root/fs/f2fs/node.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. copy_node_info
  2. set_nat_flag
  3. get_nat_flag
  4. nat_reset_flag
  5. node_info_from_raw_nat
  6. raw_nat_from_node_info
  7. excess_dirty_nats
  8. excess_cached_nats
  9. excess_dirty_nodes
  10. next_free_nid
  11. get_nat_bitmap
  12. current_nat_addr
  13. next_nat_addr
  14. set_to_next_nat
  15. ino_of_node
  16. nid_of_node
  17. ofs_of_node
  18. cpver_of_node
  19. next_blkaddr_of_node
  20. fill_node_footer
  21. copy_node_footer
  22. fill_node_footer_blkaddr
  23. is_recoverable_dnode
  24. IS_DNODE
  25. set_nid
  26. get_nid
  27. is_cold_data
  28. set_cold_data
  29. clear_cold_data
  30. is_node
  31. is_inline_node
  32. set_inline_node
  33. clear_inline_node
  34. set_cold_node
  35. set_mark

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * fs/f2fs/node.h
   4  *
   5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6  *             http://www.samsung.com/
   7  */
   8 /* start node id of a node block dedicated to the given node id */
   9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  10 
  11 /* node block offset on the NAT area dedicated to the given start node id */
  12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
  13 
  14 /* # of pages to perform synchronous readahead before building free nids */
  15 #define FREE_NID_PAGES  8
  16 #define MAX_FREE_NIDS   (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  17 
  18 #define DEF_RA_NID_PAGES        0       /* # of nid pages to be readaheaded */
  19 
  20 /* maximum readahead size for node during getting data blocks */
  21 #define MAX_RA_NODE             128
  22 
  23 /* control the memory footprint threshold (10MB per 1GB ram) */
  24 #define DEF_RAM_THRESHOLD       1
  25 
  26 /* control dirty nats ratio threshold (default: 10% over max nid count) */
  27 #define DEF_DIRTY_NAT_RATIO_THRESHOLD           10
  28 /* control total # of nats */
  29 #define DEF_NAT_CACHE_THRESHOLD                 100000
  30 
  31 /* vector size for gang look-up from nat cache that consists of radix tree */
  32 #define NATVEC_SIZE     64
  33 #define SETVEC_SIZE     32
  34 
  35 /* return value for read_node_page */
  36 #define LOCKED_PAGE     1
  37 
  38 /* For flag in struct node_info */
  39 enum {
  40         IS_CHECKPOINTED,        /* is it checkpointed before? */
  41         HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  42         HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  43         IS_DIRTY,               /* this nat entry is dirty? */
  44         IS_PREALLOC,            /* nat entry is preallocated */
  45 };
  46 
  47 /*
  48  * For node information
  49  */
  50 struct node_info {
  51         nid_t nid;              /* node id */
  52         nid_t ino;              /* inode number of the node's owner */
  53         block_t blk_addr;       /* block address of the node */
  54         unsigned char version;  /* version of the node */
  55         unsigned char flag;     /* for node information bits */
  56 };
  57 
  58 struct nat_entry {
  59         struct list_head list;  /* for clean or dirty nat list */
  60         struct node_info ni;    /* in-memory node information */
  61 };
  62 
  63 #define nat_get_nid(nat)                ((nat)->ni.nid)
  64 #define nat_set_nid(nat, n)             ((nat)->ni.nid = (n))
  65 #define nat_get_blkaddr(nat)            ((nat)->ni.blk_addr)
  66 #define nat_set_blkaddr(nat, b)         ((nat)->ni.blk_addr = (b))
  67 #define nat_get_ino(nat)                ((nat)->ni.ino)
  68 #define nat_set_ino(nat, i)             ((nat)->ni.ino = (i))
  69 #define nat_get_version(nat)            ((nat)->ni.version)
  70 #define nat_set_version(nat, v)         ((nat)->ni.version = (v))
  71 
  72 #define inc_node_version(version)       (++(version))
  73 
  74 static inline void copy_node_info(struct node_info *dst,
  75                                                 struct node_info *src)
  76 {
  77         dst->nid = src->nid;
  78         dst->ino = src->ino;
  79         dst->blk_addr = src->blk_addr;
  80         dst->version = src->version;
  81         /* should not copy flag here */
  82 }
  83 
  84 static inline void set_nat_flag(struct nat_entry *ne,
  85                                 unsigned int type, bool set)
