root/fs/f2fs/segment.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. CURSEG_I
  2. get_seg_entry
  3. get_sec_entry
  4. get_valid_blocks
  5. get_ckpt_valid_blocks
  6. seg_info_from_raw_sit
  7. __seg_info_to_raw_sit
  8. seg_info_to_sit_page
  9. seg_info_to_raw_sit
  10. find_next_inuse
  11. __set_free
  12. __set_inuse
  13. __set_test_and_free
  14. __set_test_and_inuse
  15. get_sit_bitmap
  16. written_block_count
  17. free_segments
  18. reserved_segments
  19. free_sections
  20. prefree_segments
  21. dirty_segments
  22. overprovision_segments
  23. reserved_sections
  24. has_curseg_enough_space
  25. has_not_enough_free_secs
  26. f2fs_is_checkpoint_ready
  27. excess_prefree_segs
  28. utilization
  29. curseg_segno
  30. curseg_alloc_type
  31. curseg_blkoff
  32. check_seg_range
  33. verify_fio_blkaddr
  34. check_block_count
  35. current_sit_addr
  36. next_sit_addr
  37. set_to_next_sit
  38. get_mtime
  39. set_summary
  40. start_sum_block
  41. sum_blk_addr
  42. sec_usage_check
  43. nr_pages_to_skip
  44. nr_pages_to_write
  45. wake_up_discard_thread

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * fs/f2fs/segment.h
   4  *
   5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6  *             http://www.samsung.com/
   7  */
   8 #include <linux/blkdev.h>
   9 #include <linux/backing-dev.h>
  10 
  11 /* constant macro */
  12 #define NULL_SEGNO                      ((unsigned int)(~0))
  13 #define NULL_SECNO                      ((unsigned int)(~0))
  14 
  15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
  16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
  17 
  18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
  19 
  20 /* L: Logical segment # in volume, R: Relative segment # in main area */
  21 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
  22 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
  23 
  24 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
  25 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE)
  26 
  27 #define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
  28 #define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
  29 #define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
  30 
  31 #define IS_CURSEG(sbi, seg)                                             \
  32         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
  33          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
  34          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
  35          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
  36          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
  37          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  38 
  39 #define IS_CURSEC(sbi, secno)                                           \
  40         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
  41           (sbi)->segs_per_sec) ||       \
  42          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
  43           (sbi)->segs_per_sec) ||       \
  44          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
  45           (sbi)->segs_per_sec) ||       \
  46          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
  47           (sbi)->segs_per_sec) ||       \
  48          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
  49           (sbi)->segs_per_sec) ||       \
  50          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
  51           (sbi)->segs_per_sec)) \
  52 
  53 #define MAIN_BLKADDR(sbi)                                               \
  54         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
  55                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
  56 #define SEG0_BLKADDR(sbi)                                               \
  57         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
  58                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
  59 
  60 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
  61 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
  62 
  63 #define TOTAL_SEGS(sbi)                                                 \
  64         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
  65                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
  66 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
  67 
  68 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
  69 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
  70                                         (sbi)->log_blocks_per_seg))
  71 
  72 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
  73          (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
  74 
  75 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
  76         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
  77 
  78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
  79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
  80         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
  81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
  82         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
  83 
  84 #define GET_SEGNO(sbi, blk_addr)                                        \
  85         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
  86         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
  87                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  88 #define BLKS_PER_SEC(sbi)                                       \
  89         ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
  90 #define GET_SEC_FROM_SEG(sbi, segno)                            \
  91         ((segno) / (sbi)->segs_per_sec)
  92 #define GET_SEG_FROM_SEC(sbi, secno)                            \
  93         ((secno) * (sbi)->segs_per_sec)
  94 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
  95         ((secno) / (sbi)->secs_per_zone)
  96 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
  97         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
  98 
  99 #define GET_SUM_BLOCK(sbi, segno)                               \
 100         ((sbi)->sm_info->ssa_blkaddr + (segno))
 101 
 102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
 103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
 104 
 105 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
 106         ((segno) % (sit_i)->sents_per_block)
 107 #define SIT_BLOCK_OFFSET(segno)                                 \
 108         ((segno) / SIT_ENTRY_PER_BLOCK)
 109 #define START_SEGNO(segno)              \
 110         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 111 #define SIT_BLK_CNT(sbi)                        \
 112         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
 113 #define f2fs_bitmap_size(nr)                    \
 114         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
 115 
 116 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
 117         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
 118 #define SECTOR_TO_BLOCK(sectors)                                        \
 119         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
 120 
 121 /*
 122  * indicate a block allocation direction: RIGHT and LEFT.
