root/fs/btrfs/space-info.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. btrfs_space_info_used
  2. btrfs_clear_space_info_full
  3. create_space_info
  4. btrfs_init_space_info
  5. btrfs_update_space_info
  6. btrfs_find_space_info
  7. calc_global_rsv_need_space
  8. can_overcommit
  9. btrfs_try_granting_tickets
  10. __btrfs_dump_space_info
  11. btrfs_dump_space_info
  12. btrfs_writeback_inodes_sb_nr
  13. calc_reclaim_items_nr
  14. shrink_delalloc
  15. may_commit_transaction
  16. flush_space
  17. btrfs_calc_reclaim_metadata_size
  18. need_do_async_reclaim
  19. maybe_fail_all_tickets
  20. btrfs_async_reclaim_metadata_space
  21. btrfs_init_async_reclaim_work
  22. priority_reclaim_metadata_space
  23. wait_reserve_ticket
  24. handle_reserve_ticket
  25. __reserve_metadata_bytes
  26. btrfs_reserve_metadata_bytes

   1 // SPDX-License-Identifier: GPL-2.0
   2 
   3 #include "misc.h"
   4 #include "ctree.h"
   5 #include "space-info.h"
   6 #include "sysfs.h"
   7 #include "volumes.h"
   8 #include "free-space-cache.h"
   9 #include "ordered-data.h"
  10 #include "transaction.h"
  11 #include "block-group.h"
  12 
  13 u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
  14                           bool may_use_included)
  15 {
  16         ASSERT(s_info);
  17         return s_info->bytes_used + s_info->bytes_reserved +
  18                 s_info->bytes_pinned + s_info->bytes_readonly +
  19                 (may_use_included ? s_info->bytes_may_use : 0);
  20 }
  21 
  22 /*
  23  * after adding space to the filesystem, we need to clear the full flags
  24  * on all the space infos.
  25  */
  26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  27 {
  28         struct list_head *head = &info->space_info;
  29         struct btrfs_space_info *found;
  30 
  31         rcu_read_lock();
  32         list_for_each_entry_rcu(found, head, list)
  33                 found->full = 0;
  34         rcu_read_unlock();
  35 }
  36 
  37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
  38 {
  39 
  40         struct btrfs_space_info *space_info;
  41         int i;
  42         int ret;
  43 
  44         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
  45         if (!space_info)
  46                 return -ENOMEM;
  47 
  48         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
  49                                  GFP_KERNEL);
  50         if (ret) {
  51                 kfree(space_info);
  52                 return ret;
  53         }
  54 
  55         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  56                 INIT_LIST_HEAD(&space_info->block_groups[i]);
  57         init_rwsem(&space_info->groups_sem);
  58         spin_lock_init(&space_info->lock);
  59         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  60         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  61         init_waitqueue_head(&space_info->wait);
  62         INIT_LIST_HEAD(&space_info->ro_bgs);
  63         INIT_LIST_HEAD(&space_info->tickets);
  64         INIT_LIST_HEAD(&space_info->priority_tickets);
  65 
  66         ret = btrfs_sysfs_add_space_info_type(info, space_info);
  67         if (ret)
  68                 return ret;
  69 
  70         list_add_rcu(&space_info->list, &info->space_info);
  71         if (flags & BTRFS_BLOCK_GROUP_DATA)
  72                 info->data_sinfo = space_info;
  73 
  74         return ret;
  75 }
  76 
  77 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  78 {
  79         struct btrfs_super_block *disk_super;
  80         u64 features;
  81         u64 flags;
  82         int mixed = 0;
  83         int ret;
  84 
  85         disk_super = fs_info->super_copy;
  86         if (!btrfs_super_root(disk_super))
  87                 return -EINVAL;
  88 
  89         features = btrfs_super_incompat_flags(disk_super);
  90         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  91                 mixed = 1;
  92 
  93         flags = BTRFS_BLOCK_GROUP_SYSTEM;
  94         ret = create_space_info(fs_info, flags);
  95         if (ret)
  96                 goto out;
  97 
  98         if (mixed) {
  99                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 100                 ret = create_space_info(fs_info, flags);
 101         } else {
 102                 flags = BTRFS_BLOCK_GROUP_METADATA;
 103                 ret = create_space_info(fs_info, flags);
 104                 if (ret)
 105                         goto out;
 106 
 107                 flags = BTRFS_BLOCK_GROUP_DATA;
 108                 ret = create_space_info(fs_info, flags);
 109         }
 110 out:
 111         return ret;
 112 }
 113 
 114 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 115                              u64 total_bytes, u64 bytes_used,
 116                              u64 bytes_readonly,
 117                              struct btrfs_space_info **space_info)
 118 {
 119         struct btrfs_space_info *found;
 120         int factor;
 121 
 122         factor = btrfs_bg_type_to_factor(flags);
 123 
 124         found = btrfs_find_space_info(info, flags);
 125         ASSERT(found);
 126         spin_lock(&found->lock);
 127         found->total_bytes += total_bytes;
 128         found->disk_total += total_bytes * factor;
 129         found->bytes_used += bytes_used;
 130         found->disk_used += bytes_used * factor;
 131         found->bytes_readonly += bytes_readonly;
 132         if (total_bytes > 0)
 133                 found->full = 0;
 134         btrfs_try_granting_tickets(info, found);
 135         spin_unlock(&found->lock);
 136         *space_info = found;
 137 }
 138 
 139 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 140                                                u64 flags)
