave this rbio here for others
 778                  * to steal from later
 779                  */
 780                 if (list_empty(&rbio->plug_list) &&
 781                     test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 782                         keep_cache = 1;
 783                         clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 784                         BUG_ON(!bio_list_empty(&rbio->bio_list));
 785                         goto done;
 786                 }
 787 
 788                 list_del_init(&rbio->hash_list);
 789                 refcount_dec(&rbio->refs);
 790 
 791                 /*
 792                  * we use the plug list to hold all the rbios
 793                  * waiting for the chance to lock this stripe.
 794                  * hand the lock over to one of them.
 795                  */
 796                 if (!list_empty(&rbio->plug_list)) {
 797                         struct btrfs_raid_bio *next;
 798                         struct list_head *head = rbio->plug_list.next;
 799 
 800                         next = list_entry(head, struct btrfs_raid_bio,
 801                                           plug_list);
 802 
 803                         list_del_init(&rbio->plug_list);
 804 
 805                         list_add(&next->hash_list, &h->hash_list);
 806                         refcount_inc(&next->refs);
 807                         spin_unlock(&rbio->bio_list_lock);
 808                         spin_unlock_irqrestore(&h->lock, flags);
 809 
 810                         if (next->operation == BTRFS_RBIO_READ_REBUILD)
 811                                 start_async_work(next, read_rebuild_work);
 812                         else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 813                                 steal_rbio(rbio, next);
 814                                 start_async_work(next, read_rebuild_work);
 815                         } else if (next->operation == BTRFS_RBIO_WRITE) {
 816                                 steal_rbio(rbio, next);
 817                                 start_async_work(next, rmw_work);
 818                         } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 819                                 steal_rbio(rbio, next);
 820                                 start_async_work(next, scrub_parity_work);
 821                         }
 822 
 823                         goto done_nolock;
 824                 }
 825         }
 826 done:
 827         spin_unlock(&rbio->bio_list_lock);
 828         spin_unlock_irqrestore(&h->lock, flags);
 829 
 830 done_nolock:
 831         if (!keep_cache)
 832                 remove_rbio_from_cache(rbio);
 833 }
 834 
 835 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 836 {
 837         int i;
 838 
 839         if (!refcount_dec_and_test(&rbio->refs))
 840                 return;
 841 
 842         WARN_ON(!list_empty(&rbio->stripe_cache));
 843         WARN_ON(!list_empty(&rbio->hash_list));
 844         WARN_ON(!bio_list_empty(&rbio->bio_list));
 845 
 846         for (i = 0; i < rbio->nr_pages; i++) {
 847                 if (rbio->stripe_pages[i]) {
 848                         __free_page(rbio->stripe_pages[i]);
 849                         rbio->stripe_pages[i] = NULL;
 850                 }
 851         }
 852 
 853         btrfs_put_bbio(rbio->bbio);
 854         kfree(rbio);
 855 }
 856 
 857 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 858 {
 859         struct bio *next;
 860 
 861         while (cur) {
 862                 next = cur->bi_next;
 863                 cur->bi_next = NULL;
 864                 cur->bi_status = err;
 865                 bio_endio(cur);
 866                 cur = next;
 867         }
 868 }
 869 
 870 /*
 871  * this frees the rbio and runs through all the bios in the
 872  * bio_list and calls end_io on them
 873  */
 874 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 875 {
 876         struct bio *cur = bio_list_get(&rbio->bio_list);
 877         struct bio *extra;
 878 
 879         if (rbio->generic_bio_cnt)
 880                 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 881 
 882         /*
 883          * At this moment, rbio->bio_list is empty, however since rbio does not
 884          * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 885          * hash list, rbio may be merged with others so that rbio->bio_list
 886          * becomes non-empty.
 887          * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 888          * more and we can call bio_endio() on all queued bios.
 889          */
 890         unlock_stripe(rbio);
 891         extra = bio_list_get(&rbio->bio_list);
 892         __free_raid_bio(rbio);
 893 
 894         rbio_endio_bio_list(cur, err);
 895         if (extra)
 896                 rbio_endio_bio_list(extra, err);
 897 }
 898 
 899 /*
 900  * end io function used by finish_rmw.  When we finally
 901  * get here, we've written a full stripe
 902  */
 903 static void raid_write_end_io(struct bio *bio)
 904 {
 905         struct btrfs_raid_bio *rbio = bio->bi_private;
 906         blk_status_t err = bio->bi_status;
 907         int max_errors;
 908 
 909         if (err)
 910                 fail_bio_stripe(rbio, bio);
 911 
 912         bio_put(bio);
 913 
 914         if (!atomic_dec_and_test(&rbio->stripes_pending))
 915                 return;
 916 
 917         err = BLK_STS_OK;
 918 
 919         /* OK, we have read all the stripes we need to. */
 920         max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 921                      0 : rbio->bbio->max_errors;
 922         if (atomic_read(&rbio->error) > max_errors)
 923                 err = BLK_STS_IOERR;
 924 
 925         rbio_orig_end_io(rbio, err);
 926 }
 927 
 928 /*
 929  * the read/modify/write code wants to use the original bio for
 930  * any pages it included, and then use the rbio for everything
 931  * else.  This function decides if a given index (stripe number)
 932  * and page number in that stripe fall inside the original bio
 933  * or the rbio.
 934  *
 935  * if you set bio_list_only, you'll get a NULL back for any ranges
 936  * that are outside the bio_list
 937  *
 938  * This doesn't take any refs on anything, you get a bare page pointer
 939  * and the caller must bump refs as required.
 940  *
 941  * You must call index_rbio_pages once before you can trust
 942  * the answers from this function.
 943  */
 944 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 945                                  int index, int pagenr, int bio_list_only)
 946 {
 947         int chunk_page;
 948         struct page *p = NULL;
 949 
 950         chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 951 
 952         spin_lock_irq(&rbio->bio_list_lock);
 953         p = rbio->bio_pages[chunk_page];
 954         spin_unlock_irq(&rbio->bio_list_lock);
 955 
 956         if (p || bio_list_only)
 957                 return p;
 958 
 959         return rbio->stripe_pages[chunk_page];
 960 }
 961 
 962 /*
 963  * number of pages we need for the entire stripe across all the
 964  * drives
 965  */
 966 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 967 {
 968         return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 969 }
 970 
 971 /*
 972  * allocation and initial setup for the btrfs_raid_bio.  Not
 973  * this does not allocate any pages for rbio->pages.
