root/fs/f2fs/data.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __is_cp_guaranteed
  2. __read_io_type
  3. __read_end_io
  4. decrypt_work
  5. verity_work
  6. bio_post_read_processing
  7. f2fs_bio_post_read_required
  8. f2fs_read_end_io
  9. f2fs_write_end_io
  10. f2fs_target_device
  11. f2fs_target_device_index
  12. __same_bdev
  13. __bio_alloc
  14. __submit_bio
  15. __submit_merged_bio
  16. __has_merged_page
  17. __f2fs_submit_merged_write
  18. __submit_merged_write_cond
  19. f2fs_submit_merged_write
  20. f2fs_submit_merged_write_cond
  21. f2fs_flush_merged_writes
  22. f2fs_submit_page_bio
  23. page_is_mergeable
  24. io_type_is_mergeable
  25. io_is_mergeable
  26. f2fs_merge_page_bio
  27. f2fs_submit_ipu_bio
  28. f2fs_submit_page_write
  29. f2fs_need_verity
  30. f2fs_grab_read_bio
  31. f2fs_submit_page_read
  32. __set_data_blkaddr
  33. f2fs_set_data_blkaddr
  34. f2fs_update_data_blkaddr
  35. f2fs_reserve_new_blocks
  36. f2fs_reserve_new_block
  37. f2fs_reserve_block
  38. f2fs_get_block
  39. f2fs_get_read_data_page
  40. f2fs_find_data_page
  41. f2fs_get_lock_data_page
  42. f2fs_get_new_data_page
  43. __allocate_data_block
  44. f2fs_preallocate_blocks
  45. __do_map_lock
  46. f2fs_map_blocks
  47. f2fs_overwrite_io
  48. __get_data_block
  49. get_data_block
  50. get_data_block_dio_write
  51. get_data_block_dio
  52. get_data_block_bmap
  53. logical_to_blk
  54. blk_to_logical
  55. f2fs_xattr_fiemap
  56. f2fs_fiemap
  57. f2fs_readpage_limit
  58. f2fs_read_single_page
  59. f2fs_mpage_readpages
  60. f2fs_read_data_page
  61. f2fs_read_data_pages
  62. encrypt_one_page
  63. check_inplace_update_policy
  64. f2fs_should_update_inplace
  65. f2fs_should_update_outplace
  66. need_inplace_update
  67. f2fs_do_write_data_page
  68. __write_data_page
  69. f2fs_write_data_page
  70. f2fs_write_cache_pages
  71. __should_serialize_io
  72. __f2fs_write_data_pages
  73. f2fs_write_data_pages
  74. f2fs_write_failed
  75. prepare_write_begin
  76. f2fs_write_begin
  77. f2fs_write_end
  78. check_direct_IO
  79. f2fs_dio_end_io
  80. f2fs_dio_submit_bio
  81. f2fs_direct_IO
  82. f2fs_invalidate_page
  83. f2fs_release_page
  84. f2fs_set_data_page_dirty
  85. f2fs_bmap
  86. f2fs_migrate_page
  87. check_swap_activate
  88. f2fs_swap_activate
  89. f2fs_swap_deactivate
  90. f2fs_swap_activate
  91. f2fs_swap_deactivate
  92. f2fs_clear_page_cache_dirty_tag
  93. f2fs_init_post_read_processing
  94. f2fs_destroy_post_read_processing

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * fs/f2fs/data.c
   4  *
   5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6  *             http://www.samsung.com/
   7  */
   8 #include <linux/fs.h>
   9 #include <linux/f2fs_fs.h>
  10 #include <linux/buffer_head.h>
  11 #include <linux/mpage.h>
  12 #include <linux/writeback.h>
  13 #include <linux/backing-dev.h>
  14 #include <linux/pagevec.h>
  15 #include <linux/blkdev.h>
  16 #include <linux/bio.h>
  17 #include <linux/swap.h>
  18 #include <linux/prefetch.h>
  19 #include <linux/uio.h>
  20 #include <linux/cleancache.h>
  21 #include <linux/sched/signal.h>
  22 
  23 #include "f2fs.h"
  24 #include "node.h"
  25 #include "segment.h"
  26 #include "trace.h"
  27 #include <trace/events/f2fs.h>
  28 
  29 #define NUM_PREALLOC_POST_READ_CTXS     128
  30 
  31 static struct kmem_cache *bio_post_read_ctx_cache;
  32 static mempool_t *bio_post_read_ctx_pool;
  33 
  34 static bool __is_cp_guaranteed(struct page *page)
  35 {
  36         struct address_space *mapping = page->mapping;
  37         struct inode *inode;
  38         struct f2fs_sb_info *sbi;
  39 
  40         if (!mapping)
  41                 return false;
  42 
  43         inode = mapping->host;
  44         sbi = F2FS_I_SB(inode);
  45 
  46         if (inode->i_ino == F2FS_META_INO(sbi) ||
  47                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
  48                         S_ISDIR(inode->i_mode) ||
  49                         (S_ISREG(inode->i_mode) &&
  50                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
  51                         is_cold_data(page))
  52                 return true;
  53         return false;
  54 }
  55 
  56 static enum count_type __read_io_type(struct page *page)
  57 {
  58         struct address_space *mapping = page_file_mapping(page);
  59 
  60         if (mapping) {
  61                 struct inode *inode = mapping->host;
  62                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  63 
  64                 if (inode->i_ino == F2FS_META_INO(sbi))
  65                         return F2FS_RD_META;
  66 
  67                 if (inode->i_ino == F2FS_NODE_INO(sbi))
  68                         return F2FS_RD_NODE;
  69         }
  70         return F2FS_RD_DATA;
  71 }
  72 
  73 /* postprocessing steps for read bios */
  74 enum bio_post_read_step {
  75         STEP_INITIAL = 0,
  76         STEP_DECRYPT,
  77         STEP_VERITY,
  78 };
  79 
  80 struct bio_post_read_ctx {
  81         struct bio *bio;
  82         struct work_struct work;
  83         unsigned int cur_step;
  84         unsigned int enabled_steps;
  85 };
  86 
  87 static void __read_end_io(struct bio *bio)
  88 {
  89         struct page *page;
  90         struct bio_vec *bv;
  91         struct bvec_iter_all iter_all;
  92 
  93         bio_for_each_segment_all(bv, bio, iter_all) {
  94                 page = bv->bv_page;
  95 
  96                 /* PG_error was set if any post_read step failed */
  97                 if (bio->bi_status || PageError(page)) {
  98                         ClearPageUptodate(page);
  99                         /* will re-read again later */
 100                         ClearPageError(page);
 101                 } else {
 102                         SetPageUptodate(page);
 103                 }
 104                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
 105                 unlock_page(page);
 106         }
 107         if (bio->bi_private)
 108                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 109         bio_put(bio);
 110 }
 111 
 112 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 113 
 114 static void decrypt_work(struct work_struct *work)
 115 {
 116         struct bio_post_read_ctx *ctx =
 117                 container_of(work, struct bio_post_read_ctx, work);
 118 
 119         fscrypt_decrypt_bio(ctx->bio);
 120 
 121         bio_post_read_processing(ctx);
 122 }
 123 
 124 static void verity_work(struct work_struct *work)
 125 {
 126         struct bio_post_read_ctx *ctx =
 127                 container_of(work, struct bio_post_read_ctx, work);
 128 
 129         fsverity_verify_bio(ctx->bio);
 130 
 131         bio_post_read_processing(ctx);
 132 }
 133 
 134 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
 135 {
 136         /*
 137          * We use different work queues for decryption and for verity because
 138          * verity may require reading metadata pages that need decryption, and
 139          * we shouldn't recurse to the same workqueue.
