root/fs/f2fs/checkpoint.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. f2fs_stop_checkpoint
  2. f2fs_grab_meta_page
  3. __get_meta_page
  4. f2fs_get_meta_page
  5. f2fs_get_meta_page_nofail
  6. f2fs_get_tmp_page
  7. __is_bitmap_valid
  8. f2fs_is_valid_blkaddr
  9. f2fs_ra_meta_pages
  10. f2fs_ra_meta_pages_cond
  11. __f2fs_write_meta_page
  12. f2fs_write_meta_page
  13. f2fs_write_meta_pages
  14. f2fs_sync_meta_pages
  15. f2fs_set_meta_page_dirty
  16. __add_ino_entry
  17. __remove_ino_entry
  18. f2fs_add_ino_entry
  19. f2fs_remove_ino_entry
  20. f2fs_exist_written_data
  21. f2fs_release_ino_entry
  22. f2fs_set_dirty_device
  23. f2fs_is_dirty_device
  24. f2fs_acquire_orphan_inode
  25. f2fs_release_orphan_inode
  26. f2fs_add_orphan_inode
  27. f2fs_remove_orphan_inode
  28. recover_orphan_inode
  29. f2fs_recover_orphan_inodes
  30. write_orphan_inodes
  31. f2fs_checkpoint_chksum
  32. get_checkpoint_version
  33. validate_checkpoint
  34. f2fs_get_valid_checkpoint
  35. __add_dirty_inode
  36. __remove_dirty_inode
  37. f2fs_update_dirty_page
  38. f2fs_remove_dirty_inode
  39. f2fs_sync_dirty_inodes
  40. f2fs_sync_inode_meta
  41. __prepare_cp_block
  42. __need_flush_quota
  43. block_operations
  44. unblock_operations
  45. f2fs_wait_on_all_pages
  46. update_ckpt_flags
  47. commit_checkpoint
  48. do_checkpoint
  49. f2fs_write_checkpoint
  50. f2fs_init_ino_entry_info
  51. f2fs_create_checkpoint_caches
  52. f2fs_destroy_checkpoint_caches

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * fs/f2fs/checkpoint.c
   4  *
   5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6  *             http://www.samsung.com/
   7  */
   8 #include <linux/fs.h>
   9 #include <linux/bio.h>
  10 #include <linux/mpage.h>
  11 #include <linux/writeback.h>
  12 #include <linux/blkdev.h>
  13 #include <linux/f2fs_fs.h>
  14 #include <linux/pagevec.h>
  15 #include <linux/swap.h>
  16 
  17 #include "f2fs.h"
  18 #include "node.h"
  19 #include "segment.h"
  20 #include "trace.h"
  21 #include <trace/events/f2fs.h>
  22 
  23 static struct kmem_cache *ino_entry_slab;
  24 struct kmem_cache *f2fs_inode_entry_slab;
  25 
  26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27 {
  28         f2fs_build_fault_attr(sbi, 0, 0);
  29         set_ckpt_flags(sbi, CP_ERROR_FLAG);
  30         if (!end_io)
  31                 f2fs_flush_merged_writes(sbi);
  32 }
  33 
  34 /*
  35  * We guarantee no failure on the returned page.
  36  */
  37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  38 {
  39         struct address_space *mapping = META_MAPPING(sbi);
  40         struct page *page = NULL;
  41 repeat:
  42         page = f2fs_grab_cache_page(mapping, index, false);
  43         if (!page) {
  44                 cond_resched();
  45                 goto repeat;
  46         }
  47         f2fs_wait_on_page_writeback(page, META, true, true);
  48         if (!PageUptodate(page))
  49                 SetPageUptodate(page);
  50         return page;
  51 }
  52 
  53 /*
  54  * We guarantee no failure on the returned page.
  55  */
  56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  57                                                         bool is_meta)
  58 {
  59         struct address_space *mapping = META_MAPPING(sbi);
  60         struct page *page;
  61         struct f2fs_io_info fio = {
  62                 .sbi = sbi,
  63                 .type = META,
  64                 .op = REQ_OP_READ,
  65                 .op_flags = REQ_META | REQ_PRIO,
  66                 .old_blkaddr = index,
  67                 .new_blkaddr = index,
  68                 .encrypted_page = NULL,
  69                 .is_por = !is_meta,
  70         };
  71         int err;
  72 
  73         if (unlikely(!is_meta))
  74                 fio.op_flags &= ~REQ_META;
  75 repeat:
  76         page = f2fs_grab_cache_page(mapping, index, false);
  77         if (!page) {
  78                 cond_resched();
  79                 goto repeat;
  80         }
  81         if (PageUptodate(page))
  82                 goto out;
  83 
  84         fio.page = page;
  85 
  86         err = f2fs_submit_page_bio(&fio);
  87         if (err) {
  88                 f2fs_put_page(page, 1);
  89                 return ERR_PTR(err);
  90         }
  91 
  92         lock_page(page);
  93         if (unlikely(page->mapping != mapping)) {
  94                 f2fs_put_page(page, 1);
  95                 goto repeat;
  96         }
  97 
  98         if (unlikely(!PageUptodate(page))) {
  99                 f2fs_put_page(page, 1);
 100                 return ERR_PTR(-EIO);
 101         }
 102 out:
 103         return page;
 104 }
 105 
 106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 107 {
 108         return __get_meta_page(sbi, index, true);
 109 }
 110 
 111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
 112 {
 113         struct page *page;
 114         int count = 0;
 115 
 116 retry:
 117         page = __get_meta_page(sbi, index, true);
 118         if (IS_ERR(page)) {
 119                 if (PTR_ERR(page) == -EIO &&
 120                                 ++count <= DEFAULT_RETRY_IO_COUNT)
 121                         goto retry;
 122                 f2fs_stop_checkpoint(sbi, false);
 123         }
 124         return page;
 125 }
 126 
 127 /* for POR only */
 128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 129 {
 130         return __get_meta_page(sbi, index, false);
 131 }
 132 
 133 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
 134                                                         int type)
 135 {
 136         struct seg_entry *se;
 137         unsigned int segno, offset;
 138         bool exist;
 139 
 140         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
 141                 return true;
 142 
 143         segno = GET_SEGNO(sbi, blkaddr);
 144         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 145         se = get_seg_entry(sbi, segno);
 146 
 147         exist = f2fs_test_bit(offset, se->cur_valid_map);
 148         if (!exist && type == DATA_GENERIC_ENHANCE) {
 149                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
 150                          blkaddr, exist);
 151                 set_sbi_flag(sbi, SBI_NEED_FSCK);
 152                 WARN_ON(1);
 153         }
 154         return exist;
 155 }
 156 
 157 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
 158                                         block_t blkaddr, int type)
 159 {
 160         switch (type) {
 161         case META_NAT:
 162                 break;
 163         case META_SIT:
 164                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 165                         return false;
 166                 break;
 167         case META_SSA:
 168                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 169                         blkaddr < SM_I(sbi)->ssa_blkaddr))
 170                         return false;
 171                 break;
 172         case META_CP:
 173                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 174                         blkaddr < __start_cp_addr(sbi)))
 175                         return false;
 176                 break;
 177         case META_POR:
 178                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 179                         blkaddr < MAIN_BLKADDR(sbi)))
 180                         return false;
 181                 break;
 182         case DATA_GENERIC:
 183         case DATA_GENERIC_ENHANCE:
 184         case DATA_GENERIC_ENHANCE_READ:
 185                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 186                                 blkaddr < MAIN_BLKADDR(sbi))) {
 187                         f2fs_warn(sbi, "access invalid blkaddr:%u",
 188                                   blkaddr);
 189                         set_sbi_flag(sbi, SBI_NEED_FSCK);
 190                         WARN_ON(1);
 191                         return false;
 192                 } else {
 193                         return __is_bitmap_valid(sbi, blkaddr, type);
 194                 }
 195                 break;
 196         case META_GENERIC:
 197                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
 198                         blkaddr >= MAIN_BLKADDR(sbi)))
 199                         return false;
 200                 break;
 201         default:
 202                 BUG();
 203         }
 204 
 205         return true;
 206 }
 207 
 208 /*
 209  * Readahead CP/NAT/SIT/SSA pages
 210  */
 211 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 212                                                         int type, bool sync)
 213 {
 214         struct page *page;
 215         block_t blkno = start;
 216         struct f2fs_io_info fio = {
 217                 .sbi = sbi,
 218                 .type = META,
 219                 .op = REQ_OP_READ,
 220                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
 221                 .encrypted_page = NULL,
 222                 .in_list = false,
 223                 .is_por = (type == META_POR),
 224         };
 225         struct blk_plug plug;
 226 
 227         if (unlikely(type == META_POR))
 228                 fio.op_flags &= ~REQ_META;
 229 
 230         blk_start_plug(&plug);
 231         for (; nrpages-- > 0; blkno++) {
 232 
 233                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
 234                         goto out;
 235 
 236                 switch (type) {
 237                 case META_NAT:
 238                         if (unlikely(blkno >=
 239                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 240                                 blkno = 0;
 241                         /* get nat block addr */
 242                         fio.new_blkaddr = current_nat_addr(sbi,
 243                                         blkno * NAT_ENTRY_PER_BLOCK);
 244                         break;
 245                 case META_SIT:
 246                         /* get sit block addr */
 247                         fio.new_blkaddr = current_sit_addr(sbi,
 248                                         blkno * SIT_ENTRY_PER_BLOCK);
 249                         break;
 250                 case META_SSA:
 251                 case META_CP:
 252                 case META_POR:
 253                         fio.new_blkaddr = blkno;
 254                         break;
 255                 default:
 256                         BUG();
 257                 }
 258 
 259                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
 260                                                 fio.new_blkaddr, false);
 261                 if (!page)
 262                         continue;
 263                 if (PageUptodate(page)) {
 264                         f2fs_put_page(page, 1);
 265                         continue;
 266                 }
 267 
 268                 fio.page = page;
 269                 f2fs_submit_page_bio(&fio);
 270                 f2fs_put_page(page, 0);
 271         }
 272 out:
 273         blk_finish_plug(&plug);
 274         return blkno - start;
 275 }
 276 
 277 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 278 {
 279         struct page *page;
 280         bool readahead = false;
 281 
 282         page = find_get_page(META_MAPPING(sbi), index);
 283         if (!page || !PageUptodate(page))
 284                 readahead = true;
 285         f2fs_put_page(page, 0);
 286 
 287         if (readahead)
 288                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
 289 }
 290 
 291 static int __f2fs_write_meta_page(struct page *page,
 292                                 struct writeback_control *wbc,
 293                                 enum iostat_type io_type)
 294 {
 295         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 296 
 297         trace_f2fs_writepage(page, META);
 298 
 299         if (unlikely(f2fs_cp_error(sbi)))
 300                 goto redirty_out;
 301         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 302                 goto redirty_out;
 303         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 304                 goto redirty_out;
 305 
 306         f2fs_do_write_meta_page(sbi, page, io_type);
 307         dec_page_count(sbi, F2FS_DIRTY_META);
 308 
 309         if (wbc->for_reclaim)
 310                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
 311 
 312         unlock_page(page);
 313 
 314         if (unlikely(f2fs_cp_error(sbi)))
 315                 f2fs_submit_merged_write(sbi, META);
 316 
 317         return 0;
 318 
 319 redirty_out:
 320         redirty_page_for_writepage(wbc, page);
 321         return AOP_WRITEPAGE_ACTIVATE;
 322 }
 323 
 324 static int f2fs_write_meta_page(struct page *page,
 325                                 struct writeback_control *wbc)
 326 {
 327         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
 328 }
 329 
 330 static int f2fs_write_meta_pages(struct address_space *mapping,
 331                                 struct writeback_control *wbc)
 332 {
 333         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 334         long diff, written;
 335 
 336         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 337                 goto skip_write;
 338 
 339         /* collect a number of dirty meta pages and write together */
 340         if (wbc->sync_mode != WB_SYNC_ALL &&
 341                         get_pages(sbi, F2FS_DIRTY_META) <
 342                                         nr_pages_to_skip(sbi, META))
 343                 goto skip_write;
 344 
 345         /* if locked failed, cp will flush dirty pages instead */
 346         if (!mutex_trylock(&sbi->cp_mutex))
 347                 goto skip_write;
 348 
 349         trace_f2fs_writepages(mapping->host, wbc, META);
 350         diff = nr_pages_to_write(sbi, META, wbc);
 351         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
 352         mutex_unlock(&sbi->cp_mutex);
 353         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 354         return 0;
 355 
 356 skip_write:
 357         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 358         trace_f2fs_writepages(mapping->host, wbc, META);
 359         return 0;
 360 }
 361 
 362 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 363                                 long nr_to_write, enum iostat_type io_type)
 364 {
 365         struct address_space *mapping = META_MAPPING(sbi);
 366         pgoff_t index = 0, prev = ULONG_MAX;
 367         struct pagevec pvec;
 368         long nwritten = 0;
 369         int nr_pages;
 370         struct writeback_control wbc = {
 371                 .for_reclaim = 0,
 372         };
 373         struct blk_plug plug;
 374 
 375         pagevec_init(&pvec);
 376 
 377         blk_start_plug(&plug);
 378 
 379         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 380                                 PAGECACHE_TAG_DIRTY))) {
 381                 int i;
 382 
 383                 for (i = 0; i < nr_pages; i++) {
 384                         struct page *page = pvec.pages[i];
 385 
 386                         if (prev == ULONG_MAX)
 387                                 prev = page->index - 1;
 388                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 389                                 pagevec_release(&pvec);
 390                                 goto stop;
 391                         }
 392 
 393                         lock_page(page);
 394 
 395                         if (unlikely(page->mapping != mapping)) {
 396 continue_unlock:
 397                                 unlock_page(page);
 398                                 continue;
 399                         }
 400                         if (!PageDirty(page)) {
 401                                 /* someone wrote it for us */
 402                                 goto continue_unlock;
 403                         }
 404 
 405                         f2fs_wait_on_page_writeback(page, META, true, true);
 406 
 407                         if (!clear_page_dirty_for_io(page))
 408                                 goto continue_unlock;
 409 
 410                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
 411                                 unlock_page(page);
 412                                 break;
 413                         }
 414                         nwritten++;
 415                         prev = page->index;
 416                         if (unlikely(nwritten >= nr_to_write))
 417                                 break;
 418                 }
 419                 pagevec_release(&pvec);
 420                 cond_resched();
 421         }
 422 stop:
 423         if (nwritten)
 424                 f2fs_submit_merged_write(sbi, type);
 425 
 426         blk_finish_plug(&plug);
 427 
 428         return nwritten;
 429 }
 430 
 431 static int f2fs_set_meta_page_dirty(struct page *page)
 432 {
 433         trace_f2fs_set_page_dirty(page, META);
 434 
 435         if (!PageUptodate(page))
 436                 SetPageUptodate(page);
 437         if (!PageDirty(page)) {
 438                 __set_page_dirty_nobuffers(page);
 439                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 440                 f2fs_set_page_private(page, 0);
 441                 f2fs_trace_pid(page);
 442                 return 1;
 443         }
 444         return 0;
 445 }
 446 
 447 const struct address_space_operations f2fs_meta_aops = {
 448         .writepage      = f2fs_write_meta_page,
 449         .writepages     = f2fs_write_meta_pages,
 450         .set_page_dirty = f2fs_set_meta_page_dirty,
 451         .invalidatepage = f2fs_invalidate_page,
 452         .releasepage    = f2fs_release_page,
 453 #ifdef CONFIG_MIGRATION
 454         .migratepage    = f2fs_migrate_page,
 455 #endif
 456 };
 457 
 458 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
 459                                                 unsigned int devidx, int type)
 460 {
 461         struct inode_management *im = &sbi->im[type];
 462         struct ino_entry *e, *tmp;
 463 
 464         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 465 
 466         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 467 
 468         spin_lock(&im->ino_lock);
 469         e = radix_tree_lookup(&im->ino_root, ino);
 470         if (!e) {
 471                 e = tmp;
 472                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
 473                         f2fs_bug_on(sbi, 1);
 474 
 475                 memset(e, 0, sizeof(struct ino_entry));
 476                 e->ino = ino;
 477 
 478                 list_add_tail(&e->list, &im->ino_list);
 479                 if (type != ORPHAN_INO)
 480                         im->ino_num++;
 481         }
 482 
 483         if (type == FLUSH_INO)
 484                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
 485 
 486         spin_unlock(&im->ino_lock);
 487         radix_tree_preload_end();
 488 
 489         if (e != tmp)
 490                 kmem_cache_free(ino_entry_slab, tmp);
 491 }
 492 
 493 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 494 {
 495         struct inode_management *im = &sbi->im[type];
 496         struct ino_entry *e;
 497 
 498         spin_lock(&im->ino_lock);
 499         e = radix_tree_lookup(&im->ino_root, ino);
 500         if (e) {
 501                 list_del(&e->list);
 502                 radix_tree_delete(&im->ino_root, ino);
 503                 im->ino_num--;
 504                 spin_unlock(&im->ino_lock);
 505                 kmem_cache_free(ino_entry_slab, e);
 506                 return;
 507         }
 508         spin_unlock(&im->ino_lock);
 509 }
 510 
 511 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 512 {
 513         /* add new dirty ino entry into list */
 514         __add_ino_entry(sbi, ino, 0, type);
 515 }
 516 
 517 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 518 {
 519         /* remove dirty ino entry from list */
 520         __remove_ino_entry(sbi, ino, type);
 521 }
 522 
 523 /* mode should be APPEND_INO or UPDATE_INO */
 524 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 525 {
 526         struct inode_management *im = &sbi->im[mode];
 527         struct ino_entry *e;
 528 
 529         spin_lock(&im->ino_lock);
 530         e = radix_tree_lookup(&im->ino_root, ino);
 531         spin_unlock(&im->ino_lock);
 532         return e ? true : false;
 533 }
 534 
 535 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
 536 {
 537         struct ino_entry *e, *tmp;
 538         int i;
 539 
 540         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
 541                 struct inode_management *im = &sbi->im[i];
 542 
 543                 spin_lock(&im->ino_lock);
 544                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 545                         list_del(&e->list);
 546                         radix_tree_delete(&im->ino_root, e->ino);
 547                         kmem_cache_free(ino_entry_slab, e);
 548                         im->ino_num--;
 549                 }
 550                 spin_unlock(&im->ino_lock);