 123  * RIGHT means allocating new sections towards the end of volume.
 124  * LEFT means the opposite direction.
 125  */
 126 enum {
 127         ALLOC_RIGHT = 0,
 128         ALLOC_LEFT
 129 };
 130 
 131 /*
 132  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 133  * LFS writes data sequentially with cleaning operations.
 134  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 135  */
 136 enum {
 137         LFS = 0,
 138         SSR
 139 };
 140 
 141 /*
 142  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 143  * GC_CB is based on cost-benefit algorithm.
 144  * GC_GREEDY is based on greedy algorithm.
 145  */
 146 enum {
 147         GC_CB = 0,
 148         GC_GREEDY,
 149         ALLOC_NEXT,
 150         FLUSH_DEVICE,
 151         MAX_GC_POLICY,
 152 };
 153 
 154 /*
 155  * BG_GC means the background cleaning job.
 156  * FG_GC means the on-demand cleaning job.
 157  * FORCE_FG_GC means on-demand cleaning job in background.
 158  */
 159 enum {
 160         BG_GC = 0,
 161         FG_GC,
 162         FORCE_FG_GC,
 163 };
 164 
 165 /* for a function parameter to select a victim segment */
 166 struct victim_sel_policy {
 167         int alloc_mode;                 /* LFS or SSR */
 168         int gc_mode;                    /* GC_CB or GC_GREEDY */
 169         unsigned long *dirty_segmap;    /* dirty segment bitmap */
 170         unsigned int max_search;        /* maximum # of segments to search */
 171         unsigned int offset;            /* last scanned bitmap offset */
 172         unsigned int ofs_unit;          /* bitmap search unit */
 173         unsigned int min_cost;          /* minimum cost */
 174         unsigned int min_segno;         /* segment # having min. cost */
 175 };
 176 
 177 struct seg_entry {
 178         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
 179         unsigned int valid_blocks:10;   /* # of valid blocks */
 180         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
 181         unsigned int padding:6;         /* padding */
 182         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
 183 #ifdef CONFIG_F2FS_CHECK_FS
 184         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
 185 #endif
 186         /*
 187          * # of valid blocks and the validity bitmap stored in the the last
 188          * checkpoint pack. This information is used by the SSR mode.
 189          */
 190         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
 191         unsigned char *discard_map;
 192         unsigned long long mtime;       /* modification time of the segment */
 193 };
 194 
 195 struct sec_entry {
 196         unsigned int valid_blocks;      /* # of valid blocks in a section */
 197 };
 198 
 199 struct segment_allocation {
 200         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 201 };
 202 
 203 /*
 204  * this value is set in page as a private data which indicate that
 205  * the page is atomically written, and it is in inmem_pages list.
