root/fs/f2fs/node.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. f2fs_check_nid_range
  2. f2fs_available_free_memory
  3. clear_node_page_dirty
  4. get_current_nat_page
  5. get_next_nat_page
  6. __alloc_nat_entry
  7. __free_nat_entry
  8. __init_nat_entry
  9. __lookup_nat_cache
  10. __gang_lookup_nat_cache
  11. __del_from_nat_cache
  12. __grab_nat_entry_set
  13. __set_nat_cache_dirty
  14. __clear_nat_cache_dirty
  15. __gang_lookup_nat_set
  16. f2fs_in_warm_node_list
  17. f2fs_init_fsync_node_info
  18. f2fs_add_fsync_node_entry
  19. f2fs_del_fsync_node_entry
  20. f2fs_reset_fsync_node_info
  21. f2fs_need_dentry_mark
  22. f2fs_is_checkpointed_node
  23. f2fs_need_inode_block_update
  24. cache_nat_entry
  25. set_node_addr
  26. f2fs_try_to_free_nats
  27. f2fs_get_node_info
  28. f2fs_ra_node_pages
  29. f2fs_get_next_page_offset
  30. get_node_path
  31. f2fs_get_dnode_of_data
  32. truncate_node
  33. truncate_dnode
  34. truncate_nodes
  35. truncate_partial_nodes
  36. f2fs_truncate_inode_blocks
  37. f2fs_truncate_xattr_node
  38. f2fs_remove_inode_page
  39. f2fs_new_inode_page
  40. f2fs_new_node_page
  41. read_node_page
  42. f2fs_ra_node_page
  43. __get_node_page
  44. f2fs_get_node_page
  45. f2fs_get_node_page_ra
  46. flush_inline_data
  47. last_fsync_dnode
  48. __write_node_page
  49. f2fs_move_node_page
  50. f2fs_write_node_page
  51. f2fs_fsync_node_pages
  52. f2fs_match_ino
  53. flush_dirty_inode
  54. f2fs_sync_node_pages
  55. f2fs_wait_on_node_pages_writeback
  56. f2fs_write_node_pages
  57. f2fs_set_node_page_dirty
  58. __lookup_free_nid_list
  59. __insert_free_nid
  60. __remove_free_nid
  61. __move_free_nid
  62. update_free_nid_bitmap
  63. add_free_nid
  64. remove_free_nid
  65. scan_nat_page
  66. scan_curseg_cache
  67. scan_free_nid_bits
  68. __f2fs_build_free_nids
  69. f2fs_build_free_nids
  70. f2fs_alloc_nid
  71. f2fs_alloc_nid_done
  72. f2fs_alloc_nid_failed
  73. f2fs_try_to_free_nids
  74. f2fs_recover_inline_xattr
  75. f2fs_recover_xattr_data
  76. f2fs_recover_inode_page
  77. f2fs_restore_node_summary
  78. remove_nats_in_journal
  79. __adjust_nat_entry_set
  80. __update_nat_bits
  81. __flush_nat_entry_set
  82. f2fs_flush_nat_entries
  83. __get_nat_bitmaps
  84. load_free_nid_bitmap
  85. init_node_manager
  86. init_free_nid_cache
  87. f2fs_build_node_manager
  88. f2fs_destroy_node_manager
  89. f2fs_create_node_manager_caches
  90. f2fs_destroy_node_manager_caches

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * fs/f2fs/node.c
   4  *
   5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6  *             http://www.samsung.com/
   7  */
   8 #include <linux/fs.h>
   9 #include <linux/f2fs_fs.h>
  10 #include <linux/mpage.h>
  11 #include <linux/backing-dev.h>
  12 #include <linux/blkdev.h>
  13 #include <linux/pagevec.h>
  14 #include <linux/swap.h>
  15 
  16 #include "f2fs.h"
  17 #include "node.h"
  18 #include "segment.h"
  19 #include "xattr.h"
  20 #include "trace.h"
  21 #include <trace/events/f2fs.h>
  22 
  23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24 
  25 static struct kmem_cache *nat_entry_slab;
  26 static struct kmem_cache *free_nid_slab;
  27 static struct kmem_cache *nat_entry_set_slab;
  28 static struct kmem_cache *fsync_node_entry_slab;
  29 
  30 /*
  31  * Check whether the given nid is within node id range.
  32  */
  33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34 {
  35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
  37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38                           __func__, nid);
  39                 return -EFSCORRUPTED;
  40         }
  41         return 0;
  42 }
  43 
  44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45 {
  46         struct f2fs_nm_info *nm_i = NM_I(sbi);
  47         struct sysinfo val;
  48         unsigned long avail_ram;
  49         unsigned long mem_size = 0;
  50         bool res = false;
  51 
  52         si_meminfo(&val);
  53 
  54         /* only uses low memory */
  55         avail_ram = val.totalram - val.totalhigh;
  56 
  57         /*
  58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  59          */
  60         if (type == FREE_NIDS) {
  61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
  62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
  63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64         } else if (type == NAT_ENTRIES) {
  65                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  66                                                         PAGE_SHIFT;
  67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68                 if (excess_cached_nats(sbi))
  69                         res = false;
  70         } else if (type == DIRTY_DENTS) {
  71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
  72                         return false;
  73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75         } else if (type == INO_ENTRIES) {
  76                 int i;
  77 
  78                 for (i = 0; i < MAX_INO_ENTRY; i++)
  79                         mem_size += sbi->im[i].ino_num *
  80                                                 sizeof(struct ino_entry);
  81                 mem_size >>= PAGE_SHIFT;
  82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  83         } else if (type == EXTENT_CACHE) {
  84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
  85                                 sizeof(struct extent_tree) +
  86                                 atomic_read(&sbi->total_ext_node) *
  87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
  88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  89         } else if (type == INMEM_PAGES) {
  90                 /* it allows 20% / total_ram for inmemory pages */
  91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  92                 res = mem_size < (val.totalram / 5);
  93         } else {
  94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  95                         return true;
  96         }
  97         return res;
  98 }
  99 
 100 static void clear_node_page_dirty(struct page *page)
 101 {
 102         if (PageDirty(page)) {
 103                 f2fs_clear_page_cache_dirty_tag(page);
 104                 clear_page_dirty_for_io(page);
 105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 106         }
 107         ClearPageUptodate(page);
 108 }
 109 
 110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 111 {
 112         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
 113 }
 114 
 115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 116 {
 117         struct page *src_page;
 118         struct page *dst_page;
 119         pgoff_t dst_off;
 120         void *src_addr;
 121         void *dst_addr;
 122         struct f2fs_nm_info *nm_i = NM_I(sbi);
 123 
 124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 125 
 126         /* get current nat block page with lock */
 127         src_page = get_current_nat_page(sbi, nid);
 128         if (IS_ERR(src_page))
 129                 return src_page;
 130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
 131         f2fs_bug_on(sbi, PageDirty(src_page));
 132 
 133         src_addr = page_address(src_page);
 134         dst_addr = page_address(dst_page);
 135         memcpy(dst_addr, src_addr, PAGE_SIZE);
 136         set_page_dirty(dst_page);
 137         f2fs_put_page(src_page, 1);
 138 
 139         set_to_next_nat(nm_i, nid);
 140 
 141         return dst_page;
 142 }
 143 
 144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 145 {
 146         struct nat_entry *new;
 147 
 148         if (no_fail)
 149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 150         else
 151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 152         if (new) {
 153                 nat_set_nid(new, nid);
 154                 nat_reset_flag(new);
 155         }
 156         return new;
 157 }
 158 
 159 static void __free_nat_entry(struct nat_entry *e)
 160 {
 161         kmem_cache_free(nat_entry_slab, e);
 162 }
 163 
 164 /* must be locked by nat_tree_lock */
 165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 167 {
 168         if (no_fail)
 169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 171                 return NULL;
 172 
 173         if (raw_ne)
 174                 node_info_from_raw_nat(&ne->ni, raw_ne);
 175 
 176         spin_lock(&nm_i->nat_list_lock);
 177         list_add_tail(&ne->list, &nm_i->nat_entries);
 178         spin_unlock(&nm_i->nat_list_lock);
 179 
 180         nm_i->nat_cnt++;
 181         return ne;
 182 }
 183 
 184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185 {
 186         struct nat_entry *ne;
 187 
 188         ne = radix_tree_lookup(&nm_i->nat_root, n);
 189 
 190         /* for recent accessed nat entry, move it to tail of lru list */
 191         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 192                 spin_lock(&nm_i->nat_list_lock);
 193                 if (!list_empty(&ne->list))
 194                         list_move_tail(&ne->list, &nm_i->nat_entries);
 195                 spin_unlock(&nm_i->nat_list_lock);
 196         }
 197 
 198         return ne;
 199 }
 200 
 201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 202                 nid_t start, unsigned int nr, struct nat_entry **ep)
 203 {
 204         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 205 }
 206 
 207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 208 {
 209         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 210         nm_i->nat_cnt--;
 211         __free_nat_entry(e);
 212 }
 213 
 214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 215                                                         struct nat_entry *ne)
 216 {
 217         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 218         struct nat_entry_set *head;
 219 
 220         head = radix_tree_lookup(&nm_i->nat_set_root, set);
 221         if (!head) {
 222                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 223 
 224                 INIT_LIST_HEAD(&head->entry_list);
 225                 INIT_LIST_HEAD(&head->set_list);
 226                 head->set = set;
 227                 head->entry_cnt = 0;
 228                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 229         }
 230         return head;
 231 }
 232 
 233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 234                                                 struct nat_entry *ne)
 235 {
 236         struct nat_entry_set *head;
 237         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 238 
 239         if (!new_ne)
 240                 head = __grab_nat_entry_set(nm_i, ne);
 241 
 242         /*
 243          * update entry_cnt in below condition:
 244          * 1. update NEW_ADDR to valid block address;
 245          * 2. update old block address to new one;
 246          */
 247         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 248                                 !get_nat_flag(ne, IS_DIRTY)))
 249                 head->entry_cnt++;
 250 
 251         set_nat_flag(ne, IS_PREALLOC, new_ne);
 252 
 253         if (get_nat_flag(ne, IS_DIRTY))
 254                 goto refresh_list;
 255 
 256         nm_i->dirty_nat_cnt++;
 257         set_nat_flag(ne, IS_DIRTY, true);
 258 refresh_list:
 259         spin_lock(&nm_i->nat_list_lock);
 260         if (new_ne)
 261                 list_del_init(&ne->list);
 262         else
 263                 list_move_tail(&ne->list, &head->entry_list);
 264         spin_unlock(&nm_i->nat_list_lock);
 265 }
 266 
 267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 268                 struct nat_entry_set *set, struct nat_entry *ne)
 269 {
 270         spin_lock(&nm_i->nat_list_lock);
 271         list_move_tail(&ne->list, &nm_i->nat_entries);
 272         spin_unlock(&nm_i->nat_list_lock);
 273 
 274         set_nat_flag(ne, IS_DIRTY, false);
 275         set->entry_cnt--;
 276         nm_i->dirty_nat_cnt--;
 277 }
 278 
 279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 280                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
 281 {
 282         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 283                                                         start, nr);
 284 }
 285 
 286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 287 {
 288         return NODE_MAPPING(sbi) == page->mapping &&
 289                         IS_DNODE(page) && is_cold_node(page);
 290 }
 291 
 292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 293 {
 294         spin_lock_init(&sbi->fsync_node_lock);
 295         INIT_LIST_HEAD(&sbi->fsync_node_list);
 296         sbi->fsync_seg_id = 0;
 297         sbi->fsync_node_num = 0;
 298 }
 299 
 300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 301                                                         struct page *page)
 302 {
 303         struct fsync_node_entry *fn;
 304         unsigned long flags;
 305         unsigned int seq_id;
 306 
 307         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
 308 
 309         get_page(page);
 310         fn->page = page;
 311         INIT_LIST_HEAD(&fn->list);
 312 
 313         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 314         list_add_tail(&fn->list, &sbi->fsync_node_list);
 315         fn->seq_id = sbi->fsync_seg_id++;
 316         seq_id = fn->seq_id;
 317         sbi->fsync_node_num++;
 318         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 319 
 320         return seq_id;
 321 }
 322 
 323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 324 {
 325         struct fsync_node_entry *fn;
 326         unsigned long flags;
 327 
 328         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 329         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 330                 if (fn->page == page) {
 331                         list_del(&fn->list);
 332                         sbi->fsync_node_num--;
 333                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 334                         kmem_cache_free(fsync_node_entry_slab, fn);
 335                         put_page(page);
 336                         return;
 337                 }
 338         }
 339         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 340         f2fs_bug_on(sbi, 1);
 341 }
 342 
 343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 344 {
 345         unsigned long flags;
 346 
 347         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 348         sbi->fsync_seg_id = 0;
 349         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 350 }
 351 
 352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 353 {
 354         struct f2fs_nm_info *nm_i = NM_I(sbi);
 355         struct nat_entry *e;
 356         bool need = false;
 357 
 358         down_read(&nm_i->nat_tree_lock);
 359         e = __lookup_nat_cache(nm_i, nid);
 360         if (e) {
 361                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 362                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
 363                         need = true;
 364         }
 365         up_read(&nm_i->nat_tree_lock);
 366         return need;
 367 }
 368 
 369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 370 {
 371         struct f2fs_nm_info *nm_i = NM_I(sbi);
 372         struct nat_entry *e;
 373         bool is_cp = true;
 374 
 375         down_read(&nm_i->nat_tree_lock);
 376         e = __lookup_nat_cache(nm_i, nid);
 377         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 378                 is_cp = false;
 379         up_read(&nm_i->nat_tree_lock);
 380         return is_cp;
 381 }
 382 
 383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 384 {
 385         struct f2fs_nm_info *nm_i = NM_I(sbi);
 386         struct nat_entry *e;
 387         bool need_update = true;
 388 
 389         down_read(&nm_i->nat_tree_lock);
 390         e = __lookup_nat_cache(nm_i, ino);
 391         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 392                         (get_nat_flag(e, IS_CHECKPOINTED) ||
 393                          get_nat_flag(e, HAS_FSYNCED_INODE)))
 394                 need_update = false;
 395         up_read(&nm_i->nat_tree_lock);
 396         return need_update;
 397 }
 398 
 399 /* must be locked by nat_tree_lock */
 400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 401                                                 struct f2fs_nat_entry *ne)
 402 {
 403         struct f2fs_nm_info *nm_i = NM_I(sbi);
 404         struct nat_entry *new, *e;
 405 
 406         new = __alloc_nat_entry(nid, false);
 407         if (!new)
 408                 return;
 409 
 410         down_write(&nm_i->nat_tree_lock);
 411         e = __lookup_nat_cache(nm_i, nid);
 412         if (!e)
 413                 e = __init_nat_entry(nm_i, new, ne, false);
 414         else
 415                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 416                                 nat_get_blkaddr(e) !=
 417                                         le32_to_cpu(ne->block_addr) ||
 418                                 nat_get_version(e) != ne->version);
 419         up_write(&nm_i->nat_tree_lock);
 420         if (e != new)
 421                 __free_nat_entry(new);
 422 }
 423 
 424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 425                         block_t new_blkaddr, bool fsync_done)
 426 {
 427         struct f2fs_nm_info *nm_i = NM_I(sbi);
 428         struct nat_entry *e;
 429         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 430 
 431         down_write(&nm_i->nat_tree_lock);
 432         e = __lookup_nat_cache(nm_i, ni->nid);
 433         if (!e) {
 434                 e = __init_nat_entry(nm_i, new, NULL, true);
 435                 copy_node_info(&e->ni, ni);
 436                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 437         } else if (new_blkaddr == NEW_ADDR) {
 438                 /*
 439                  * when nid is reallocated,
 440                  * previous nat entry can be remained in nat cache.