 551         }
 552 }
 553 
 554 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 555                                         unsigned int devidx, int type)
 556 {
 557         __add_ino_entry(sbi, ino, devidx, type);
 558 }
 559 
 560 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 561                                         unsigned int devidx, int type)
 562 {
 563         struct inode_management *im = &sbi->im[type];
 564         struct ino_entry *e;
 565         bool is_dirty = false;
 566 
 567         spin_lock(&im->ino_lock);
 568         e = radix_tree_lookup(&im->ino_root, ino);
 569         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
 570                 is_dirty = true;
 571         spin_unlock(&im->ino_lock);
 572         return is_dirty;
 573 }
 574 
 575 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
 576 {
 577         struct inode_management *im = &sbi->im[ORPHAN_INO];
 578         int err = 0;
 579 
 580         spin_lock(&im->ino_lock);
 581 
 582         if (time_to_inject(sbi, FAULT_ORPHAN)) {
 583                 spin_unlock(&im->ino_lock);
 584                 f2fs_show_injection_info(FAULT_ORPHAN);
 585                 return -ENOSPC;
 586         }
 587 
 588         if (unlikely(im->ino_num >= sbi->max_orphans))
 589                 err = -ENOSPC;
 590         else
 591                 im->ino_num++;
 592         spin_unlock(&im->ino_lock);
 593 
 594         return err;
 595 }
 596 
 597 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
 598 {
 599         struct inode_management *im = &sbi->im[ORPHAN_INO];
 600 
 601         spin_lock(&im->ino_lock);
 602         f2fs_bug_on(sbi, im->ino_num == 0);
 603         im->ino_num--;
 604         spin_unlock(&im->ino_lock);
 605 }
 606 
 607 void f2fs_add_orphan_inode(struct inode *inode)
 608 {
 609         /* add new orphan ino entry into list */
 610         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
 611         f2fs_update_inode_page(inode);
 612 }
 613 
 614 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 615 {
 616         /* remove orphan entry from orphan list */
 617         __remove_ino_entry(sbi, ino, ORPHAN_INO);
 618 }
 619 
 620 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 621 {
 622         struct inode *inode;
 623         struct node_info ni;
 624         int err;
 625 
 626         inode = f2fs_iget_retry(sbi->sb, ino);
 627         if (IS_ERR(inode)) {
 628                 /*
 629                  * there should be a bug that we can't find the entry
 630                  * to orphan inode.
 631                  */
 632                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 633                 return PTR_ERR(inode);
 634         }
 635 
 636         err = dquot_initialize(inode);
 637         if (err) {
 638                 iput(inode);
 639                 goto err_out;
 640         }
 641 
 642         clear_nlink(inode);
 643 
 644         /* truncate all the data during iput */
 645         iput(inode);
 646 
 647         err = f2fs_get_node_info(sbi, ino, &ni);
 648         if (err)
 649                 goto err_out;
 650 
 651         /* ENOMEM was fully retried in f2fs_evict_inode. */
 652         if (ni.blk_addr != NULL_ADDR) {
 653                 err = -EIO;
 654                 goto err_out;
 655         }
 656         return 0;
 657 
 658 err_out:
 659         set_sbi_flag(sbi, SBI_NEED_FSCK);
 660         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
 661                   __func__, ino);
 662         return err;
 663 }
 664 
 665 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
 666 {
 667         block_t start_blk, orphan_blocks, i, j;
 668         unsigned int s_flags = sbi->sb->s_flags;
 669         int err = 0;
 670 #ifdef CONFIG_QUOTA
 671         int quota_enabled;
 672 #endif
 673 
 674         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
 675                 return 0;
 676 
 677         if (bdev_read_only(sbi->sb->s_bdev)) {
 678                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
 679                 return 0;
 680         }
 681 
 682         if (s_flags & SB_RDONLY) {
 683                 f2fs_info(sbi, "orphan cleanup on readonly fs");
 684                 sbi->sb->s_flags &= ~SB_RDONLY;
 685         }
 686 
 687 #ifdef CONFIG_QUOTA
 688         /* Needed for iput() to work correctly and not trash data */
 689         sbi->sb->s_flags |= SB_ACTIVE;
 690 
 691         /*
 692          * Turn on quotas which were not enabled for read-only mounts if
 693          * filesystem has quota feature, so that they are updated correctly.
 694          */
 695         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
 696 #endif
 697 
 698         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 699         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 700 
 701         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 702 
 703         for (i = 0; i < orphan_blocks; i++) {
 704                 struct page *page;
 705                 struct f2fs_orphan_block *orphan_blk;
 706 
 707                 page = f2fs_get_meta_page(sbi, start_blk + i);
 708                 if (IS_ERR(page)) {
 709                         err = PTR_ERR(page);
 710                         goto out;
 711                 }
 712 
 713                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 714                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 715                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 716                         err = recover_orphan_inode(sbi, ino);
 717                         if (err) {
 718                                 f2fs_put_page(page, 1);
 719                                 goto out;
 720                         }
 721                 }
 722                 f2fs_put_page(page, 1);
 723         }
 724         /* clear Orphan Flag */
 725         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
 726 out:
 727         set_sbi_flag(sbi, SBI_IS_RECOVERED);
 728 
 729 #ifdef CONFIG_QUOTA
 730         /* Turn quotas off */
 731         if (quota_enabled)
 732                 f2fs_quota_off_umount(sbi->sb);
 733 #endif
 734         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
 735 
 736         return err;
 737 }
 738 
 739 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 740 {
 741         struct list_head *head;
 742         struct f2fs_orphan_block *orphan_blk = NULL;
 743         unsigned int nentries = 0;
 744         unsigned short index = 1;
 745         unsigned short orphan_blocks;
 746         struct page *page = NULL;
 747         struct ino_entry *orphan = NULL;
 748         struct inode_management *im = &sbi->im[ORPHAN_INO];
 749 
 750         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 751 
 752         /*
 753          * we don't need to do spin_lock(&im->ino_lock) here, since all the
 754          * orphan inode operations are covered under f2fs_lock_op().
 755          * And, spin_lock should be avoided due to page operations below.