 141 {
 142         struct list_head *head = &info->space_info;
 143         struct btrfs_space_info *found;
 144 
 145         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 146 
 147         rcu_read_lock();
 148         list_for_each_entry_rcu(found, head, list) {
 149                 if (found->flags & flags) {
 150                         rcu_read_unlock();
 151                         return found;
 152                 }
 153         }
 154         rcu_read_unlock();
 155         return NULL;
 156 }
 157 
 158 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 159 {
 160         return (global->size << 1);
 161 }
 162 
 163 static int can_overcommit(struct btrfs_fs_info *fs_info,
 164                           struct btrfs_space_info *space_info, u64 bytes,
 165                           enum btrfs_reserve_flush_enum flush,
 166                           bool system_chunk)
 167 {
 168         u64 profile;
 169         u64 avail;
 170         u64 used;
 171         int factor;
 172 
 173         /* Don't overcommit when in mixed mode. */
 174         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 175                 return 0;
 176 
 177         if (system_chunk)
 178                 profile = btrfs_system_alloc_profile(fs_info);
 179         else
 180                 profile = btrfs_metadata_alloc_profile(fs_info);
 181 
 182         used = btrfs_space_info_used(space_info, true);
 183         avail = atomic64_read(&fs_info->free_chunk_space);
 184 
 185         /*
 186          * If we have dup, raid1 or raid10 then only half of the free
 187          * space is actually usable.  For raid56, the space info used
 188          * doesn't include the parity drive, so we don't have to
 189          * change the math
 190          */
 191         factor = btrfs_bg_type_to_factor(profile);
 192         avail = div_u64(avail, factor);
 193 
 194         /*
 195          * If we aren't flushing all things, let us overcommit up to
 196          * 1/2th of the space. If we can flush, don't let us overcommit
 197          * too much, let it overcommit up to 1/8 of the space.
 198          */
 199         if (flush == BTRFS_RESERVE_FLUSH_ALL)
 200                 avail >>= 3;
 201         else
 202                 avail >>= 1;
 203 
 204         if (used + bytes < space_info->total_bytes + avail)
 205                 return 1;
 206         return 0;
 207 }
 208 
 209 /*
 210  * This is for space we already have accounted in space_info->bytes_may_use, so
 211  * basically when we're returning space from block_rsv's.
 212  */
 213 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 214                                 struct btrfs_space_info *space_info)
 215 {
 216         struct list_head *head;
 217         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 218 
 219         lockdep_assert_held(&space_info->lock);
 220 
 221         head = &space_info->priority_tickets;
 222 again:
 223         while (!list_empty(head)) {
 224                 struct reserve_ticket *ticket;
 225                 u64 used = btrfs_space_info_used(space_info, true);
 226 
 227                 ticket = list_first_entry(head, struct reserve_ticket, list);
 228 
 229                 /* Check and see if our ticket can be satisified now. */
 230                 if ((used + ticket->bytes <= space_info->total_bytes) ||
 231                     can_overcommit(fs_info, space_info, ticket->bytes, flush,
 232                                    false)) {
 233                         btrfs_space_info_update_bytes_may_use(fs_info,
 234                                                               space_info,
 235                                                               ticket->bytes);
 236                         list_del_init(&ticket->list);
 237                         ticket->bytes = 0;
 238                         space_info->tickets_id++;
 239                         wake_up(&ticket->wait);
 240                 } else {
 241                         break;
 242                 }
 243         }
 244 
 245         if (head == &space_info->priority_tickets) {
 246                 head = &space_info->tickets;
 247                 flush = BTRFS_RESERVE_FLUSH_ALL;
 248                 goto again;
 249         }
 250 }
 251 
 252 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
 253 do {                                                                    \
 254         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
 255         spin_lock(&__rsv->lock);                                        \
 256         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
 257                    __rsv->size, __rsv->reserved);                       \
 258         spin_unlock(&__rsv->lock);                                      \
 259 } while (0)
 260 
 261 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 262                                     struct btrfs_space_info *info)
 263 {
 264         lockdep_assert_held(&info->lock);
 265 
 266         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 267                    info->flags,
 268                    info->total_bytes - btrfs_space_info_used(info, true),
 269                    info->full ? "" : "not ");
 270         btrfs_info(fs_info,
 271                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 272                 info->total_bytes, info->bytes_used, info->bytes_pinned,
 273                 info->bytes_reserved, info->bytes_may_use,
 274                 info->bytes_readonly);
 275 