 441                  * So, reinitialize it with new information.
 442                  */
 443                 copy_node_info(&e->ni, ni);
 444                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 445         }
 446         /* let's free early to reduce memory consumption */
 447         if (e != new)
 448                 __free_nat_entry(new);
 449 
 450         /* sanity check */
 451         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 452         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 453                         new_blkaddr == NULL_ADDR);
 454         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 455                         new_blkaddr == NEW_ADDR);
 456         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 457                         new_blkaddr == NEW_ADDR);
 458 
 459         /* increment version no as node is removed */
 460         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 461                 unsigned char version = nat_get_version(e);
 462                 nat_set_version(e, inc_node_version(version));
 463         }
 464 
 465         /* change address */
 466         nat_set_blkaddr(e, new_blkaddr);
 467         if (!__is_valid_data_blkaddr(new_blkaddr))
 468                 set_nat_flag(e, IS_CHECKPOINTED, false);
 469         __set_nat_cache_dirty(nm_i, e);
 470 
 471         /* update fsync_mark if its inode nat entry is still alive */
 472         if (ni->nid != ni->ino)
 473                 e = __lookup_nat_cache(nm_i, ni->ino);
 474         if (e) {
 475                 if (fsync_done && ni->nid == ni->ino)
 476                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
 477                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 478         }
 479         up_write(&nm_i->nat_tree_lock);
 480 }
 481 
 482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 483 {
 484         struct f2fs_nm_info *nm_i = NM_I(sbi);
 485         int nr = nr_shrink;
 486 
 487         if (!down_write_trylock(&nm_i->nat_tree_lock))
 488                 return 0;
 489 
 490         spin_lock(&nm_i->nat_list_lock);
 491         while (nr_shrink) {
 492                 struct nat_entry *ne;
 493 
 494                 if (list_empty(&nm_i->nat_entries))
 495                         break;
 496 
 497                 ne = list_first_entry(&nm_i->nat_entries,
 498                                         struct nat_entry, list);
 499                 list_del(&ne->list);
 500                 spin_unlock(&nm_i->nat_list_lock);
 501 
 502                 __del_from_nat_cache(nm_i, ne);
 503                 nr_shrink--;
 504 
 505                 spin_lock(&nm_i->nat_list_lock);
 506         }
 507         spin_unlock(&nm_i->nat_list_lock);
 508 
 509         up_write(&nm_i->nat_tree_lock);
 510         return nr - nr_shrink;
 511 }
 512 
 513 /*
 514  * This function always returns success
 515  */
 516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 517                                                 struct node_info *ni)
 518 {
 519         struct f2fs_nm_info *nm_i = NM_I(sbi);
 520         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 521         struct f2fs_journal *journal = curseg->journal;
 522         nid_t start_nid = START_NID(nid);
 523         struct f2fs_nat_block *nat_blk;
 524         struct page *page = NULL;
 525         struct f2fs_nat_entry ne;
 526         struct nat_entry *e;
 527         pgoff_t index;
 528         block_t blkaddr;
 529         int i;
 530 
 531         ni->nid = nid;
 532 
 533         /* Check nat cache */
 534         down_read(&nm_i->nat_tree_lock);
 535         e = __lookup_nat_cache(nm_i, nid);
 536         if (e) {
 537                 ni->ino = nat_get_ino(e);
 538                 ni->blk_addr = nat_get_blkaddr(e);
 539                 ni->version = nat_get_version(e);
 540                 up_read(&nm_i->nat_tree_lock);
 541                 return 0;
 542         }
 543 
 544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 545 
 546         /* Check current segment summary */
 547         down_read(&curseg->journal_rwsem);
 548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 549         if (i >= 0) {
 550                 ne = nat_in_journal(journal, i);
 551                 node_info_from_raw_nat(ni, &ne);
 552         }
 553         up_read(&curseg->journal_rwsem);
 554         if (i >= 0) {
 555                 up_read(&nm_i->nat_tree_lock);
 556                 goto cache;
 557         }
 558 
 559         /* Fill node_info from nat page */
 560         index = current_nat_addr(sbi, nid);
 561         up_read(&nm_i->nat_tree_lock);
 562 
 563         page = f2fs_get_meta_page(sbi, index);
 564         if (IS_ERR(page))
 565                 return PTR_ERR(page);
 566 
 567         nat_blk = (struct f2fs_nat_block *)page_address(page);
 568         ne = nat_blk->entries[nid - start_nid];
 569         node_info_from_raw_nat(ni, &ne);
 570         f2fs_put_page(page, 1);
 571 cache:
 572         blkaddr = le32_to_cpu(ne.block_addr);
 573         if (__is_valid_data_blkaddr(blkaddr) &&
 574                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 575                 return -EFAULT;
 576 
 577         /* cache nat entry */
 578         cache_nat_entry(sbi, nid, &ne);
 579         return 0;
 580 }
 581 
 582 /*
 583  * readahead MAX_RA_NODE number of node pages.
 584  */
 585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 586 {
 587         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 588         struct blk_plug plug;
 589         int i, end;
 590         nid_t nid;
 591 
 592         blk_start_plug(&plug);
 593 
 594         /* Then, try readahead for siblings of the desired node */
 595         end = start + n;
 596         end = min(end, NIDS_PER_BLOCK);
 597         for (i = start; i < end; i++) {
 598                 nid = get_nid(parent, i, false);
 599                 f2fs_ra_node_page(sbi, nid);
 600         }
 601 
 602         blk_finish_plug(&plug);
 603 }
 604 
 605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 606 {
 607         const long direct_index = ADDRS_PER_INODE(dn->inode);
 608         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 609         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 610         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 611         int cur_level = dn->cur_level;
 612         int max_level = dn->max_level;
 613         pgoff_t base = 0;
 614 
 615         if (!dn->max_level)
 616                 return pgofs + 1;
 617 
 618         while (max_level-- > cur_level)
 619                 skipped_unit *= NIDS_PER_BLOCK;
 620 
 621         switch (dn->max_level) {
 622         case 3:
 623                 base += 2 * indirect_blks;
 624                 /* fall through */
 625         case 2:
 626                 base += 2 * direct_blks;
 627                 /* fall through */
 628         case 1:
 629                 base += direct_index;
 630                 break;
 631         default:
 632                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 633         }
 634 
 635         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 636 }
 637 
 638 /*
 639  * The maximum depth is four.
 640  * Offset[0] will have raw inode offset.
 641  */
 642 static int get_node_path(struct inode *inode, long block,
 643                                 int offset[4], unsigned int noffset[4])
 644 {
 645         const long direct_index = ADDRS_PER_INODE(inode);
 646         const long direct_blks = ADDRS_PER_BLOCK(inode);
 647         const long dptrs_per_blk = NIDS_PER_BLOCK;
 648         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 649         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 650         int n = 0;
 651         int level = 0;
 652 
 653         noffset[0] = 0;
 654 
 655         if (block < direct_index) {
 656                 offset[n] = block;
 657                 goto got;
 658         }
 659         block -= direct_index;
 660         if (block < direct_blks) {
 661                 offset[n++] = NODE_DIR1_BLOCK;
 662                 noffset[n] = 1;
 663                 offset[n] = block;
 664                 level = 1;
 665                 goto got;
 666         }
 667         block -= direct_blks;
 668         if (block < direct_blks) {
 669                 offset[n++] = NODE_DIR2_BLOCK;
 670                 noffset[n] = 2;
 671                 offset[n] = block;
 672                 level = 1;
 673                 goto got;
 674         }
 675         block -= direct_blks;
 676         if (block < indirect_blks) {
 677                 offset[n++] = NODE_IND1_BLOCK;
 678                 noffset[n] = 3;
 679                 offset[n++] = block / direct_blks;
 680                 noffset[n] = 4 + offset[n - 1];
 681                 offset[n] = block % direct_blks;
 682                 level = 2;
 683                 goto got;
 684         }
 685         block -= indirect_blks;
 686         if (block < indirect_blks) {
 687                 offset[n++] = NODE_IND2_BLOCK;
 688                 noffset[n] = 4 + dptrs_per_blk;
 689                 offset[n++] = block / direct_blks;
 690                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 691                 offset[n] = block % direct_blks;
 692                 level = 2;
 693                 goto got;
 694         }
 695         block -= indirect_blks;
 696         if (block < dindirect_blks) {
 697                 offset[n++] = NODE_DIND_BLOCK;
 698                 noffset[n] = 5 + (dptrs_per_blk * 2);
 699                 offset[n++] = block / indirect_blks;
 700                 noffset[n] = 6 + (dptrs_per_blk * 2) +
 701                               offset[n - 1] * (dptrs_per_blk + 1);
 702                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
 703                 noffset[n] = 7 + (dptrs_per_blk * 2) +
 704                               offset[n - 2] * (dptrs_per_blk + 1) +
 705                               offset[n - 1];
 706                 offset[n] = block % direct_blks;
 707                 level = 3;
 708                 goto got;
 709         } else {
 710                 return -E2BIG;
 711         }
 712 got:
 713         return level;
 714 }
 715 
 716 /*
 717  * Caller should call f2fs_put_dnode(dn).
 718  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 719  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 720  * In the case of RDONLY_NODE, we don't need to care about mutex.