 206  */
 207 #define ATOMIC_WRITTEN_PAGE             ((unsigned long)-1)
 208 #define DUMMY_WRITTEN_PAGE              ((unsigned long)-2)
 209 
 210 #define IS_ATOMIC_WRITTEN_PAGE(page)                    \
 211                 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
 212 #define IS_DUMMY_WRITTEN_PAGE(page)                     \
 213                 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
 214 
 215 #define MAX_SKIP_GC_COUNT                       16
 216 
 217 struct inmem_pages {
 218         struct list_head list;
 219         struct page *page;
 220         block_t old_addr;               /* for revoking when fail to commit */
 221 };
 222 
 223 struct sit_info {
 224         const struct segment_allocation *s_ops;
 225 
 226         block_t sit_base_addr;          /* start block address of SIT area */
 227         block_t sit_blocks;             /* # of blocks used by SIT area */
 228         block_t written_valid_blocks;   /* # of valid blocks in main area */
 229         char *bitmap;                   /* all bitmaps pointer */
 230         char *sit_bitmap;               /* SIT bitmap pointer */
 231 #ifdef CONFIG_F2FS_CHECK_FS
 232         char *sit_bitmap_mir;           /* SIT bitmap mirror */
 233 
 234         /* bitmap of segments to be ignored by GC in case of errors */
 235         unsigned long *invalid_segmap;
 236 #endif
 237         unsigned int bitmap_size;       /* SIT bitmap size */
 238 
 239         unsigned long *tmp_map;                 /* bitmap for temporal use */
 240         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
 241         unsigned int dirty_sentries;            /* # of dirty sentries */
 242         unsigned int sents_per_block;           /* # of SIT entries per block */
 243         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
 244         struct seg_entry *sentries;             /* SIT segment-level cache */
 245         struct sec_entry *sec_entries;          /* SIT section-level cache */
 246 
 247         /* for cost-benefit algorithm in cleaning procedure */
 248         unsigned long long elapsed_time;        /* elapsed time after mount */
 249         unsigned long long mounted_time;        /* mount time */
 250         unsigned long long min_mtime;           /* min. modification time */
 251         unsigned long long max_mtime;           /* max. modification time */
 252 
 253         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
 254 };
 255 
 256 struct free_segmap_info {
 257         unsigned int start_segno;       /* start segment number logically */
 258         unsigned int free_segments;     /* # of free segments */
 259         unsigned int free_sections;     /* # of free sections */
 260         spinlock_t segmap_lock;         /* free segmap lock */
 261         unsigned long *free_segmap;     /* free segment bitmap */
 262         unsigned long *free_secmap;     /* free section bitmap */
 263 };
 264 
 265 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 266 enum dirty_type {
 267         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
 268         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
 269         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
 270         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
 271         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
 272         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
 273         DIRTY,                  /* to count # of dirty segments */
 274         PRE,                    /* to count # of entirely obsolete segments */
 275         NR_DIRTY_TYPE
 276 };
 277 
 278 struct dirty_seglist_info {
 279         const struct victim_selection *v_ops;   /* victim selction operation */
 280         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 281         struct mutex seglist_lock;              /* lock for segment bitmaps */
 282         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
 283         unsigned long *victim_secmap;           /* background GC victims */
 284 };
 285 
 286 /* victim selection function for cleaning and SSR */
 287 struct victim_selection {
 288         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 289                                                         int, int, char);
 290 };
 291 
 292 /* for active log information */
 293 struct curseg_info {
 294         struct mutex curseg_mutex;              /* lock for consistency */
 295         struct f2fs_summary_block *sum_blk;     /* cached summary block */
 296         struct rw_semaphore journal_rwsem;      /* protect journal area */
 297         struct f2fs_journal *journal;           /* cached journal info */
 298         unsigned char alloc_type;               /* current allocation type */
 299         unsigned int segno;                     /* current segment number */
 300         unsigned short next_blkoff;             /* next block offset to write */
 301         unsigned int zone;                      /* current zone number */
 302         unsigned int next_segno;                /* preallocated segment */
 303 };
 304 
 305 struct sit_entry_set {
 306         struct list_head set_list;      /* link with all sit sets */
 307         unsigned int start_segno;       /* start segno of sits in set */
 308         unsigned int entry_cnt;         /* the # of sit entries in set */
 309 };
 310 
 311 /*
 312  * inline functions
 313  */
 314 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 315 {
 316         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 317 }
 318 
 319 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 320                                                 unsigned int segno)
 321 {
 322         struct sit_info *sit_i = SIT_I(sbi);
 323         return &sit_i->sentries[segno];
 324 }
 325 
 326 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 327                                                 unsigned int segno)
 328 {
 329         struct sit_info *sit_i = SIT_I(sbi);
 330         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
 331 }
 332 
 333 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 334                                 unsigned int segno, bool use_section)
 335 {
 336         /*
 337          * In order to get # of valid blocks in a section instantly from many
 338          * segments, f2fs manages two counting structures separately.