 276         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 277         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 278         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 279         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 280         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 281 
 282 }
 283 
 284 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 285                            struct btrfs_space_info *info, u64 bytes,
 286                            int dump_block_groups)
 287 {
 288         struct btrfs_block_group_cache *cache;
 289         int index = 0;
 290 
 291         spin_lock(&info->lock);
 292         __btrfs_dump_space_info(fs_info, info);
 293         spin_unlock(&info->lock);
 294 
 295         if (!dump_block_groups)
 296                 return;
 297 
 298         down_read(&info->groups_sem);
 299 again:
 300         list_for_each_entry(cache, &info->block_groups[index], list) {
 301                 spin_lock(&cache->lock);
 302                 btrfs_info(fs_info,
 303                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 304                         cache->key.objectid, cache->key.offset,
 305                         btrfs_block_group_used(&cache->item), cache->pinned,
 306                         cache->reserved, cache->ro ? "[readonly]" : "");
 307                 btrfs_dump_free_space(cache, bytes);
 308                 spin_unlock(&cache->lock);
 309         }
 310         if (++index < BTRFS_NR_RAID_TYPES)
 311                 goto again;
 312         up_read(&info->groups_sem);
 313 }
 314 
 315 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 316                                          unsigned long nr_pages, int nr_items)
 317 {
 318         struct super_block *sb = fs_info->sb;
 319 
 320         if (down_read_trylock(&sb->s_umount)) {
 321                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 322                 up_read(&sb->s_umount);
 323         } else {
 324                 /*
 325                  * We needn't worry the filesystem going from r/w to r/o though
 326                  * we don't acquire ->s_umount mutex, because the filesystem
 327                  * should guarantee the delalloc inodes list be empty after
 328                  * the filesystem is readonly(all dirty pages are written to
 329                  * the disk).
 330                  */
 331                 btrfs_start_delalloc_roots(fs_info, nr_items);
 332                 if (!current->journal_info)
 333                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 334         }
 335 }
 336 
 337 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 338                                         u64 to_reclaim)
 339 {
 340         u64 bytes;
 341         u64 nr;
 342 
 343         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 344         nr = div64_u64(to_reclaim, bytes);
 345         if (!nr)
 346                 nr = 1;
 347         return nr;
 348 }
 349 
 350 #define EXTENT_SIZE_PER_ITEM    SZ_256K
 351 
 352 /*
 353  * shrink metadata reservation for delalloc
 354  */
 355 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
 356                             u64 orig, bool wait_ordered)
 357 {
 358         struct btrfs_space_info *space_info;
 359         struct btrfs_trans_handle *trans;
 360         u64 delalloc_bytes;
 361         u64 dio_bytes;
 362         u64 async_pages;
 363         u64 items;
 364         long time_left;
 365         unsigned long nr_pages;
 366         int loops;
 367 
 368         /* Calc the number of the pages we need flush for space reservation */
 369         items = calc_reclaim_items_nr(fs_info, to_reclaim);
 370         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 371 
 372         trans = (struct btrfs_trans_handle *)current->journal_info;
 373         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 374 
 375         delalloc_bytes = percpu_counter_sum_positive(
 376                                                 &fs_info->delalloc_bytes);
 377         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 378         if (delalloc_bytes == 0 && dio_bytes == 0) {
 379                 if (trans)
 380                         return;
 381                 if (wait_ordered)
 382                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 383                 return;
 384         }
 385 
 386         /*
 387          * If we are doing more ordered than delalloc we need to just wait on
 388          * ordered extents, otherwise we'll waste time trying to flush delalloc
 389          * that likely won't give us the space back we need.
 390          */
 391         if (dio_bytes > delalloc_bytes)
 392                 wait_ordered = true;
 393 
 394         loops = 0;
 395         while ((delalloc_bytes || dio_bytes) && loops < 3) {
 396                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 397 
 398                 /*
 399                  * Triggers inode writeback for up to nr_pages. This will invoke
 400                  * ->writepages callback and trigger delalloc filling
 401                  *  (btrfs_run_delalloc_range()).
 402                  */
 403                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 404 
 405                 /*
 406                  * We need to wait for the compressed pages to start before
 407                  * we continue.
 408                  */
 409                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
 410                 if (!async_pages)
 411                         goto skip_async;
 412 
 413                 /*
 414                  * Calculate how many compressed pages we want to be written
 415                  * before we continue. I.e if there are more async pages than we
 416                  * require wait_event will wait until nr_pages are written.