 721  */
 722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 723 {
 724         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 725         struct page *npage[4];
 726         struct page *parent = NULL;
 727         int offset[4];
 728         unsigned int noffset[4];
 729         nid_t nids[4];
 730         int level, i = 0;
 731         int err = 0;
 732 
 733         level = get_node_path(dn->inode, index, offset, noffset);
 734         if (level < 0)
 735                 return level;
 736 
 737         nids[0] = dn->inode->i_ino;
 738         npage[0] = dn->inode_page;
 739 
 740         if (!npage[0]) {
 741                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
 742                 if (IS_ERR(npage[0]))
 743                         return PTR_ERR(npage[0]);
 744         }
 745 
 746         /* if inline_data is set, should not report any block indices */
 747         if (f2fs_has_inline_data(dn->inode) && index) {
 748                 err = -ENOENT;
 749                 f2fs_put_page(npage[0], 1);
 750                 goto release_out;
 751         }
 752 
 753         parent = npage[0];
 754         if (level != 0)
 755                 nids[1] = get_nid(parent, offset[0], true);
 756         dn->inode_page = npage[0];
 757         dn->inode_page_locked = true;
 758 
 759         /* get indirect or direct nodes */
 760         for (i = 1; i <= level; i++) {
 761                 bool done = false;
 762 
 763                 if (!nids[i] && mode == ALLOC_NODE) {
 764                         /* alloc new node */
 765                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 766                                 err = -ENOSPC;
 767                                 goto release_pages;
 768                         }
 769 
 770                         dn->nid = nids[i];
 771                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
 772                         if (IS_ERR(npage[i])) {
 773                                 f2fs_alloc_nid_failed(sbi, nids[i]);
 774                                 err = PTR_ERR(npage[i]);
 775                                 goto release_pages;
 776                         }
 777 
 778                         set_nid(parent, offset[i - 1], nids[i], i == 1);
 779                         f2fs_alloc_nid_done(sbi, nids[i]);
 780                         done = true;
 781                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 782                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 783                         if (IS_ERR(npage[i])) {
 784                                 err = PTR_ERR(npage[i]);
 785                                 goto release_pages;
 786                         }
 787                         done = true;
 788                 }
 789                 if (i == 1) {
 790                         dn->inode_page_locked = false;
 791                         unlock_page(parent);
 792                 } else {
 793                         f2fs_put_page(parent, 1);
 794                 }
 795 
 796                 if (!done) {
 797                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
 798                         if (IS_ERR(npage[i])) {
 799                                 err = PTR_ERR(npage[i]);
 800                                 f2fs_put_page(npage[0], 0);
 801                                 goto release_out;
 802                         }
 803                 }
 804                 if (i < level) {
 805                         parent = npage[i];
 806                         nids[i + 1] = get_nid(parent, offset[i], false);
 807                 }
 808         }
 809         dn->nid = nids[level];
 810         dn->ofs_in_node = offset[level];
 811         dn->node_page = npage[level];
 812         dn->data_blkaddr = datablock_addr(dn->inode,
 813                                 dn->node_page, dn->ofs_in_node);
 814         return 0;
 815 
 816 release_pages:
 817         f2fs_put_page(parent, 1);
 818         if (i > 1)
 819                 f2fs_put_page(npage[0], 0);
 820 release_out:
 821         dn->inode_page = NULL;
 822         dn->node_page = NULL;
 823         if (err == -ENOENT) {
 824                 dn->cur_level = i;
 825                 dn->max_level = level;
 826                 dn->ofs_in_node = offset[level];
 827         }
 828         return err;
 829 }
 830 
 831 static int truncate_node(struct dnode_of_data *dn)
 832 {
 833         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 834         struct node_info ni;
 835         int err;
 836         pgoff_t index;
 837 
 838         err = f2fs_get_node_info(sbi, dn->nid, &ni);
 839         if (err)
 840                 return err;
 841 
 842         /* Deallocate node address */
 843         f2fs_invalidate_blocks(sbi, ni.blk_addr);
 844         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 845         set_node_addr(sbi, &ni, NULL_ADDR, false);
 846 
 847         if (dn->nid == dn->inode->i_ino) {
 848                 f2fs_remove_orphan_inode(sbi, dn->nid);
 849                 dec_valid_inode_count(sbi);
 850                 f2fs_inode_synced(dn->inode);
 851         }
 852 
 853         clear_node_page_dirty(dn->node_page);
 854         set_sbi_flag(sbi, SBI_IS_DIRTY);
 855 
 856         index = dn->node_page->index;
 857         f2fs_put_page(dn->node_page, 1);
 858 
 859         invalidate_mapping_pages(NODE_MAPPING(sbi),
 860                         index, index);
 861 
 862         dn->node_page = NULL;
 863         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 864 
 865         return 0;
 866 }
 867 
 868 static int truncate_dnode(struct dnode_of_data *dn)
 869 {
 870         struct page *page;
 871         int err;
 872 
 873         if (dn->nid == 0)
 874                 return 1;
 875 
 876         /* get direct node */
 877         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 878         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 879                 return 1;
 880         else if (IS_ERR(page))
 881                 return PTR_ERR(page);
 882 
 883         /* Make dnode_of_data for parameter */
 884         dn->node_page = page;
 885         dn->ofs_in_node = 0;
 886         f2fs_truncate_data_blocks(dn);
 887         err = truncate_node(dn);
 888         if (err)
 889                 return err;
 890 
 891         return 1;
 892 }
 893 
 894 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 895                                                 int ofs, int depth)
 896 {
 897         struct dnode_of_data rdn = *dn;
 898         struct page *page;
 899         struct f2fs_node *rn;
 900         nid_t child_nid;
 901         unsigned int child_nofs;
 902         int freed = 0;
 903         int i, ret;
 904 
 905         if (dn->nid == 0)
 906                 return NIDS_PER_BLOCK + 1;
 907 
 908         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 909 
 910         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 911         if (IS_ERR(page)) {
 912                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 913                 return PTR_ERR(page);
 914         }
 915 
 916         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 917 
 918         rn = F2FS_NODE(page);
 919         if (depth < 3) {
 920                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 921                         child_nid = le32_to_cpu(rn->in.nid[i]);
 922                         if (child_nid == 0)
 923                                 continue;
 924                         rdn.nid = child_nid;
 925                         ret = truncate_dnode(&rdn);
 926                         if (ret < 0)
 927                                 goto out_err;
 928                         if (set_nid(page, i, 0, false))
 929                                 dn->node_changed = true;
 930                 }
 931         } else {
 932                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 933                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 934                         child_nid = le32_to_cpu(rn->in.nid[i]);
 935                         if (child_nid == 0) {
 936                                 child_nofs += NIDS_PER_BLOCK + 1;
 937                                 continue;
 938                         }
 939                         rdn.nid = child_nid;
 940                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 941                         if (ret == (NIDS_PER_BLOCK + 1)) {
 942                                 if (set_nid(page, i, 0, false))
 943                                         dn->node_changed = true;
 944                                 child_nofs += ret;
 945                         } else if (ret < 0 && ret != -ENOENT) {
 946                                 goto out_err;
 947                         }
 948                 }
 949                 freed = child_nofs;
 950         }
 951 
 952         if (!ofs) {
 953                 /* remove current indirect node */
 954                 dn->node_page = page;
 955                 ret = truncate_node(dn);
 956                 if (ret)
 957                         goto out_err;
 958                 freed++;
 959         } else {
 960                 f2fs_put_page(page, 1);
 961         }
 962         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 963         return freed;
 964 
 965 out_err:
 966         f2fs_put_page(page, 1);
 967         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 968         return ret;
 969 }
 970 
 971 static int truncate_partial_nodes(struct dnode_of_data *dn,
 972                         struct f2fs_inode *ri, int *offset, int depth)
 973 {
 974         struct page *pages[2];
 975         nid_t nid[3];
 976         nid_t child_nid;
 977         int err = 0;
 978         int i;
 979         int idx = depth - 2;
 980 
 981         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 982         if (!nid[0])
 983                 return 0;
 984 
 985         /* get indirect nodes in the path */
 986         for (i = 0; i < idx + 1; i++) {
 987                 /* reference count'll be increased */
 988                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 989                 if (IS_ERR(pages[i])) {
 990                         err = PTR_ERR(pages[i]);
 991                         idx = i - 1;
 992                         goto fail;
 993                 }
 994                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 995         }
 996 
 997         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 998 
 999         /* free direct nodes linked to a partial indirect node */
1000         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001                 child_nid = get_nid(pages[idx], i, false);
1002                 if (!child_nid)
1003                         continue;
1004                 dn->nid = child_nid;
1005                 err = truncate_dnode(dn);
1006                 if (err < 0)
1007                         goto fail;
1008                 if (set_nid(pages[idx], i, 0, false))
1009                         dn->node_changed = true;
1010         }
1011 
1012         if (offset[idx + 1] == 0) {
1013                 dn->node_page = pages[idx];
1014                 dn->nid = nid[idx];
1015                 err = truncate_node(dn);
1016                 if (err)
1017                         goto fail;
1018         } else {
1019                 f2fs_put_page(pages[idx], 1);
1020         }
1021         offset[idx]++;
1022         offset[idx + 1] = 0;
1023         idx--;
1024 fail:
1025         for (i = idx; i >= 0; i--)
1026                 f2fs_put_page(pages[i], 1);
1027 
1028         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029 
1030         return err;
1031 }
1032 
1033 /*
1034  * All the block addresses of data and nodes should be nullified.
1035  */
1036 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037 {
1038         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039         int err = 0, cont = 1;
1040         int level, offset[4], noffset[4];
1041         unsigned int nofs = 0;
1042         struct f2fs_inode *ri;
1043         struct dnode_of_data dn;
1044         struct page *page;
1045 
1046         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047 
1048         level = get_node_path(inode, from, offset, noffset);
1049         if (level < 0)
1050                 return level;
1051 
1052         page = f2fs_get_node_page(sbi, inode->i_ino);
1053         if (IS_ERR(page)) {
1054                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055                 return PTR_ERR(page);
1056         }
1057 
1058         set_new_dnode(&dn, inode, page, NULL, 0);
1059         unlock_page(page);
1060 
1061         ri = F2FS_INODE(page);
1062         switch (level) {
1063         case 0:
1064         case 1:
1065                 nofs = noffset[1];
1066                 break;
1067         case 2:
1068                 nofs = noffset[1];
1069                 if (!offset[level - 1])
1070                         goto skip_partial;
1071                 err = truncate_partial_nodes(&dn, ri, offset, level);
1072                 if (err < 0 && err != -ENOENT)
1073                         goto fail;
1074                 nofs += 1 + NIDS_PER_BLOCK;
1075                 break;
1076         case 3:
1077                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078                 if (!offset[level - 1])
1079                         goto skip_partial;
1080                 err = truncate_partial_nodes(&dn, ri, offset, level);
1081                 if (err < 0 && err != -ENOENT)
1082                         goto fail;
1083                 break;
1084         default:
1085                 BUG();
1086         }
1087 
1088 skip_partial:
1089         while (cont) {
1090                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091                 switch (offset[0]) {
1092                 case NODE_DIR1_BLOCK:
1093                 case NODE_DIR2_BLOCK:
1094                         err = truncate_dnode(&dn);
1095                         break;
1096 
1097                 case NODE_IND1_BLOCK:
1098                 case NODE_IND2_BLOCK:
1099                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1100                         break;
1101 
1102                 case NODE_DIND_BLOCK:
1103                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1104                         cont = 0;
1105                         break;
1106 
1107                 default:
1108                         BUG();
1109                 }
1110                 if (err < 0 && err != -ENOENT)
1111                         goto fail;
1112                 if (offset[1] == 0 &&
1113                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114                         lock_page(page);
1115                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1117                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118                         set_page_dirty(page);
1119                         unlock_page(page);
1120                 }
1121                 offset[1] = 0;
1122                 offset[0]++;
1123                 nofs += err;
1124         }
1125 fail:
1126         f2fs_put_page(page, 0);
1127         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128         return err > 0 ? 0 : err;
1129 }
1130 
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1133 {
1134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136         struct dnode_of_data dn;
1137         struct page *npage;
1138         int err;
1139 
1140         if (!nid)
1141                 return 0;
1142 
1143         npage = f2fs_get_node_page(sbi, nid);
1144         if (IS_ERR(npage))
1145                 return PTR_ERR(npage);
1146 
1147         set_new_dnode(&dn, inode, NULL, npage, nid);
1148         err = truncate_node(&dn);
1149         if (err) {
1150                 f2fs_put_page(npage, 1);
1151                 return err;
1152         }
1153 
1154         f2fs_i_xnid_write(inode, 0);
1155 
1156         return 0;
1157 }
1158 
1159 /*
1160  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161  * f2fs_unlock_op().