  86 {
  87         unsigned char mask = 0x01 << type;
  88         if (set)
  89                 ne->ni.flag |= mask;
  90         else
  91                 ne->ni.flag &= ~mask;
  92 }
  93 
  94 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  95 {
  96         unsigned char mask = 0x01 << type;
  97         return ne->ni.flag & mask;
  98 }
  99 
 100 static inline void nat_reset_flag(struct nat_entry *ne)
 101 {
 102         /* these states can be set only after checkpoint was done */
 103         set_nat_flag(ne, IS_CHECKPOINTED, true);
 104         set_nat_flag(ne, HAS_FSYNCED_INODE, false);
 105         set_nat_flag(ne, HAS_LAST_FSYNC, true);
 106 }
 107 
 108 static inline void node_info_from_raw_nat(struct node_info *ni,
 109                                                 struct f2fs_nat_entry *raw_ne)
 110 {
 111         ni->ino = le32_to_cpu(raw_ne->ino);
 112         ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 113         ni->version = raw_ne->version;
 114 }
 115 
 116 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
 117                                                 struct node_info *ni)
 118 {
 119         raw_ne->ino = cpu_to_le32(ni->ino);
 120         raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 121         raw_ne->version = ni->version;
 122 }
 123 
 124 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
 125 {
 126         return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
 127                                         NM_I(sbi)->dirty_nats_ratio / 100;
 128 }
 129 
 130 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
 131 {
 132         return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
 133 }
 134 
 135 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
 136 {
 137         return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
 138 }
 139 
 140 enum mem_type {
 141         FREE_NIDS,      /* indicates the free nid list */
 142         NAT_ENTRIES,    /* indicates the cached nat entry */
 143         DIRTY_DENTS,    /* indicates dirty dentry pages */
 144         INO_ENTRIES,    /* indicates inode entries */
 145         EXTENT_CACHE,   /* indicates extent cache */
 146         INMEM_PAGES,    /* indicates inmemory pages */
 147         BASE_CHECK,     /* check kernel status */
 148 };
 149 
 150 struct nat_entry_set {
 151         struct list_head set_list;      /* link with other nat sets */
 152         struct list_head entry_list;    /* link with dirty nat entries */
 153         nid_t set;                      /* set number*/
 154         unsigned int entry_cnt;         /* the # of nat entries in set */
 155 };
 156 
 157 struct free_nid {
 158         struct list_head list;  /* for free node id list */
 159         nid_t nid;              /* node id */
 160         int state;              /* in use or not: FREE_NID or PREALLOC_NID */
 161 };
 162 
 163 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 164 {
 165         struct f2fs_nm_info *nm_i = NM_I(sbi);
 166         struct free_nid *fnid;
 167 
 168         spin_lock(&nm_i->nid_list_lock);
 169         if (nm_i->nid_cnt[FREE_NID] <= 0) {
 170                 spin_unlock(&nm_i->nid_list_lock);
 171                 return;
 172         }
 173         fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
 174         *nid = fnid->nid;
 175         spin_unlock(&nm_i->nid_list_lock);
 176 }
 177 
 178 /*
 179  * inline functions
 180  */
 181 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 182 {
 183         struct f2fs_nm_info *nm_i = NM_I(sbi);
 184 
 185 #ifdef CONFIG_F2FS_CHECK_FS
 186         if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
 187                                                 nm_i->bitmap_size))
 188                 f2fs_bug_on(sbi, 1);
 189 #endif
 190         memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 191 }
 192 
 193 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 194 {
 195         struct f2fs_nm_info *nm_i = NM_I(sbi);
 196         pgoff_t block_off;
 197         pgoff_t block_addr;
 198 
 199         /*
 200          * block_off = segment_off * 512 + off_in_segment
 201          * OLD = (segment_off * 512) * 2 + off_in_segment
 202          * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
 203          */