 140          */
 141         switch (++ctx->cur_step) {
 142         case STEP_DECRYPT:
 143                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
 144                         INIT_WORK(&ctx->work, decrypt_work);
 145                         fscrypt_enqueue_decrypt_work(&ctx->work);
 146                         return;
 147                 }
 148                 ctx->cur_step++;
 149                 /* fall-through */
 150         case STEP_VERITY:
 151                 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
 152                         INIT_WORK(&ctx->work, verity_work);
 153                         fsverity_enqueue_verify_work(&ctx->work);
 154                         return;
 155                 }
 156                 ctx->cur_step++;
 157                 /* fall-through */
 158         default:
 159                 __read_end_io(ctx->bio);
 160         }
 161 }
 162 
 163 static bool f2fs_bio_post_read_required(struct bio *bio)
 164 {
 165         return bio->bi_private && !bio->bi_status;
 166 }
 167 
 168 static void f2fs_read_end_io(struct bio *bio)
 169 {
 170         if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
 171                                                 FAULT_READ_IO)) {
 172                 f2fs_show_injection_info(FAULT_READ_IO);
 173                 bio->bi_status = BLK_STS_IOERR;
 174         }
 175 
 176         if (f2fs_bio_post_read_required(bio)) {
 177                 struct bio_post_read_ctx *ctx = bio->bi_private;
 178 
 179                 ctx->cur_step = STEP_INITIAL;
 180                 bio_post_read_processing(ctx);
 181                 return;
 182         }
 183 
 184         __read_end_io(bio);
 185 }
 186 
 187 static void f2fs_write_end_io(struct bio *bio)
 188 {
 189         struct f2fs_sb_info *sbi = bio->bi_private;
 190         struct bio_vec *bvec;
 191         struct bvec_iter_all iter_all;
 192 
 193         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
 194                 f2fs_show_injection_info(FAULT_WRITE_IO);
 195                 bio->bi_status = BLK_STS_IOERR;
 196         }
 197 
 198         bio_for_each_segment_all(bvec, bio, iter_all) {
 199                 struct page *page = bvec->bv_page;
 200                 enum count_type type = WB_DATA_TYPE(page);
 201 
 202                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
 203                         set_page_private(page, (unsigned long)NULL);
 204                         ClearPagePrivate(page);
 205                         unlock_page(page);
 206                         mempool_free(page, sbi->write_io_dummy);
 207 
 208                         if (unlikely(bio->bi_status))
 209                                 f2fs_stop_checkpoint(sbi, true);
 210                         continue;
 211                 }
 212 
 213                 fscrypt_finalize_bounce_page(&page);
 214 
 215                 if (unlikely(bio->bi_status)) {
 216                         mapping_set_error(page->mapping, -EIO);
 217                         if (type == F2FS_WB_CP_DATA)
 218                                 f2fs_stop_checkpoint(sbi, true);
 219                 }
 220 
 221                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
 222                                         page->index != nid_of_node(page));
 223 
 224                 dec_page_count(sbi, type);
 225                 if (f2fs_in_warm_node_list(sbi, page))
 226                         f2fs_del_fsync_node_entry(sbi, page);
 227                 clear_cold_data(page);
 228                 end_page_writeback(page);
 229         }
 230         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 231                                 wq_has_sleeper(&sbi->cp_wait))
 232                 wake_up(&sbi->cp_wait);
 233 
 234         bio_put(bio);
 235 }
 236 
 237 /*
 238  * Return true, if pre_bio's bdev is same as its target device.
 239  */
 240 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 241                                 block_t blk_addr, struct bio *bio)
 242 {
 243         struct block_device *bdev = sbi->sb->s_bdev;
 244         int i;
 245 
 246         if (f2fs_is_multi_device(sbi)) {
 247                 for (i = 0; i < sbi->s_ndevs; i++) {
 248                         if (FDEV(i).start_blk <= blk_addr &&
 249                             FDEV(i).end_blk >= blk_addr) {
 250                                 blk_addr -= FDEV(i).start_blk;
 251                                 bdev = FDEV(i).bdev;
 252                                 break;
 253                         }
 254                 }
 255         }
 256         if (bio) {
 257                 bio_set_dev(bio, bdev);
 258                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 259         }
 260         return bdev;
 261 }
 262 
 263 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 264 {
 265         int i;
 266 
 267         if (!f2fs_is_multi_device(sbi))
 268                 return 0;
 269 
 270         for (i = 0; i < sbi->s_ndevs; i++)
 271                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 272                         return i;
 273         return 0;
 274 }
 275 
 276 static bool __same_bdev(struct f2fs_sb_info *sbi,
 277                                 block_t blk_addr, struct bio *bio)
 278 {
 279         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
 280         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
 281 }
 282 
 283 /*
 284  * Low-level block read/write IO operations.