1162  */
1163 int f2fs_remove_inode_page(struct inode *inode)
1164 {
1165         struct dnode_of_data dn;
1166         int err;
1167 
1168         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170         if (err)
1171                 return err;
1172 
1173         err = f2fs_truncate_xattr_node(inode);
1174         if (err) {
1175                 f2fs_put_dnode(&dn);
1176                 return err;
1177         }
1178 
1179         /* remove potential inline_data blocks */
1180         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181                                 S_ISLNK(inode->i_mode))
1182                 f2fs_truncate_data_blocks_range(&dn, 1);
1183 
1184         /* 0 is possible, after f2fs_new_inode() has failed */
1185         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186                 f2fs_put_dnode(&dn);
1187                 return -EIO;
1188         }
1189 
1190         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191                 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192                           inode->i_ino, (unsigned long long)inode->i_blocks);
1193                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194         }
1195 
1196         /* will put inode & node pages */
1197         err = truncate_node(&dn);
1198         if (err) {
1199                 f2fs_put_dnode(&dn);
1200                 return err;
1201         }
1202         return 0;
1203 }
1204 
1205 struct page *f2fs_new_inode_page(struct inode *inode)
1206 {
1207         struct dnode_of_data dn;
1208 
1209         /* allocate inode page for new inode */
1210         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211 
1212         /* caller should f2fs_put_page(page, 1); */
1213         return f2fs_new_node_page(&dn, 0);
1214 }
1215 
1216 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217 {
1218         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219         struct node_info new_ni;
1220         struct page *page;
1221         int err;
1222 
1223         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224                 return ERR_PTR(-EPERM);
1225 
1226         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227         if (!page)
1228                 return ERR_PTR(-ENOMEM);
1229 
1230         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231                 goto fail;
1232 
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235         if (err) {
1236                 dec_valid_node_count(sbi, dn->inode, !ofs);
1237                 goto fail;
1238         }
1239         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240 #endif
1241         new_ni.nid = dn->nid;
1242         new_ni.ino = dn->inode->i_ino;
1243         new_ni.blk_addr = NULL_ADDR;
1244         new_ni.flag = 0;
1245         new_ni.version = 0;
1246         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247 
1248         f2fs_wait_on_page_writeback(page, NODE, true, true);
1249         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251         if (!PageUptodate(page))
1252                 SetPageUptodate(page);
1253         if (set_page_dirty(page))
1254                 dn->node_changed = true;
1255 
1256         if (f2fs_has_xattr_block(ofs))
1257                 f2fs_i_xnid_write(dn->inode, dn->nid);
1258 
1259         if (ofs == 0)
1260                 inc_valid_inode_count(sbi);
1261         return page;
1262 
1263 fail:
1264         clear_node_page_dirty(page);
1265         f2fs_put_page(page, 1);
1266         return ERR_PTR(err);
1267 }
1268 
1269 /*
1270  * Caller should do after getting the following values.
1271  * 0: f2fs_put_page(page, 0)
1272  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273  */
1274 static int read_node_page(struct page *page, int op_flags)
1275 {
1276         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277         struct node_info ni;
1278         struct f2fs_io_info fio = {
1279                 .sbi = sbi,
1280                 .type = NODE,
1281                 .op = REQ_OP_READ,
1282                 .op_flags = op_flags,
1283                 .page = page,
1284                 .encrypted_page = NULL,
1285         };
1286         int err;
1287 
1288         if (PageUptodate(page)) {
1289                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290                         ClearPageUptodate(page);
1291                         return -EFSBADCRC;
1292                 }
1293                 return LOCKED_PAGE;
1294         }
1295 
1296         err = f2fs_get_node_info(sbi, page->index, &ni);
1297         if (err)
1298                 return err;
1299 
1300         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302                 ClearPageUptodate(page);
1303                 return -ENOENT;
1304         }
1305 
1306         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307         return f2fs_submit_page_bio(&fio);
1308 }
1309 
1310 /*
1311  * Readahead a node page
1312  */
1313 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314 {
1315         struct page *apage;
1316         int err;
1317 
1318         if (!nid)
1319                 return;
1320         if (f2fs_check_nid_range(sbi, nid))
1321                 return;
1322 
1323         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324         if (apage)
1325                 return;
1326 
1327         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328         if (!apage)
1329                 return;
1330 
1331         err = read_node_page(apage, REQ_RAHEAD);
1332         f2fs_put_page(apage, err ? 1 : 0);
1333 }
1334 
1335 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336                                         struct page *parent, int start)
1337 {
1338         struct page *page;
1339         int err;
1340 
1341         if (!nid)
1342                 return ERR_PTR(-ENOENT);
1343         if (f2fs_check_nid_range(sbi, nid))
1344                 return ERR_PTR(-EINVAL);
1345 repeat:
1346         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347         if (!page)
1348                 return ERR_PTR(-ENOMEM);
1349 
1350         err = read_node_page(page, 0);
1351         if (err < 0) {
1352                 f2fs_put_page(page, 1);
1353                 return ERR_PTR(err);
1354         } else if (err == LOCKED_PAGE) {
1355                 err = 0;
1356                 goto page_hit;
1357         }
1358 
1359         if (parent)
1360                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361 
1362         lock_page(page);
1363 
1364         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365                 f2fs_put_page(page, 1);
1366                 goto repeat;
1367         }
1368 
1369         if (unlikely(!PageUptodate(page))) {
1370                 err = -EIO;
1371                 goto out_err;
1372         }
1373 
1374         if (!f2fs_inode_chksum_verify(sbi, page)) {
1375                 err = -EFSBADCRC;
1376                 goto out_err;
1377         }
1378 page_hit:
1379         if(unlikely(nid != nid_of_node(page))) {
1380                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381                           nid, nid_of_node(page), ino_of_node(page),
1382                           ofs_of_node(page), cpver_of_node(page),
1383                           next_blkaddr_of_node(page));
1384                 err = -EINVAL;
1385 out_err:
1386                 ClearPageUptodate(page);
1387                 f2fs_put_page(page, 1);
1388                 return ERR_PTR(err);
1389         }
1390         return page;
1391 }
1392 
1393 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394 {
1395         return __get_node_page(sbi, nid, NULL, 0);
1396 }
1397 
1398 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399 {
1400         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401         nid_t nid = get_nid(parent, start, false);
1402 
1403         return __get_node_page(sbi, nid, parent, start);
1404 }
1405 
1406 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407 {
1408         struct inode *inode;
1409         struct page *page;
1410         int ret;
1411 
1412         /* should flush inline_data before evict_inode */
1413         inode = ilookup(sbi->sb, ino);
1414         if (!inode)
1415                 return;
1416 
1417         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418                                         FGP_LOCK|FGP_NOWAIT, 0);
1419         if (!page)
1420                 goto iput_out;
1421 
1422         if (!PageUptodate(page))
1423                 goto page_out;
1424 
1425         if (!PageDirty(page))
1426                 goto page_out;
1427 
1428         if (!clear_page_dirty_for_io(page))
1429                 goto page_out;
1430 
1431         ret = f2fs_write_inline_data(inode, page);
1432         inode_dec_dirty_pages(inode);
1433         f2fs_remove_dirty_inode(inode);
1434         if (ret)
1435                 set_page_dirty(page);
1436 page_out:
1437         f2fs_put_page(page, 1);
1438 iput_out:
1439         iput(inode);
1440 }
1441 
1442 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443 {
1444         pgoff_t index;
1445         struct pagevec pvec;
1446         struct page *last_page = NULL;
1447         int nr_pages;
1448 
1449         pagevec_init(&pvec);
1450         index = 0;
1451 
1452         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453                                 PAGECACHE_TAG_DIRTY))) {
1454                 int i;
1455 
1456                 for (i = 0; i < nr_pages; i++) {
1457                         struct page *page = pvec.pages[i];
1458 
1459                         if (unlikely(f2fs_cp_error(sbi))) {
1460                                 f2fs_put_page(last_page, 0);
1461                                 pagevec_release(&pvec);
1462                                 return ERR_PTR(-EIO);
1463                         }
1464 
1465                         if (!IS_DNODE(page) || !is_cold_node(page))
1466                                 continue;
1467                         if (ino_of_node(page) != ino)
1468                                 continue;
1469 
1470                         lock_page(page);
1471 
1472                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474                                 unlock_page(page);
1475                                 continue;
1476                         }
1477                         if (ino_of_node(page) != ino)
1478                                 goto continue_unlock;
1479 
1480                         if (!PageDirty(page)) {
1481                                 /* someone wrote it for us */
1482                                 goto continue_unlock;
1483                         }
1484 
1485                         if (last_page)
1486                                 f2fs_put_page(last_page, 0);
1487 
1488                         get_page(page);
1489                         last_page = page;
1490                         unlock_page(page);
1491                 }
1492                 pagevec_release(&pvec);
1493                 cond_resched();
1494         }
1495         return last_page;
1496 }
1497 
1498 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499                                 struct writeback_control *wbc, bool do_balance,
1500                                 enum iostat_type io_type, unsigned int *seq_id)
1501 {
1502         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503         nid_t nid;
1504         struct node_info ni;
1505         struct f2fs_io_info fio = {
1506                 .sbi = sbi,
1507                 .ino = ino_of_node(page),
1508                 .type = NODE,
1509                 .op = REQ_OP_WRITE,
1510                 .op_flags = wbc_to_write_flags(wbc),
1511                 .page = page,
1512                 .encrypted_page = NULL,
1513                 .submitted = false,
1514                 .io_type = io_type,
1515                 .io_wbc = wbc,
1516         };
1517         unsigned int seq;
1518 
1519         trace_f2fs_writepage(page, NODE);
1520 
1521         if (unlikely(f2fs_cp_error(sbi)))
1522                 goto redirty_out;
1523 
1524         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525                 goto redirty_out;
1526 
1527         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528                         wbc->sync_mode == WB_SYNC_NONE &&
1529                         IS_DNODE(page) && is_cold_node(page))
1530                 goto redirty_out;
1531 
1532         /* get old block addr of this node page */
1533         nid = nid_of_node(page);
1534         f2fs_bug_on(sbi, page->index != nid);
1535 
1536         if (f2fs_get_node_info(sbi, nid, &ni))
1537                 goto redirty_out;
1538 
1539         if (wbc->for_reclaim) {
1540                 if (!down_read_trylock(&sbi->node_write))
1541                         goto redirty_out;
1542         } else {
1543                 down_read(&sbi->node_write);
1544         }
1545 
1546         /* This page is already truncated */
1547         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548                 ClearPageUptodate(page);
1549                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1550                 up_read(&sbi->node_write);
1551                 unlock_page(page);
1552                 return 0;
1553         }
1554 
1555         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557                                         DATA_GENERIC_ENHANCE)) {
1558                 up_read(&sbi->node_write);
1559                 goto redirty_out;
1560         }
1561 
1562         if (atomic && !test_opt(sbi, NOBARRIER))
1563                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564 
1565         /* should add to global list before clearing PAGECACHE status */
1566         if (f2fs_in_warm_node_list(sbi, page)) {
1567                 seq = f2fs_add_fsync_node_entry(sbi, page);
1568                 if (seq_id)
1569                         *seq_id = seq;
1570         }
1571 
1572         set_page_writeback(page);
1573         ClearPageError(page);
1574 
1575         fio.old_blkaddr = ni.blk_addr;
1576         f2fs_do_write_node_page(nid, &fio);
1577         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1578         dec_page_count(sbi, F2FS_DIRTY_NODES);
1579         up_read(&sbi->node_write);
1580 
1581         if (wbc->for_reclaim) {
1582                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1583                 submitted = NULL;
1584         }
1585 
1586         unlock_page(page);
1587 
1588         if (unlikely(f2fs_cp_error(sbi))) {
1589                 f2fs_submit_merged_write(sbi, NODE);
1590                 submitted = NULL;
1591         }
1592         if (submitted)
1593                 *submitted = fio.submitted;
1594 
1595         if (do_balance)
1596                 f2fs_balance_fs(sbi, false);
1597         return 0;
1598 
1599 redirty_out:
1600         redirty_page_for_writepage(wbc, page);
1601         return AOP_WRITEPAGE_ACTIVATE;
1602 }
1603 
1604 int f2fs_move_node_page(struct page *node_page, int gc_type)
1605 {
1606         int err = 0;
1607 
1608         if (gc_type == FG_GC) {
1609                 struct writeback_control wbc = {
1610                         .sync_mode = WB_SYNC_ALL,
1611                         .nr_to_write = 1,
1612                         .for_reclaim = 0,
1613                 };
1614 
1615                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1616 
1617                 set_page_dirty(node_page);
1618 
1619                 if (!clear_page_dirty_for_io(node_page)) {
1620                         err = -EAGAIN;
1621                         goto out_page;
1622                 }
1623 