 756          */
 757         head = &im->ino_list;
 758 
 759         /* loop for each orphan inode entry and write them in Jornal block */
 760         list_for_each_entry(orphan, head, list) {
 761                 if (!page) {
 762                         page = f2fs_grab_meta_page(sbi, start_blk++);
 763                         orphan_blk =
 764                                 (struct f2fs_orphan_block *)page_address(page);
 765                         memset(orphan_blk, 0, sizeof(*orphan_blk));
 766                 }
 767 
 768                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 769 
 770                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 771                         /*
 772                          * an orphan block is full of 1020 entries,
 773                          * then we need to flush current orphan blocks
 774                          * and bring another one in memory
 775                          */
 776                         orphan_blk->blk_addr = cpu_to_le16(index);
 777                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 778                         orphan_blk->entry_count = cpu_to_le32(nentries);
 779                         set_page_dirty(page);
 780                         f2fs_put_page(page, 1);
 781                         index++;
 782                         nentries = 0;
 783                         page = NULL;
 784                 }
 785         }
 786 
 787         if (page) {
 788                 orphan_blk->blk_addr = cpu_to_le16(index);
 789                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 790                 orphan_blk->entry_count = cpu_to_le32(nentries);
 791                 set_page_dirty(page);
 792                 f2fs_put_page(page, 1);
 793         }
 794 }
 795 
 796 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
 797                                                 struct f2fs_checkpoint *ckpt)
 798 {
 799         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
 800         __u32 chksum;
 801 
 802         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
 803         if (chksum_ofs < CP_CHKSUM_OFFSET) {
 804                 chksum_ofs += sizeof(chksum);
 805                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
 806                                                 F2FS_BLKSIZE - chksum_ofs);
 807         }
 808         return chksum;
 809 }
 810 
 811 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
 812                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
 813                 unsigned long long *version)
 814 {
 815         size_t crc_offset = 0;
 816         __u32 crc;
 817 
 818         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
 819         if (IS_ERR(*cp_page))
 820                 return PTR_ERR(*cp_page);
 821 
 822         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
 823 
 824         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
 825         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
 826                         crc_offset > CP_CHKSUM_OFFSET) {
 827                 f2fs_put_page(*cp_page, 1);
 828                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
 829                 return -EINVAL;
 830         }
 831 
 832         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
 833         if (crc != cur_cp_crc(*cp_block)) {
 834                 f2fs_put_page(*cp_page, 1);
 835                 f2fs_warn(sbi, "invalid crc value");
 836                 return -EINVAL;
 837         }
 838 
 839         *version = cur_cp_version(*cp_block);
 840         return 0;
 841 }
 842 
 843 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 844                                 block_t cp_addr, unsigned long long *version)
 845 {
 846         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
 847         struct f2fs_checkpoint *cp_block = NULL;
 848         unsigned long long cur_version = 0, pre_version = 0;
 849         int err;
 850 
 851         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 852                                         &cp_page_1, version);
 853         if (err)
 854                 return NULL;
 855 
 856         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
 857                                         sbi->blocks_per_seg) {
 858                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
 859                           le32_to_cpu(cp_block->cp_pack_total_block_count));
 860                 goto invalid_cp;
 861         }
 862         pre_version = *version;
 863 
 864         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 865         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 866                                         &cp_page_2, version);
 867         if (err)
 868                 goto invalid_cp;
 869         cur_version = *version;
 870 
 871         if (cur_version == pre_version) {
 872                 *version = cur_version;
 873                 f2fs_put_page(cp_page_2, 1);
 874                 return cp_page_1;
 875         }
 876         f2fs_put_page(cp_page_2, 1);
 877 invalid_cp:
 878         f2fs_put_page(cp_page_1, 1);
 879         return NULL;
 880 }
 881 
 882 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
 883 {
 884         struct f2fs_checkpoint *cp_block;
 885         struct f2fs_super_block *fsb = sbi->raw_super;
 886         struct page *cp1, *cp2, *cur_page;
 887         unsigned long blk_size = sbi->blocksize;
 888         unsigned long long cp1_version = 0, cp2_version = 0;
 889         unsigned long long cp_start_blk_no;
 890         unsigned int cp_blks = 1 + __cp_payload(sbi);
 891         block_t cp_blk_no;
 892         int i;
 893         int err;
 894 
 895         sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
 896                                  GFP_KERNEL);
 897         if (!sbi->ckpt)
 898                 return -ENOMEM;
 899         /*
 900          * Finding out valid cp block involves read both
 901          * sets( cp pack1 and cp pack 2)
 902          */
 903         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 904         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 905 
 906         /* The second checkpoint pack should start at the next segment */
 907         cp_start_blk_no += ((unsigned long long)1) <<
 908                                 le32_to_cpu(fsb->log_blocks_per_seg);
 909         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 910 
 911         if (cp1 && cp2) {
 912                 if (ver_after(cp2_version, cp1_version))
 913                         cur_page = cp2;
 914                 else
 915                         cur_page = cp1;
 916         } else if (cp1) {
 917                 cur_page = cp1;
 918         } else if (cp2) {
 919                 cur_page = cp2;
 920         } else {
 921                 err = -EFSCORRUPTED;
 922                 goto fail_no_cp;
 923         }
 924 
 925         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 926         memcpy(sbi->ckpt, cp_block, blk_size);
 927 
 928         if (cur_page == cp1)
 929                 sbi->cur_cp_pack = 1;
 930         else
 931                 sbi->cur_cp_pack = 2;
 932 
 933         /* Sanity checking of checkpoint */
 934         if (f2fs_sanity_check_ckpt(sbi)) {
 935                 err = -EFSCORRUPTED;
 936                 goto free_fail_no_cp;
 937         }
 938 
 939         if (cp_blks <= 1)
 940                 goto done;
 941 
 942         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 943         if (cur_page == cp2)
 944                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 945 
 946         for (i = 1; i < cp_blks; i++) {
 947                 void *sit_bitmap_ptr;
 948                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 949 
 950                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
 951                 if (IS_ERR(cur_page)) {
 952                         err = PTR_ERR(cur_page);
 953                         goto free_fail_no_cp;
 954                 }
 955                 sit_bitmap_ptr = page_address(cur_page);
 956                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 957                 f2fs_put_page(cur_page, 1);
 958         }
 959 done:
 960         f2fs_put_page(cp1, 1);
 961         f2fs_put_page(cp2, 1);
 962         return 0;
 963 
 964 free_fail_no_cp:
 965         f2fs_put_page(cp1, 1);
 966         f2fs_put_page(cp2, 1);
 967 fail_no_cp:
 968         kvfree(sbi->ckpt);
 969         return err;
 970 }
 971 
 972 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 973 {
 974         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 975         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 976 
 977         if (is_inode_flag_set(inode, flag))
 978                 return;
 979 
 980         set_inode_flag(inode, flag);
 981         if (!f2fs_is_volatile_file(inode))
 982                 list_add_tail(&F2FS_I(inode)->dirty_list,
 983                                                 &sbi->inode_list[type]);
 984         stat_inc_dirty_inode(sbi, type);
 985 }
 986 
 987 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 988 {
 989         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 990 
 991         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
 992                 return;
 993 
 994         list_del_init(&F2FS_I(inode)->dirty_list);
 995         clear_inode_flag(inode, flag);
 996         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 997 }
 998 
 999 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1000 {
1001         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1002         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1003 
1004         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1005                         !S_ISLNK(inode->i_mode))
1006                 return;
1007 
1008         spin_lock(&sbi->inode_lock[type]);
1009         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1010                 __add_dirty_inode(inode, type);
1011         inode_inc_dirty_pages(inode);
1012         spin_unlock(&sbi->inode_lock[type]);
1013 
1014         f2fs_set_page_private(page, 0);
1015         f2fs_trace_pid(page);
1016 }
1017 
1018 void f2fs_remove_dirty_inode(struct inode *inode)
1019 {
1020         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1022 
1023         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1024                         !S_ISLNK(inode->i_mode))
1025                 return;
1026 
1027         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1028                 return;
1029 
1030         spin_lock(&sbi->inode_lock[type]);
1031         __remove_dirty_inode(inode, type);
1032         spin_unlock(&sbi->inode_lock[type]);
1033 }
1034 
1035 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1036 {
1037         struct list_head *head;
1038         struct inode *inode;
1039         struct f2fs_inode_info *fi;
1040         bool is_dir = (type == DIR_INODE);
1041         unsigned long ino = 0;
1042 
1043         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1044                                 get_pages(sbi, is_dir ?