 285  */
 286 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
 287 {
 288         struct f2fs_sb_info *sbi = fio->sbi;
 289         struct bio *bio;
 290 
 291         bio = f2fs_bio_alloc(sbi, npages, true);
 292 
 293         f2fs_target_device(sbi, fio->new_blkaddr, bio);
 294         if (is_read_io(fio->op)) {
 295                 bio->bi_end_io = f2fs_read_end_io;
 296                 bio->bi_private = NULL;
 297         } else {
 298                 bio->bi_end_io = f2fs_write_end_io;
 299                 bio->bi_private = sbi;
 300                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
 301                                                 fio->type, fio->temp);
 302         }
 303         if (fio->io_wbc)
 304                 wbc_init_bio(fio->io_wbc, bio);
 305 
 306         return bio;
 307 }
 308 
 309 static inline void __submit_bio(struct f2fs_sb_info *sbi,
 310                                 struct bio *bio, enum page_type type)
 311 {
 312         if (!is_read_io(bio_op(bio))) {
 313                 unsigned int start;
 314 
 315                 if (type != DATA && type != NODE)
 316                         goto submit_io;
 317 
 318                 if (test_opt(sbi, LFS) && current->plug)
 319                         blk_finish_plug(current->plug);
 320 
 321                 if (F2FS_IO_ALIGNED(sbi))
 322                         goto submit_io;
 323 
 324                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
 325                 start %= F2FS_IO_SIZE(sbi);
 326 
 327                 if (start == 0)
 328                         goto submit_io;
 329 
 330                 /* fill dummy pages */
 331                 for (; start < F2FS_IO_SIZE(sbi); start++) {
 332                         struct page *page =
 333                                 mempool_alloc(sbi->write_io_dummy,
 334                                               GFP_NOIO | __GFP_NOFAIL);
 335                         f2fs_bug_on(sbi, !page);
 336 
 337                         zero_user_segment(page, 0, PAGE_SIZE);
 338                         SetPagePrivate(page);
 339                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
 340                         lock_page(page);
 341                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
 342                                 f2fs_bug_on(sbi, 1);
 343                 }
 344                 /*
 345                  * In the NODE case, we lose next block address chain. So, we
 346                  * need to do checkpoint in f2fs_sync_file.
 347                  */
 348                 if (type == NODE)
 349                         set_sbi_flag(sbi, SBI_NEED_CP);
 350         }
 351 submit_io:
 352         if (is_read_io(bio_op(bio)))
 353                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
 354         else
 355                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
 356         submit_bio(bio);
 357 }
 358 
 359 static void __submit_merged_bio(struct f2fs_bio_info *io)
 360 {
 361         struct f2fs_io_info *fio = &io->fio;
 362 
 363         if (!io->bio)
 364                 return;
 365 
 366         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
 367 
 368         if (is_read_io(fio->op))
 369                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
 370         else
 371                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
 372 
 373         __submit_bio(io->sbi, io->bio, fio->type);
 374         io->bio = NULL;
 375 }
 376 
 377 static bool __has_merged_page(struct bio *bio, struct inode *inode,
 378                                                 struct page *page, nid_t ino)
 379 {
 380         struct bio_vec *bvec;
 381         struct page *target;
 382         struct bvec_iter_all iter_all;
 383 
 384         if (!bio)
 385                 return false;
 386 
 387         if (!inode && !page && !ino)
 388                 return true;
 389 
 390         bio_for_each_segment_all(bvec, bio, iter_all) {
 391 
 392                 target = bvec->bv_page;
 393                 if (fscrypt_is_bounce_page(target))
 394                         target = fscrypt_pagecache_page(target);
 395 
 396                 if (inode && inode == target->mapping->host)
 397                         return true;
 398                 if (page && page == target)
 399                         return true;
 400                 if (ino && ino == ino_of_node(target))
 401                         return true;
 402         }
 403 
 404         return false;
 405 }
 406 
 407 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
 408                                 enum page_type type, enum temp_type temp)
 409 {
 410         enum page_type btype = PAGE_TYPE_OF_BIO(type);
 411         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 412 
 413         down_write(&io->io_rwsem);
 414 
 415         /* change META to META_FLUSH in the checkpoint procedure */
 416         if (type >= META_FLUSH) {
 417                 io->fio.type = META_FLUSH;
 418                 io->fio.op = REQ_OP_WRITE;
 419                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
 420                 if (!test_opt(sbi, NOBARRIER))
 421                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
 422         }
 423         __submit_merged_bio(io);
 424         up_write(&io->io_rwsem);
 425 }
 426 
 427 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
 428                                 struct inode *inode, struct page *page,
 429                                 nid_t ino, enum page_type type, bool force)
 430 {
 431         enum temp_type temp;
 432         bool ret = true;
 433 
 434         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
 435                 if (!force)     {
 436                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
 437                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 438 
 439                         down_read(&io->io_rwsem);
 440                         ret = __has_merged_page(io->bio, inode, page, ino);
 441                         up_read(&io->io_rwsem);
 442                 }
 443                 if (ret)
 444                         __f2fs_submit_merged_write(sbi, type, temp);
 445 
 446                 /* TODO: use HOT temp only for meta pages now. */
 447                 if (type >= META)
 448                         break;
 449         }
 450 }
 451 
 452 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
 453 {
 454         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
 455 }
 456 
 457 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
 458                                 struct inode *inode, struct page *page,
 459                                 nid_t ino, enum page_type type)
 460 {
 461         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
 462 }
 463 
 464 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
 465 {
 466         f2fs_submit_merged_write(sbi, DATA);
 467         f2fs_submit_merged_write(sbi, NODE);
 468         f2fs_submit_merged_write(sbi, META);
 469 }
 470 
 471 /*
 472  * Fill the locked page with data located in the block address.
 473  * A caller needs to unlock the page on failure.
 474  */
 475 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 476 {
 477         struct bio *bio;
 478         struct page *page = fio->encrypted_page ?
 479                         fio->encrypted_page : fio->page;
 480 
 481         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 482                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
 483                         META_GENERIC : DATA_GENERIC_ENHANCE)))
 484                 return -EFSCORRUPTED;
 485 
 486         trace_f2fs_submit_page_bio(page, fio);
 487         f2fs_trace_ios(fio, 0);
 488 
 489         /* Allocate a new bio */
 490         bio = __bio_alloc(fio, 1);
 491 
 492         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 493                 bio_put(bio);
 494                 return -EFAULT;
 495         }
 496 
 497         if (fio->io_wbc && !is_read_io(fio->op))
 498                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 499 
 500         bio_set_op_attrs(bio, fio->op, fio->op_flags);
 501 
 502         inc_page_count(fio->sbi, is_read_io(fio->op) ?