1624                 if (__write_node_page(node_page, false, NULL,
1625                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1626                         err = -EAGAIN;
1627                         unlock_page(node_page);
1628                 }
1629                 goto release_page;
1630         } else {
1631                 /* set page dirty and write it */
1632                 if (!PageWriteback(node_page))
1633                         set_page_dirty(node_page);
1634         }
1635 out_page:
1636         unlock_page(node_page);
1637 release_page:
1638         f2fs_put_page(node_page, 0);
1639         return err;
1640 }
1641 
1642 static int f2fs_write_node_page(struct page *page,
1643                                 struct writeback_control *wbc)
1644 {
1645         return __write_node_page(page, false, NULL, wbc, false,
1646                                                 FS_NODE_IO, NULL);
1647 }
1648 
1649 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1650                         struct writeback_control *wbc, bool atomic,
1651                         unsigned int *seq_id)
1652 {
1653         pgoff_t index;
1654         struct pagevec pvec;
1655         int ret = 0;
1656         struct page *last_page = NULL;
1657         bool marked = false;
1658         nid_t ino = inode->i_ino;
1659         int nr_pages;
1660         int nwritten = 0;
1661 
1662         if (atomic) {
1663                 last_page = last_fsync_dnode(sbi, ino);
1664                 if (IS_ERR_OR_NULL(last_page))
1665                         return PTR_ERR_OR_ZERO(last_page);
1666         }
1667 retry:
1668         pagevec_init(&pvec);
1669         index = 0;
1670 
1671         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1672                                 PAGECACHE_TAG_DIRTY))) {
1673                 int i;
1674 
1675                 for (i = 0; i < nr_pages; i++) {
1676                         struct page *page = pvec.pages[i];
1677                         bool submitted = false;
1678 
1679                         if (unlikely(f2fs_cp_error(sbi))) {
1680                                 f2fs_put_page(last_page, 0);
1681                                 pagevec_release(&pvec);
1682                                 ret = -EIO;
1683                                 goto out;
1684                         }
1685 
1686                         if (!IS_DNODE(page) || !is_cold_node(page))
1687                                 continue;
1688                         if (ino_of_node(page) != ino)
1689                                 continue;
1690 
1691                         lock_page(page);
1692 
1693                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1694 continue_unlock:
1695                                 unlock_page(page);
1696                                 continue;
1697                         }
1698                         if (ino_of_node(page) != ino)
1699                                 goto continue_unlock;
1700 
1701                         if (!PageDirty(page) && page != last_page) {
1702                                 /* someone wrote it for us */
1703                                 goto continue_unlock;
1704                         }
1705 
1706                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1707 
1708                         set_fsync_mark(page, 0);
1709                         set_dentry_mark(page, 0);
1710 
1711                         if (!atomic || page == last_page) {
1712                                 set_fsync_mark(page, 1);
1713                                 if (IS_INODE(page)) {
1714                                         if (is_inode_flag_set(inode,
1715                                                                 FI_DIRTY_INODE))
1716                                                 f2fs_update_inode(inode, page);
1717                                         set_dentry_mark(page,
1718                                                 f2fs_need_dentry_mark(sbi, ino));
1719                                 }
1720                                 /*  may be written by other thread */
1721                                 if (!PageDirty(page))
1722                                         set_page_dirty(page);
1723                         }
1724 
1725                         if (!clear_page_dirty_for_io(page))
1726                                 goto continue_unlock;
1727 
1728                         ret = __write_node_page(page, atomic &&
1729                                                 page == last_page,
1730                                                 &submitted, wbc, true,
1731                                                 FS_NODE_IO, seq_id);
1732                         if (ret) {
1733                                 unlock_page(page);
1734                                 f2fs_put_page(last_page, 0);
1735                                 break;
1736                         } else if (submitted) {
1737                                 nwritten++;
1738                         }
1739 
1740                         if (page == last_page) {
1741                                 f2fs_put_page(page, 0);
1742                                 marked = true;
1743                                 break;
1744                         }
1745                 }
1746                 pagevec_release(&pvec);
1747                 cond_resched();
1748 
1749                 if (ret || marked)
1750                         break;
1751         }
1752         if (!ret && atomic && !marked) {
1753                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1754                            ino, last_page->index);
1755                 lock_page(last_page);
1756                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1757                 set_page_dirty(last_page);
1758                 unlock_page(last_page);
1759                 goto retry;
1760         }
1761 out:
1762         if (nwritten)
1763                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1764         return ret ? -EIO: 0;
1765 }
1766 
1767 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1768 {
1769         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1770         bool clean;
1771 
1772         if (inode->i_ino != ino)
1773                 return 0;
1774 
1775         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1776                 return 0;
1777 
1778         spin_lock(&sbi->inode_lock[DIRTY_META]);
1779         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1780         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1781 
1782         if (clean)
1783                 return 0;
1784 
1785         inode = igrab(inode);
1786         if (!inode)
1787                 return 0;
1788         return 1;
1789 }
1790 
1791 static bool flush_dirty_inode(struct page *page)
1792 {
1793         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1794         struct inode *inode;
1795         nid_t ino = ino_of_node(page);
1796 
1797         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1798         if (!inode)
1799                 return false;
1800 
1801         f2fs_update_inode(inode, page);
1802         unlock_page(page);
1803 
1804         iput(inode);
1805         return true;
1806 }
1807 
1808 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1809                                 struct writeback_control *wbc,
1810                                 bool do_balance, enum iostat_type io_type)
1811 {
1812         pgoff_t index;
1813         struct pagevec pvec;
1814         int step = 0;
1815         int nwritten = 0;
1816         int ret = 0;
1817         int nr_pages, done = 0;
1818 
1819         pagevec_init(&pvec);
1820 
1821 next_step:
1822         index = 0;
1823 
1824         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1825                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1826                 int i;
1827 
1828                 for (i = 0; i < nr_pages; i++) {
1829                         struct page *page = pvec.pages[i];
1830                         bool submitted = false;
1831                         bool may_dirty = true;
1832 
1833                         /* give a priority to WB_SYNC threads */
1834                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1835                                         wbc->sync_mode == WB_SYNC_NONE) {
1836                                 done = 1;
1837                                 break;
1838                         }
1839 
1840                         /*
1841                          * flushing sequence with step:
1842                          * 0. indirect nodes
1843                          * 1. dentry dnodes
1844                          * 2. file dnodes
1845                          */
1846                         if (step == 0 && IS_DNODE(page))
1847                                 continue;
1848                         if (step == 1 && (!IS_DNODE(page) ||
1849                                                 is_cold_node(page)))
1850                                 continue;
1851                         if (step == 2 && (!IS_DNODE(page) ||
1852                                                 !is_cold_node(page)))
1853                                 continue;
1854 lock_node:
1855                         if (wbc->sync_mode == WB_SYNC_ALL)
1856                                 lock_page(page);
1857                         else if (!trylock_page(page))
1858                                 continue;
1859 
1860                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1861 continue_unlock:
1862                                 unlock_page(page);
1863                                 continue;
1864                         }
1865 
1866                         if (!PageDirty(page)) {
1867                                 /* someone wrote it for us */
1868                                 goto continue_unlock;
1869                         }
1870 
1871                         /* flush inline_data */
1872                         if (is_inline_node(page)) {
1873                                 clear_inline_node(page);
1874                                 unlock_page(page);
1875                                 flush_inline_data(sbi, ino_of_node(page));
1876                                 goto lock_node;
1877                         }
1878 
1879                         /* flush dirty inode */
1880                         if (IS_INODE(page) && may_dirty) {
1881                                 may_dirty = false;
1882                                 if (flush_dirty_inode(page))
1883                                         goto lock_node;
1884                         }
1885 
1886                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1887 
1888                         if (!clear_page_dirty_for_io(page))
1889                                 goto continue_unlock;
1890 
1891                         set_fsync_mark(page, 0);
1892                         set_dentry_mark(page, 0);
1893 
1894                         ret = __write_node_page(page, false, &submitted,
1895                                                 wbc, do_balance, io_type, NULL);
1896                         if (ret)
1897                                 unlock_page(page);
1898                         else if (submitted)
1899                                 nwritten++;
1900 
1901                         if (--wbc->nr_to_write == 0)
1902                                 break;
1903                 }
1904                 pagevec_release(&pvec);
1905                 cond_resched();
1906 
1907                 if (wbc->nr_to_write == 0) {
1908                         step = 2;
1909                         break;
1910                 }
1911         }
1912 
1913         if (step < 2) {
1914                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1915                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1916                         goto out;
1917                 step++;
1918                 goto next_step;
1919         }
1920 out:
1921         if (nwritten)
1922                 f2fs_submit_merged_write(sbi, NODE);
1923 
1924         if (unlikely(f2fs_cp_error(sbi)))
1925                 return -EIO;
1926         return ret;
1927 }
1928 
1929 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1930                                                 unsigned int seq_id)
1931 {
1932         struct fsync_node_entry *fn;
1933         struct page *page;
1934         struct list_head *head = &sbi->fsync_node_list;
1935         unsigned long flags;
1936         unsigned int cur_seq_id = 0;
1937         int ret2, ret = 0;
1938 
1939         while (seq_id && cur_seq_id < seq_id) {
1940                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1941                 if (list_empty(head)) {
1942                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1943                         break;
1944                 }
1945                 fn = list_first_entry(head, struct fsync_node_entry, list);
1946                 if (fn->seq_id > seq_id) {
1947                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1948                         break;
1949                 }
1950                 cur_seq_id = fn->seq_id;
1951                 page = fn->page;
1952                 get_page(page);
1953                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1954 
1955                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1956                 if (TestClearPageError(page))
1957                         ret = -EIO;
1958 
1959                 put_page(page);
1960 
1961                 if (ret)
1962                         break;
1963         }
1964 
1965         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1966         if (!ret)
1967                 ret = ret2;
1968 
1969         return ret;
1970 }
1971 
1972 static int f2fs_write_node_pages(struct address_space *mapping,
1973                             struct writeback_control *wbc)
1974 {
1975         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1976         struct blk_plug plug;
1977         long diff;
1978 
1979         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1980                 goto skip_write;
1981 
1982         /* balancing f2fs's metadata in background */
1983         f2fs_balance_fs_bg(sbi);
1984 
1985         /* collect a number of dirty node pages and write together */
1986         if (wbc->sync_mode != WB_SYNC_ALL &&
1987                         get_pages(sbi, F2FS_DIRTY_NODES) <
1988                                         nr_pages_to_skip(sbi, NODE))
1989                 goto skip_write;
1990 
1991         if (wbc->sync_mode == WB_SYNC_ALL)
1992                 atomic_inc(&sbi->wb_sync_req[NODE]);
1993         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1994                 goto skip_write;
1995 
1996         trace_f2fs_writepages(mapping->host, wbc, NODE);
1997 
1998         diff = nr_pages_to_write(sbi, NODE, wbc);
1999         blk_start_plug(&plug);
2000         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2001         blk_finish_plug(&plug);
2002         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2003 
2004         if (wbc->sync_mode == WB_SYNC_ALL)
2005                 atomic_dec(&sbi->wb_sync_req[NODE]);
2006         return 0;
2007 
2008 skip_write:
2009         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2010         trace_f2fs_writepages(mapping->host, wbc, NODE);
2011         return 0;
2012 }
2013 
2014 static int f2fs_set_node_page_dirty(struct page *page)
2015 {
2016         trace_f2fs_set_page_dirty(page, NODE);
2017 
2018         if (!PageUptodate(page))
2019                 SetPageUptodate(page);
2020 #ifdef CONFIG_F2FS_CHECK_FS