 974  */
 975 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 976                                          struct btrfs_bio *bbio,
 977                                          u64 stripe_len)
 978 {
 979         struct btrfs_raid_bio *rbio;
 980         int nr_data = 0;
 981         int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 982         int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 983         int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 984         void *p;
 985 
 986         rbio = kzalloc(sizeof(*rbio) +
 987                        sizeof(*rbio->stripe_pages) * num_pages +
 988                        sizeof(*rbio->bio_pages) * num_pages +
 989                        sizeof(*rbio->finish_pointers) * real_stripes +
 990                        sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 991                        sizeof(*rbio->finish_pbitmap) *
 992                                 BITS_TO_LONGS(stripe_npages),
 993                        GFP_NOFS);
 994         if (!rbio)
 995                 return ERR_PTR(-ENOMEM);
 996 
 997         bio_list_init(&rbio->bio_list);
 998         INIT_LIST_HEAD(&rbio->plug_list);
 999         spin_lock_init(&rbio->bio_list_lock);
1000         INIT_LIST_HEAD(&rbio->stripe_cache);
1001         INIT_LIST_HEAD(&rbio->hash_list);
1002         rbio->bbio = bbio;
1003         rbio->fs_info = fs_info;
1004         rbio->stripe_len = stripe_len;
1005         rbio->nr_pages = num_pages;
1006         rbio->real_stripes = real_stripes;
1007         rbio->stripe_npages = stripe_npages;
1008         rbio->faila = -1;
1009         rbio->failb = -1;
1010         refcount_set(&rbio->refs, 1);
1011         atomic_set(&rbio->error, 0);
1012         atomic_set(&rbio->stripes_pending, 0);
1013 
1014         /*
1015          * the stripe_pages, bio_pages, etc arrays point to the extra
1016          * memory we allocated past the end of the rbio
1017          */
1018         p = rbio + 1;
1019 #define CONSUME_ALLOC(ptr, count)       do {                            \
1020                 ptr = p;                                                \
1021                 p = (unsigned char *)p + sizeof(*(ptr)) * (count);      \
1022         } while (0)
1023         CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1024         CONSUME_ALLOC(rbio->bio_pages, num_pages);
1025         CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1026         CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1027         CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1028 #undef  CONSUME_ALLOC
1029 
1030         if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1031                 nr_data = real_stripes - 1;
1032         else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1033                 nr_data = real_stripes - 2;
1034         else
1035                 BUG();
1036 
1037         rbio->nr_data = nr_data;
1038         return rbio;
1039 }
1040 
1041 /* allocate pages for all the stripes in the bio, including parity */
1042 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1043 {
1044         int i;
1045         struct page *page;
1046 
1047         for (i = 0; i < rbio->nr_pages; i++) {
1048                 if (rbio->stripe_pages[i])
1049                         continue;
1050                 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1051                 if (!page)
1052                         return -ENOMEM;
1053                 rbio->stripe_pages[i] = page;
1054         }
1055         return 0;
1056 }
1057 
1058 /* only allocate pages for p/q stripes */
1059 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1060 {
1061         int i;
1062         struct page *page;
1063 
1064         i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1065 
1066         for (; i < rbio->nr_pages; i++) {
1067                 if (rbio->stripe_pages[i])
1068                         continue;
1069                 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1070                 if (!page)
1071                         return -ENOMEM;
1072                 rbio->stripe_pages[i] = page;
1073         }
1074         return 0;
1075 }
1076 
1077 /*
1078  * add a single page from a specific stripe into our list of bios for IO
1079  * this will try to merge into existing bios if possible, and returns
1080  * zero if all went well.
1081  */
1082 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1083                             struct bio_list *bio_list,
1084                             struct page *page,
1085                             int stripe_nr,
1086                             unsigned long page_index,
1087                             unsigned long bio_max_len)
1088 {
1089         struct bio *last = bio_list->tail;
1090         u64 last_end = 0;
1091         int ret;
1092         struct bio *bio;
1093         struct btrfs_bio_stripe *stripe;
1094         u64 disk_start;
1095 
1096         stripe = &rbio->bbio->stripes[stripe_nr];
1097         disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1098 
1099         /* if the device is missing, just fail this stripe */
1100         if (!stripe->dev->bdev)
1101                 return fail_rbio_index(rbio, stripe_nr);
1102 
1103         /* see if we can add this page onto our existing bio */
1104         if (last) {
1105                 last_end = (u64)last->bi_iter.bi_sector << 9;
1106                 last_end += last->bi_iter.bi_size;
1107 
1108                 /*
1109                  * we can't merge these if they are from different
1110                  * devices or if they are not contiguous
1111                  */
1112                 if (last_end == disk_start && stripe->dev->bdev &&
1113                     !last->bi_status &&
1114                     last->bi_disk == stripe->dev->bdev->bd_disk &&
1115                     last->bi_partno == stripe->dev->bdev->bd_partno) {
1116                         ret = bio_add_page(last, page, PAGE_SIZE, 0);
1117                         if (ret == PAGE_SIZE)
1118                                 return 0;
1119                 }
1120         }
1121 
1122         /* put a new bio on the list */
1123         bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1124         bio->bi_iter.bi_size = 0;
1125         bio_set_dev(bio, stripe->dev->bdev);
1126         bio->bi_iter.bi_sector = disk_start >> 9;
1127 
1128         bio_add_page(bio, page, PAGE_SIZE, 0);
1129         bio_list_add(bio_list, bio);
1130         return 0;
1131 }
1132 
1133 /*
1134  * while we're doing the read/modify/write cycle, we could
1135  * have errors in reading pages off the disk.  This checks
1136  * for errors and if we're not able to read the page it'll
1137  * trigger parity reconstruction.  The rmw will be finished
1138  * after we've reconstructed the failed stripes
1139  */
1140 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1141 {
1142         if (rbio->faila >= 0 || rbio->failb >= 0) {
1143                 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1144                 __raid56_parity_recover(rbio);
1145         } else {
1146                 finish_rmw(rbio);
1147         }
1148 }
1149 
1150 /*
1151  * helper function to walk our bio list and populate the bio_pages array with
1152  * the result.  This seems expensive, but it is faster than constantly
1153  * searching through the bio list as we setup the IO in finish_rmw or stripe
1154  * reconstruction.
1155  *
1156  * This must be called before you trust the answers from page_in_rbio
1157  */
1158 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1159 {
1160         struct bio *bio;
1161         u64 start;
1162         unsigned long stripe_offset;
1163         unsigned long page_index;
1164 
1165         spin_lock_irq(&rbio->bio_list_lock);
1166         bio_list_for_each(bio, &rbio->bio_list) {
1167                 struct bio_vec bvec;
1168                 struct bvec_iter iter;
1169                 int i = 0;
1170 
1171                 start = (u64)bio->bi_iter.bi_sector << 9;
1172                 stripe_offset = start - rbio->bbio->raid_map[0];
1173                 page_index = stripe_offset >> PAGE_SHIFT;
1174 
1175                 if (bio_flagged(bio, BIO_CLONED))
1176                         bio->bi_iter = btrfs_io_bio(bio)->iter;
1177 
1178                 bio_for_each_segment(bvec, bio, iter) {
1179                         rbio->bio_pages[page_index + i] = bvec.bv_page;
1180                         i++;
1181                 }
1182         }
1183         spin_unlock_irq(&rbio->bio_list_lock);
1184 }
1185 
1186 /*
1187  * this is called from one of two situations.  We either
1188  * have a full stripe from the higher layers, or we've read all
1189  * the missing bits off disk.
1190  *
1191  * This will calculate the parity and then send down any
1192  * changed blocks.
1193  */
1194 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1195 {
1196         struct btrfs_bio *bbio = rbio->bbio;
1197         void **pointers = rbio->finish_pointers;
1198         int nr_data = rbio->nr_data;
1199         int stripe;
1200         int pagenr;
1201         int p_stripe = -1;
1202         int q_stripe = -1;
1203         struct bio_list bio_list;
1204         struct bio *bio;
1205         int ret;
1206 
1207         bio_list_init(&bio_list);
1208 
1209         if (rbio->real_stripes - rbio->nr_data == 1) {
1210                 p_stripe = rbio->real_stripes - 1;
1211         } else if (rbio->real_stripes - rbio->nr_data == 2) {
1212                 p_stripe = rbio->real_stripes - 2;
1213                 q_stripe = rbio->real_stripes - 1;
1214         } else {
1215                 BUG();
1216         }
1217 
1218         /* at this point we either have a full stripe,
1219          * or we've read the full stripe from the drive.
1220          * recalculate the parity and write the new results.
1221          *
1222          * We're not allowed to add any new bios to the
1223          * bio list here, anyone else that wants to
1224          * change this stripe needs to do their own rmw.
1225          */
1226         spin_lock_irq(&rbio->bio_list_lock);
1227         set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1228         spin_unlock_irq(&rbio->bio_list_lock);
1229 
1230         atomic_set(&rbio->error, 0);
1231 
1232         /*
1233          * now that we've set rmw_locked, run through the
1234          * bio list one last time and map the page pointers
1235          *
1236          * We don't cache full rbios because we're assuming
1237          * the higher layers are unlikely to use this area of
1238          * the disk again soon.  If they do use it again,
1239          * hopefully they will send another full bio.