 417                  */
 418                 if (async_pages <= nr_pages)
 419                         async_pages = 0;
 420                 else
 421                         async_pages -= nr_pages;
 422 
 423                 wait_event(fs_info->async_submit_wait,
 424                            atomic_read(&fs_info->async_delalloc_pages) <=
 425                            (int)async_pages);
 426 skip_async:
 427                 spin_lock(&space_info->lock);
 428                 if (list_empty(&space_info->tickets) &&
 429                     list_empty(&space_info->priority_tickets)) {
 430                         spin_unlock(&space_info->lock);
 431                         break;
 432                 }
 433                 spin_unlock(&space_info->lock);
 434 
 435                 loops++;
 436                 if (wait_ordered && !trans) {
 437                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 438                 } else {
 439                         time_left = schedule_timeout_killable(1);
 440                         if (time_left)
 441                                 break;
 442                 }
 443                 delalloc_bytes = percpu_counter_sum_positive(
 444                                                 &fs_info->delalloc_bytes);
 445                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 446         }
 447 }
 448 
 449 /**
 450  * maybe_commit_transaction - possibly commit the transaction if its ok to
 451  * @root - the root we're allocating for
 452  * @bytes - the number of bytes we want to reserve
 453  * @force - force the commit
 454  *
 455  * This will check to make sure that committing the transaction will actually
 456  * get us somewhere and then commit the transaction if it does.  Otherwise it
 457  * will return -ENOSPC.
 458  */
 459 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
 460                                   struct btrfs_space_info *space_info)
 461 {
 462         struct reserve_ticket *ticket = NULL;
 463         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 464         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 465         struct btrfs_trans_handle *trans;
 466         u64 bytes_needed;
 467         u64 reclaim_bytes = 0;
 468         u64 cur_free_bytes = 0;
 469 
 470         trans = (struct btrfs_trans_handle *)current->journal_info;
 471         if (trans)
 472                 return -EAGAIN;
 473 
 474         spin_lock(&space_info->lock);
 475         cur_free_bytes = btrfs_space_info_used(space_info, true);
 476         if (cur_free_bytes < space_info->total_bytes)
 477                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
 478         else
 479                 cur_free_bytes = 0;
 480 
 481         if (!list_empty(&space_info->priority_tickets))
 482                 ticket = list_first_entry(&space_info->priority_tickets,
 483                                           struct reserve_ticket, list);
 484         else if (!list_empty(&space_info->tickets))
 485                 ticket = list_first_entry(&space_info->tickets,
 486                                           struct reserve_ticket, list);
 487         bytes_needed = (ticket) ? ticket->bytes : 0;
 488 
 489         if (bytes_needed > cur_free_bytes)
 490                 bytes_needed -= cur_free_bytes;
 491         else
 492                 bytes_needed = 0;
 493         spin_unlock(&space_info->lock);
 494 
 495         if (!bytes_needed)
 496                 return 0;
 497 
 498         trans = btrfs_join_transaction(fs_info->extent_root);
 499         if (IS_ERR(trans))
 500                 return PTR_ERR(trans);
 501 
 502         /*
 503          * See if there is enough pinned space to make this reservation, or if
 504          * we have block groups that are going to be freed, allowing us to
 505          * possibly do a chunk allocation the next loop through.
 506          */
 507         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
 508             __percpu_counter_compare(&space_info->total_bytes_pinned,
 509                                      bytes_needed,
 510                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
 511                 goto commit;
 512 
 513         /*
 514          * See if there is some space in the delayed insertion reservation for
 515          * this reservation.
 516          */
 517         if (space_info != delayed_rsv->space_info)
 518                 goto enospc;
 519 
 520         spin_lock(&delayed_rsv->lock);
 521         reclaim_bytes += delayed_rsv->reserved;
 522         spin_unlock(&delayed_rsv->lock);
 523 
 524         spin_lock(&delayed_refs_rsv->lock);
 525         reclaim_bytes += delayed_refs_rsv->reserved;
 526         spin_unlock(&delayed_refs_rsv->lock);
 527         if (reclaim_bytes >= bytes_needed)
 528                 goto commit;
 529         bytes_needed -= reclaim_bytes;
 530 
 531         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
 532                                    bytes_needed,
 533                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
 534                 goto enospc;
 535 
 536 commit:
 537         return btrfs_commit_transaction(trans);
 538 enospc:
 539         btrfs_end_transaction(trans);
 540         return -ENOSPC;
 541 }
 542 
 543 /*
 544  * Try to flush some data based on policy set by @state. This is only advisory
 545  * and may fail for various reasons. The caller is supposed to examine the
 546  * state of @space_info to detect the outcome.