 339          */
 340         if (use_section && __is_large_section(sbi))
 341                 return get_sec_entry(sbi, segno)->valid_blocks;
 342         else
 343                 return get_seg_entry(sbi, segno)->valid_blocks;
 344 }
 345 
 346 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
 347                                 unsigned int segno)
 348 {
 349         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 350 }
 351 
 352 static inline void seg_info_from_raw_sit(struct seg_entry *se,
 353                                         struct f2fs_sit_entry *rs)
 354 {
 355         se->valid_blocks = GET_SIT_VBLOCKS(rs);
 356         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 357         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 358         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 359 #ifdef CONFIG_F2FS_CHECK_FS
 360         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 361 #endif
 362         se->type = GET_SIT_TYPE(rs);
 363         se->mtime = le64_to_cpu(rs->mtime);
 364 }
 365 
 366 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
 367                                         struct f2fs_sit_entry *rs)
 368 {
 369         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 370                                         se->valid_blocks;
 371         rs->vblocks = cpu_to_le16(raw_vblocks);
 372         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 373         rs->mtime = cpu_to_le64(se->mtime);
 374 }
 375 
 376 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
 377                                 struct page *page, unsigned int start)
 378 {
 379         struct f2fs_sit_block *raw_sit;
 380         struct seg_entry *se;
 381         struct f2fs_sit_entry *rs;
 382         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
 383                                         (unsigned long)MAIN_SEGS(sbi));
 384         int i;
 385 
 386         raw_sit = (struct f2fs_sit_block *)page_address(page);
 387         memset(raw_sit, 0, PAGE_SIZE);
 388         for (i = 0; i < end - start; i++) {
 389                 rs = &raw_sit->entries[i];
 390                 se = get_seg_entry(sbi, start + i);
 391                 __seg_info_to_raw_sit(se, rs);
 392         }
 393 }
 394 
 395 static inline void seg_info_to_raw_sit(struct seg_entry *se,
 396                                         struct f2fs_sit_entry *rs)
 397 {
 398         __seg_info_to_raw_sit(se, rs);
 399 
 400         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 401         se->ckpt_valid_blocks = se->valid_blocks;
 402 }
 403 
 404 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 405                 unsigned int max, unsigned int segno)
 406 {
 407         unsigned int ret;
 408         spin_lock(&free_i->segmap_lock);
 409         ret = find_next_bit(free_i->free_segmap, max, segno);
 410         spin_unlock(&free_i->segmap_lock);
 411         return ret;
 412 }
 413 
 414 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 415 {
 416         struct free_segmap_info *free_i = FREE_I(sbi);
 417         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 418         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
 419         unsigned int next;
 420 
 421         spin_lock(&free_i->segmap_lock);
 422         clear_bit(segno, free_i->free_segmap);
 423         free_i->free_segments++;
 424 
 425         next = find_next_bit(free_i->free_segmap,
 426                         start_segno + sbi->segs_per_sec, start_segno);
 427         if (next >= start_segno + sbi->segs_per_sec) {
 428                 clear_bit(secno, free_i->free_secmap);
 429                 free_i->free_sections++;
 430         }
 431         spin_unlock(&free_i->segmap_lock);
 432 }
 433 
 434 static inline void __set_inuse(struct f2fs_sb_info *sbi,
 435                 unsigned int segno)
 436 {
 437         struct free_segmap_info *free_i = FREE_I(sbi);
 438         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 439 
 440         set_bit(segno, free_i->free_segmap);
 441         free_i->free_segments--;
 442         if (!test_and_set_bit(secno, free_i->free_secmap))
 443                 free_i->free_sections--;
 444 }
 445 
 446 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 447                 unsigned int segno)
 448 {
 449         struct free_segmap_info *free_i = FREE_I(sbi);
 450         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 451         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
 452         unsigned int next;
 453 
 454         spin_lock(&free_i->segmap_lock);
 455         if (test_and_clear_bit(segno, free_i->free_segmap)) {
 456                 free_i->free_segments++;
 457 
 458                 if (IS_CURSEC(sbi, secno))
 459                         goto skip_free;
 460                 next = find_next_bit(free_i->free_segmap,
 461                                 start_segno + sbi->segs_per_sec, start_segno);
 462                 if (next >= start_segno + sbi->segs_per_sec) {
 463                         if (test_and_clear_bit(secno, free_i->free_secmap))
 464                                 free_i->free_sections++;
 465                 }
 466         }
 467 skip_free:
 468         spin_unlock(&free_i->segmap_lock);
 469 }
 470 