1240          */
1241         index_rbio_pages(rbio);
1242         if (!rbio_is_full(rbio))
1243                 cache_rbio_pages(rbio);
1244         else
1245                 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1246 
1247         for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1248                 struct page *p;
1249                 /* first collect one page from each data stripe */
1250                 for (stripe = 0; stripe < nr_data; stripe++) {
1251                         p = page_in_rbio(rbio, stripe, pagenr, 0);
1252                         pointers[stripe] = kmap(p);
1253                 }
1254 
1255                 /* then add the parity stripe */
1256                 p = rbio_pstripe_page(rbio, pagenr);
1257                 SetPageUptodate(p);
1258                 pointers[stripe++] = kmap(p);
1259 
1260                 if (q_stripe != -1) {
1261 
1262                         /*
1263                          * raid6, add the qstripe and call the
1264                          * library function to fill in our p/q
1265                          */
1266                         p = rbio_qstripe_page(rbio, pagenr);
1267                         SetPageUptodate(p);
1268                         pointers[stripe++] = kmap(p);
1269 
1270                         raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1271                                                 pointers);
1272                 } else {
1273                         /* raid5 */
1274                         copy_page(pointers[nr_data], pointers[0]);
1275                         run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1276                 }
1277 
1278 
1279                 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1280                         kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1281         }
1282 
1283         /*
1284          * time to start writing.  Make bios for everything from the
1285          * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1286          * everything else.
1287          */
1288         for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289                 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1290                         struct page *page;
1291                         if (stripe < rbio->nr_data) {
1292                                 page = page_in_rbio(rbio, stripe, pagenr, 1);
1293                                 if (!page)
1294                                         continue;
1295                         } else {
1296                                page = rbio_stripe_page(rbio, stripe, pagenr);
1297                         }
1298 
1299                         ret = rbio_add_io_page(rbio, &bio_list,
1300                                        page, stripe, pagenr, rbio->stripe_len);
1301                         if (ret)
1302                                 goto cleanup;
1303                 }
1304         }
1305 
1306         if (likely(!bbio->num_tgtdevs))
1307                 goto write_data;
1308 
1309         for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1310                 if (!bbio->tgtdev_map[stripe])
1311                         continue;
1312 
1313                 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1314                         struct page *page;
1315                         if (stripe < rbio->nr_data) {
1316                                 page = page_in_rbio(rbio, stripe, pagenr, 1);
1317                                 if (!page)
1318                                         continue;
1319                         } else {
1320                                page = rbio_stripe_page(rbio, stripe, pagenr);
1321                         }
1322 
1323                         ret = rbio_add_io_page(rbio, &bio_list, page,
1324                                                rbio->bbio->tgtdev_map[stripe],
1325                                                pagenr, rbio->stripe_len);
1326                         if (ret)
1327                                 goto cleanup;
1328                 }
1329         }
1330 
1331 write_data:
1332         atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1333         BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1334 
1335         while (1) {
1336                 bio = bio_list_pop(&bio_list);
1337                 if (!bio)
1338                         break;
1339 
1340                 bio->bi_private = rbio;
1341                 bio->bi_end_io = raid_write_end_io;
1342                 bio->bi_opf = REQ_OP_WRITE;
1343 
1344                 submit_bio(bio);
1345         }
1346         return;
1347 
1348 cleanup:
1349         rbio_orig_end_io(rbio, BLK_STS_IOERR);
1350 
1351         while ((bio = bio_list_pop(&bio_list)))
1352                 bio_put(bio);
1353 }
1354 
1355 /*
1356  * helper to find the stripe number for a given bio.  Used to figure out which
1357  * stripe has failed.  This expects the bio to correspond to a physical disk,
1358  * so it looks up based on physical sector numbers.
1359  */
1360 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1361                            struct bio *bio)
1362 {
1363         u64 physical = bio->bi_iter.bi_sector;
1364         u64 stripe_start;
1365         int i;
1366         struct btrfs_bio_stripe *stripe;
1367 
1368         physical <<= 9;
1369 
1370         for (i = 0; i < rbio->bbio->num_stripes; i++) {
1371                 stripe = &rbio->bbio->stripes[i];
1372                 stripe_start = stripe->physical;
1373                 if (physical >= stripe_start &&
1374                     physical < stripe_start + rbio->stripe_len &&
1375                     stripe->dev->bdev &&
1376                     bio->bi_disk == stripe->dev->bdev->bd_disk &&
1377                     bio->bi_partno == stripe->dev->bdev->bd_partno) {
1378                         return i;
1379                 }
1380         }
1381         return -1;
1382 }
1383 
1384 /*
1385  * helper to find the stripe number for a given
1386  * bio (before mapping).  Used to figure out which stripe has
1387  * failed.  This looks up based on logical block numbers.
1388  */
1389 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1390                                    struct bio *bio)
1391 {
1392         u64 logical = bio->bi_iter.bi_sector;
1393         u64 stripe_start;
1394         int i;
1395 
1396         logical <<= 9;
1397 
1398         for (i = 0; i < rbio->nr_data; i++) {
1399                 stripe_start = rbio->bbio->raid_map[i];
1400                 if (logical >= stripe_start &&
1401                     logical < stripe_start + rbio->stripe_len) {
1402                         return i;
1403                 }
1404         }
1405         return -1;
1406 }
1407 
1408 /*
1409  * returns -EIO if we had too many failures
1410  */
1411 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1412 {
1413         unsigned long flags;
1414         int ret = 0;
1415 
1416         spin_lock_irqsave(&rbio->bio_list_lock, flags);
1417 
1418         /* we already know this stripe is bad, move on */
1419         if (rbio->faila == failed || rbio->failb == failed)
1420                 goto out;
1421 
1422         if (rbio->faila == -1) {
1423                 /* first failure on this rbio */
1424                 rbio->faila = failed;
1425                 atomic_inc(&rbio->error);
1426         } else if (rbio->failb == -1) {
1427                 /* second failure on this rbio */
1428                 rbio->failb = failed;
1429                 atomic_inc(&rbio->error);
1430         } else {
1431                 ret = -EIO;
1432         }
1433 out:
1434         spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1435 
1436         return ret;
1437 }
1438 
1439 /*
1440  * helper to fail a stripe based on a physical disk
1441  * bio.
1442  */
1443 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1444                            struct bio *bio)
1445 {
1446         int failed = find_bio_stripe(rbio, bio);
1447 
1448         if (failed < 0)
1449                 return -EIO;
1450 
1451         return fail_rbio_index(rbio, failed);
1452 }
1453 
1454 /*
1455  * this sets each page in the bio uptodate.  It should only be used on private
1456  * rbio pages, nothing that comes in from the higher layers
1457  */
1458 static void set_bio_pages_uptodate(struct bio *bio)
1459 {
1460         struct bio_vec *bvec;
1461         struct bvec_iter_all iter_all;
1462 
1463         ASSERT(!bio_flagged(bio, BIO_CLONED));
1464 
1465         bio_for_each_segment_all(bvec, bio, iter_all)
1466                 SetPageUptodate(bvec->bv_page);
1467 }
1468 
1469 /*
1470  * end io for the read phase of the rmw cycle.  All the bios here are physical
1471  * stripe bios we've read from the disk so we can recalculate the parity of the
1472  * stripe.