 547  */
 548 static void flush_space(struct btrfs_fs_info *fs_info,
 549                        struct btrfs_space_info *space_info, u64 num_bytes,
 550                        int state)
 551 {
 552         struct btrfs_root *root = fs_info->extent_root;
 553         struct btrfs_trans_handle *trans;
 554         int nr;
 555         int ret = 0;
 556 
 557         switch (state) {
 558         case FLUSH_DELAYED_ITEMS_NR:
 559         case FLUSH_DELAYED_ITEMS:
 560                 if (state == FLUSH_DELAYED_ITEMS_NR)
 561                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 562                 else
 563                         nr = -1;
 564 
 565                 trans = btrfs_join_transaction(root);
 566                 if (IS_ERR(trans)) {
 567                         ret = PTR_ERR(trans);
 568                         break;
 569                 }
 570                 ret = btrfs_run_delayed_items_nr(trans, nr);
 571                 btrfs_end_transaction(trans);
 572                 break;
 573         case FLUSH_DELALLOC:
 574         case FLUSH_DELALLOC_WAIT:
 575                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
 576                                 state == FLUSH_DELALLOC_WAIT);
 577                 break;
 578         case FLUSH_DELAYED_REFS_NR:
 579         case FLUSH_DELAYED_REFS:
 580                 trans = btrfs_join_transaction(root);
 581                 if (IS_ERR(trans)) {
 582                         ret = PTR_ERR(trans);
 583                         break;
 584                 }
 585                 if (state == FLUSH_DELAYED_REFS_NR)
 586                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
 587                 else
 588                         nr = 0;
 589                 btrfs_run_delayed_refs(trans, nr);
 590                 btrfs_end_transaction(trans);
 591                 break;
 592         case ALLOC_CHUNK:
 593         case ALLOC_CHUNK_FORCE:
 594                 trans = btrfs_join_transaction(root);
 595                 if (IS_ERR(trans)) {
 596                         ret = PTR_ERR(trans);
 597                         break;
 598                 }
 599                 ret = btrfs_chunk_alloc(trans,
 600                                 btrfs_metadata_alloc_profile(fs_info),
 601                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 602                                         CHUNK_ALLOC_FORCE);
 603                 btrfs_end_transaction(trans);
 604                 if (ret > 0 || ret == -ENOSPC)
 605                         ret = 0;
 606                 break;
 607         case RUN_DELAYED_IPUTS:
 608                 /*
 609                  * If we have pending delayed iputs then we could free up a
 610                  * bunch of pinned space, so make sure we run the iputs before
 611                  * we do our pinned bytes check below.
 612                  */
 613                 btrfs_run_delayed_iputs(fs_info);
 614                 btrfs_wait_on_delayed_iputs(fs_info);
 615                 break;
 616         case COMMIT_TRANS:
 617                 ret = may_commit_transaction(fs_info, space_info);
 618                 break;
 619         default:
 620                 ret = -ENOSPC;
 621                 break;
 622         }
 623 
 624         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 625                                 ret);
 626         return;
 627 }
 628 
 629 static inline u64
 630 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 631                                  struct btrfs_space_info *space_info,
 632                                  bool system_chunk)
 633 {
 634         struct reserve_ticket *ticket;
 635         u64 used;
 636         u64 expected;
 637         u64 to_reclaim = 0;
 638 
 639         list_for_each_entry(ticket, &space_info->tickets, list)
 640                 to_reclaim += ticket->bytes;
 641         list_for_each_entry(ticket, &space_info->priority_tickets, list)
 642                 to_reclaim += ticket->bytes;
 643         if (to_reclaim)
 644                 return to_reclaim;
 645 
 646         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 647         if (can_overcommit(fs_info, space_info, to_reclaim,
 648                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 649                 return 0;
 650 
 651         used = btrfs_space_info_used(space_info, true);
 652 
 653         if (can_overcommit(fs_info, space_info, SZ_1M,
 654                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 655                 expected = div_factor_fine(space_info->total_bytes, 95);
 656         else
 657                 expected = div_factor_fine(space_info->total_bytes, 90);
 658 
 659         if (used > expected)
 660                 to_reclaim = used - expected;
 661         else
 662                 to_reclaim = 0;
 663         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 664                                      space_info->bytes_reserved);
 665         return to_reclaim;
 666 }
 667 
 668 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
 669                                         struct btrfs_space_info *space_info,
 670                                         u64 used, bool system_chunk)
 671 {
 672         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 673 
 674         /* If we're just plain full then async reclaim just slows us down. */
 675         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 676                 return 0;
 677 
 678         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 679                                               system_chunk))
 680                 return 0;
 681 
 682         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 683                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 684 }
 685 
 686 /*
 687  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 688  * @fs_info - fs_info for this fs
 689  * @space_info - the space info we were flushing
 690  *
 691  * We call this when we've exhausted our flushing ability and haven't made
 692  * progress in satisfying tickets.  The reservation code handles tickets in
 693  * order, so if there is a large ticket first and then smaller ones we could
 694  * very well satisfy the smaller tickets.  This will attempt to wake up any
 695  * tickets in the list to catch this case.
 696  *
 697  * This function returns true if it was able to make progress by clearing out
 698  * other tickets, or if it stumbles across a ticket that was smaller than the
 699  * first ticket.
