1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * linux/fs/hpfs/hpfs.h 4 * 5 * HPFS structures by Chris Smith, 1993 6 * 7 * a little bit modified by Mikulas Patocka, 1998-1999 8 */ 9 10 /* The paper 11 12 Duncan, Roy 13 Design goals and implementation of the new High Performance File System 14 Microsoft Systems Journal Sept 1989 v4 n5 p1(13) 15 16 describes what HPFS looked like when it was new, and it is the source 17 of most of the information given here. The rest is conjecture. 18 19 For definitive information on the Duncan paper, see it, not this file. 20 For definitive information on HPFS, ask somebody else -- this is guesswork. 21 There are certain to be many mistakes. */ 22 23 #if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN) 24 #error unknown endian 25 #endif 26 27 /* Notation */ 28 29 typedef u32 secno; /* sector number, partition relative */ 30 31 typedef secno dnode_secno; /* sector number of a dnode */ 32 typedef secno fnode_secno; /* sector number of an fnode */ 33 typedef secno anode_secno; /* sector number of an anode */ 34 35 typedef u32 time32_t; /* 32-bit time_t type */ 36 37 /* sector 0 */ 38 39 /* The boot block is very like a FAT boot block, except that the 40 29h signature byte is 28h instead, and the ID string is "HPFS". */ 41 42 #define BB_MAGIC 0xaa55 43 44 struct hpfs_boot_block 45 { 46 u8 jmp[3]; 47 u8 oem_id[8]; 48 u8 bytes_per_sector[2]; /* 512 */ 49 u8 sectors_per_cluster; 50 u8 n_reserved_sectors[2]; 51 u8 n_fats; 52 u8 n_rootdir_entries[2]; 53 u8 n_sectors_s[2]; 54 u8 media_byte; 55 __le16 sectors_per_fat; 56 __le16 sectors_per_track; 57 __le16 heads_per_cyl; 58 __le32 n_hidden_sectors; 59 __le32 n_sectors_l; /* size of partition */ 60 u8 drive_number; 61 u8 mbz; 62 u8 sig_28h; /* 28h */ 63 u8 vol_serno[4]; 64 u8 vol_label[11]; 65 u8 sig_hpfs[8]; /* "HPFS " */ 66 u8 pad[448]; 67 __le16 magic; /* aa55 */ 68 }; 69 70 71 /* sector 16 */ 72 73 /* The super block has the pointer to the root directory. */ 74 75 #define SB_MAGIC 0xf995e849 76 77 struct hpfs_super_block 78 { 79 __le32 magic; /* f995 e849 */ 80 __le32 magic1; /* fa53 e9c5, more magic? */ 81 u8 version; /* version of a filesystem usually 2 */ 82 u8 funcversion; /* functional version - oldest version 83 of filesystem that can understand 84 this disk */ 85 __le16 zero; /* 0 */ 86 __le32 root; /* fnode of root directory */ 87 __le32 n_sectors; /* size of filesystem */ 88 __le32 n_badblocks; /* number of bad blocks */ 89 __le32 bitmaps; /* pointers to free space bit maps */ 90 __le32 zero1; /* 0 */ 91 __le32 badblocks; /* bad block list */ 92 __le32 zero3; /* 0 */ 93 __le32 last_chkdsk; /* date last checked, 0 if never */ 94 __le32 last_optimize; /* date last optimized, 0 if never */ 95 __le32 n_dir_band; /* number of sectors in dir band */ 96 __le32 dir_band_start; /* first sector in dir band */ 97 __le32 dir_band_end; /* last sector in dir band */ 98 __le32 dir_band_bitmap; /* free space map, 1 dnode per bit */ 99 u8 volume_name[32]; /* not used */ 100 __le32 user_id_table; /* 8 preallocated sectors - user id */ 101 u32 zero6[103]; /* 0 */ 102 }; 103 104 105 /* sector 17 */ 106 107 /* The spare block has pointers to spare sectors. */ 108 109 #define SP_MAGIC 0xf9911849 110 111 struct hpfs_spare_block 112 { 113 __le32 magic; /* f991 1849 */ 114 __le32 magic1; /* fa52 29c5, more magic? */ 115 116 #ifdef __LITTLE_ENDIAN 117 u8 dirty: 1; /* 0 clean, 1 "improperly stopped" */ 118 u8 sparedir_used: 1; /* spare dirblks used */ 119 u8 hotfixes_used: 1; /* hotfixes used */ 120 u8 bad_sector: 1; /* bad sector, corrupted disk (???) */ 121 u8 bad_bitmap: 1; /* bad bitmap */ 122 u8 fast: 1; /* partition was fast formatted */ 123 u8 old_wrote: 1; /* old version wrote to partition */ 124 u8 old_wrote_1: 1; /* old version