 471 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 472                 unsigned int segno)
 473 {
 474         struct free_segmap_info *free_i = FREE_I(sbi);
 475         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 476 
 477         spin_lock(&free_i->segmap_lock);
 478         if (!test_and_set_bit(segno, free_i->free_segmap)) {
 479                 free_i->free_segments--;
 480                 if (!test_and_set_bit(secno, free_i->free_secmap))
 481                         free_i->free_sections--;
 482         }
 483         spin_unlock(&free_i->segmap_lock);
 484 }
 485 
 486 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 487                 void *dst_addr)
 488 {
 489         struct sit_info *sit_i = SIT_I(sbi);
 490 
 491 #ifdef CONFIG_F2FS_CHECK_FS
 492         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
 493                                                 sit_i->bitmap_size))
 494                 f2fs_bug_on(sbi, 1);
 495 #endif
 496         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 497 }
 498 
 499 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 500 {
 501         return SIT_I(sbi)->written_valid_blocks;
 502 }
 503 
 504 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 505 {
 506         return FREE_I(sbi)->free_segments;
 507 }
 508 
 509 static inline int reserved_segments(struct f2fs_sb_info *sbi)
 510 {
 511         return SM_I(sbi)->reserved_segments;
 512 }
 513 
 514 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 515 {
 516         return FREE_I(sbi)->free_sections;
 517 }
 518 
 519 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 520 {
 521         return DIRTY_I(sbi)->nr_dirty[PRE];
 522 }
 523 
 524 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 525 {
 526         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 527                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 528                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 529                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 530                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 531                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 532 }
 533 
 534 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 535 {
 536         return SM_I(sbi)->ovp_segments;
 537 }
 538 
 539 static inline int reserved_sections(struct f2fs_sb_info *sbi)
 540 {
 541         return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
 542 }
 543 
 544 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
 545 {
 546         unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
 547                                         get_pages(sbi, F2FS_DIRTY_DENTS);
 548         unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
 549         unsigned int segno, left_blocks;
 550         int i;
 551 
 552         /* check current node segment */
 553         for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
 554                 segno = CURSEG_I(sbi, i)->segno;
 555                 left_blocks = sbi->blocks_per_seg -
 556                         get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 557 
 558                 if (node_blocks > left_blocks)
 559                         return false;
 560         }
 561 
 562         /* check current data segment */
 563         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
 564         left_blocks = sbi->blocks_per_seg -
 565                         get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 566         if (dent_blocks > left_blocks)
 567                 return false;
 568         return true;
 569 }
 570 
 571 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
 572                                         int freed, int needed)
 573 {
 574         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 575         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 576         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 577 
 578         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 579                 return false;
 580 
 581         if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
 582                         has_curseg_enough_space(sbi))
 583                 return false;
 584         return (free_sections(sbi) + freed) <=
 585                 (node_secs + 2 * dent_secs + imeta_secs +
 586                 reserved_sections(sbi) + needed);
 587 }
 588 
 589 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
 590 {
 591         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 592                 return true;
 593         if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
 594                 return true;
 595         return false;
 596 }
 597 
 598 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
 599 {
 600         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
 601 }
 602 
 603 static inline int utilization(struct f2fs_sb_info *sbi)
 604 {
 605         return div_u64((u64)valid_user_blocks(sbi) * 100,
 606                                         sbi->user_block_count);
 607 }
 608 
 609 /*
 610  * Sometimes f2fs may be better to drop out-of-place update policy.
 611  * And, users can control the policy through sysfs entries.
 612  * There are five policies with triggering conditions as follows.