 700  */
 701 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 702                                    struct btrfs_space_info *space_info)
 703 {
 704         struct reserve_ticket *ticket;
 705         u64 tickets_id = space_info->tickets_id;
 706         u64 first_ticket_bytes = 0;
 707 
 708         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 709                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 710                 __btrfs_dump_space_info(fs_info, space_info);
 711         }
 712 
 713         while (!list_empty(&space_info->tickets) &&
 714                tickets_id == space_info->tickets_id) {
 715                 ticket = list_first_entry(&space_info->tickets,
 716                                           struct reserve_ticket, list);
 717 
 718                 /*
 719                  * may_commit_transaction will avoid committing the transaction
 720                  * if it doesn't feel like the space reclaimed by the commit
 721                  * would result in the ticket succeeding.  However if we have a
 722                  * smaller ticket in the queue it may be small enough to be
 723                  * satisified by committing the transaction, so if any
 724                  * subsequent ticket is smaller than the first ticket go ahead
 725                  * and send us back for another loop through the enospc flushing
 726                  * code.
 727                  */
 728                 if (first_ticket_bytes == 0)
 729                         first_ticket_bytes = ticket->bytes;
 730                 else if (first_ticket_bytes > ticket->bytes)
 731                         return true;
 732 
 733                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 734                         btrfs_info(fs_info, "failing ticket with %llu bytes",
 735                                    ticket->bytes);
 736 
 737                 list_del_init(&ticket->list);
 738                 ticket->error = -ENOSPC;
 739                 wake_up(&ticket->wait);
 740 
 741                 /*
 742                  * We're just throwing tickets away, so more flushing may not
 743                  * trip over btrfs_try_granting_tickets, so we need to call it
 744                  * here to see if we can make progress with the next ticket in
 745                  * the list.
 746                  */
 747                 btrfs_try_granting_tickets(fs_info, space_info);
 748         }
 749         return (tickets_id != space_info->tickets_id);
 750 }
 751 
 752 /*
 753  * This is for normal flushers, we can wait all goddamned day if we want to.  We
 754  * will loop and continuously try to flush as long as we are making progress.
 755  * We count progress as clearing off tickets each time we have to loop.
 756  */
 757 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 758 {
 759         struct btrfs_fs_info *fs_info;
 760         struct btrfs_space_info *space_info;
 761         u64 to_reclaim;
 762         int flush_state;
 763         int commit_cycles = 0;
 764         u64 last_tickets_id;
 765 
 766         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 767         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 768 
 769         spin_lock(&space_info->lock);
 770         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 771                                                       false);
 772         if (!to_reclaim) {
 773                 space_info->flush = 0;
 774                 spin_unlock(&space_info->lock);
 775                 return;
 776         }
 777         last_tickets_id = space_info->tickets_id;
 778         spin_unlock(&space_info->lock);
 779 
 780         flush_state = FLUSH_DELAYED_ITEMS_NR;
 781         do {
 782                 flush_space(fs_info, space_info, to_reclaim, flush_state);
 783                 spin_lock(&space_info->lock);
 784                 if (list_empty(&space_info->tickets)) {
 785                         space_info->flush = 0;
 786                         spin_unlock(&space_info->lock);
 787                         return;
 788                 }
 789                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
 790                                                               space_info,
 791                                                               false);
 792                 if (last_tickets_id == space_info->tickets_id) {
 793                         flush_state++;
 794                 } else {
 795                         last_tickets_id = space_info->tickets_id;
 796                         flush_state = FLUSH_DELAYED_ITEMS_NR;
 797                         if (commit_cycles)
 798                                 commit_cycles--;
 799                 }
 800 
 801                 /*
 802                  * We don't want to force a chunk allocation until we've tried
 803                  * pretty hard to reclaim space.  Think of the case where we
 804                  * freed up a bunch of space and so have a lot of pinned space
 805                  * to reclaim.  We would rather use that than possibly create a
 806                  * underutilized metadata chunk.  So if this is our first run
 807                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
 808                  * commit the transaction.  If nothing has changed the next go
 809                  * around then we can force a chunk allocation.