2021         if (IS_INODE(page))
2022                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2023 #endif
2024         if (!PageDirty(page)) {
2025                 __set_page_dirty_nobuffers(page);
2026                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2027                 f2fs_set_page_private(page, 0);
2028                 f2fs_trace_pid(page);
2029                 return 1;
2030         }
2031         return 0;
2032 }
2033 
2034 /*
2035  * Structure of the f2fs node operations
2036  */
2037 const struct address_space_operations f2fs_node_aops = {
2038         .writepage      = f2fs_write_node_page,
2039         .writepages     = f2fs_write_node_pages,
2040         .set_page_dirty = f2fs_set_node_page_dirty,
2041         .invalidatepage = f2fs_invalidate_page,
2042         .releasepage    = f2fs_release_page,
2043 #ifdef CONFIG_MIGRATION
2044         .migratepage    = f2fs_migrate_page,
2045 #endif
2046 };
2047 
2048 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2049                                                 nid_t n)
2050 {
2051         return radix_tree_lookup(&nm_i->free_nid_root, n);
2052 }
2053 
2054 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2055                         struct free_nid *i, enum nid_state state)
2056 {
2057         struct f2fs_nm_info *nm_i = NM_I(sbi);
2058 
2059         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2060         if (err)
2061                 return err;
2062 
2063         f2fs_bug_on(sbi, state != i->state);
2064         nm_i->nid_cnt[state]++;
2065         if (state == FREE_NID)
2066                 list_add_tail(&i->list, &nm_i->free_nid_list);
2067         return 0;
2068 }
2069 
2070 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2071                         struct free_nid *i, enum nid_state state)
2072 {
2073         struct f2fs_nm_info *nm_i = NM_I(sbi);
2074 
2075         f2fs_bug_on(sbi, state != i->state);
2076         nm_i->nid_cnt[state]--;
2077         if (state == FREE_NID)
2078                 list_del(&i->list);
2079         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2080 }
2081 
2082 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2083                         enum nid_state org_state, enum nid_state dst_state)
2084 {
2085         struct f2fs_nm_info *nm_i = NM_I(sbi);
2086 
2087         f2fs_bug_on(sbi, org_state != i->state);
2088         i->state = dst_state;
2089         nm_i->nid_cnt[org_state]--;
2090         nm_i->nid_cnt[dst_state]++;
2091 
2092         switch (dst_state) {
2093         case PREALLOC_NID:
2094                 list_del(&i->list);
2095                 break;
2096         case FREE_NID:
2097                 list_add_tail(&i->list, &nm_i->free_nid_list);
2098                 break;
2099         default:
2100                 BUG_ON(1);
2101         }
2102 }
2103 
2104 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2105                                                         bool set, bool build)
2106 {
2107         struct f2fs_nm_info *nm_i = NM_I(sbi);
2108         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2109         unsigned int nid_ofs = nid - START_NID(nid);
2110 
2111         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2112                 return;
2113 
2114         if (set) {
2115                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2116                         return;
2117                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2118                 nm_i->free_nid_count[nat_ofs]++;
2119         } else {
2120                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2121                         return;
2122                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2123                 if (!build)
2124                         nm_i->free_nid_count[nat_ofs]--;
2125         }
2126 }
2127 
2128 /* return if the nid is recognized as free */
2129 static bool add_free_nid(struct f2fs_sb_info *sbi,
2130                                 nid_t nid, bool build, bool update)
2131 {
2132         struct f2fs_nm_info *nm_i = NM_I(sbi);
2133         struct free_nid *i, *e;
2134         struct nat_entry *ne;
2135         int err = -EINVAL;
2136         bool ret = false;
2137 
2138         /* 0 nid should not be used */
2139         if (unlikely(nid == 0))
2140                 return false;
2141 
2142         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2143                 return false;
2144 
2145         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2146         i->nid = nid;
2147         i->state = FREE_NID;
2148 
2149         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2150 
2151         spin_lock(&nm_i->nid_list_lock);
2152 
2153         if (build) {
2154                 /*
2155                  *   Thread A             Thread B
2156                  *  - f2fs_create
2157                  *   - f2fs_new_inode
2158                  *    - f2fs_alloc_nid
2159                  *     - __insert_nid_to_list(PREALLOC_NID)
2160                  *                     - f2fs_balance_fs_bg
2161                  *                      - f2fs_build_free_nids
2162                  *                       - __f2fs_build_free_nids
2163                  *                        - scan_nat_page
2164                  *                         - add_free_nid
2165                  *                          - __lookup_nat_cache
2166                  *  - f2fs_add_link
2167                  *   - f2fs_init_inode_metadata
2168                  *    - f2fs_new_inode_page
2169                  *     - f2fs_new_node_page
2170                  *      - set_node_addr
2171                  *  - f2fs_alloc_nid_done
2172                  *   - __remove_nid_from_list(PREALLOC_NID)
2173                  *                         - __insert_nid_to_list(FREE_NID)
2174                  */
2175                 ne = __lookup_nat_cache(nm_i, nid);
2176                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2177                                 nat_get_blkaddr(ne) != NULL_ADDR))
2178                         goto err_out;
2179 
2180                 e = __lookup_free_nid_list(nm_i, nid);
2181                 if (e) {
2182                         if (e->state == FREE_NID)
2183                                 ret = true;
2184                         goto err_out;
2185                 }
2186         }
2187         ret = true;
2188         err = __insert_free_nid(sbi, i, FREE_NID);
2189 err_out:
2190         if (update) {
2191                 update_free_nid_bitmap(sbi, nid, ret, build);
2192                 if (!build)
2193                         nm_i->available_nids++;
2194         }
2195         spin_unlock(&nm_i->nid_list_lock);
2196         radix_tree_preload_end();
2197 
2198         if (err)
2199                 kmem_cache_free(free_nid_slab, i);
2200         return ret;
2201 }
2202 
2203 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2204 {
2205         struct f2fs_nm_info *nm_i = NM_I(sbi);
2206         struct free_nid *i;
2207         bool need_free = false;
2208 
2209         spin_lock(&nm_i->nid_list_lock);
2210         i = __lookup_free_nid_list(nm_i, nid);
2211         if (i && i->state == FREE_NID) {
2212                 __remove_free_nid(sbi, i, FREE_NID);
2213                 need_free = true;
2214         }
2215         spin_unlock(&nm_i->nid_list_lock);
2216 
2217         if (need_free)
2218                 kmem_cache_free(free_nid_slab, i);
2219 }
2220 
2221 static int scan_nat_page(struct f2fs_sb_info *sbi,
2222                         struct page *nat_page, nid_t start_nid)
2223 {
2224         struct f2fs_nm_info *nm_i = NM_I(sbi);
2225         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2226         block_t blk_addr;
2227         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2228         int i;
2229 
2230         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2231 
2232         i = start_nid % NAT_ENTRY_PER_BLOCK;
2233 
2234         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2235                 if (unlikely(start_nid >= nm_i->max_nid))
2236                         break;
2237 
2238                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2239 
2240                 if (blk_addr == NEW_ADDR)
2241                         return -EINVAL;
2242 
2243                 if (blk_addr == NULL_ADDR) {
2244                         add_free_nid(sbi, start_nid, true, true);
2245                 } else {
2246                         spin_lock(&NM_I(sbi)->nid_list_lock);
2247                         update_free_nid_bitmap(sbi, start_nid, false, true);
2248                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2249                 }
2250         }
2251 
2252         return 0;
2253 }
2254 
2255 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2256 {
2257         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2258         struct f2fs_journal *journal = curseg->journal;
2259         int i;
2260 
2261         down_read(&curseg->journal_rwsem);
2262         for (i = 0; i < nats_in_cursum(journal); i++) {
2263                 block_t addr;
2264                 nid_t nid;
2265 
2266                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2267                 nid = le32_to_cpu(nid_in_journal(journal, i));
2268                 if (addr == NULL_ADDR)
2269                         add_free_nid(sbi, nid, true, false);
2270                 else
2271                         remove_free_nid(sbi, nid);
2272         }
2273         up_read(&curseg->journal_rwsem);
2274 }
2275 
2276 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2277 {
2278         struct f2fs_nm_info *nm_i = NM_I(sbi);
2279         unsigned int i, idx;
2280         nid_t nid;
2281 
2282         down_read(&nm_i->nat_tree_lock);
2283 
2284         for (i = 0; i < nm_i->nat_blocks; i++) {
2285                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2286                         continue;
2287                 if (!nm_i->free_nid_count[i])
2288                         continue;
2289                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2290                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2291                                                 NAT_ENTRY_PER_BLOCK, idx);
2292                         if (idx >= NAT_ENTRY_PER_BLOCK)
2293                                 break;
2294 
2295                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2296                         add_free_nid(sbi, nid, true, false);
2297 
2298                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2299                                 goto out;
2300                 }
2301         }
2302 out:
2303         scan_curseg_cache(sbi);
2304 
2305         up_read(&nm_i->nat_tree_lock);
2306 }
2307 
2308 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2309                                                 bool sync, bool mount)
2310 {
2311         struct f2fs_nm_info *nm_i = NM_I(sbi);
2312         int i = 0, ret;
2313         nid_t nid = nm_i->next_scan_nid;
2314 
2315         if (unlikely(nid >= nm_i->max_nid))
2316                 nid = 0;
2317 
2318         /* Enough entries */
2319         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2320                 return 0;
2321 
2322         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2323                 return 0;
2324 
2325         if (!mount) {
2326                 /* try to find free nids in free_nid_bitmap */
2327                 scan_free_nid_bits(sbi);
2328 
2329                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2330                         return 0;
2331         }
2332 
2333         /* readahead nat pages to be scanned */
2334         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2335                                                         META_NAT, true);
2336 
2337         down_read(&nm_i->nat_tree_lock);
2338 
2339         while (1) {
2340                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2341                                                 nm_i->nat_block_bitmap)) {
2342                         struct page *page = get_current_nat_page(sbi, nid);
2343 
2344                         if (IS_ERR(page)) {
2345                                 ret = PTR_ERR(page);
2346                         } else {
2347                                 ret = scan_nat_page(sbi, page, nid);
2348                                 f2fs_put_page(page, 1);
2349                         }
2350 
2351                         if (ret) {
2352                                 up_read(&nm_i->nat_tree_lock);
2353                                 f2fs_bug_on(sbi, !mount);
2354                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2355                                 return ret;
2356                         }
2357                 }
2358 
2359                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2360                 if (unlikely(nid >= nm_i->max_nid))
2361                         nid = 0;
2362 
2363                 if (++i >= FREE_NID_PAGES)
2364                         break;
2365         }
2366 
2367         /* go to the next free nat pages to find free nids abundantly */
2368         nm_i->next_scan_nid = nid;
2369 
2370         /* find free nids from current sum_pages */
2371         scan_curseg_cache(sbi);
2372 
2373         up_read(&nm_i->nat_tree_lock);
2374 
2375         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2376                                         nm_i->ra_nid_pages, META_NAT, false);
2377 
2378         return 0;
2379 }
2380 
2381 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2382 {
2383         int ret;
2384 
2385         mutex_lock(&NM_I(sbi)->build_lock);
2386         ret = __f2fs_build_free_nids(sbi, sync, mount);
2387         mutex_unlock(&NM_I(sbi)->build_lock);
2388 
2389         return ret;
2390 }
2391 
2392 /*
2393  * If this function returns success, caller can obtain a new nid
2394  * from second parameter of this function.
2395  * The returned nid could be used ino as well as nid when inode is created.
2396  */
2397 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2398 {
2399         struct f2fs_nm_info *nm_i = NM_I(sbi);
2400         struct free_nid *i = NULL;
2401 retry:
2402         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2403                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2404                 return false;
2405         }
2406 
2407         spin_lock(&nm_i->nid_list_lock);
2408 
2409         if (unlikely(nm_i->available_nids == 0)) {
2410                 spin_unlock(&nm_i->nid_list_lock);
2411                 return false;
2412         }
2413 
2414         /* We should not use stale free nids created by f2fs_build_free_nids */
2415         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2416                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2417                 i = list_first_entry(&nm_i->free_nid_list,
2418                                         struct free_nid, list);
2419                 *nid = i->nid;
2420 
2421                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2422                 nm_i->available_nids--;
2423 
2424                 update_free_nid_bitmap(sbi, *nid, false, false);
2425 
2426                 spin_unlock(&nm_i->nid_list_lock);
2427                 return true;
2428         }
2429         spin_unlock(&nm_i->nid_list_lock);
2430 
2431         /* Let's scan nat pages and its caches to get free nids */
2432         if (!f2fs_build_free_nids(sbi, true, false))
2433                 goto retry;
2434         return false;
2435 }
2436 
2437 /*
2438  * f2fs_alloc_nid() should be called prior to this function.