1473  *
1474  * This will usually kick off finish_rmw once all the bios are read in, but it
1475  * may trigger parity reconstruction if we had any errors along the way
1476  */
1477 static void raid_rmw_end_io(struct bio *bio)
1478 {
1479         struct btrfs_raid_bio *rbio = bio->bi_private;
1480 
1481         if (bio->bi_status)
1482                 fail_bio_stripe(rbio, bio);
1483         else
1484                 set_bio_pages_uptodate(bio);
1485 
1486         bio_put(bio);
1487 
1488         if (!atomic_dec_and_test(&rbio->stripes_pending))
1489                 return;
1490 
1491         if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1492                 goto cleanup;
1493 
1494         /*
1495          * this will normally call finish_rmw to start our write
1496          * but if there are any failed stripes we'll reconstruct
1497          * from parity first
1498          */
1499         validate_rbio_for_rmw(rbio);
1500         return;
1501 
1502 cleanup:
1503 
1504         rbio_orig_end_io(rbio, BLK_STS_IOERR);
1505 }
1506 
1507 /*
1508  * the stripe must be locked by the caller.  It will
1509  * unlock after all the writes are done
1510  */
1511 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1512 {
1513         int bios_to_read = 0;
1514         struct bio_list bio_list;
1515         int ret;
1516         int pagenr;
1517         int stripe;
1518         struct bio *bio;
1519 
1520         bio_list_init(&bio_list);
1521 
1522         ret = alloc_rbio_pages(rbio);
1523         if (ret)
1524                 goto cleanup;
1525 
1526         index_rbio_pages(rbio);
1527 
1528         atomic_set(&rbio->error, 0);
1529         /*
1530          * build a list of bios to read all the missing parts of this
1531          * stripe
1532          */
1533         for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1534                 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1535                         struct page *page;
1536                         /*
1537                          * we want to find all the pages missing from
1538                          * the rbio and read them from the disk.  If
1539                          * page_in_rbio finds a page in the bio list
1540                          * we don't need to read it off the stripe.
1541                          */
1542                         page = page_in_rbio(rbio, stripe, pagenr, 1);
1543                         if (page)
1544                                 continue;
1545 
1546                         page = rbio_stripe_page(rbio, stripe, pagenr);
1547                         /*
1548                          * the bio cache may have handed us an uptodate
1549                          * page.  If so, be happy and use it
1550                          */
1551                         if (PageUptodate(page))
1552                                 continue;
1553 
1554                         ret = rbio_add_io_page(rbio, &bio_list, page,
1555                                        stripe, pagenr, rbio->stripe_len);
1556                         if (ret)
1557                                 goto cleanup;
1558                 }
1559         }
1560 
1561         bios_to_read = bio_list_size(&bio_list);
1562         if (!bios_to_read) {
1563                 /*
1564                  * this can happen if others have merged with
1565                  * us, it means there is nothing left to read.
1566                  * But if there are missing devices it may not be
1567                  * safe to do the full stripe write yet.
1568                  */
1569                 goto finish;
1570         }
1571 
1572         /*
1573          * the bbio may be freed once we submit the last bio.  Make sure
1574          * not to touch it after that
1575          */
1576         atomic_set(&rbio->stripes_pending, bios_to_read);
1577         while (1) {
1578                 bio = bio_list_pop(&bio_list);
1579                 if (!bio)
1580                         break;
1581 
1582                 bio->bi_private = rbio;
1583                 bio->bi_end_io = raid_rmw_end_io;
1584                 bio->bi_opf = REQ_OP_READ;
1585 
1586                 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1587 
1588                 submit_bio(bio);
1589         }
1590         /* the actual write will happen once the reads are done */
1591         return 0;
1592 
1593 cleanup:
1594         rbio_orig_end_io(rbio, BLK_STS_IOERR);
1595 
1596         while ((bio = bio_list_pop(&bio_list)))
1597                 bio_put(bio);
1598 
1599         return -EIO;
1600 
1601 finish:
1602         validate_rbio_for_rmw(rbio);
1603         return 0;
1604 }
1605 
1606 /*
1607  * if the upper layers pass in a full stripe, we thank them by only allocating
1608  * enough pages to hold the parity, and sending it all down quickly.
1609  */
1610 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1611 {
1612         int ret;
1613 
1614         ret = alloc_rbio_parity_pages(rbio);
1615         if (ret) {
1616                 __free_raid_bio(rbio);
1617                 return ret;
1618         }
1619 
1620         ret = lock_stripe_add(rbio);
1621         if (ret == 0)
1622                 finish_rmw(rbio);
1623         return 0;
1624 }
1625 
1626 /*
1627  * partial stripe writes get handed over to async helpers.
1628  * We're really hoping to merge a few more writes into this
1629  * rbio before calculating new parity
1630  */
1631 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1632 {
1633         int ret;
1634 
1635         ret = lock_stripe_add(rbio);
1636         if (ret == 0)
1637                 start_async_work(rbio, rmw_work);
1638         return 0;
1639 }
1640 
1641 /*
1642  * sometimes while we were reading from the drive to
1643  * recalculate parity, enough new bios come into create
1644  * a full stripe.  So we do a check here to see if we can
1645  * go directly to finish_rmw
1646  */
1647 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1648 {
1649         /* head off into rmw land if we don't have a full stripe */
1650         if (!rbio_is_full(rbio))
1651                 return partial_stripe_write(rbio);
1652         return full_stripe_write(rbio);
1653 }
1654 
1655 /*
1656  * We use plugging call backs to collect full stripes.
1657  * Any time we get a partial stripe write while plugged
1658  * we collect it into a list.  When the unplug comes down,
1659  * we sort the list by logical block number and merge
1660  * everything we can into the same rbios
1661  */
1662 struct btrfs_plug_cb {
1663         struct blk_plug_cb cb;
1664         struct btrfs_fs_info *info;
1665         struct list_head rbio_list;
1666         struct btrfs_work work;
1667 };
1668 
1669 /*
1670  * rbios on the plug list are sorted for easier merging.
1671  */
1672 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1673 {
1674         struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675                                                  plug_list);
1676         struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677                                                  plug_list);
1678         u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679         u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680 
1681         if (a_sector < b_sector)
1682                 return -1;
1683         if (a_sector > b_sector)
1684                 return 1;
1685         return 0;
1686 }
1687 
1688 static void run_plug(struct btrfs_plug_cb *plug)
1689 {
1690         struct btrfs_raid_bio *cur;
1691         struct btrfs_raid_bio *last = NULL;
1692 
1693         /*
1694          * sort our plug list then try to merge
1695          * everything we can in hopes of creating full
1696          * stripes.
1697          */
1698         list_sort(NULL, &plug->rbio_list, plug_cmp);
1699         while (!list_empty(&plug->rbio_list)) {
1700                 cur = list_entry(plug->rbio_list.next,
1701                                  struct btrfs_raid_bio, plug_list);
1702                 list_del_init(&cur->plug_list);
1703 
1704                 if (rbio_is_full(cur)) {
1705                         int ret;
1706 
1707                         /* we have a full stripe, send it down */
1708                         ret = full_stripe_write(cur);
1709                         BUG_ON(ret);
1710                         continue;
1711                 }
1712                 if (last) {
1713                         if (rbio_can_merge(last, cur)) {
1714                                 merge_rbio(last, cur);
1715                                 __free_raid_bio(cur);
1716                                 continue;
1717 
1718                         }
1719                         __raid56_parity_write(last);
1720                 }
1721                 last = cur;
1722         }
1723         if (last) {
1724                 __raid56_parity_write(last);
1725         }
1726         kfree(plug);
1727 }
1728 
1729 /*
1730  * if the unplug comes from schedule, we have to push the
1731  * work off to a helper thread
1732  */
1733 static void unplug_work(struct btrfs_work *work)
1734 {
1735         struct btrfs_plug_cb *plug;
1736         plug = container_of(work, struct btrfs_plug_cb, work);
1737         run_plug(plug);
1738 }
1739 
1740 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1741 {
1742         struct btrfs_plug_cb *plug;
1743         plug = container_of(cb, struct btrfs_plug_cb, cb);
1744 
1745         if (from_schedule) {
1746                 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1747                 btrfs_queue_work(plug->info->rmw_workers,
1748                                  &plug->work);
1749                 return;
1750         }
1751         run_plug(plug);
1752 }
1753 
1754 /*
1755  * our main entry point for writes from the rest of the FS.