 810                  */
 811                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
 812                         flush_state++;
 813 
 814                 if (flush_state > COMMIT_TRANS) {
 815                         commit_cycles++;
 816                         if (commit_cycles > 2) {
 817                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
 818                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
 819                                         commit_cycles--;
 820                                 } else {
 821                                         space_info->flush = 0;
 822                                 }
 823                         } else {
 824                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
 825                         }
 826                 }
 827                 spin_unlock(&space_info->lock);
 828         } while (flush_state <= COMMIT_TRANS);
 829 }
 830 
 831 void btrfs_init_async_reclaim_work(struct work_struct *work)
 832 {
 833         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 834 }
 835 
 836 static const enum btrfs_flush_state priority_flush_states[] = {
 837         FLUSH_DELAYED_ITEMS_NR,
 838         FLUSH_DELAYED_ITEMS,
 839         ALLOC_CHUNK,
 840 };
 841 
 842 static const enum btrfs_flush_state evict_flush_states[] = {
 843         FLUSH_DELAYED_ITEMS_NR,
 844         FLUSH_DELAYED_ITEMS,
 845         FLUSH_DELAYED_REFS_NR,
 846         FLUSH_DELAYED_REFS,
 847         FLUSH_DELALLOC,
 848         FLUSH_DELALLOC_WAIT,
 849         ALLOC_CHUNK,
 850         COMMIT_TRANS,
 851 };
 852 
 853 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
 854                                 struct btrfs_space_info *space_info,
 855                                 struct reserve_ticket *ticket,
 856                                 const enum btrfs_flush_state *states,
 857                                 int states_nr)
 858 {
 859         u64 to_reclaim;
 860         int flush_state;
 861 
 862         spin_lock(&space_info->lock);
 863         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 864                                                       false);
 865         if (!to_reclaim) {
 866                 spin_unlock(&space_info->lock);
 867                 return;
 868         }
 869         spin_unlock(&space_info->lock);
 870 
 871         flush_state = 0;
 872         do {
 873                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
 874                 flush_state++;
 875                 spin_lock(&space_info->lock);
 876                 if (ticket->bytes == 0) {
 877                         spin_unlock(&space_info->lock);
 878                         return;
 879                 }
 880                 spin_unlock(&space_info->lock);
 881         } while (flush_state < states_nr);
 882 }
 883 
 884 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
 885                                 struct btrfs_space_info *space_info,
 886                                 struct reserve_ticket *ticket)
 887 
 888 {
 889         DEFINE_WAIT(wait);
 890         int ret = 0;
 891 
 892         spin_lock(&space_info->lock);
 893         while (ticket->bytes > 0 && ticket->error == 0) {
 894                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
 895                 if (ret) {
 896                         /*
 897                          * Delete us from the list. After we unlock the space
 898                          * info, we don't want the async reclaim job to reserve
 899                          * space for this ticket. If that would happen, then the
 900                          * ticket's task would not known that space was reserved
 901                          * despite getting an error, resulting in a space leak
 902                          * (bytes_may_use counter of our space_info).
 903                          */
 904                         list_del_init(&ticket->list);
 905                         ticket->error = -EINTR;
 906                         break;
 907                 }
 908                 spin_unlock(&space_info->lock);
 909 
 910                 schedule();
 911 
 912                 finish_wait(&ticket->wait, &wait);
 913                 spin_lock(&space_info->lock);
 914         }
 915         spin_unlock(&space_info->lock);
 916 }
 917 
 918 /**
 919  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
 920  * @fs_info - the fs
 921  * @space_info - the space_info for the reservation
 922  * @ticket - the ticket for the reservation
 923  * @flush - how much we can flush
 924  *
 925  * This does the work of figuring out how to flush for the ticket, waiting for
 926  * the reservation, and returning the appropriate error if there is one.
 927  */
 928 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
 929                                  struct btrfs_space_info *space_info,
 930                                  struct reserve_ticket *ticket,
 931                                  enum btrfs_reserve_flush_enum flush)
 932 {
 933         int ret;
 934 
 935         switch (flush) {
 936         case BTRFS_RESERVE_FLUSH_ALL:
 937                 wait_reserve_ticket(fs_info, space_info, ticket);
 938                 break;
 939         case BTRFS_RESERVE_FLUSH_LIMIT:
 940                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
 941                                                 priority_flush_states,
 942                                                 ARRAY_SIZE(priority_flush_states));
 943                 break;
 944         case BTRFS_RESERVE_FLUSH_EVICT:
 945                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
 946                                                 evict_flush_states,
 947                                                 ARRAY_SIZE(evict_flush_states));
 948                 break;
 949         default:
 950                 ASSERT(0);
 951                 break;
 952         }
 953 
 954         spin_lock(&space_info->lock);
 955         ret = ticket->error;
 956         if (ticket->bytes || ticket->error) {
 957                 /*
 958                  * Need to delete here for priority tickets. For regular tickets
 959                  * either the async reclaim job deletes the ticket from the list
 960                  * or we delete it ourselves at wait_reserve_ticket().
 961                  */
 962                 list_del_init(&ticket->list);
 963                 if (!ret)
 964                         ret = -ENOSPC;
 965         }
 966         spin_unlock(&space_info->lock);
 967         ASSERT(list_empty(&ticket->list));
 968         /*
 969          * Check that we can't have an error set if the reservation succeeded,
 970          * as that would confuse tasks and lead them to error out without
 971          * releasing reserved space (if an error happens the expectation is that
 972          * space wasn't reserved at all).