2439  */
2440 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2441 {
2442         struct f2fs_nm_info *nm_i = NM_I(sbi);
2443         struct free_nid *i;
2444 
2445         spin_lock(&nm_i->nid_list_lock);
2446         i = __lookup_free_nid_list(nm_i, nid);
2447         f2fs_bug_on(sbi, !i);
2448         __remove_free_nid(sbi, i, PREALLOC_NID);
2449         spin_unlock(&nm_i->nid_list_lock);
2450 
2451         kmem_cache_free(free_nid_slab, i);
2452 }
2453 
2454 /*
2455  * f2fs_alloc_nid() should be called prior to this function.
2456  */
2457 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2458 {
2459         struct f2fs_nm_info *nm_i = NM_I(sbi);
2460         struct free_nid *i;
2461         bool need_free = false;
2462 
2463         if (!nid)
2464                 return;
2465 
2466         spin_lock(&nm_i->nid_list_lock);
2467         i = __lookup_free_nid_list(nm_i, nid);
2468         f2fs_bug_on(sbi, !i);
2469 
2470         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2471                 __remove_free_nid(sbi, i, PREALLOC_NID);
2472                 need_free = true;
2473         } else {
2474                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2475         }
2476 
2477         nm_i->available_nids++;
2478 
2479         update_free_nid_bitmap(sbi, nid, true, false);
2480 
2481         spin_unlock(&nm_i->nid_list_lock);
2482 
2483         if (need_free)
2484                 kmem_cache_free(free_nid_slab, i);
2485 }
2486 
2487 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2488 {
2489         struct f2fs_nm_info *nm_i = NM_I(sbi);
2490         struct free_nid *i, *next;
2491         int nr = nr_shrink;
2492 
2493         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2494                 return 0;
2495 
2496         if (!mutex_trylock(&nm_i->build_lock))
2497                 return 0;
2498 
2499         spin_lock(&nm_i->nid_list_lock);
2500         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2501                 if (nr_shrink <= 0 ||
2502                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2503                         break;
2504 
2505                 __remove_free_nid(sbi, i, FREE_NID);
2506                 kmem_cache_free(free_nid_slab, i);
2507                 nr_shrink--;
2508         }
2509         spin_unlock(&nm_i->nid_list_lock);
2510         mutex_unlock(&nm_i->build_lock);
2511 
2512         return nr - nr_shrink;
2513 }
2514 
2515 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2516 {
2517         void *src_addr, *dst_addr;
2518         size_t inline_size;
2519         struct page *ipage;
2520         struct f2fs_inode *ri;
2521 
2522         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2523         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2524 
2525         ri = F2FS_INODE(page);
2526         if (ri->i_inline & F2FS_INLINE_XATTR) {
2527                 set_inode_flag(inode, FI_INLINE_XATTR);
2528         } else {
2529                 clear_inode_flag(inode, FI_INLINE_XATTR);
2530                 goto update_inode;
2531         }
2532 
2533         dst_addr = inline_xattr_addr(inode, ipage);
2534         src_addr = inline_xattr_addr(inode, page);
2535         inline_size = inline_xattr_size(inode);
2536 
2537         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2538         memcpy(dst_addr, src_addr, inline_size);
2539 update_inode:
2540         f2fs_update_inode(inode, ipage);
2541         f2fs_put_page(ipage, 1);
2542 }
2543 
2544 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2545 {
2546         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2547         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2548         nid_t new_xnid;
2549         struct dnode_of_data dn;
2550         struct node_info ni;
2551         struct page *xpage;
2552         int err;
2553 
2554         if (!prev_xnid)
2555                 goto recover_xnid;
2556 
2557         /* 1: invalidate the previous xattr nid */
2558         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2559         if (err)
2560                 return err;
2561 
2562         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2563         dec_valid_node_count(sbi, inode, false);
2564         set_node_addr(sbi, &ni, NULL_ADDR, false);
2565 
2566 recover_xnid:
2567         /* 2: update xattr nid in inode */
2568         if (!f2fs_alloc_nid(sbi, &new_xnid))
2569                 return -ENOSPC;
2570 
2571         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2572         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2573         if (IS_ERR(xpage)) {
2574                 f2fs_alloc_nid_failed(sbi, new_xnid);
2575                 return PTR_ERR(xpage);
2576         }
2577 
2578         f2fs_alloc_nid_done(sbi, new_xnid);
2579         f2fs_update_inode_page(inode);
2580 
2581         /* 3: update and set xattr node page dirty */
2582         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2583 
2584         set_page_dirty(xpage);
2585         f2fs_put_page(xpage, 1);
2586 
2587         return 0;
2588 }
2589 
2590 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2591 {
2592         struct f2fs_inode *src, *dst;
2593         nid_t ino = ino_of_node(page);
2594         struct node_info old_ni, new_ni;
2595         struct page *ipage;
2596         int err;
2597 
2598         err = f2fs_get_node_info(sbi, ino, &old_ni);
2599         if (err)
2600                 return err;
2601 
2602         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2603                 return -EINVAL;
2604 retry:
2605         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2606         if (!ipage) {
2607                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2608                 goto retry;
2609         }
2610 
2611         /* Should not use this inode from free nid list */
2612         remove_free_nid(sbi, ino);
2613 
2614         if (!PageUptodate(ipage))
2615                 SetPageUptodate(ipage);
2616         fill_node_footer(ipage, ino, ino, 0, true);
2617         set_cold_node(ipage, false);
2618 
2619         src = F2FS_INODE(page);
2620         dst = F2FS_INODE(ipage);
2621 
2622         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2623         dst->i_size = 0;
2624         dst->i_blocks = cpu_to_le64(1);
2625         dst->i_links = cpu_to_le32(1);
2626         dst->i_xattr_nid = 0;
2627         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2628         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2629                 dst->i_extra_isize = src->i_extra_isize;
2630 
2631                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2632                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2633                                                         i_inline_xattr_size))
2634                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2635 
2636                 if (f2fs_sb_has_project_quota(sbi) &&
2637                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2638                                                                 i_projid))
2639                         dst->i_projid = src->i_projid;
2640 
2641                 if (f2fs_sb_has_inode_crtime(sbi) &&
2642                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2643                                                         i_crtime_nsec)) {
2644                         dst->i_crtime = src->i_crtime;
2645                         dst->i_crtime_nsec = src->i_crtime_nsec;
2646                 }
2647         }
2648 
2649         new_ni = old_ni;
2650         new_ni.ino = ino;
2651 
2652         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2653                 WARN_ON(1);
2654         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2655         inc_valid_inode_count(sbi);
2656         set_page_dirty(ipage);
2657         f2fs_put_page(ipage, 1);
2658         return 0;
2659 }
2660 
2661 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2662                         unsigned int segno, struct f2fs_summary_block *sum)
2663 {
2664         struct f2fs_node *rn;
2665         struct f2fs_summary *sum_entry;
2666         block_t addr;
2667         int i, idx, last_offset, nrpages;
2668 
2669         /* scan the node segment */
2670         last_offset = sbi->blocks_per_seg;
2671         addr = START_BLOCK(sbi, segno);
2672         sum_entry = &sum->entries[0];
2673 
2674         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2675                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2676 
2677                 /* readahead node pages */
2678                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2679 
2680                 for (idx = addr; idx < addr + nrpages; idx++) {
2681                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2682 
2683                         if (IS_ERR(page))
2684                                 return PTR_ERR(page);
2685 
2686                         rn = F2FS_NODE(page);
2687                         sum_entry->nid = rn->footer.nid;
2688                         sum_entry->version = 0;
2689                         sum_entry->ofs_in_node = 0;
2690                         sum_entry++;
2691                         f2fs_put_page(page, 1);
2692                 }
2693 
2694                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2695                                                         addr + nrpages);
2696         }
2697         return 0;
2698 }
2699 
2700 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2701 {
2702         struct f2fs_nm_info *nm_i = NM_I(sbi);
2703         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2704         struct f2fs_journal *journal = curseg->journal;
2705         int i;
2706 
2707         down_write(&curseg->journal_rwsem);
2708         for (i = 0; i < nats_in_cursum(journal); i++) {
2709                 struct nat_entry *ne;
2710                 struct f2fs_nat_entry raw_ne;
2711                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2712 
2713                 raw_ne = nat_in_journal(journal, i);
2714 
2715                 ne = __lookup_nat_cache(nm_i, nid);
2716                 if (!ne) {
2717                         ne = __alloc_nat_entry(nid, true);
2718                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2719                 }
2720 
2721                 /*
2722                  * if a free nat in journal has not been used after last
2723                  * checkpoint, we should remove it from available nids,
2724                  * since later we will add it again.
2725                  */
2726                 if (!get_nat_flag(ne, IS_DIRTY) &&
2727                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2728                         spin_lock(&nm_i->nid_list_lock);
2729                         nm_i->available_nids--;
2730                         spin_unlock(&nm_i->nid_list_lock);
2731                 }
2732 
2733                 __set_nat_cache_dirty(nm_i, ne);
2734         }
2735         update_nats_in_cursum(journal, -i);
2736         up_write(&curseg->journal_rwsem);
2737 }
2738 
2739 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2740                                                 struct list_head *head, int max)
2741 {
2742         struct nat_entry_set *cur;
2743 
2744         if (nes->entry_cnt >= max)
2745                 goto add_out;
2746 
2747         list_for_each_entry(cur, head, set_list) {
2748                 if (cur->entry_cnt >= nes->entry_cnt) {
2749                         list_add(&nes->set_list, cur->set_list.prev);
2750                         return;
2751                 }
2752         }
2753 add_out:
2754         list_add_tail(&nes->set_list, head);
2755 }
2756 
2757 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2758                                                 struct page *page)
2759 {
2760         struct f2fs_nm_info *nm_i = NM_I(sbi);
2761         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2762         struct f2fs_nat_block *nat_blk = page_address(page);
2763         int valid = 0;
2764         int i = 0;
2765 
2766         if (!enabled_nat_bits(sbi, NULL))
2767                 return;
2768 
2769         if (nat_index == 0) {
2770                 valid = 1;
2771                 i = 1;
2772         }
2773         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2774                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2775                         valid++;
2776         }
2777         if (valid == 0) {
2778                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2779                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2780                 return;
2781         }
2782 
2783         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2784         if (valid == NAT_ENTRY_PER_BLOCK)
2785                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2786         else
2787                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2788 }
2789 
2790 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2791                 struct nat_entry_set *set, struct cp_control *cpc)
2792 {
2793         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2794         struct f2fs_journal *journal = curseg->journal;
2795         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2796         bool to_journal = true;
2797         struct f2fs_nat_block *nat_blk;
2798         struct nat_entry *ne, *cur;
2799         struct page *page = NULL;
2800 
2801         /*
2802          * there are two steps to flush nat entries:
2803          * #1, flush nat entries to journal in current hot data summary block.
2804          * #2, flush nat entries to nat page.
2805          */
2806         if (enabled_nat_bits(sbi, cpc) ||
2807                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2808                 to_journal = false;
2809 
2810         if (to_journal) {
2811                 down_write(&curseg->journal_rwsem);
2812         } else {
2813                 page = get_next_nat_page(sbi, start_nid);
2814                 if (IS_ERR(page))
2815                         return PTR_ERR(page);
2816 
2817                 nat_blk = page_address(page);
2818                 f2fs_bug_on(sbi, !nat_blk);
2819         }
2820 
2821         /* flush dirty nats in nat entry set */
2822         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2823                 struct f2fs_nat_entry *raw_ne;
2824                 nid_t nid = nat_get_nid(ne);
2825                 int offset;
2826 
2827                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2828 
2829                 if (to_journal) {
2830                         offset = f2fs_lookup_journal_in_cursum(journal,
2831                                                         NAT_JOURNAL, nid, 1);
2832                         f2fs_bug_on(sbi, offset < 0);
2833                         raw_ne = &nat_in_journal(journal, offset);
2834                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2835                 } else {
2836                         raw_ne = &nat_blk->entries[nid - start_nid];
2837                 }
2838                 raw_nat_from_node_info(raw_ne, &ne->ni);
2839                 nat_reset_flag(ne);
2840                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2841                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2842                         add_free_nid(sbi, nid, false, true);
2843                 } else {
2844                         spin_lock(&NM_I(sbi)->nid_list_lock);
2845                         update_free_nid_bitmap(sbi, nid, false, false);
2846                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2847                 }
2848         }
2849 
2850         if (to_journal) {
2851                 up_write(&curseg->journal_rwsem);
2852         } else {
2853                 __update_nat_bits(sbi, start_nid, page);
2854                 f2fs_put_page(page, 1);
2855         }
2856 
2857         /* Allow dirty nats by node block allocation in write_begin */
2858         if (!set->entry_cnt) {
2859                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2860                 kmem_cache_free(nat_entry_set_slab, set);
2861         }
2862         return 0;
2863 }
2864 
2865 /*
2866  * This function is called during the checkpointing process.