1756  */
1757 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1758                         struct btrfs_bio *bbio, u64 stripe_len)
1759 {
1760         struct btrfs_raid_bio *rbio;
1761         struct btrfs_plug_cb *plug = NULL;
1762         struct blk_plug_cb *cb;
1763         int ret;
1764 
1765         rbio = alloc_rbio(fs_info, bbio, stripe_len);
1766         if (IS_ERR(rbio)) {
1767                 btrfs_put_bbio(bbio);
1768                 return PTR_ERR(rbio);
1769         }
1770         bio_list_add(&rbio->bio_list, bio);
1771         rbio->bio_list_bytes = bio->bi_iter.bi_size;
1772         rbio->operation = BTRFS_RBIO_WRITE;
1773 
1774         btrfs_bio_counter_inc_noblocked(fs_info);
1775         rbio->generic_bio_cnt = 1;
1776 
1777         /*
1778          * don't plug on full rbios, just get them out the door
1779          * as quickly as we can
1780          */
1781         if (rbio_is_full(rbio)) {
1782                 ret = full_stripe_write(rbio);
1783                 if (ret)
1784                         btrfs_bio_counter_dec(fs_info);
1785                 return ret;
1786         }
1787 
1788         cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1789         if (cb) {
1790                 plug = container_of(cb, struct btrfs_plug_cb, cb);
1791                 if (!plug->info) {
1792                         plug->info = fs_info;
1793                         INIT_LIST_HEAD(&plug->rbio_list);
1794                 }
1795                 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1796                 ret = 0;
1797         } else {
1798                 ret = __raid56_parity_write(rbio);
1799                 if (ret)
1800                         btrfs_bio_counter_dec(fs_info);
1801         }
1802         return ret;
1803 }
1804 
1805 /*
1806  * all parity reconstruction happens here.  We've read in everything
1807  * we can find from the drives and this does the heavy lifting of
1808  * sorting the good from the bad.
1809  */
1810 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1811 {
1812         int pagenr, stripe;
1813         void **pointers;
1814         int faila = -1, failb = -1;
1815         struct page *page;
1816         blk_status_t err;
1817         int i;
1818 
1819         pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1820         if (!pointers) {
1821                 err = BLK_STS_RESOURCE;
1822                 goto cleanup_io;
1823         }
1824 
1825         faila = rbio->faila;
1826         failb = rbio->failb;
1827 
1828         if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1829             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1830                 spin_lock_irq(&rbio->bio_list_lock);
1831                 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1832                 spin_unlock_irq(&rbio->bio_list_lock);
1833         }
1834 
1835         index_rbio_pages(rbio);
1836 
1837         for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1838                 /*
1839                  * Now we just use bitmap to mark the horizontal stripes in
1840                  * which we have data when doing parity scrub.
1841                  */
1842                 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1843                     !test_bit(pagenr, rbio->dbitmap))
1844                         continue;
1845 
1846                 /* setup our array of pointers with pages
1847                  * from each stripe
1848                  */
1849                 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1850                         /*
1851                          * if we're rebuilding a read, we have to use
1852                          * pages from the bio list
1853                          */
1854                         if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1855                              rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1856                             (stripe == faila || stripe == failb)) {
1857                                 page = page_in_rbio(rbio, stripe, pagenr, 0);
1858                         } else {
1859                                 page = rbio_stripe_page(rbio, stripe, pagenr);
1860                         }
1861                         pointers[stripe] = kmap(page);
1862                 }
1863 
1864                 /* all raid6 handling here */
1865                 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1866                         /*
1867                          * single failure, rebuild from parity raid5
1868                          * style
1869                          */
1870                         if (failb < 0) {
1871                                 if (faila == rbio->nr_data) {
1872                                         /*
1873                                          * Just the P stripe has failed, without
1874                                          * a bad data or Q stripe.
1875                                          * TODO, we should redo the xor here.
1876                                          */
1877                                         err = BLK_STS_IOERR;
1878                                         goto cleanup;
1879                                 }
1880                                 /*
1881                                  * a single failure in raid6 is rebuilt
1882                                  * in the pstripe code below
1883                                  */
1884                                 goto pstripe;
1885                         }
1886 
1887                         /* make sure our ps and qs are in order */
1888                         if (faila > failb) {
1889                                 int tmp = failb;
1890                                 failb = faila;
1891                                 faila = tmp;
1892                         }
1893 
1894                         /* if the q stripe is failed, do a pstripe reconstruction
1895                          * from the xors.
1896                          * If both the q stripe and the P stripe are failed, we're
1897                          * here due to a crc mismatch and we can't give them the
1898                          * data they want
1899                          */
1900                         if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1901                                 if (rbio->bbio->raid_map[faila] ==
1902                                     RAID5_P_STRIPE) {
1903                                         err = BLK_STS_IOERR;
1904                                         goto cleanup;
1905                                 }
1906                                 /*
1907                                  * otherwise we have one bad data stripe and
1908                                  * a good P stripe.  raid5!
1909                                  */
1910                                 goto pstripe;
1911                         }
1912 
1913                         if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1914                                 raid6_datap_recov(rbio->real_stripes,
1915                                                   PAGE_SIZE, faila, pointers);
1916                         } else {
1917                                 raid6_2data_recov(rbio->real_stripes,
1918                                                   PAGE_SIZE, faila, failb,
1919                                                   pointers);
1920                         }
1921                 } else {
1922                         void *p;
1923 
1924                         /* rebuild from P stripe here (raid5 or raid6) */
1925                         BUG_ON(failb != -1);
1926 pstripe:
1927                         /* Copy parity block into failed block to start with */
1928                         copy_page(pointers[faila], pointers[rbio->nr_data]);
1929 
1930                         /* rearrange the pointer array */
1931                         p = pointers[faila];
1932                         for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1933                                 pointers[stripe] = pointers[stripe + 1];
1934                         pointers[rbio->nr_data - 1] = p;
1935 
1936                         /* xor in the rest */
1937                         run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1938                 }
1939                 /* if we're doing this rebuild as part of an rmw, go through
1940                  * and set all of our private rbio pages in the
1941                  * failed stripes as uptodate.  This way finish_rmw will
1942                  * know they can be trusted.  If this was a read reconstruction,
1943                  * other endio functions will fiddle the uptodate bits
1944                  */
1945                 if (rbio->operation == BTRFS_RBIO_WRITE) {
1946                         for (i = 0;  i < rbio->stripe_npages; i++) {
1947                                 if (faila != -1) {
1948                                         page = rbio_stripe_page(rbio, faila, i);
1949                                         SetPageUptodate(page);
1950                                 }
1951                                 if (failb != -1) {
1952                                         page = rbio_stripe_page(rbio, failb, i);
1953                                         SetPageUptodate(page);
1954                                 }
1955                         }
1956                 }
1957                 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1958                         /*
1959                          * if we're rebuilding a read, we have to use
1960                          * pages from the bio list
1961                          */
1962                         if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1963                              rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1964                             (stripe == faila || stripe == failb)) {
1965                                 page = page_in_rbio(rbio, stripe, pagenr, 0);
1966                         } else {
1967                                 page = rbio_stripe_page(rbio, stripe, pagenr);
1968                         }
1969                         kunmap(page);
1970                 }
1971         }
1972 
1973         err = BLK_STS_OK;
1974 cleanup:
1975         kfree(pointers);
1976 
1977 cleanup_io:
1978         /*
1979          * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1980          * valid rbio which is consistent with ondisk content, thus such a
1981          * valid rbio can be cached to avoid further disk reads.
1982          */
1983         if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1984             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1985                 /*
1986                  * - In case of two failures, where rbio->failb != -1:
1987                  *
1988                  *   Do not cache this rbio since the above read reconstruction
1989                  *   (raid6_datap_recov() or raid6_2data_recov()) may have
1990                  *   changed some content of stripes which are not identical to
1991                  *   on-disk content any more, otherwise, a later write/recover
1992                  *   may steal stripe_pages from this rbio and end up with
1993                  *   corruptions or rebuild failures.
1994                  *
1995                  * - In case of single failure, where rbio->failb == -1:
1996                  *
1997                  *   Cache this rbio iff the above read reconstruction is
1998                  *   executed without problems.