wrote to partition (?) */ 125 #else 126 u8 old_wrote_1: 1; /* old version wrote to partition (?) */ 127 u8 old_wrote: 1; /* old version wrote to partition */ 128 u8 fast: 1; /* partition was fast formatted */ 129 u8 bad_bitmap: 1; /* bad bitmap */ 130 u8 bad_sector: 1; /* bad sector, corrupted disk (???) */ 131 u8 hotfixes_used: 1; /* hotfixes used */ 132 u8 sparedir_used: 1; /* spare dirblks used */ 133 u8 dirty: 1; /* 0 clean, 1 "improperly stopped" */ 134 #endif 135 136 #ifdef __LITTLE_ENDIAN 137 u8 install_dasd_limits: 1; /* HPFS386 flags */ 138 u8 resynch_dasd_limits: 1; 139 u8 dasd_limits_operational: 1; 140 u8 multimedia_active: 1; 141 u8 dce_acls_active: 1; 142 u8 dasd_limits_dirty: 1; 143 u8 flag67: 2; 144 #else 145 u8 flag67: 2; 146 u8 dasd_limits_dirty: 1; 147 u8 dce_acls_active: 1; 148 u8 multimedia_active: 1; 149 u8 dasd_limits_operational: 1; 150 u8 resynch_dasd_limits: 1; 151 u8 install_dasd_limits: 1; /* HPFS386 flags */ 152 #endif 153 154 u8 mm_contlgulty; 155 u8 unused; 156 157 __le32 hotfix_map; /* info about remapped bad sectors */ 158 __le32 n_spares_used; /* number of hotfixes */ 159 __le32 n_spares; /* number of spares in hotfix map */ 160 __le32 n_dnode_spares_free; /* spare dnodes unused */ 161 __le32 n_dnode_spares; /* length of spare_dnodes[] list, 162 follows in this block*/ 163 __le32 code_page_dir; /* code page directory block */ 164 __le32 n_code_pages; /* number of code pages */ 165 __le32 super_crc; /* on HPFS386 and LAN Server this is 166 checksum of superblock, on normal 167 OS/2 unused */ 168 __le32 spare_crc; /* on HPFS386 checksum of spareblock */ 169 __le32 zero1[15]; /* unused */ 170 __le32 spare_dnodes[100]; /* emergency free dnode list */ 171 __le32 zero2[1]; /* room for more? */ 172 }; 173 174 /* The bad block list is 4 sectors long. The first word must be zero, 175 the remaining words give n_badblocks bad block numbers. 176 I bet you can see it coming... */ 177 178 #define BAD_MAGIC 0 179 180 /* The hotfix map is 4 sectors long. It looks like 181 182 secno from[n_spares]; 183 secno to[n_spares]; 184 185 The to[] list is initialized to point to n_spares preallocated empty 186 sectors. The from[] list contains the sector numbers of bad blocks 187 which have been remapped to corresponding sectors in the to[] list. 188 n_spares_used gives the length of the from[] list. */ 189 190 191 /* Sectors 18 and 19 are preallocated and unused. 192 Maybe they're spares for 16 and 17, but simple substitution fails. */ 193 194 195 /* The code page info pointed to by the spare block consists of an index 196 block and blocks containing uppercasing tables. I don't know what 197 these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them 198 itself. Linux doesn't use them either. */ 199 200 /* block pointed to by spareblock->code_page_dir */ 201 202 #define CP_DIR_MAGIC 0x494521f7 203 204 struct code_page_directory 205 { 206 __le32 magic; /* 4945 21f7 */ 207 __le32 n_code_pages; /* number of pointers following */ 208 __le32 zero1[2]; 209 struct { 210 __le16 ix; /* index */ 211 __le16 code_page_number; /* code page number */ 212 __le32 bounds; /* matches corresponding word 213 in data block */ 214 __le32 code_page_data; /* sector number of a code_page_data 215 containing c.p. array */ 216 __le16 index; /* index in c.p. array in that sector*/ 217 __le16 unknown; /* some unknown value; usually 0; 218 2 in Japanese version */ 219 } array[31]; /* unknown length */ 220 }; 221 222 /* blocks pointed to by code_page_directory */ 223 224 #define CP_DATA_MAGIC 0x894521f7 225 226 struct code_page_data 227 { 228 __le32 magic; /* 8945 21f7 */ 229 __le32 n_used; /* # elements used in c_p_data[] */ 230 __le32 bounds[3]; /* looks a bit like 231 (beg1,end1), (beg2,end2) 232 one byte each */ 233 __le16 offs[3]; /* offsets from start of sector 234 to start of c_p_data[ix] */ 235 struct { 236 __le16 ix; /* index */ 237 __le16 code_page_number; /* code page number */ 238 __le16 unknown; /* the same as in cp directory */ 239 u8 map[128]; /* upcase table for chars 80..ff */ 240 __le16 zero2; 241 } code_page[3]; 242 u8 incognita[78]; 243 }; 244 245 246 /* Free space bitmaps are 4 sectors long, which is 16384 bits. 247 16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap. 248 Bit order in the maps is little-endian. 