 204         block_off = NAT_BLOCK_OFFSET(start);
 205 
 206         block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 207                 (block_off << 1) -
 208                 (block_off & (sbi->blocks_per_seg - 1)));
 209 
 210         if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 211                 block_addr += sbi->blocks_per_seg;
 212 
 213         return block_addr;
 214 }
 215 
 216 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 217                                                 pgoff_t block_addr)
 218 {
 219         struct f2fs_nm_info *nm_i = NM_I(sbi);
 220 
 221         block_addr -= nm_i->nat_blkaddr;
 222         block_addr ^= 1 << sbi->log_blocks_per_seg;
 223         return block_addr + nm_i->nat_blkaddr;
 224 }
 225 
 226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 227 {
 228         unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 229 
 230         f2fs_change_bit(block_off, nm_i->nat_bitmap);
 231 #ifdef CONFIG_F2FS_CHECK_FS
 232         f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
 233 #endif
 234 }
 235 
 236 static inline nid_t ino_of_node(struct page *node_page)
 237 {
 238         struct f2fs_node *rn = F2FS_NODE(node_page);
 239         return le32_to_cpu(rn->footer.ino);
 240 }
 241 
 242 static inline nid_t nid_of_node(struct page *node_page)
 243 {
 244         struct f2fs_node *rn = F2FS_NODE(node_page);
 245         return le32_to_cpu(rn->footer.nid);
 246 }
 247 
 248 static inline unsigned int ofs_of_node(struct page *node_page)
 249 {
 250         struct f2fs_node *rn = F2FS_NODE(node_page);
 251         unsigned flag = le32_to_cpu(rn->footer.flag);
 252         return flag >> OFFSET_BIT_SHIFT;
 253 }
 254 
 255 static inline __u64 cpver_of_node(struct page *node_page)
 256 {
 257         struct f2fs_node *rn = F2FS_NODE(node_page);
 258         return le64_to_cpu(rn->footer.cp_ver);
 259 }
 260 
 261 static inline block_t next_blkaddr_of_node(struct page *node_page)
 262 {
 263         struct f2fs_node *rn = F2FS_NODE(node_page);
 264         return le32_to_cpu(rn->footer.next_blkaddr);
 265 }
 266 
 267 static inline void fill_node_footer(struct page *page, nid_t nid,
 268                                 nid_t ino, unsigned int ofs, bool reset)
 269 {
 270         struct f2fs_node *rn = F2FS_NODE(page);
 271         unsigned int old_flag = 0;
 272 
 273         if (reset)
 274                 memset(rn, 0, sizeof(*rn));
 275         else
 276                 old_flag = le32_to_cpu(rn->footer.flag);
 277 
 278         rn->footer.nid = cpu_to_le32(nid);
 279         rn->footer.ino = cpu_to_le32(ino);
 280 
 281         /* should remain old flag bits such as COLD_BIT_SHIFT */
 282         rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
 283                                         (old_flag & OFFSET_BIT_MASK));
 284 }
 285 
 286 static inline void copy_node_footer(struct page *dst, struct page *src)
 287 {
 288         struct f2fs_node *src_rn = F2FS_NODE(src);
 289         struct f2fs_node *dst_rn = F2FS_NODE(dst);
 290         memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 291 }
 292 
 293 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 294 {
 295         struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 296         struct f2fs_node *rn = F2FS_NODE(page);
 297         __u64 cp_ver = cur_cp_version(ckpt);
 298 
 299         if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 300                 cp_ver |= (cur_cp_crc(ckpt) << 32);
 301 
 302         rn->footer.cp_ver = cpu_to_le64(cp_ver);
 303         rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 304 }
 305 
 306 static inline bool is_recoverable_dnode(struct page *page)
 307 {
 308         struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 309         __u64 cp_ver = cur_cp_version(ckpt);
 310 
 311         /* Don't care crc part, if fsck.f2fs sets it. */
 312         if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
 313                 return (cp_ver << 32) == (cpver_of_node(page) << 32);
 314 
 315         if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 316                 cp_ver |= (cur_cp_crc(ckpt) << 32);
 317 
 318         return cp_ver == cpver_of_node(page);
 319 }
 320 
 321 /*
 322  * f2fs assigns the following node offsets described as (num).