1999                  */
2000                 if (err == BLK_STS_OK && rbio->failb < 0)
2001                         cache_rbio_pages(rbio);
2002                 else
2003                         clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2004 
2005                 rbio_orig_end_io(rbio, err);
2006         } else if (err == BLK_STS_OK) {
2007                 rbio->faila = -1;
2008                 rbio->failb = -1;
2009 
2010                 if (rbio->operation == BTRFS_RBIO_WRITE)
2011                         finish_rmw(rbio);
2012                 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2013                         finish_parity_scrub(rbio, 0);
2014                 else
2015                         BUG();
2016         } else {
2017                 rbio_orig_end_io(rbio, err);
2018         }
2019 }
2020 
2021 /*
2022  * This is called only for stripes we've read from disk to
2023  * reconstruct the parity.
2024  */
2025 static void raid_recover_end_io(struct bio *bio)
2026 {
2027         struct btrfs_raid_bio *rbio = bio->bi_private;
2028 
2029         /*
2030          * we only read stripe pages off the disk, set them
2031          * up to date if there were no errors
2032          */
2033         if (bio->bi_status)
2034                 fail_bio_stripe(rbio, bio);
2035         else
2036                 set_bio_pages_uptodate(bio);
2037         bio_put(bio);
2038 
2039         if (!atomic_dec_and_test(&rbio->stripes_pending))
2040                 return;
2041 
2042         if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2043                 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2044         else
2045                 __raid_recover_end_io(rbio);
2046 }
2047 
2048 /*
2049  * reads everything we need off the disk to reconstruct
2050  * the parity. endio handlers trigger final reconstruction
2051  * when the IO is done.
2052  *
2053  * This is used both for reads from the higher layers and for
2054  * parity construction required to finish a rmw cycle.
2055  */
2056 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2057 {
2058         int bios_to_read = 0;
2059         struct bio_list bio_list;
2060         int ret;
2061         int pagenr;
2062         int stripe;
2063         struct bio *bio;
2064 
2065         bio_list_init(&bio_list);
2066 
2067         ret = alloc_rbio_pages(rbio);
2068         if (ret)
2069                 goto cleanup;
2070 
2071         atomic_set(&rbio->error, 0);
2072 
2073         /*
2074          * read everything that hasn't failed.  Thanks to the
2075          * stripe cache, it is possible that some or all of these
2076          * pages are going to be uptodate.
2077          */
2078         for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2079                 if (rbio->faila == stripe || rbio->failb == stripe) {
2080                         atomic_inc(&rbio->error);
2081                         continue;
2082                 }
2083 
2084                 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2085                         struct page *p;
2086 
2087                         /*
2088                          * the rmw code may have already read this
2089                          * page in
2090                          */
2091                         p = rbio_stripe_page(rbio, stripe, pagenr);
2092                         if (PageUptodate(p))
2093                                 continue;
2094 
2095                         ret = rbio_add_io_page(rbio, &bio_list,
2096                                        rbio_stripe_page(rbio, stripe, pagenr),
2097                                        stripe, pagenr, rbio->stripe_len);
2098                         if (ret < 0)
2099                                 goto cleanup;
2100                 }
2101         }
2102 
2103         bios_to_read = bio_list_size(&bio_list);
2104         if (!bios_to_read) {
2105                 /*
2106                  * we might have no bios to read just because the pages
2107                  * were up to date, or we might have no bios to read because
2108                  * the devices were gone.
2109                  */
2110                 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2111                         __raid_recover_end_io(rbio);
2112                         goto out;
2113                 } else {
2114                         goto cleanup;
2115                 }
2116         }
2117 
2118         /*
2119          * the bbio may be freed once we submit the last bio.  Make sure
2120          * not to touch it after that
2121          */
2122         atomic_set(&rbio->stripes_pending, bios_to_read);
2123         while (1) {
2124                 bio = bio_list_pop(&bio_list);
2125                 if (!bio)
2126                         break;
2127 
2128                 bio->bi_private = rbio;
2129                 bio->bi_end_io = raid_recover_end_io;
2130                 bio->bi_opf = REQ_OP_READ;
2131 
2132                 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2133 
2134                 submit_bio(bio);
2135         }
2136 out:
2137         return 0;
2138 
2139 cleanup:
2140         if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2141             rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2142                 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2143 
2144         while ((bio = bio_list_pop(&bio_list)))
2145                 bio_put(bio);
2146 
2147         return -EIO;
2148 }
2149 
2150 /*
2151  * the main entry point for reads from the higher layers.  This
2152  * is really only called when the normal read path had a failure,
2153  * so we assume the bio they send down corresponds to a failed part
2154  * of the drive.
2155  */
2156 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2157                           struct btrfs_bio *bbio, u64 stripe_len,
2158                           int mirror_num, int generic_io)
2159 {
2160         struct btrfs_raid_bio *rbio;
2161         int ret;
2162 
2163         if (generic_io) {
2164                 ASSERT(bbio->mirror_num == mirror_num);
2165                 btrfs_io_bio(bio)->mirror_num = mirror_num;
2166         }
2167 
2168         rbio = alloc_rbio(fs_info, bbio, stripe_len);
2169         if (IS_ERR(rbio)) {
2170                 if (generic_io)
2171                         btrfs_put_bbio(bbio);
2172                 return PTR_ERR(rbio);
2173         }
2174 
2175         rbio->operation = BTRFS_RBIO_READ_REBUILD;
2176         bio_list_add(&rbio->bio_list, bio);
2177         rbio->bio_list_bytes = bio->bi_iter.bi_size;
2178 
2179         rbio->faila = find_logical_bio_stripe(rbio, bio);
2180         if (rbio->faila == -1) {
2181                 btrfs_warn(fs_info,
2182         "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2183                            __func__, (u64)bio->bi_iter.bi_sector << 9,
2184                            (u64)bio->bi_iter.bi_size, bbio->map_type);
2185                 if (generic_io)
2186                         btrfs_put_bbio(bbio);
2187                 kfree(rbio);
2188                 return -EIO;
2189         }
2190 
2191         if (generic_io) {
2192                 btrfs_bio_counter_inc_noblocked(fs_info);
2193                 rbio->generic_bio_cnt = 1;
2194         } else {
2195                 btrfs_get_bbio(bbio);
2196         }
2197 
2198         /*
2199          * Loop retry:
2200          * for 'mirror == 2', reconstruct from all other stripes.
2201          * for 'mirror_num > 2', select a stripe to fail on every retry.
2202          */
2203         if (mirror_num > 2) {
2204                 /*
2205                  * 'mirror == 3' is to fail the p stripe and
2206                  * reconstruct from the q stripe.  'mirror > 3' is to
2207                  * fail a data stripe and reconstruct from p+q stripe.
2208                  */
2209                 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2210                 ASSERT(rbio->failb > 0);
2211                 if (rbio->failb <= rbio->faila)
2212                         rbio->failb--;
2213         }
2214 
2215         ret = lock_stripe_add(rbio);
2216 
2217         /*
2218          * __raid56_parity_recover will end the bio with
2219          * any errors it hits.  We don't want to return
2220          * its error value up the stack because our caller
2221          * will end up calling bio_endio with any nonzero
2222          * return
2223          */
2224         if (ret == 0)
2225                 __raid56_parity_recover(rbio);
2226         /*
2227          * our rbio has been added to the list of
2228          * rbios that will be handled after the
2229          * currently lock owner is done
2230          */
2231         return 0;
2232 
2233 }
2234 
2235 static void rmw_work(struct btrfs_work *work)
2236 {
2237         struct btrfs_raid_bio *rbio;
2238 
2239         rbio = container_of(work, struct btrfs_raid_bio, work);
2240         raid56_rmw_stripe(rbio);
2241 }
2242 
2243 static void read_rebuild_work(struct btrfs_work *work)
2244 {
2245         struct btrfs_raid_bio *rbio;
2246 
2247         rbio = container_of(work, struct btrfs_raid_bio, work);
2248         __raid56_parity_recover(rbio);
2249 }
2250 
2251 /*
2252  * The following code is used to scrub/replace the parity stripe
2253  *
2254  * Caller must have already increased bio_counter for getting @bbio.