0 means taken, 1 means free. 249 250 Bit map sectors are marked allocated in the bit maps, and so are sectors 251 off the end of the partition. 252 253 Band 0 is sectors 0-3fff, its map is in sectors 18-1b. 254 Band 1 is 4000-7fff, its map is in 7ffc-7fff. 255 Band 2 is 8000-ffff, its map is in 8000-8003. 256 The remaining bands have maps in their first (even) or last (odd) 4 sectors 257 -- if the last, partial, band is odd its map is in its last 4 sectors. 258 259 The bitmap locations are given in a table pointed to by the super block. 260 No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is 261 just where they usually are. 262 263 The "directory band" is a bunch of sectors preallocated for dnodes. 264 It has a 4-sector free space bitmap of its own. Each bit in the map 265 corresponds to one 4-sector dnode, bit 0 of the map corresponding to 266 the first 4 sectors of the directory band. The entire band is marked 267 allocated in the main bitmap. The super block gives the locations 268 of the directory band and its bitmap. ("band" doesn't mean it is 269 8 meg long; it isn't.) */ 270 271 272 /* dnode: directory. 4 sectors long */ 273 274 /* A directory is a tree of dnodes. The fnode for a directory 275 contains one pointer, to the root dnode of the tree. The fnode 276 never moves, the dnodes do the B-tree thing, splitting and merging 277 as files are added and removed. */ 278 279 #define DNODE_MAGIC 0x77e40aae 280 281 struct dnode { 282 __le32 magic; /* 77e4 0aae */ 283 __le32 first_free; /* offset from start of dnode to 284 first free dir entry */ 285 #ifdef __LITTLE_ENDIAN 286 u8 root_dnode: 1; /* Is it root dnode? */ 287 u8 increment_me: 7; /* some kind of activity counter? */ 288 /* Neither HPFS.IFS nor CHKDSK cares 289 if you change this word */ 290 #else 291 u8 increment_me: 7; /* some kind of activity counter? */ 292 /* Neither HPFS.IFS nor CHKDSK cares 293 if you change this word */ 294 u8 root_dnode: 1; /* Is it root dnode? */ 295 #endif 296 u8 increment_me2[3]; 297 __le32 up; /* (root dnode) directory's fnode 298 (nonroot) parent dnode */ 299 __le32 self; /* pointer to this dnode */ 300 u8 dirent[2028]; /* one or more dirents */ 301 }; 302 303 struct hpfs_dirent { 304 __le16 length; /* offset to next dirent */ 305 306 #ifdef __LITTLE_ENDIAN 307 u8 first: 1; /* set on phony ^A^A (".") entry */ 308 u8 has_acl: 1; 309 u8 down: 1; /* down pointer present (after name) */ 310 u8 last: 1; /* set on phony \377 entry */ 311 u8 has_ea: 1; /* entry has EA */ 312 u8 has_xtd_perm: 1; /* has extended perm list (???) */ 313 u8 has_explicit_acl: 1; 314 u8 has_needea: 1; /* ?? some EA has NEEDEA set 315 I have no idea why this is 316 interesting in a dir entry */ 317 #else 318 u8 has_needea: 1; /* ?? some EA has NEEDEA set 319 I have no idea why this is 320 interesting in a dir entry */ 321 u8 has_explicit_acl: 1; 322 u8 has_xtd_perm: 1; /* has extended perm list (???) */ 323 u8 has_ea: 1; /* entry has EA */ 324 u8 last: 1; /* set on phony \377 entry */ 325 u8 down: 1; /* down pointer present (after name) */ 326 u8 has_acl: 1; 327 u8 first: 1; /* set on phony ^A^A (".") entry */ 328 #endif 329 330 #ifdef __LITTLE_ENDIAN 331 u8 read_only: 1; /* dos attrib */ 332 u8 hidden: 1; /* dos attrib */ 333 u8 system: 1; /* dos attrib */ 334 u8 flag11: 1; /* would be volume label dos attrib */ 335 u8 directory: 1; /* dos attrib */ 336 u8 archive: 1; /* dos attrib */ 337 u8 not_8x3: 1; /* name is not 8.3 */ 338 u8 flag15: 1; 339 #else 340 u8 flag15: 1; 341 u8 not_8x3: 1; /* name is not 8.3 */ 342 u8 archive: 1; /* dos attrib */ 343 u8 directory: 1; /* dos attrib */ 344 u8 flag11: 1; /* would be volume label dos attrib */ 345 u8 system: 1; /* dos attrib */ 346 u8 hidden: 1; /* dos attrib */ 347 u8 read_only: 1; /* dos attrib */ 348 #endif 349 350 __le32 fnode; /* fnode giving allocation info */ 351 __le32 write_date; /* mtime */ 352 __le32 file_size; /* file length, bytes */ 353 __le32 read_date; /* atime */ 354 __le32 creation_date; /* ctime */ 355 __le32 ea_size; /* total EA length, bytes */ 356 u8 no_of_acls; /* number of ACL's (low 3 bits) */ 357 u8 ix; /* code page index (of filename), see 358 struct code_page_data */ 359 u8 namelen, name[1]; /* file name */ 360 /* dnode_secno down; btree down pointer, if present, 361 follows name on next word boundary, or maybe it 362 precedes next dirent, which is on a word boundary. */ 363 }; 364 365 366 /* B+ tree: allocation info in fnodes and anodes */ 367 368 /* dnodes point to fnodes which are responsible for listing the sectors 369 assigned to the file. This is done with trees of (length,address) 370 pairs. (Actually triples, of (length, file-address, disk-address) 371 which can represent holes. Find out if HPFS does that.) 372 At any rate, fnodes contain a small tree; if subtrees are needed 373 they occupy essentially a full block in anodes. A leaf-level tree node 374 has 3-word entries giving sector runs, a non-leaf node has 2-word 375 entries giving subtree pointers. A flag in the header says which. */ 376 377 struct bplus_leaf_node 378 { 379 __le32 file_secno; /* first file sector in extent */ 380 __le32 length; /* length, sectors */ 381 __le32 disk_secno; /* first corresponding disk sector */ 382 }; 383 384 struct bplus_internal_node 385 { 386 __le32 file_secno; /* subtree maps sectors < this */ 387 __le32 down; /* pointer to subtree */ 388 }; 389 390 enum { 391 BP_hbff = 1, 392 BP_fnode_parent = 0x20, 393 BP_binary_search = 0x40, 394 BP_internal = 0x80 395 }; 396 struct bplus_header 397 { 398 u8 flags; /* bit 0 - high bit of first free entry offset 399 bit 5 - we're pointed to by an fnode, 400 the data btree or some ea or the 401 main ea bootage pointer ea_secno 402 bit 6 - suggest binary search (unused) 403 bit 7 - 1 -> (internal) tree of anodes 404 0 -> (leaf) list of extents */ 405 u8 fill[3]; 406 u8 n_free_nodes; /* free nodes in following array */ 407 u8 n_used_nodes; /* used nodes in following array */ 408 __le16 first_free; /* offset from start of header to 409 first free node in array */ 410 union { 411 struct bplus_internal_node internal[0]; /* (internal) 2-word entries giving 412 subtree pointers */ 413 struct bplus_leaf_node external[0]; /* (external) 3-word entries giving 414 sector runs */ 415 } u; 416 }; 417 418 static inline bool bp_internal(struct bplus_header *bp) 419 { 420 return bp->flags & BP_internal; 421 } 422 423 static inline bool bp_fnode_parent(struct bplus_header *bp) 424 { 425 return bp->flags & BP_fnode_parent; 426 } 427 428 /* fnode: root of allocation b+ tree, and EA's */ 429 430 /* Every file and every directory has one fnode, pointed to by the directory 431 entry and pointing to the file's sectors or directory's root dnode. EA's 432 are also stored here, and there are said to be ACL's somewhere here too. */ 433 434 #define FNODE_MAGIC 0xf7e40aae 435 436 enum {FNODE_anode = cpu_to_le16(2), FNODE_dir = cpu_to_le16(256)}; 437 struct fnode 438 { 439 __le32 magic; /* f7e4 0aae */ 440 __le32 zero1[2]; /* read history */ 