 503                         __read_io_type(page): WB_DATA_TYPE(fio->page));
 504 
 505         __submit_bio(fio->sbi, bio, fio->type);
 506         return 0;
 507 }
 508 
 509 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 510                                 block_t last_blkaddr, block_t cur_blkaddr)
 511 {
 512         if (last_blkaddr + 1 != cur_blkaddr)
 513                 return false;
 514         return __same_bdev(sbi, cur_blkaddr, bio);
 515 }
 516 
 517 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
 518                                                 struct f2fs_io_info *fio)
 519 {
 520         if (io->fio.op != fio->op)
 521                 return false;
 522         return io->fio.op_flags == fio->op_flags;
 523 }
 524 
 525 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 526                                         struct f2fs_bio_info *io,
 527                                         struct f2fs_io_info *fio,
 528                                         block_t last_blkaddr,
 529                                         block_t cur_blkaddr)
 530 {
 531         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
 532                 unsigned int filled_blocks =
 533                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
 534                 unsigned int io_size = F2FS_IO_SIZE(sbi);
 535                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
 536 
 537                 /* IOs in bio is aligned and left space of vectors is not enough */
 538                 if (!(filled_blocks % io_size) && left_vecs < io_size)
 539                         return false;
 540         }
 541         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
 542                 return false;
 543         return io_type_is_mergeable(io, fio);
 544 }
 545 
 546 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
 547 {
 548         struct bio *bio = *fio->bio;
 549         struct page *page = fio->encrypted_page ?
 550                         fio->encrypted_page : fio->page;
 551 
 552         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 553                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
 554                 return -EFSCORRUPTED;
 555 
 556         trace_f2fs_submit_page_bio(page, fio);
 557         f2fs_trace_ios(fio, 0);
 558 
 559         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
 560                                                 fio->new_blkaddr)) {
 561                 __submit_bio(fio->sbi, bio, fio->type);
 562                 bio = NULL;
 563         }
 564 alloc_new:
 565         if (!bio) {
 566                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
 567                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
 568         }
 569 
 570         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 571                 __submit_bio(fio->sbi, bio, fio->type);
 572                 bio = NULL;
 573                 goto alloc_new;
 574         }
 575 
 576         if (fio->io_wbc)
 577                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 578 
 579         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
 580 
 581         *fio->last_block = fio->new_blkaddr;
 582         *fio->bio = bio;
 583 
 584         return 0;
 585 }
 586 
 587 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
 588                                                         struct page *page)
 589 {
 590         if (!bio)
 591                 return;
 592 
 593         if (!__has_merged_page(*bio, NULL, page, 0))
 594                 return;
 595 
 596         __submit_bio(sbi, *bio, DATA);
 597         *bio = NULL;
 598 }
 599 
 600 void f2fs_submit_page_write(struct f2fs_io_info *fio)
 601 {
 602         struct f2fs_sb_info *sbi = fio->sbi;
 603         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
 604         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
 605         struct page *bio_page;
 606 
 607         f2fs_bug_on(sbi, is_read_io(fio->op));
 608 
 609         down_write(&io->io_rwsem);
 610 next:
 611         if (fio->in_list) {
 612                 spin_lock(&io->io_lock);
 613                 if (list_empty(&io->io_list)) {
 614                         spin_unlock(&io->io_lock);
 615                         goto out;
 616                 }
 617                 fio = list_first_entry(&io->io_list,
 618                                                 struct f2fs_io_info, list);
 619                 list_del(&fio->list);
 620                 spin_unlock(&io->io_lock);
 621         }
 622 
 623         verify_fio_blkaddr(fio);
 624 
 625         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
 626 
 627         /* set submitted = true as a return value */
 628         fio->submitted = true;
 629 
 630         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
 631 
 632         if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
 633                         io->last_block_in_bio, fio->new_blkaddr))
 634                 __submit_merged_bio(io);
 635 alloc_new:
 636         if (io->bio == NULL) {
 637                 if (F2FS_IO_ALIGNED(sbi) &&
 638                                 (fio->type == DATA || fio->type == NODE) &&
 639                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
 640                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
 641                         fio->retry = true;
 642                         goto skip;
 643                 }
 644                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
 645                 io->fio = *fio;
 646         }
 647 
 648         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
 649                 __submit_merged_bio(io);
 650                 goto alloc_new;
 651         }
 652 
 653         if (fio->io_wbc)
 654                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
 655 
 656         io->last_block_in_bio = fio->new_blkaddr;
 657         f2fs_trace_ios(fio, 0);
 658 
 659         trace_f2fs_submit_page_write(fio->page, fio);
 660 skip:
 661         if (fio->in_list)
 662                 goto next;
 663 out:
 664         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
 665                                 !f2fs_is_checkpoint_ready(sbi))
 666                 __submit_merged_bio(io);
 667         up_write(&io->io_rwsem);
 668 }
 669 
 670 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
 671 {
 672         return fsverity_active(inode) &&
 673                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
 674 }
 675 
 676 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
 677                                       unsigned nr_pages, unsigned op_flag,
 678                                       pgoff_t first_idx)
 679 {
 680         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 681         struct bio *bio;
 682         struct bio_post_read_ctx *ctx;
 683         unsigned int post_read_steps = 0;
 684 
 685         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
 686         if (!bio)
 687                 return ERR_PTR(-ENOMEM);
 688         f2fs_target_device(sbi, blkaddr, bio);
 689         bio->bi_end_io = f2fs_read_end_io;
 690         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
 691 
 692         if (f2fs_encrypted_file(inode))