2255  *
2256  * Note: We need make sure all the pages that add into the scrub/replace
2257  * raid bio are correct and not be changed during the scrub/replace. That
2258  * is those pages just hold metadata or file data with checksum.
2259  */
2260 
2261 struct btrfs_raid_bio *
2262 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2263                                struct btrfs_bio *bbio, u64 stripe_len,
2264                                struct btrfs_device *scrub_dev,
2265                                unsigned long *dbitmap, int stripe_nsectors)
2266 {
2267         struct btrfs_raid_bio *rbio;
2268         int i;
2269 
2270         rbio = alloc_rbio(fs_info, bbio, stripe_len);
2271         if (IS_ERR(rbio))
2272                 return NULL;
2273         bio_list_add(&rbio->bio_list, bio);
2274         /*
2275          * This is a special bio which is used to hold the completion handler
2276          * and make the scrub rbio is similar to the other types
2277          */
2278         ASSERT(!bio->bi_iter.bi_size);
2279         rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2280 
2281         /*
2282          * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2283          * to the end position, so this search can start from the first parity
2284          * stripe.
2285          */
2286         for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2287                 if (bbio->stripes[i].dev == scrub_dev) {
2288                         rbio->scrubp = i;
2289                         break;
2290                 }
2291         }
2292         ASSERT(i < rbio->real_stripes);
2293 
2294         /* Now we just support the sectorsize equals to page size */
2295         ASSERT(fs_info->sectorsize == PAGE_SIZE);
2296         ASSERT(rbio->stripe_npages == stripe_nsectors);
2297         bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2298 
2299         /*
2300          * We have already increased bio_counter when getting bbio, record it
2301          * so we can free it at rbio_orig_end_io().
2302          */
2303         rbio->generic_bio_cnt = 1;
2304 
2305         return rbio;
2306 }
2307 
2308 /* Used for both parity scrub and missing. */
2309 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2310                             u64 logical)
2311 {
2312         int stripe_offset;
2313         int index;
2314 
2315         ASSERT(logical >= rbio->bbio->raid_map[0]);
2316         ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2317                                 rbio->stripe_len * rbio->nr_data);
2318         stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2319         index = stripe_offset >> PAGE_SHIFT;
2320         rbio->bio_pages[index] = page;
2321 }
2322 
2323 /*
2324  * We just scrub the parity that we have correct data on the same horizontal,
2325  * so we needn't allocate all pages for all the stripes.
2326  */
2327 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2328 {
2329         int i;
2330         int bit;
2331         int index;
2332         struct page *page;
2333 
2334         for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2335                 for (i = 0; i < rbio->real_stripes; i++) {
2336                         index = i * rbio->stripe_npages + bit;
2337                         if (rbio->stripe_pages[index])
2338                                 continue;
2339 
2340                         page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341                         if (!page)
2342                                 return -ENOMEM;
2343                         rbio->stripe_pages[index] = page;
2344                 }
2345         }
2346         return 0;
2347 }
2348 
2349 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2350                                          int need_check)
2351 {
2352         struct btrfs_bio *bbio = rbio->bbio;
2353         void **pointers = rbio->finish_pointers;
2354         unsigned long *pbitmap = rbio->finish_pbitmap;
2355         int nr_data = rbio->nr_data;
2356         int stripe;
2357         int pagenr;
2358         int p_stripe = -1;
2359         int q_stripe = -1;
2360         struct page *p_page = NULL;
2361         struct page *q_page = NULL;
2362         struct bio_list bio_list;
2363         struct bio *bio;
2364         int is_replace = 0;
2365         int ret;
2366 
2367         bio_list_init(&bio_list);
2368 
2369         if (rbio->real_stripes - rbio->nr_data == 1) {
2370                 p_stripe = rbio->real_stripes - 1;
2371         } else if (rbio->real_stripes - rbio->nr_data == 2) {
2372                 p_stripe = rbio->real_stripes - 2;
2373                 q_stripe = rbio->real_stripes - 1;
2374         } else {
2375                 BUG();
2376         }
2377 
2378         if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2379                 is_replace = 1;
2380                 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2381         }
2382 
2383         /*
2384          * Because the higher layers(scrubber) are unlikely to
2385          * use this area of the disk again soon, so don't cache
2386          * it.
2387          */
2388         clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2389 
2390         if (!need_check)
2391                 goto writeback;
2392 
2393         p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2394         if (!p_page)
2395                 goto cleanup;
2396         SetPageUptodate(p_page);
2397 
2398         if (q_stripe != -1) {
2399                 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2400                 if (!q_page) {
2401                         __free_page(p_page);
2402                         goto cleanup;
2403                 }
2404                 SetPageUptodate(q_page);
2405         }
2406 
2407         atomic_set(&rbio->error, 0);
2408 
2409         for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2410                 struct page *p;
2411                 void *parity;
2412                 /* first collect one page from each data stripe */
2413                 for (stripe = 0; stripe < nr_data; stripe++) {
2414                         p = page_in_rbio(rbio, stripe, pagenr, 0);
2415                         pointers[stripe] = kmap(p);
2416                 }
2417 
2418                 /* then add the parity stripe */
2419                 pointers[stripe++] = kmap(p_page);
2420 
2421                 if (q_stripe != -1) {
2422 
2423                         /*
2424                          * raid6, add the qstripe and call the
2425                          * library function to fill in our p/q
2426                          */
2427                         pointers[stripe++] = kmap(q_page);
2428 
2429                         raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2430                                                 pointers);
2431                 } else {
2432                         /* raid5 */
2433                         copy_page(pointers[nr_data], pointers[0]);
2434                         run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2435                 }
2436 
2437                 /* Check scrubbing parity and repair it */
2438                 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2439                 parity = kmap(p);
2440                 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2441                         copy_page(parity, pointers[rbio->scrubp]);
2442                 else
2443                         /* Parity is right, needn't writeback */
2444                         bitmap_clear(rbio->dbitmap, pagenr, 1);
2445                 kunmap(p);
2446 
2447                 for (stripe = 0; stripe < nr_data; stripe++)
2448                         kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2449                 kunmap(p_page);
2450         }
2451 
2452         __free_page(p_page);
2453         if (q_page)
2454                 __free_page(q_page);
2455 
2456 writeback:
2457         /*
2458          * time to start writing.  Make bios for everything from the
2459          * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2460          * everything else.
2461          */
2462         for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2463                 struct page *page;
2464 
2465                 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2466                 ret = rbio_add_io_page(rbio, &bio_list,
2467                                page, rbio->scrubp, pagenr, rbio->stripe_len);
2468                 if (ret)
2469                         goto cleanup;
2470         }
2471 
2472         if (!is_replace)
2473                 goto submit_write;
2474 
2475         for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2476                 struct page *page;
2477 
2478                 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2479                 ret = rbio_add_io_page(rbio, &bio_list, page,
2480                                        bbio->tgtdev_map[rbio->scrubp],
2481                                        pagenr, rbio->stripe_len);
2482                 if (ret)
2483                         goto cleanup;
2484         }
2485 
2486 submit_write:
2487         nr_data = bio_list_size(&bio_list);
2488         if (!nr_data) {
2489                 /* Every parity is right */
2490                 rbio_orig_end_io(rbio, BLK_STS_OK);
2491                 return;
2492         }
2493 
2494         atomic_set(&rbio->stripes_pending, nr_data);
2495 
2496         while (1) {
2497                 bio = bio_list_pop(&bio_list);
2498                 if (!bio)
2499                         break;
2500 
2501                 bio->bi_private = rbio;
2502                 bio->bi_end_io = raid_write_end_io;
2503                 bio->bi_opf = REQ_OP_WRITE;
2504 
2505                 submit_bio(bio);
2506         }
2507         return;
2508 
2509 cleanup:
2510         rbio_orig_end_io(rbio, BLK_STS_IOERR);
2511 
2512         while ((bio = bio_list_pop(&bio_list)))
2513                 bio_put(bio);
2514 }
2515 
2516 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2517 {
2518         if (stripe >= 0 && stripe < rbio->nr_data)
2519                 return 1;
2520         return 0;
2521 }
2522 
2523 /*
2524  * While we're doing the parity check and repair, we could have errors
2525  * in reading pages off the disk.  This checks for errors and if we're
2526  * not able to read the page it'll trigger parity reconstruction.  The
2527  * parity scrub will be finished after we've reconstructed the failed
2528  * stripes
2529  */
2530 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2531 {
2532         if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2533                 goto cleanup;
2534 
2535         if (rbio->faila >= 0 || rbio->failb >= 0) {
2536                 int dfail = 0, failp = -1;
2537 
2538                 if (is_data_stripe(rbio, rbio->faila))
2539                         dfail++;
2540                 else if (is_parity_stripe(rbio->faila))
2541                         failp = rbio->faila;
2542 
2543                 if (is_data_stripe(rbio, rbio->failb))
2544                         dfail++;
2545                 else if (is_parity_stripe(rbio->failb))
2546                         failp = rbio->failb;
2547 
2548                 /*
2549                  * Because we can not use a scrubbing parity to repair
2550                  * the data, so the capability of the repair is declined.