441 u8 len, name[15]; /* true length, truncated name */ 442 __le32 up; /* pointer to file's directory fnode */ 443 __le32 acl_size_l; 444 __le32 acl_secno; 445 __le16 acl_size_s; 446 u8 acl_anode; 447 u8 zero2; /* history bit count */ 448 __le32 ea_size_l; /* length of disk-resident ea's */ 449 __le32 ea_secno; /* first sector of disk-resident ea's*/ 450 __le16 ea_size_s; /* length of fnode-resident ea's */ 451 452 __le16 flags; /* bit 1 set -> ea_secno is an anode */ 453 /* bit 8 set -> directory. first & only extent 454 points to dnode. */ 455 struct bplus_header btree; /* b+ tree, 8 extents or 12 subtrees */ 456 union { 457 struct bplus_leaf_node external[8]; 458 struct bplus_internal_node internal[12]; 459 } u; 460 461 __le32 file_size; /* file length, bytes */ 462 __le32 n_needea; /* number of EA's with NEEDEA set */ 463 u8 user_id[16]; /* unused */ 464 __le16 ea_offs; /* offset from start of fnode 465 to first fnode-resident ea */ 466 u8 dasd_limit_treshhold; 467 u8 dasd_limit_delta; 468 __le32 dasd_limit; 469 __le32 dasd_usage; 470 u8 ea[316]; /* zero or more EA's, packed together 471 with no alignment padding. 472 (Do not use this name, get here 473 via fnode + ea_offs. I think.) */ 474 }; 475 476 static inline bool fnode_in_anode(struct fnode *p) 477 { 478 return (p->flags & FNODE_anode) != 0; 479 } 480 481 static inline bool fnode_is_dir(struct fnode *p) 482 { 483 return (p->flags & FNODE_dir) != 0; 484 } 485 486 487 /* anode: 99.44% pure allocation tree */ 488 489 #define ANODE_MAGIC 0x37e40aae 490 491 struct anode 492 { 493 __le32 magic; /* 37e4 0aae */ 494 __le32 self; /* pointer to this anode */ 495 __le32 up; /* parent anode or fnode */ 496 497 struct bplus_header btree; /* b+tree, 40 extents or 60 subtrees */ 498 union { 499 struct bplus_leaf_node external[40]; 500 struct bplus_internal_node internal[60]; 501 } u; 502 503 __le32 fill[3]; /* unused */ 504 }; 505 506 507 /* extended attributes. 508 509 A file's EA info is stored as a list of (name,value) pairs. It is 510 usually in the fnode, but (if it's large) it is moved to a single 511 sector run outside the fnode, or to multiple runs with an anode tree 512 that points to them. 513 514 The value of a single EA is stored along with the name, or (if large) 515 it is moved to a single sector run, or multiple runs pointed to by an 516 anode tree, pointed to by the value field of the (name,value) pair. 517 518 Flags in the EA tell whether the value is immediate, in a single sector 519 run, or in multiple runs. Flags in the fnode tell whether the EA list 520 is immediate, in a single run, or in multiple runs. */ 521 522 enum {EA_indirect = 1, EA_anode = 2, EA_needea = 128 }; 523 struct extended_attribute 524 { 525 u8 flags; /* bit 0 set -> value gives sector number 526 where real value starts */ 527 /* bit 1 set -> sector is an anode 528 that points to fragmented value */ 529 /* bit 7 set -> required ea */ 530 u8 namelen; /* length of name, bytes */ 531 u8 valuelen_lo; /* length of value, bytes */ 532 u8 valuelen_hi; /* length of value, bytes */ 533 u8 name[]; 534 /* 535 u8 name[namelen]; ascii attrib name 536 u8 nul; terminating '\0', not counted 537 u8 value[valuelen]; value, arbitrary 538 if this.flags & 1, valuelen is 8 and the value is 539 u32 length; real length of value, bytes 540 secno secno; sector address where it starts 541 if this.anode, the above sector number is the root of an anode tree 542 which points to the value. 543 */ 544 }; 545 546 static inline bool ea_indirect(struct extended_attribute *ea) 547 { 548 return ea->flags & EA_indirect; 549 } 550 551 static inline bool ea_in_anode(struct extended_attribute *ea) 552 { 553 return ea->flags & EA_anode; 554 } 555 556 /* 557 Local Variables: 558 comment-column: 40 559 End: 560 */