1045                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1046 retry:
1047         if (unlikely(f2fs_cp_error(sbi)))
1048                 return -EIO;
1049 
1050         spin_lock(&sbi->inode_lock[type]);
1051 
1052         head = &sbi->inode_list[type];
1053         if (list_empty(head)) {
1054                 spin_unlock(&sbi->inode_lock[type]);
1055                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1056                                 get_pages(sbi, is_dir ?
1057                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1058                 return 0;
1059         }
1060         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1061         inode = igrab(&fi->vfs_inode);
1062         spin_unlock(&sbi->inode_lock[type]);
1063         if (inode) {
1064                 unsigned long cur_ino = inode->i_ino;
1065 
1066                 F2FS_I(inode)->cp_task = current;
1067 
1068                 filemap_fdatawrite(inode->i_mapping);
1069 
1070                 F2FS_I(inode)->cp_task = NULL;
1071 
1072                 iput(inode);
1073                 /* We need to give cpu to another writers. */
1074                 if (ino == cur_ino)
1075                         cond_resched();
1076                 else
1077                         ino = cur_ino;
1078         } else {
1079                 /*
1080                  * We should submit bio, since it exists several
1081                  * wribacking dentry pages in the freeing inode.
1082                  */
1083                 f2fs_submit_merged_write(sbi, DATA);
1084                 cond_resched();
1085         }
1086         goto retry;
1087 }
1088 
1089 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1090 {
1091         struct list_head *head = &sbi->inode_list[DIRTY_META];
1092         struct inode *inode;
1093         struct f2fs_inode_info *fi;
1094         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1095 
1096         while (total--) {
1097                 if (unlikely(f2fs_cp_error(sbi)))
1098                         return -EIO;
1099 
1100                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1101                 if (list_empty(head)) {
1102                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1103                         return 0;
1104                 }
1105                 fi = list_first_entry(head, struct f2fs_inode_info,
1106                                                         gdirty_list);
1107                 inode = igrab(&fi->vfs_inode);
1108                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1109                 if (inode) {
1110                         sync_inode_metadata(inode, 0);
1111 
1112                         /* it's on eviction */
1113                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1114                                 f2fs_update_inode_page(inode);
1115                         iput(inode);
1116                 }
1117         }
1118         return 0;
1119 }
1120 
1121 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1122 {
1123         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1124         struct f2fs_nm_info *nm_i = NM_I(sbi);
1125         nid_t last_nid = nm_i->next_scan_nid;
1126 
1127         next_free_nid(sbi, &last_nid);
1128         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1129         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1130         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1131         ckpt->next_free_nid = cpu_to_le32(last_nid);
1132 }
1133 
1134 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1135 {
1136         bool ret = false;
1137 
1138         if (!is_journalled_quota(sbi))
1139                 return false;
1140 
1141         down_write(&sbi->quota_sem);
1142         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1143                 ret = false;
1144         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1145                 ret = false;
1146         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1147                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1148                 ret = true;
1149         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1150                 ret = true;
1151         }
1152         up_write(&sbi->quota_sem);
1153         return ret;
1154 }
1155 
1156 /*
1157  * Freeze all the FS-operations for checkpoint.
1158  */
1159 static int block_operations(struct f2fs_sb_info *sbi)
1160 {
1161         struct writeback_control wbc = {
1162                 .sync_mode = WB_SYNC_ALL,
1163                 .nr_to_write = LONG_MAX,
1164                 .for_reclaim = 0,
1165         };
1166         struct blk_plug plug;
1167         int err = 0, cnt = 0;
1168 
1169         blk_start_plug(&plug);
1170 
1171 retry_flush_quotas:
1172         f2fs_lock_all(sbi);
1173         if (__need_flush_quota(sbi)) {
1174                 int locked;
1175 
1176                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1177                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1178                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1179                         goto retry_flush_dents;
1180                 }
1181                 f2fs_unlock_all(sbi);
1182 
1183                 /* only failed during mount/umount/freeze/quotactl */
1184                 locked = down_read_trylock(&sbi->sb->s_umount);
1185                 f2fs_quota_sync(sbi->sb, -1);
1186                 if (locked)
1187                         up_read(&sbi->sb->s_umount);
1188                 cond_resched();
1189                 goto retry_flush_quotas;
1190         }
1191 
1192 retry_flush_dents:
1193         /* write all the dirty dentry pages */
1194         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1195                 f2fs_unlock_all(sbi);
1196                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1197                 if (err)
1198                         goto out;
1199                 cond_resched();
1200                 goto retry_flush_quotas;
1201         }
1202 
1203         /*
1204          * POR: we should ensure that there are no dirty node pages
1205          * until finishing nat/sit flush. inode->i_blocks can be updated.