2551                  * (In the case of RAID5, we can not repair anything)
2552                  */
2553                 if (dfail > rbio->bbio->max_errors - 1)
2554                         goto cleanup;
2555 
2556                 /*
2557                  * If all data is good, only parity is correctly, just
2558                  * repair the parity.
2559                  */
2560                 if (dfail == 0) {
2561                         finish_parity_scrub(rbio, 0);
2562                         return;
2563                 }
2564 
2565                 /*
2566                  * Here means we got one corrupted data stripe and one
2567                  * corrupted parity on RAID6, if the corrupted parity
2568                  * is scrubbing parity, luckily, use the other one to repair
2569                  * the data, or we can not repair the data stripe.
2570                  */
2571                 if (failp != rbio->scrubp)
2572                         goto cleanup;
2573 
2574                 __raid_recover_end_io(rbio);
2575         } else {
2576                 finish_parity_scrub(rbio, 1);
2577         }
2578         return;
2579 
2580 cleanup:
2581         rbio_orig_end_io(rbio, BLK_STS_IOERR);
2582 }
2583 
2584 /*
2585  * end io for the read phase of the rmw cycle.  All the bios here are physical
2586  * stripe bios we've read from the disk so we can recalculate the parity of the
2587  * stripe.
2588  *
2589  * This will usually kick off finish_rmw once all the bios are read in, but it
2590  * may trigger parity reconstruction if we had any errors along the way
2591  */
2592 static void raid56_parity_scrub_end_io(struct bio *bio)
2593 {
2594         struct btrfs_raid_bio *rbio = bio->bi_private;
2595 
2596         if (bio->bi_status)
2597                 fail_bio_stripe(rbio, bio);
2598         else
2599                 set_bio_pages_uptodate(bio);
2600 
2601         bio_put(bio);
2602 
2603         if (!atomic_dec_and_test(&rbio->stripes_pending))
2604                 return;
2605 
2606         /*
2607          * this will normally call finish_rmw to start our write
2608          * but if there are any failed stripes we'll reconstruct
2609          * from parity first
2610          */
2611         validate_rbio_for_parity_scrub(rbio);
2612 }
2613 
2614 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2615 {
2616         int bios_to_read = 0;
2617         struct bio_list bio_list;
2618         int ret;
2619         int pagenr;
2620         int stripe;
2621         struct bio *bio;
2622 
2623         bio_list_init(&bio_list);
2624 
2625         ret = alloc_rbio_essential_pages(rbio);
2626         if (ret)
2627                 goto cleanup;
2628 
2629         atomic_set(&rbio->error, 0);
2630         /*
2631          * build a list of bios to read all the missing parts of this
2632          * stripe
2633          */
2634         for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2635                 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2636                         struct page *page;
2637                         /*
2638                          * we want to find all the pages missing from
2639                          * the rbio and read them from the disk.  If
2640                          * page_in_rbio finds a page in the bio list
2641                          * we don't need to read it off the stripe.
2642                          */
2643                         page = page_in_rbio(rbio, stripe, pagenr, 1);
2644                         if (page)
2645                                 continue;
2646 
2647                         page = rbio_stripe_page(rbio, stripe, pagenr);
2648                         /*
2649                          * the bio cache may have handed us an uptodate
2650                          * page.  If so, be happy and use it
2651                          */
2652                         if (PageUptodate(page))
2653                                 continue;
2654 
2655                         ret = rbio_add_io_page(rbio, &bio_list, page,
2656                                        stripe, pagenr, rbio->stripe_len);
2657                         if (ret)
2658                                 goto cleanup;
2659                 }
2660         }
2661 
2662         bios_to_read = bio_list_size(&bio_list);
2663         if (!bios_to_read) {
2664                 /*
2665                  * this can happen if others have merged with
2666                  * us, it means there is nothing left to read.
2667                  * But if there are missing devices it may not be
2668                  * safe to do the full stripe write yet.
2669                  */
2670                 goto finish;
2671         }
2672 
2673         /*
2674          * the bbio may be freed once we submit the last bio.  Make sure
2675          * not to touch it after that
2676          */
2677         atomic_set(&rbio->stripes_pending, bios_to_read);
2678         while (1) {
2679                 bio = bio_list_pop(&bio_list);
2680                 if (!bio)
2681                         break;
2682 
2683                 bio->bi_private = rbio;
2684                 bio->bi_end_io = raid56_parity_scrub_end_io;
2685                 bio->bi_opf = REQ_OP_READ;
2686 
2687                 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2688 
2689                 submit_bio(bio);
2690         }
2691         /* the actual write will happen once the reads are done */
2692         return;
2693 
2694 cleanup:
2695         rbio_orig_end_io(rbio, BLK_STS_IOERR);
2696 
2697         while ((bio = bio_list_pop(&bio_list)))
2698                 bio_put(bio);
2699 
2700         return;
2701 
2702 finish:
2703         validate_rbio_for_parity_scrub(rbio);
2704 }
2705 
2706 static void scrub_parity_work(struct btrfs_work *work)
2707 {
2708         struct btrfs_raid_bio *rbio;
2709 
2710         rbio = container_of(work, struct btrfs_raid_bio, work);
2711         raid56_parity_scrub_stripe(rbio);
2712 }
2713 
2714 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2715 {
2716         if (!lock_stripe_add(rbio))
2717                 start_async_work(rbio, scrub_parity_work);
2718 }
2719 
2720 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2721 
2722 struct btrfs_raid_bio *
2723 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2724                           struct btrfs_bio *bbio, u64 length)
2725 {
2726         struct btrfs_raid_bio *rbio;
2727 
2728         rbio = alloc_rbio(fs_info, bbio, length);
2729         if (IS_ERR(rbio))
2730                 return NULL;
2731 
2732         rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2733         bio_list_add(&rbio->bio_list, bio);
2734         /*
2735          * This is a special bio which is used to hold the completion handler
2736          * and make the scrub rbio is similar to the other types
2737          */
2738         ASSERT(!bio->bi_iter.bi_size);
2739 
2740         rbio->faila = find_logical_bio_stripe(rbio, bio);
2741         if (rbio->faila == -1) {
2742                 BUG();
2743                 kfree(rbio);
2744                 return NULL;
2745         }
2746 
2747         /*
2748          * When we get bbio, we have already increased bio_counter, record it
2749          * so we can free it at rbio_orig_end_io()
2750          */
2751         rbio->generic_bio_cnt = 1;
2752 
2753         return rbio;
2754 }
2755 
2756 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2757 {
2758         if (!lock_stripe_add(rbio))
2759                 start_async_work(rbio, read_rebuild_work);
2760 }

/* [<][>][^][v][top][bottom][index][help] */