 973          */
 974         ASSERT(!(ticket->bytes == 0 && ticket->error));
 975         return ret;
 976 }
 977 
 978 /**
 979  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 980  * @root - the root we're allocating for
 981  * @space_info - the space info we want to allocate from
 982  * @orig_bytes - the number of bytes we want
 983  * @flush - whether or not we can flush to make our reservation
 984  *
 985  * This will reserve orig_bytes number of bytes from the space info associated
 986  * with the block_rsv.  If there is not enough space it will make an attempt to
 987  * flush out space to make room.  It will do this by flushing delalloc if
 988  * possible or committing the transaction.  If flush is 0 then no attempts to
 989  * regain reservations will be made and this will fail if there is not enough
 990  * space already.
 991  */
 992 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
 993                                     struct btrfs_space_info *space_info,
 994                                     u64 orig_bytes,
 995                                     enum btrfs_reserve_flush_enum flush,
 996                                     bool system_chunk)
 997 {
 998         struct reserve_ticket ticket;
 999         u64 used;
1000         int ret = 0;
1001         bool pending_tickets;
1002 
1003         ASSERT(orig_bytes);
1004         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1005 
1006         spin_lock(&space_info->lock);
1007         ret = -ENOSPC;
1008         used = btrfs_space_info_used(space_info, true);
1009         pending_tickets = !list_empty(&space_info->tickets) ||
1010                 !list_empty(&space_info->priority_tickets);
1011 
1012         /*
1013          * Carry on if we have enough space (short-circuit) OR call
1014          * can_overcommit() to ensure we can overcommit to continue.
1015          */
1016         if (!pending_tickets &&
1017             ((used + orig_bytes <= space_info->total_bytes) ||
1018              can_overcommit(fs_info, space_info, orig_bytes, flush,
1019                            system_chunk))) {
1020                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1021                                                       orig_bytes);
1022                 ret = 0;
1023         }
1024 
1025         /*
1026          * If we couldn't make a reservation then setup our reservation ticket
1027          * and kick the async worker if it's not already running.
1028          *
1029          * If we are a priority flusher then we just need to add our ticket to
1030          * the list and we will do our own flushing further down.
1031          */
1032         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1033                 ticket.bytes = orig_bytes;
1034                 ticket.error = 0;
1035                 init_waitqueue_head(&ticket.wait);
1036                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1037                         list_add_tail(&ticket.list, &space_info->tickets);
1038                         if (!space_info->flush) {
1039                                 space_info->flush = 1;
1040                                 trace_btrfs_trigger_flush(fs_info,
1041                                                           space_info->flags,
1042                                                           orig_bytes, flush,
1043                                                           "enospc");
1044                                 queue_work(system_unbound_wq,
1045                                            &fs_info->async_reclaim_work);
1046                         }
1047                 } else {
1048                         list_add_tail(&ticket.list,
1049                                       &space_info->priority_tickets);
1050                 }
1051         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1052                 used += orig_bytes;
1053                 /*
1054                  * We will do the space reservation dance during log replay,
1055                  * which means we won't have fs_info->fs_root set, so don't do
1056                  * the async reclaim as we will panic.
1057                  */
1058                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1059                     need_do_async_reclaim(fs_info, space_info,
1060                                           used, system_chunk) &&
1061                     !work_busy(&fs_info->async_reclaim_work)) {
1062                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1063                                                   orig_bytes, flush, "preempt");
1064                         queue_work(system_unbound_wq,
1065                                    &fs_info->async_reclaim_work);
1066                 }
1067         }
1068         spin_unlock(&space_info->lock);
1069         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1070                 return ret;
1071 
1072         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1073 }
1074 
1075 /**
1076  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1077  * @root - the root we're allocating for
1078  * @block_rsv - the block_rsv we're allocating for
1079  * @orig_bytes - the number of bytes we want
1080  * @flush - whether or not we can flush to make our reservation
1081  *
1082  * This will reserve orig_bytes number of bytes from the space info associated
1083  * with the block_rsv.  If there is not enough space it will make an attempt to
1084  * flush out space to make room.  It will do this by flushing delalloc if
1085  * possible or committing the transaction.  If flush is 0 then no attempts to
1086  * regain reservations will be made and this will fail if there is not enough
1087  * space already.
1088  */
1089 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1090                                  struct btrfs_block_rsv *block_rsv,
1091                                  u64 orig_bytes,
1092                                  enum btrfs_reserve_flush_enum flush)
1093 {
1094         struct btrfs_fs_info *fs_info = root->fs_info;
1095         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1096         int ret;
1097         bool system_chunk = (root == fs_info->chunk_root);
1098 
1099         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1100                                        orig_bytes, flush, system_chunk);
1101         if (ret == -ENOSPC &&
1102             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1103                 if (block_rsv != global_rsv &&
1104                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1105                         ret = 0;
1106         }
1107         if (ret == -ENOSPC) {
1108                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1109                                               block_rsv->space_info->flags,
1110                                               orig_bytes, 1);
1111 
1112                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1113                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1114                                               orig_bytes, 0);
1115         }
1116         return ret;
1117 }

/* [<][>][^][v][top][bottom][index][help] */