 693                 post_read_steps |= 1 << STEP_DECRYPT;
 694 
 695         if (f2fs_need_verity(inode, first_idx))
 696                 post_read_steps |= 1 << STEP_VERITY;
 697 
 698         if (post_read_steps) {
 699                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
 700                 if (!ctx) {
 701                         bio_put(bio);
 702                         return ERR_PTR(-ENOMEM);
 703                 }
 704                 ctx->bio = bio;
 705                 ctx->enabled_steps = post_read_steps;
 706                 bio->bi_private = ctx;
 707         }
 708 
 709         return bio;
 710 }
 711 
 712 /* This can handle encryption stuffs */
 713 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
 714                                                         block_t blkaddr)
 715 {
 716         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 717         struct bio *bio;
 718 
 719         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
 720         if (IS_ERR(bio))
 721                 return PTR_ERR(bio);
 722 
 723         /* wait for GCed page writeback via META_MAPPING */
 724         f2fs_wait_on_block_writeback(inode, blkaddr);
 725 
 726         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 727                 bio_put(bio);
 728                 return -EFAULT;
 729         }
 730         ClearPageError(page);
 731         inc_page_count(sbi, F2FS_RD_DATA);
 732         __submit_bio(sbi, bio, DATA);
 733         return 0;
 734 }
 735 
 736 static void __set_data_blkaddr(struct dnode_of_data *dn)
 737 {
 738         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
 739         __le32 *addr_array;
 740         int base = 0;
 741 
 742         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
 743                 base = get_extra_isize(dn->inode);
 744 
 745         /* Get physical address of data block */
 746         addr_array = blkaddr_in_node(rn);
 747         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
 748 }
 749 
 750 /*
 751  * Lock ordering for the change of data block address:
 752  * ->data_page
 753  *  ->node_page
 754  *    update block addresses in the node page
 755  */
 756 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
 757 {
 758         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
 759         __set_data_blkaddr(dn);
 760         if (set_page_dirty(dn->node_page))
 761                 dn->node_changed = true;
 762 }
 763 
 764 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
 765 {
 766         dn->data_blkaddr = blkaddr;
 767         f2fs_set_data_blkaddr(dn);
 768         f2fs_update_extent_cache(dn);
 769 }
 770 
 771 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
 772 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
 773 {
 774         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 775         int err;
 776 
 777         if (!count)
 778                 return 0;
 779 
 780         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
 781                 return -EPERM;
 782         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
 783                 return err;
 784 
 785         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
 786                                                 dn->ofs_in_node, count);
 787 
 788         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
 789 
 790         for (; count > 0; dn->ofs_in_node++) {
 791                 block_t blkaddr = datablock_addr(dn->inode,
 792                                         dn->node_page, dn->ofs_in_node);
 793                 if (blkaddr == NULL_ADDR) {
 794                         dn->data_blkaddr = NEW_ADDR;
 795                         __set_data_blkaddr(dn);
 796                         count--;
 797                 }
 798         }
 799 
 800         if (set_page_dirty(dn->node_page))
 801                 dn->node_changed = true;
 802         return 0;
 803 }
 804 
 805 /* Should keep dn->ofs_in_node unchanged */
 806 int f2fs_reserve_new_block(struct dnode_of_data *dn)
 807 {
 808         unsigned int ofs_in_node = dn->ofs_in_node;
 809         int ret;
 810 
 811         ret = f2fs_reserve_new_blocks(dn, 1);
 812         dn->ofs_in_node = ofs_in_node;
 813         return ret;
 814 }
 815 
 816 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
 817 {
 818         bool need_put = dn->inode_page ? false : true;
 819         int err;
 820 
 821         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
 822         if (err)
 823                 return err;
 824 
 825         if (dn->data_blkaddr == NULL_ADDR)
 826                 err = f2fs_reserve_new_block(dn);
 827         if (err || need_put)
 828                 f2fs_put_dnode(dn);
 829         return err;
 830 }
 831 
 832 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
 833 {
 834         struct extent_info ei  = {0,0,0};
 835         struct inode *inode = dn->inode;
 836 
 837         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 838                 dn->data_blkaddr = ei.blk + index - ei.fofs;
 839                 return 0;
 840         }
 841 
 842         return f2fs_reserve_block(dn, index);
 843 }
 844 
 845 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
 846                                                 int op_flags, bool for_write)
 847 {
 848         struct address_space *mapping = inode->i_mapping;
 849         struct dnode_of_data dn;
 850         struct page *page;
 851         struct extent_info ei = {0,0,0};
 852         int err;
 853 
 854         page = f2fs_grab_cache_page(mapping, index, for_write);
 855         if (!page)
 856                 return ERR_PTR(-ENOMEM);
 857 
 858         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 859                 dn.data_blkaddr = ei.blk + index - ei.fofs;
 860                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
 861                                                 DATA_GENERIC_ENHANCE_READ)) {
 862                         err = -EFSCORRUPTED;
 863                         goto put_err;
 864                 }
 865                 goto got_it;
 866         }
 867 
 868         set_new_dnode(&dn, inode, NULL, NULL, 0);
 869         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
 870         if (err)
 871                 goto put_err;
 872         f2fs_put_dnode(&dn);
 873 
 874         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
 875                 err = -ENOENT;
 876                 goto put_err;
 877         }
 878         if (dn.data_blkaddr != NEW_ADDR &&
 879                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
 880                                                 dn.data_blkaddr,
 881                                                 DATA_GENERIC_ENHANCE)) {
 882                 err = -EFSCORRUPTED;
 883                 goto put_err;
 884         }
 885 got_it:
 886         if (PageUptodate(page)) {
 887                 unlock_page(page);
 888                 return page;
 889         }
 890 
 891         /*
 892          * A new dentry page is allocated but not able to be written, since its
 893          * new inode page couldn't be allocated due to -ENOSPC.
 894          * In such the case, its blkaddr can be remained as NEW_ADDR.
 895          * see, f2fs_add_link -> f2fs_get_new_data_page ->
 896          * f2fs_init_inode_metadata.