2867  */
2868 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2869 {
2870         struct f2fs_nm_info *nm_i = NM_I(sbi);
2871         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2872         struct f2fs_journal *journal = curseg->journal;
2873         struct nat_entry_set *setvec[SETVEC_SIZE];
2874         struct nat_entry_set *set, *tmp;
2875         unsigned int found;
2876         nid_t set_idx = 0;
2877         LIST_HEAD(sets);
2878         int err = 0;
2879 
2880         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2881         if (enabled_nat_bits(sbi, cpc)) {
2882                 down_write(&nm_i->nat_tree_lock);
2883                 remove_nats_in_journal(sbi);
2884                 up_write(&nm_i->nat_tree_lock);
2885         }
2886 
2887         if (!nm_i->dirty_nat_cnt)
2888                 return 0;
2889 
2890         down_write(&nm_i->nat_tree_lock);
2891 
2892         /*
2893          * if there are no enough space in journal to store dirty nat
2894          * entries, remove all entries from journal and merge them
2895          * into nat entry set.
2896          */
2897         if (enabled_nat_bits(sbi, cpc) ||
2898                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2899                 remove_nats_in_journal(sbi);
2900 
2901         while ((found = __gang_lookup_nat_set(nm_i,
2902                                         set_idx, SETVEC_SIZE, setvec))) {
2903                 unsigned idx;
2904                 set_idx = setvec[found - 1]->set + 1;
2905                 for (idx = 0; idx < found; idx++)
2906                         __adjust_nat_entry_set(setvec[idx], &sets,
2907                                                 MAX_NAT_JENTRIES(journal));
2908         }
2909 
2910         /* flush dirty nats in nat entry set */
2911         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2912                 err = __flush_nat_entry_set(sbi, set, cpc);
2913                 if (err)
2914                         break;
2915         }
2916 
2917         up_write(&nm_i->nat_tree_lock);
2918         /* Allow dirty nats by node block allocation in write_begin */
2919 
2920         return err;
2921 }
2922 
2923 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2924 {
2925         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2926         struct f2fs_nm_info *nm_i = NM_I(sbi);
2927         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2928         unsigned int i;
2929         __u64 cp_ver = cur_cp_version(ckpt);
2930         block_t nat_bits_addr;
2931 
2932         if (!enabled_nat_bits(sbi, NULL))
2933                 return 0;
2934 
2935         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2936         nm_i->nat_bits = f2fs_kzalloc(sbi,
2937                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2938         if (!nm_i->nat_bits)
2939                 return -ENOMEM;
2940 
2941         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2942                                                 nm_i->nat_bits_blocks;
2943         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2944                 struct page *page;
2945 
2946                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2947                 if (IS_ERR(page))
2948                         return PTR_ERR(page);
2949 
2950                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2951                                         page_address(page), F2FS_BLKSIZE);
2952                 f2fs_put_page(page, 1);
2953         }
2954 
2955         cp_ver |= (cur_cp_crc(ckpt) << 32);
2956         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2957                 disable_nat_bits(sbi, true);
2958                 return 0;
2959         }
2960 
2961         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2962         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2963 
2964         f2fs_notice(sbi, "Found nat_bits in checkpoint");
2965         return 0;
2966 }
2967 
2968 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2969 {
2970         struct f2fs_nm_info *nm_i = NM_I(sbi);
2971         unsigned int i = 0;
2972         nid_t nid, last_nid;
2973 
2974         if (!enabled_nat_bits(sbi, NULL))
2975                 return;
2976 
2977         for (i = 0; i < nm_i->nat_blocks; i++) {
2978                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2979                 if (i >= nm_i->nat_blocks)
2980                         break;
2981 
2982                 __set_bit_le(i, nm_i->nat_block_bitmap);
2983 
2984                 nid = i * NAT_ENTRY_PER_BLOCK;
2985                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2986 
2987                 spin_lock(&NM_I(sbi)->nid_list_lock);
2988                 for (; nid < last_nid; nid++)
2989                         update_free_nid_bitmap(sbi, nid, true, true);
2990                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2991         }
2992 
2993         for (i = 0; i < nm_i->nat_blocks; i++) {
2994                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2995                 if (i >= nm_i->nat_blocks)
2996                         break;
2997 
2998                 __set_bit_le(i, nm_i->nat_block_bitmap);
2999         }
3000 }
3001 
3002 static int init_node_manager(struct f2fs_sb_info *sbi)
3003 {
3004         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3005         struct f2fs_nm_info *nm_i = NM_I(sbi);
3006         unsigned char *version_bitmap;
3007         unsigned int nat_segs;
3008         int err;
3009 
3010         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3011 
3012         /* segment_count_nat includes pair segment so divide to 2. */
3013         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3014         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3015         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3016 
3017         /* not used nids: 0, node, meta, (and root counted as valid node) */
3018         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3019                                                 F2FS_RESERVED_NODE_NUM;
3020         nm_i->nid_cnt[FREE_NID] = 0;
3021         nm_i->nid_cnt[PREALLOC_NID] = 0;
3022         nm_i->nat_cnt = 0;
3023         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3024         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3025         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3026 
3027         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3028         INIT_LIST_HEAD(&nm_i->free_nid_list);
3029         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3030         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3031         INIT_LIST_HEAD(&nm_i->nat_entries);
3032         spin_lock_init(&nm_i->nat_list_lock);
3033 
3034         mutex_init(&nm_i->build_lock);
3035         spin_lock_init(&nm_i->nid_list_lock);
3036         init_rwsem(&nm_i->nat_tree_lock);
3037 
3038         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3039         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3040         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3041         if (!version_bitmap)
3042                 return -EFAULT;
3043 
3044         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3045                                         GFP_KERNEL);
3046         if (!nm_i->nat_bitmap)
3047                 return -ENOMEM;
3048 
3049         err = __get_nat_bitmaps(sbi);
3050         if (err)
3051                 return err;
3052 
3053 #ifdef CONFIG_F2FS_CHECK_FS
3054         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3055                                         GFP_KERNEL);
3056         if (!nm_i->nat_bitmap_mir)
3057                 return -ENOMEM;
3058 #endif
3059 
3060         return 0;
3061 }
3062 
3063 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3064 {
3065         struct f2fs_nm_info *nm_i = NM_I(sbi);
3066         int i;
3067 
3068         nm_i->free_nid_bitmap =
3069                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3070                                              nm_i->nat_blocks),
3071                              GFP_KERNEL);
3072         if (!nm_i->free_nid_bitmap)
3073                 return -ENOMEM;
3074 
3075         for (i = 0; i < nm_i->nat_blocks; i++) {
3076                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3077                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3078                 if (!nm_i->free_nid_bitmap[i])
3079                         return -ENOMEM;
3080         }
3081 
3082         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3083                                                                 GFP_KERNEL);
3084         if (!nm_i->nat_block_bitmap)
3085                 return -ENOMEM;
3086 
3087         nm_i->free_nid_count =
3088                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3089                                               nm_i->nat_blocks),
3090                               GFP_KERNEL);
3091         if (!nm_i->free_nid_count)
3092                 return -ENOMEM;
3093         return 0;
3094 }
3095 
3096 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3097 {
3098         int err;
3099 
3100         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3101                                                         GFP_KERNEL);
3102         if (!sbi->nm_info)
3103                 return -ENOMEM;
3104 
3105         err = init_node_manager(sbi);
3106         if (err)
3107                 return err;
3108 
3109         err = init_free_nid_cache(sbi);
3110         if (err)
3111                 return err;
3112 
3113         /* load free nid status from nat_bits table */
3114         load_free_nid_bitmap(sbi);
3115 
3116         return f2fs_build_free_nids(sbi, true, true);
3117 }
3118 
3119 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3120 {
3121         struct f2fs_nm_info *nm_i = NM_I(sbi);
3122         struct free_nid *i, *next_i;
3123         struct nat_entry *natvec[NATVEC_SIZE];
3124         struct nat_entry_set *setvec[SETVEC_SIZE];
3125         nid_t nid = 0;
3126         unsigned int found;
3127 
3128         if (!nm_i)
3129                 return;
3130 
3131         /* destroy free nid list */
3132         spin_lock(&nm_i->nid_list_lock);
3133         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3134                 __remove_free_nid(sbi, i, FREE_NID);
3135                 spin_unlock(&nm_i->nid_list_lock);
3136                 kmem_cache_free(free_nid_slab, i);
3137                 spin_lock(&nm_i->nid_list_lock);
3138         }
3139         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3140         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3141         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3142         spin_unlock(&nm_i->nid_list_lock);
3143 
3144         /* destroy nat cache */
3145         down_write(&nm_i->nat_tree_lock);
3146         while ((found = __gang_lookup_nat_cache(nm_i,
3147                                         nid, NATVEC_SIZE, natvec))) {
3148                 unsigned idx;
3149 
3150                 nid = nat_get_nid(natvec[found - 1]) + 1;
3151                 for (idx = 0; idx < found; idx++) {
3152                         spin_lock(&nm_i->nat_list_lock);
3153                         list_del(&natvec[idx]->list);
3154                         spin_unlock(&nm_i->nat_list_lock);
3155 
3156                         __del_from_nat_cache(nm_i, natvec[idx]);
3157                 }
3158         }
3159         f2fs_bug_on(sbi, nm_i->nat_cnt);
3160 
3161         /* destroy nat set cache */
3162         nid = 0;
3163         while ((found = __gang_lookup_nat_set(nm_i,
3164                                         nid, SETVEC_SIZE, setvec))) {
3165                 unsigned idx;
3166 
3167                 nid = setvec[found - 1]->set + 1;
3168                 for (idx = 0; idx < found; idx++) {
3169                         /* entry_cnt is not zero, when cp_error was occurred */
3170                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3171                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3172                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3173                 }
3174         }
3175         up_write(&nm_i->nat_tree_lock);
3176 
3177         kvfree(nm_i->nat_block_bitmap);
3178         if (nm_i->free_nid_bitmap) {
3179                 int i;
3180 
3181                 for (i = 0; i < nm_i->nat_blocks; i++)
3182                         kvfree(nm_i->free_nid_bitmap[i]);
3183                 kvfree(nm_i->free_nid_bitmap);
3184         }
3185         kvfree(nm_i->free_nid_count);
3186 
3187         kvfree(nm_i->nat_bitmap);
3188         kvfree(nm_i->nat_bits);
3189 #ifdef CONFIG_F2FS_CHECK_FS
3190         kvfree(nm_i->nat_bitmap_mir);
3191 #endif
3192         sbi->nm_info = NULL;
3193         kvfree(nm_i);
3194 }
3195 
3196 int __init f2fs_create_node_manager_caches(void)
3197 {
3198         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3199                         sizeof(struct nat_entry));
3200         if (!nat_entry_slab)
3201                 goto fail;
3202 
3203         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3204                         sizeof(struct free_nid));
3205         if (!free_nid_slab)
3206                 goto destroy_nat_entry;
3207 
3208         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3209                         sizeof(struct nat_entry_set));
3210         if (!nat_entry_set_slab)
3211                 goto destroy_free_nid;
3212 
3213         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3214                         sizeof(struct fsync_node_entry));
3215         if (!fsync_node_entry_slab)
3216                 goto destroy_nat_entry_set;
3217         return 0;
3218 
3219 destroy_nat_entry_set:
3220         kmem_cache_destroy(nat_entry_set_slab);
3221 destroy_free_nid:
3222         kmem_cache_destroy(free_nid_slab);
3223 destroy_nat_entry:
3224         kmem_cache_destroy(nat_entry_slab);
3225 fail:
3226         return -ENOMEM;
3227 }
3228 
3229 void f2fs_destroy_node_manager_caches(void)
3230 {
3231         kmem_cache_destroy(fsync_node_entry_slab);
3232         kmem_cache_destroy(nat_entry_set_slab);
3233         kmem_cache_destroy(free_nid_slab);
3234         kmem_cache_destroy(nat_entry_slab);
3235 }

/* [<][>][^][v][top][bottom][index][help] */