 613  * F2FS_IPU_FORCE - all the time,
 614  * F2FS_IPU_SSR - if SSR mode is activated,
 615  * F2FS_IPU_UTIL - if FS utilization is over threashold,
 616  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 617  *                     threashold,
 618  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 619  *                     storages. IPU will be triggered only if the # of dirty
 620  *                     pages over min_fsync_blocks.
 621  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 622  */
 623 #define DEF_MIN_IPU_UTIL        70
 624 #define DEF_MIN_FSYNC_BLOCKS    8
 625 #define DEF_MIN_HOT_BLOCKS      16
 626 
 627 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
 628 
 629 enum {
 630         F2FS_IPU_FORCE,
 631         F2FS_IPU_SSR,
 632         F2FS_IPU_UTIL,
 633         F2FS_IPU_SSR_UTIL,
 634         F2FS_IPU_FSYNC,
 635         F2FS_IPU_ASYNC,
 636 };
 637 
 638 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 639                 int type)
 640 {
 641         struct curseg_info *curseg = CURSEG_I(sbi, type);
 642         return curseg->segno;
 643 }
 644 
 645 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 646                 int type)
 647 {
 648         struct curseg_info *curseg = CURSEG_I(sbi, type);
 649         return curseg->alloc_type;
 650 }
 651 
 652 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 653 {
 654         struct curseg_info *curseg = CURSEG_I(sbi, type);
 655         return curseg->next_blkoff;
 656 }
 657 
 658 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 659 {
 660         f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 661 }
 662 
 663 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
 664 {
 665         struct f2fs_sb_info *sbi = fio->sbi;
 666 
 667         if (__is_valid_data_blkaddr(fio->old_blkaddr))
 668                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
 669                                         META_GENERIC : DATA_GENERIC);
 670         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
 671                                         META_GENERIC : DATA_GENERIC_ENHANCE);
 672 }
 673 
 674 /*
 675  * Summary block is always treated as an invalid block
 676  */
 677 static inline int check_block_count(struct f2fs_sb_info *sbi,
 678                 int segno, struct f2fs_sit_entry *raw_sit)
 679 {
 680         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
 681         int valid_blocks = 0;
 682         int cur_pos = 0, next_pos;
 683 
 684         /* check bitmap with valid block count */
 685         do {
 686                 if (is_valid) {
 687                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
 688                                         sbi->blocks_per_seg,
 689                                         cur_pos);
 690                         valid_blocks += next_pos - cur_pos;
 691                 } else
 692                         next_pos = find_next_bit_le(&raw_sit->valid_map,
 693                                         sbi->blocks_per_seg,
 694                                         cur_pos);
 695                 cur_pos = next_pos;
 696                 is_valid = !is_valid;
 697         } while (cur_pos < sbi->blocks_per_seg);
 698 
 699         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
 700                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
 701                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
 702                 set_sbi_flag(sbi, SBI_NEED_FSCK);
 703                 return -EFSCORRUPTED;
 704         }
 705 
 706         /* check segment usage, and check boundary of a given segment number */
 707         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
 708                                         || segno > TOTAL_SEGS(sbi) - 1)) {
 709                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
 710                          GET_SIT_VBLOCKS(raw_sit), segno);
 711                 set_sbi_flag(sbi, SBI_NEED_FSCK);
 712                 return -EFSCORRUPTED;
 713         }
 714         return 0;
 715 }
 716 
 717 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 718                                                 unsigned int start)
 719 {
 720         struct sit_info *sit_i = SIT_I(sbi);
 721         unsigned int offset = SIT_BLOCK_OFFSET(start);
 722         block_t blk_addr = sit_i->sit_base_addr + offset;
 723 
 724         check_seg_range(sbi, start);
 725 
 726 #ifdef CONFIG_F2FS_CHECK_FS
 727         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
 728                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
 729                 f2fs_bug_on(sbi, 1);
 730 #endif
 731 
 732         /* calculate sit block address */
 733         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 734                 blk_addr += sit_i->sit_blocks;