 897          */
 898         if (dn.data_blkaddr == NEW_ADDR) {
 899                 zero_user_segment(page, 0, PAGE_SIZE);
 900                 if (!PageUptodate(page))
 901                         SetPageUptodate(page);
 902                 unlock_page(page);
 903                 return page;
 904         }
 905 
 906         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
 907         if (err)
 908                 goto put_err;
 909         return page;
 910 
 911 put_err:
 912         f2fs_put_page(page, 1);
 913         return ERR_PTR(err);
 914 }
 915 
 916 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
 917 {
 918         struct address_space *mapping = inode->i_mapping;
 919         struct page *page;
 920 
 921         page = find_get_page(mapping, index);
 922         if (page && PageUptodate(page))
 923                 return page;
 924         f2fs_put_page(page, 0);
 925 
 926         page = f2fs_get_read_data_page(inode, index, 0, false);
 927         if (IS_ERR(page))
 928                 return page;
 929 
 930         if (PageUptodate(page))
 931                 return page;
 932 
 933         wait_on_page_locked(page);
 934         if (unlikely(!PageUptodate(page))) {
 935                 f2fs_put_page(page, 0);
 936                 return ERR_PTR(-EIO);
 937         }
 938         return page;
 939 }
 940 
 941 /*
 942  * If it tries to access a hole, return an error.
 943  * Because, the callers, functions in dir.c and GC, should be able to know
 944  * whether this page exists or not.
 945  */
 946 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
 947                                                         bool for_write)
 948 {
 949         struct address_space *mapping = inode->i_mapping;
 950         struct page *page;
 951 repeat:
 952         page = f2fs_get_read_data_page(inode, index, 0, for_write);
 953         if (IS_ERR(page))
 954                 return page;
 955 
 956         /* wait for read completion */
 957         lock_page(page);
 958         if (unlikely(page->mapping != mapping)) {
 959                 f2fs_put_page(page, 1);
 960                 goto repeat;
 961         }
 962         if (unlikely(!PageUptodate(page))) {
 963                 f2fs_put_page(page, 1);
 964                 return ERR_PTR(-EIO);
 965         }
 966         return page;
 967 }
 968 
 969 /*
 970  * Caller ensures that this data page is never allocated.
 971  * A new zero-filled data page is allocated in the page cache.
 972  *
 973  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
 974  * f2fs_unlock_op().
 975  * Note that, ipage is set only by make_empty_dir, and if any error occur,
 976  * ipage should be released by this function.
 977  */
 978 struct page *f2fs_get_new_data_page(struct inode *inode,
 979                 struct page *ipage, pgoff_t index, bool new_i_size)
 980 {
 981         struct address_space *mapping = inode->i_mapping;
 982         struct page *page;
 983         struct dnode_of_data dn;
 984         int err;
 985 
 986         page = f2fs_grab_cache_page(mapping, index, true);
 987         if (!page) {
 988                 /*
 989                  * before exiting, we should make sure ipage will be released
 990                  * if any error occur.
 991                  */
 992                 f2fs_put_page(ipage, 1);
 993                 return ERR_PTR(-ENOMEM);
 994         }
 995 
 996         set_new_dnode(&dn, inode, ipage, NULL, 0);
 997         err = f2fs_reserve_block(&dn, index);
 998         if (err) {
 999                 f2fs_put_page(page, 1);
1000                 return ERR_PTR(err);
1001         }
1002         if (!ipage)
1003                 f2fs_put_dnode(&dn);
1004 
1005         if (PageUptodate(page))
1006                 goto got_it;
1007 
1008         if (dn.data_blkaddr == NEW_ADDR) {
1009                 zero_user_segment(page, 0, PAGE_SIZE);
1010                 if (!PageUptodate(page))
1011                         SetPageUptodate(page);
1012         } else {
1013                 f2fs_put_page(page, 1);
1014 
1015                 /* if ipage exists, blkaddr should be NEW_ADDR */
1016                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1017                 page = f2fs_get_lock_data_page(inode, index, true);
1018                 if (IS_ERR(page))
1019                         return page;
1020         }
1021 got_it:
1022         if (new_i_size && i_size_read(inode) <
1023                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1024                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1025         return page;
1026 }
1027 
1028 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1031         struct f2fs_summary sum;
1032         struct node_info ni;
1033         block_t old_blkaddr;
1034         blkcnt_t count = 1;
1035         int err;
1036 
1037         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1038                 return -EPERM;
1039 
1040         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1041         if (err)
1042                 return err;
1043 
1044         dn->data_blkaddr = datablock_addr(dn->inode,
1045                                 dn->node_page, dn->ofs_in_node);
1046         if (dn->data_blkaddr != NULL_ADDR)
1047                 goto alloc;
1048 
1049         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1050                 return err;
1051 
1052 alloc:
1053         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1054         old_blkaddr = dn->data_blkaddr;
1055         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1056                                         &sum, seg_type, NULL, false);
1057         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1058                 invalidate_mapping_pages(META_MAPPING(sbi),
1059                                         old_blkaddr, old_blkaddr);
1060         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1061 
1062         /*
1063          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1064          * data from unwritten block via dio_read.
1065          */
1066         return 0;
1067 }
1068 
1069 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1070 {
1071         struct inode *inode = file_inode(iocb->ki_filp);
1072         struct f2fs_map_blocks map;
1073         int flag;
1074         int err = 0;
1075         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1076 
1077         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1078         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1079         if (map.m_len > map.m_lblk)
1080                 map.m_len -= map.m_lblk;
1081         else
1082                 map.m_len = 0;
1083 
1084         map.m_next_pgofs = NULL;
1085         map.m_next_extent = NULL;
1086         map.m_seg_type = NO_CHECK_TYPE;
1087         map.m_may_create = true;
1088 
1089         if (direct_io) {
1090                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1091                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1092                                         F2FS_GET_BLOCK_PRE_AIO :
1093                                         F2FS_GET_BLOCK_PRE_DIO;
1094                 goto map_blocks;
1095         }
1096         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1097                 err = f2fs_convert_inline_inode(inode);
1098                 if (err)
1099                         return err;
1100         }
1101         if (f2fs_has_inline_data(inode))
1102                 return err;
1103 
1104         flag = F2FS_GET_BLOCK_PRE_AIO;
1105 
1106 map_blocks:
1107         err = f2fs_map_blocks(inode, &map, 1, flag);
1108         if (map.m_len > 0 && err == -ENOSPC) {
1109                 if (!direct_io)
1110                         set_inode_flag(inode, FI_NO_PREALLOC);
1111                 err = 0;
1112         }
1113         return err;
1114 }
1115 
1116 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1117 {
1118         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1119                 if (lock)
1120                         down_read(&sbi->node_change);
1121                 else
1122                         up_read(&sbi->node_change);
1123         } else {
1124                 if (lock)
1125                         f2fs_lock_op(sbi);
1126                 else
1127                         f2fs_unlock_op(sbi);
1128         }
1129 }
1130 
1131 /*
1132  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1133  * f2fs_map_blocks structure.