1206          */
1207         down_write(&sbi->node_change);
1208 
1209         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1210                 up_write(&sbi->node_change);
1211                 f2fs_unlock_all(sbi);
1212                 err = f2fs_sync_inode_meta(sbi);
1213                 if (err)
1214                         goto out;
1215                 cond_resched();
1216                 goto retry_flush_quotas;
1217         }
1218 
1219 retry_flush_nodes:
1220         down_write(&sbi->node_write);
1221 
1222         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1223                 up_write(&sbi->node_write);
1224                 atomic_inc(&sbi->wb_sync_req[NODE]);
1225                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1226                 atomic_dec(&sbi->wb_sync_req[NODE]);
1227                 if (err) {
1228                         up_write(&sbi->node_change);
1229                         f2fs_unlock_all(sbi);
1230                         goto out;
1231                 }
1232                 cond_resched();
1233                 goto retry_flush_nodes;
1234         }
1235 
1236         /*
1237          * sbi->node_change is used only for AIO write_begin path which produces
1238          * dirty node blocks and some checkpoint values by block allocation.
1239          */
1240         __prepare_cp_block(sbi);
1241         up_write(&sbi->node_change);
1242 out:
1243         blk_finish_plug(&plug);
1244         return err;
1245 }
1246 
1247 static void unblock_operations(struct f2fs_sb_info *sbi)
1248 {
1249         up_write(&sbi->node_write);
1250         f2fs_unlock_all(sbi);
1251 }
1252 
1253 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1254 {
1255         DEFINE_WAIT(wait);
1256 
1257         for (;;) {
1258                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1259 
1260                 if (!get_pages(sbi, type))
1261                         break;
1262 
1263                 if (unlikely(f2fs_cp_error(sbi)))
1264                         break;
1265 
1266                 io_schedule_timeout(HZ/50);
1267         }
1268         finish_wait(&sbi->cp_wait, &wait);
1269 }
1270 
1271 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1272 {
1273         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1274         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1275         unsigned long flags;
1276 
1277         spin_lock_irqsave(&sbi->cp_lock, flags);
1278 
1279         if ((cpc->reason & CP_UMOUNT) &&
1280                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1281                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1282                 disable_nat_bits(sbi, false);
1283 
1284         if (cpc->reason & CP_TRIMMED)
1285                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1286         else
1287                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1288 
1289         if (cpc->reason & CP_UMOUNT)
1290                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1291         else
1292                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1293 
1294         if (cpc->reason & CP_FASTBOOT)
1295                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1296         else
1297                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1298 
1299         if (orphan_num)
1300                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1301         else
1302                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1303 
1304         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1305                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1306 
1307         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1308                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1309         else
1310                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1311 
1312         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1313                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1314         else
1315                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1316 
1317         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1318                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1319         else
1320                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1321 
1322         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1323                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1324         else
1325                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1326 
1327         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1328                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1329 
1330         /* set this flag to activate crc|cp_ver for recovery */
1331         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1332         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1333 
1334         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1335 }
1336 
1337 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1338         void *src, block_t blk_addr)
1339 {
1340         struct writeback_control wbc = {
1341                 .for_reclaim = 0,
1342         };
1343 
1344         /*
1345          * pagevec_lookup_tag and lock_page again will take
1346          * some extra time. Therefore, f2fs_update_meta_pages and
1347          * f2fs_sync_meta_pages are combined in this function.
1348          */
1349         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1350         int err;
1351 
1352         f2fs_wait_on_page_writeback(page, META, true, true);
1353 
1354         memcpy(page_address(page), src, PAGE_SIZE);
1355 
1356         set_page_dirty(page);
1357         if (unlikely(!clear_page_dirty_for_io(page)))
1358                 f2fs_bug_on(sbi, 1);
1359 
1360         /* writeout cp pack 2 page */
1361         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1362         if (unlikely(err && f2fs_cp_error(sbi))) {
1363                 f2fs_put_page(page, 1);
1364                 return;
1365         }
1366 
1367         f2fs_bug_on(sbi, err);
1368         f2fs_put_page(page, 0);
1369 
1370         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1371         f2fs_submit_merged_write(sbi, META_FLUSH);
1372 }
1373 
1374 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1375 {
1376         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1377         struct f2fs_nm_info *nm_i = NM_I(sbi);
1378         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1379         block_t start_blk;
1380         unsigned int data_sum_blocks, orphan_blocks;
1381         __u32 crc32 = 0;
1382         int i;
1383         int cp_payload_blks = __cp_payload(sbi);
1384         struct super_block *sb = sbi->sb;
1385         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1386         u64 kbytes_written;
1387         int err;
1388 
1389         /* Flush all the NAT/SIT pages */
1390         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1391 
1392         /*
1393          * modify checkpoint
1394          * version number is already updated
1395          */
1396         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1397         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1398         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1399                 ckpt->cur_node_segno[i] =
1400                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1401                 ckpt->cur_node_blkoff[i] =
1402                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1403                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1404                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1405         }
1406         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1407                 ckpt->cur_data_segno[i] =
1408                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1409                 ckpt->cur_data_blkoff[i] =
1410                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1411                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1412                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1413         }
1414 
1415         /* 2 cp  + n data seg summary + orphan inode blocks */
1416         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1417         spin_lock_irqsave(&sbi->cp_lock, flags);
1418         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1419                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1420         else
1421                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1422         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1423 
1424         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1425         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1426                         orphan_blocks);
1427 
1428         if (__remain_node_summaries(cpc->reason))
1429                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1430                                 cp_payload_blks + data_sum_blocks +
1431                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1432         else
1433                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1434                                 cp_payload_blks + data_sum_blocks +
1435                                 orphan_blocks);
1436 
1437         /* update ckpt flag for checkpoint */
1438         update_ckpt_flags(sbi, cpc);
1439 
1440         /* update SIT/NAT bitmap */
1441         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1442         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1443 
1444         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1445         *((__le32 *)((unsigned char *)ckpt +
1446                                 le32_to_cpu(ckpt->checksum_offset)))
1447                                 = cpu_to_le32(crc32);
1448 
1449         start_blk = __start_cp_next_addr(sbi);
1450 
1451         /* write nat bits */
1452         if (enabled_nat_bits(sbi, cpc)) {
1453                 __u64 cp_ver = cur_cp_version(ckpt);
1454                 block_t blk;
1455 
1456                 cp_ver |= ((__u64)crc32 << 32);
1457                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1458 
1459                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1460                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1461                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1462                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1463         }
1464 
1465         /* write out checkpoint buffer at block 0 */
1466         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1467 
1468         for (i = 1; i < 1 + cp_payload_blks; i++)
1469                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1470                                                         start_blk++);
1471 
1472         if (orphan_num) {
1473                 write_orphan_inodes(sbi, start_blk);
1474                 start_blk += orphan_blocks;
1475         }
1476 
1477         f2fs_write_data_summaries(sbi, start_blk);
1478         start_blk += data_sum_blocks;
1479 
1480         /* Record write statistics in the hot node summary */
1481         kbytes_written = sbi->kbytes_written;
1482         if (sb->s_bdev->bd_part)
1483                 kbytes_written += BD_PART_WRITTEN(sbi);
1484 
1485         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1486 
1487         if (__remain_node_summaries(cpc->reason)) {
1488                 f2fs_write_node_summaries(sbi, start_blk);
1489                 start_blk += NR_CURSEG_NODE_TYPE;
1490         }
1491 
1492         /* update user_block_counts */
1493         sbi->last_valid_block_count = sbi->total_valid_block_count;
1494         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1495 
1496         /* Here, we have one bio having CP pack except cp pack 2 page */
1497         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1498         /* Wait for all dirty meta pages to be submitted for IO */
1499         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1500 
1501         /* wait for previous submitted meta pages writeback */
1502         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1503 
1504         /* flush all device cache */
1505         err = f2fs_flush_device_cache(sbi);
1506         if (err)
1507                 return err;
1508 
1509         /* barrier and flush checkpoint cp pack 2 page if it can */
1510         commit_checkpoint(sbi, ckpt, start_blk);
1511         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1512 
1513         /*
1514          * invalidate intermediate page cache borrowed from meta inode
1515          * which are used for migration of encrypted inode's blocks.