 735 
 736         return blk_addr;
 737 }
 738 
 739 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 740                                                 pgoff_t block_addr)
 741 {
 742         struct sit_info *sit_i = SIT_I(sbi);
 743         block_addr -= sit_i->sit_base_addr;
 744         if (block_addr < sit_i->sit_blocks)
 745                 block_addr += sit_i->sit_blocks;
 746         else
 747                 block_addr -= sit_i->sit_blocks;
 748 
 749         return block_addr + sit_i->sit_base_addr;
 750 }
 751 
 752 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 753 {
 754         unsigned int block_off = SIT_BLOCK_OFFSET(start);
 755 
 756         f2fs_change_bit(block_off, sit_i->sit_bitmap);
 757 #ifdef CONFIG_F2FS_CHECK_FS
 758         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
 759 #endif
 760 }
 761 
 762 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
 763                                                 bool base_time)
 764 {
 765         struct sit_info *sit_i = SIT_I(sbi);
 766         time64_t diff, now = ktime_get_real_seconds();
 767 
 768         if (now >= sit_i->mounted_time)
 769                 return sit_i->elapsed_time + now - sit_i->mounted_time;
 770 
 771         /* system time is set to the past */
 772         if (!base_time) {
 773                 diff = sit_i->mounted_time - now;
 774                 if (sit_i->elapsed_time >= diff)
 775                         return sit_i->elapsed_time - diff;
 776                 return 0;
 777         }
 778         return sit_i->elapsed_time;
 779 }
 780 
 781 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 782                         unsigned int ofs_in_node, unsigned char version)
 783 {
 784         sum->nid = cpu_to_le32(nid);
 785         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 786         sum->version = version;
 787 }
 788 
 789 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 790 {
 791         return __start_cp_addr(sbi) +
 792                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 793 }
 794 
 795 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 796 {
 797         return __start_cp_addr(sbi) +
 798                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 799                                 - (base + 1) + type;
 800 }
 801 
 802 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 803 {
 804         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 805                 return true;
 806         return false;
 807 }
 808 
 809 /*
 810  * It is very important to gather dirty pages and write at once, so that we can
 811  * submit a big bio without interfering other data writes.
 812  * By default, 512 pages for directory data,
 813  * 512 pages (2MB) * 8 for nodes, and
 814  * 256 pages * 8 for meta are set.
 815  */
 816 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
 817 {
 818         if (sbi->sb->s_bdi->wb.dirty_exceeded)
 819                 return 0;
 820 
 821         if (type == DATA)
 822                 return sbi->blocks_per_seg;
 823         else if (type == NODE)
 824                 return 8 * sbi->blocks_per_seg;
 825         else if (type == META)
 826                 return 8 * BIO_MAX_PAGES;
 827         else
 828                 return 0;
 829 }
 830 
 831 /*
 832  * When writing pages, it'd better align nr_to_write for segment size.
 833  */
 834 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
 835                                         struct writeback_control *wbc)
 836 {
 837         long nr_to_write, desired;
 838 
 839         if (wbc->sync_mode != WB_SYNC_NONE)
 840                 return 0;
 841 
 842         nr_to_write = wbc->nr_to_write;
 843         desired = BIO_MAX_PAGES;
 844         if (type == NODE)
 845                 desired <<= 1;
 846 
 847         wbc->nr_to_write = desired;
 848         return desired - nr_to_write;
 849 }
 850 
 851 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
 852 {
 853         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 854         bool wakeup = false;
 855         int i;
 856 
 857         if (force)
 858                 goto wake_up;
 859 
 860         mutex_lock(&dcc->cmd_lock);
 861         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
 862                 if (i + 1 < dcc->discard_granularity)
 863                         break;
 864                 if (!list_empty(&dcc->pend_list[i])) {
 865                         wakeup = true;
 866                         break;
 867                 }
 868         }
 869         mutex_unlock(&dcc->cmd_lock);
 870         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
 871                 return;
 872 wake_up:
 873         dcc->discard_wake = 1;
 874         wake_up_interruptible_all(&dcc->discard_wait_queue);
 875 }

/* [<][>][^][v][top][bottom][index][help] */