 323  * N = NIDS_PER_BLOCK
 324  *
 325  *  Inode block (0)
 326  *    |- direct node (1)
 327  *    |- direct node (2)
 328  *    |- indirect node (3)
 329  *    |            `- direct node (4 => 4 + N - 1)
 330  *    |- indirect node (4 + N)
 331  *    |            `- direct node (5 + N => 5 + 2N - 1)
 332  *    `- double indirect node (5 + 2N)
 333  *                 `- indirect node (6 + 2N)
 334  *                       `- direct node
 335  *                 ......
 336  *                 `- indirect node ((6 + 2N) + x(N + 1))
 337  *                       `- direct node
 338  *                 ......
 339  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 340  *                       `- direct node
 341  */
 342 static inline bool IS_DNODE(struct page *node_page)
 343 {
 344         unsigned int ofs = ofs_of_node(node_page);
 345 
 346         if (f2fs_has_xattr_block(ofs))
 347                 return true;
 348 
 349         if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 350                         ofs == 5 + 2 * NIDS_PER_BLOCK)
 351                 return false;
 352         if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 353                 ofs -= 6 + 2 * NIDS_PER_BLOCK;
 354                 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 355                         return false;
 356         }
 357         return true;
 358 }
 359 
 360 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
 361 {
 362         struct f2fs_node *rn = F2FS_NODE(p);
 363 
 364         f2fs_wait_on_page_writeback(p, NODE, true, true);
 365 
 366         if (i)
 367                 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 368         else
 369                 rn->in.nid[off] = cpu_to_le32(nid);
 370         return set_page_dirty(p);
 371 }
 372 
 373 static inline nid_t get_nid(struct page *p, int off, bool i)
 374 {
 375         struct f2fs_node *rn = F2FS_NODE(p);
 376 
 377         if (i)
 378                 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 379         return le32_to_cpu(rn->in.nid[off]);
 380 }
 381 
 382 /*
 383  * Coldness identification:
 384  *  - Mark cold files in f2fs_inode_info
 385  *  - Mark cold node blocks in their node footer
 386  *  - Mark cold data pages in page cache
 387  */
 388 static inline int is_cold_data(struct page *page)
 389 {
 390         return PageChecked(page);
 391 }
 392 
 393 static inline void set_cold_data(struct page *page)
 394 {
 395         SetPageChecked(page);
 396 }
 397 
 398 static inline void clear_cold_data(struct page *page)
 399 {
 400         ClearPageChecked(page);
 401 }
 402 
 403 static inline int is_node(struct page *page, int type)
 404 {
 405         struct f2fs_node *rn = F2FS_NODE(page);
 406         return le32_to_cpu(rn->footer.flag) & (1 << type);
 407 }
 408 
 409 #define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 410 #define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 411 #define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 412 
 413 static inline int is_inline_node(struct page *page)
 414 {
 415         return PageChecked(page);
 416 }
 417 
 418 static inline void set_inline_node(struct page *page)
 419 {
 420         SetPageChecked(page);
 421 }
 422 
 423 static inline void clear_inline_node(struct page *page)
 424 {
 425         ClearPageChecked(page);
 426 }
 427 
 428 static inline void set_cold_node(struct page *page, bool is_dir)
 429 {
 430         struct f2fs_node *rn = F2FS_NODE(page);
 431         unsigned int flag = le32_to_cpu(rn->footer.flag);
 432 
 433         if (is_dir)
 434                 flag &= ~(0x1 << COLD_BIT_SHIFT);
 435         else
 436                 flag |= (0x1 << COLD_BIT_SHIFT);
 437         rn->footer.flag = cpu_to_le32(flag);
 438 }
 439 
 440 static inline void set_mark(struct page *page, int mark, int type)
 441 {
 442         struct f2fs_node *rn = F2FS_NODE(page);
 443         unsigned int flag = le32_to_cpu(rn->footer.flag);
 444         if (mark)
 445                 flag |= (0x1 << type);
 446         else
 447                 flag &= ~(0x1 << type);
 448         rn->footer.flag = cpu_to_le32(flag);
 449 
 450 #ifdef CONFIG_F2FS_CHECK_FS
 451         f2fs_inode_chksum_set(F2FS_P_SB(page), page);
 452 #endif
 453 }
 454 #define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 455 #define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)

/* [<][>][^][v][top][bottom][index][help] */