1134  * If original data blocks are allocated, then give them to blockdev.
1135  * Otherwise,
1136  *     a. preallocate requested block addresses
1137  *     b. do not use extent cache for better performance
1138  *     c. give the block addresses to blockdev
1139  */
1140 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1141                                                 int create, int flag)
1142 {
1143         unsigned int maxblocks = map->m_len;
1144         struct dnode_of_data dn;
1145         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1147         pgoff_t pgofs, end_offset, end;
1148         int err = 0, ofs = 1;
1149         unsigned int ofs_in_node, last_ofs_in_node;
1150         blkcnt_t prealloc;
1151         struct extent_info ei = {0,0,0};
1152         block_t blkaddr;
1153         unsigned int start_pgofs;
1154 
1155         if (!maxblocks)
1156                 return 0;
1157 
1158         map->m_len = 0;
1159         map->m_flags = 0;
1160 
1161         /* it only supports block size == page size */
1162         pgofs = (pgoff_t)map->m_lblk;
1163         end = pgofs + maxblocks;
1164 
1165         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1166                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1167                                                         map->m_may_create)
1168                         goto next_dnode;
1169 
1170                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1171                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1172                 map->m_flags = F2FS_MAP_MAPPED;
1173                 if (map->m_next_extent)
1174                         *map->m_next_extent = pgofs + map->m_len;
1175 
1176                 /* for hardware encryption, but to avoid potential issue in future */
1177                 if (flag == F2FS_GET_BLOCK_DIO)
1178                         f2fs_wait_on_block_writeback_range(inode,
1179                                                 map->m_pblk, map->m_len);
1180                 goto out;
1181         }
1182 
1183 next_dnode:
1184         if (map->m_may_create)
1185                 __do_map_lock(sbi, flag, true);
1186 
1187         /* When reading holes, we need its node page */
1188         set_new_dnode(&dn, inode, NULL, NULL, 0);
1189         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1190         if (err) {
1191                 if (flag == F2FS_GET_BLOCK_BMAP)
1192                         map->m_pblk = 0;
1193                 if (err == -ENOENT) {
1194                         err = 0;
1195                         if (map->m_next_pgofs)
1196                                 *map->m_next_pgofs =
1197                                         f2fs_get_next_page_offset(&dn, pgofs);
1198                         if (map->m_next_extent)
1199                                 *map->m_next_extent =
1200                                         f2fs_get_next_page_offset(&dn, pgofs);
1201                 }
1202                 goto unlock_out;
1203         }
1204 
1205         start_pgofs = pgofs;
1206         prealloc = 0;
1207         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1208         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1209 
1210 next_block:
1211         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1212 
1213         if (__is_valid_data_blkaddr(blkaddr) &&
1214                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1215                 err = -EFSCORRUPTED;
1216                 goto sync_out;
1217         }
1218 
1219         if (__is_valid_data_blkaddr(blkaddr)) {
1220                 /* use out-place-update for driect IO under LFS mode */
1221                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1222                                                         map->m_may_create) {
1223                         err = __allocate_data_block(&dn, map->m_seg_type);
1224                         if (err)
1225                                 goto sync_out;
1226                         blkaddr = dn.data_blkaddr;
1227                         set_inode_flag(inode, FI_APPEND_WRITE);
1228                 }
1229         } else {
1230                 if (create) {
1231                         if (unlikely(f2fs_cp_error(sbi))) {
1232                                 err = -EIO;
1233                                 goto sync_out;
1234                         }
1235                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1236                                 if (blkaddr == NULL_ADDR) {
1237                                         prealloc++;
1238                                         last_ofs_in_node = dn.ofs_in_node;
1239                                 }
1240                         } else {
1241                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1242                                         flag != F2FS_GET_BLOCK_DIO);
1243                                 err = __allocate_data_block(&dn,
1244                                                         map->m_seg_type);
1245                                 if (!err)
1246                                         set_inode_flag(inode, FI_APPEND_WRITE);
1247                         }
1248                         if (err)
1249                                 goto sync_out;
1250                         map->m_flags |= F2FS_MAP_NEW;
1251                         blkaddr = dn.data_blkaddr;
1252                 } else {
1253                         if (flag == F2FS_GET_BLOCK_BMAP) {
1254                                 map->m_pblk = 0;
1255                                 goto sync_out;
1256                         }
1257                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1258                                 goto sync_out;
1259                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1260                                                 blkaddr == NULL_ADDR) {
1261                                 if (map->m_next_pgofs)
1262                                         *map->m_next_pgofs = pgofs + 1;
1263                                 goto sync_out;
1264                         }
1265                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1266                                 /* for defragment case */
1267                                 if (map->m_next_pgofs)
1268                                         *map->m_next_pgofs = pgofs + 1;
1269                                 goto sync_out;
1270                         }
1271                 }
1272         }
1273 
1274         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1275                 goto skip;
1276 
1277         if (map->m_len == 0) {
1278                 /* preallocated unwritten block should be mapped for fiemap. */
1279                 if (blkaddr == NEW_ADDR)
1280                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1281                 map->m_flags |= F2FS_MAP_MAPPED;
1282 
1283                 map->m_pblk = blkaddr;
1284                 map->m_len = 1;
1285         } else if ((map->m_pblk != NEW_ADDR &&
1286                         blkaddr == (map->m_pblk + ofs)) ||
1287                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1288                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1289                 ofs++;
1290                 map->m_len++;
1291         } else {
1292                 goto sync_out;
1293         }
1294 
1295 skip:
1296         dn.ofs_in_node++;
1297         pgofs++;
1298 
1299         /* preallocate blocks in batch for one dnode page */
1300         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1301                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1302 
1303                 dn.ofs_in_node = ofs_in_node;
1304                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1305                 if (err)
1306                         goto sync_out;
1307 
1308                 map->m_len += dn.ofs_in_node - ofs_in_node;
1309                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1310                         err = -ENOSPC;
1311                         goto sync_out;
1312                 }