1516          */
1517         if (f2fs_sb_has_encrypt(sbi))
1518                 invalidate_mapping_pages(META_MAPPING(sbi),
1519                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1520 
1521         f2fs_release_ino_entry(sbi, false);
1522 
1523         f2fs_reset_fsync_node_info(sbi);
1524 
1525         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1526         clear_sbi_flag(sbi, SBI_NEED_CP);
1527         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1528 
1529         spin_lock(&sbi->stat_lock);
1530         sbi->unusable_block_count = 0;
1531         spin_unlock(&sbi->stat_lock);
1532 
1533         __set_cp_next_pack(sbi);
1534 
1535         /*
1536          * redirty superblock if metadata like node page or inode cache is
1537          * updated during writing checkpoint.
1538          */
1539         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1540                         get_pages(sbi, F2FS_DIRTY_IMETA))
1541                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1542 
1543         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1544 
1545         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1546 }
1547 
1548 /*
1549  * We guarantee that this checkpoint procedure will not fail.
1550  */
1551 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1552 {
1553         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1554         unsigned long long ckpt_ver;
1555         int err = 0;
1556 
1557         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1558                 return -EROFS;
1559 
1560         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1561                 if (cpc->reason != CP_PAUSE)
1562                         return 0;
1563                 f2fs_warn(sbi, "Start checkpoint disabled!");
1564         }
1565         mutex_lock(&sbi->cp_mutex);
1566 
1567         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1568                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1569                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1570                 goto out;
1571         if (unlikely(f2fs_cp_error(sbi))) {
1572                 err = -EIO;
1573                 goto out;
1574         }
1575 
1576         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1577 
1578         err = block_operations(sbi);
1579         if (err)
1580                 goto out;
1581 
1582         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1583 
1584         f2fs_flush_merged_writes(sbi);
1585 
1586         /* this is the case of multiple fstrims without any changes */
1587         if (cpc->reason & CP_DISCARD) {
1588                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1589                         unblock_operations(sbi);
1590                         goto out;
1591                 }
1592 
1593                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1594                                 SIT_I(sbi)->dirty_sentries == 0 &&
1595                                 prefree_segments(sbi) == 0) {
1596                         f2fs_flush_sit_entries(sbi, cpc);
1597                         f2fs_clear_prefree_segments(sbi, cpc);
1598                         unblock_operations(sbi);
1599                         goto out;
1600                 }
1601         }
1602 
1603         /*
1604          * update checkpoint pack index
1605          * Increase the version number so that
1606          * SIT entries and seg summaries are written at correct place
1607          */
1608         ckpt_ver = cur_cp_version(ckpt);
1609         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1610 
1611         /* write cached NAT/SIT entries to NAT/SIT area */
1612         err = f2fs_flush_nat_entries(sbi, cpc);
1613         if (err)
1614                 goto stop;
1615 
1616         f2fs_flush_sit_entries(sbi, cpc);
1617 
1618         /* unlock all the fs_lock[] in do_checkpoint() */
1619         err = do_checkpoint(sbi, cpc);
1620         if (err)
1621                 f2fs_release_discard_addrs(sbi);
1622         else
1623                 f2fs_clear_prefree_segments(sbi, cpc);
1624 stop:
1625         unblock_operations(sbi);
1626         stat_inc_cp_count(sbi->stat_info);
1627 
1628         if (cpc->reason & CP_RECOVERY)
1629                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1630 
1631         /* do checkpoint periodically */
1632         f2fs_update_time(sbi, CP_TIME);
1633         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1634 out:
1635         mutex_unlock(&sbi->cp_mutex);
1636         return err;
1637 }
1638 
1639 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1640 {
1641         int i;
1642 
1643         for (i = 0; i < MAX_INO_ENTRY; i++) {
1644                 struct inode_management *im = &sbi->im[i];
1645 
1646                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1647                 spin_lock_init(&im->ino_lock);
1648                 INIT_LIST_HEAD(&im->ino_list);
1649                 im->ino_num = 0;
1650         }
1651 
1652         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1653                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1654                                 F2FS_ORPHANS_PER_BLOCK;
1655 }
1656 
1657 int __init f2fs_create_checkpoint_caches(void)
1658 {
1659         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1660                         sizeof(struct ino_entry));
1661         if (!ino_entry_slab)
1662                 return -ENOMEM;
1663         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1664                         sizeof(struct inode_entry));
1665         if (!f2fs_inode_entry_slab) {
1666                 kmem_cache_destroy(ino_entry_slab);
1667                 return -ENOMEM;
1668         }
1669         return 0;
1670 }
1671 
1672 void f2fs_destroy_checkpoint_caches(void)
1673 {
1674         kmem_cache_destroy(ino_entry_slab);
1675         kmem_cache_destroy(f2fs_inode_entry_slab);
1676 }

/* [<][>][^][v][top][bottom][index][help] */