1313                 dn.ofs_in_node = end_offset;
1314         }
1315 
1316         if (pgofs >= end)
1317                 goto sync_out;
1318         else if (dn.ofs_in_node < end_offset)
1319                 goto next_block;
1320 
1321         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1322                 if (map->m_flags & F2FS_MAP_MAPPED) {
1323                         unsigned int ofs = start_pgofs - map->m_lblk;
1324 
1325                         f2fs_update_extent_cache_range(&dn,
1326                                 start_pgofs, map->m_pblk + ofs,
1327                                 map->m_len - ofs);
1328                 }
1329         }
1330 
1331         f2fs_put_dnode(&dn);
1332 
1333         if (map->m_may_create) {
1334                 __do_map_lock(sbi, flag, false);
1335                 f2fs_balance_fs(sbi, dn.node_changed);
1336         }
1337         goto next_dnode;
1338 
1339 sync_out:
1340 
1341         /* for hardware encryption, but to avoid potential issue in future */
1342         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1343                 f2fs_wait_on_block_writeback_range(inode,
1344                                                 map->m_pblk, map->m_len);
1345 
1346         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1347                 if (map->m_flags & F2FS_MAP_MAPPED) {
1348                         unsigned int ofs = start_pgofs - map->m_lblk;
1349 
1350                         f2fs_update_extent_cache_range(&dn,
1351                                 start_pgofs, map->m_pblk + ofs,
1352                                 map->m_len - ofs);
1353                 }
1354                 if (map->m_next_extent)
1355                         *map->m_next_extent = pgofs + 1;
1356         }
1357         f2fs_put_dnode(&dn);
1358 unlock_out:
1359         if (map->m_may_create) {
1360                 __do_map_lock(sbi, flag, false);
1361                 f2fs_balance_fs(sbi, dn.node_changed);
1362         }
1363 out:
1364         trace_f2fs_map_blocks(inode, map, err);
1365         return err;
1366 }
1367 
1368 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1369 {
1370         struct f2fs_map_blocks map;
1371         block_t last_lblk;
1372         int err;
1373 
1374         if (pos + len > i_size_read(inode))
1375                 return false;
1376 
1377         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1378         map.m_next_pgofs = NULL;
1379         map.m_next_extent = NULL;
1380         map.m_seg_type = NO_CHECK_TYPE;
1381         map.m_may_create = false;
1382         last_lblk = F2FS_BLK_ALIGN(pos + len);
1383 
1384         while (map.m_lblk < last_lblk) {
1385                 map.m_len = last_lblk - map.m_lblk;
1386                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1387                 if (err || map.m_len == 0)
1388                         return false;
1389                 map.m_lblk += map.m_len;
1390         }
1391         return true;
1392 }
1393 
1394 static int __get_data_block(struct inode *inode, sector_t iblock,
1395                         struct buffer_head *bh, int create, int flag,
1396                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1397 {
1398         struct f2fs_map_blocks map;
1399         int err;
1400 
1401         map.m_lblk = iblock;
1402         map.m_len = bh->b_size >> inode->i_blkbits;
1403         map.m_next_pgofs = next_pgofs;
1404         map.m_next_extent = NULL;
1405         map.m_seg_type = seg_type;
1406         map.m_may_create = may_write;
1407 
1408         err = f2fs_map_blocks(inode, &map, create, flag);
1409         if (!err) {
1410                 map_bh(bh, inode->i_sb, map.m_pblk);
1411                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1412                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1413         }
1414         return err;
1415 }
1416 
1417 static int get_data_block(struct inode *inode, sector_t iblock,
1418                         struct buffer_head *bh_result, int create, int flag,
1419                         pgoff_t *next_pgofs)
1420 {
1421         return __get_data_block(inode, iblock, bh_result, create,
1422                                                         flag, next_pgofs,
1423                                                         NO_CHECK_TYPE, create);
1424 }
1425 
1426 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1427                         struct buffer_head *bh_result, int create)
1428 {
1429         return __get_data_block(inode, iblock, bh_result, create,
1430                                 F2FS_GET_BLOCK_DIO, NULL,
1431                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1432                                 IS_SWAPFILE(inode) ? false : true);
1433 }
1434 
1435 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1436                         struct buffer_head *bh_result, int create)
1437 {
1438         return __get_data_block(inode, iblock, bh_result, create,
1439                                 F2FS_GET_BLOCK_DIO, NULL,
1440                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1441                                 false);
1442 }
1443 
1444 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1445                         struct buffer_head *bh_result, int create)
1446 {
1447         /* Block number less than F2FS MAX BLOCKS */
1448         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1449                 return -EFBIG;
1450 
1451         return __get_data_block(inode, iblock, bh_result, create,
1452                                                 F2FS_GET_BLOCK_BMAP, NULL,
1453                                                 NO_CHECK_TYPE, create);
1454 }
1455 
1456 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1457 {
1458         return (offset >> inode->i_blkbits);
1459 }
1460 
1461 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1462 {
1463         return (blk << inode->i_blkbits);
1464 }
1465 
1466 static int f2fs_xattr_fiemap(struct inode *inode,
1467                                 struct fiemap_extent_info *fieinfo)
1468 {
1469         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1470         struct page *page;
1471         struct node_info ni;
1472         __u64 phys = 0, len;
1473         __u32 flags;
1474         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1475         int err = 0;
1476 
1477         if (f2fs_has_inline_xattr(inode)) {
1478                 int offset;
1479 
1480                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1481                                                 inode->i_ino, false);
1482                 if (!page)
1483                         return -ENOMEM;
1484 
1485                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1486                 if (err) {
1487                         f2fs_put_page(page, 1);
1488                         return err;
1489                 }
1490 
1491                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1492                 offset = offsetof(struct f2fs_inode, i_addr) +
1493                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1494                                         get_inline_xattr_addrs(inode));
1495 
1496                 phys += offset;
1497                 len = inline_xattr_size(inode);
1498 
1499                 f2fs_put_page(page, 1);
1500 
1501                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1502 
1503                 if (!xnid)
1504                         flags |= FIEMAP_EXTENT_LAST;
1505 
1506                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1507                 if (err || err == 1)
1508                         return err;
1509         }
1510 
1511         if (xnid) {
1512                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1513                 if (!page)
1514                         return -ENOMEM;
1515 
1516                 err = f2fs_get_node_info(sbi, xnid, &ni);
1517                 if (err) {
1518                         f2fs_put_page(page, 1);
1519                         return err;
1520                 }
1521 
1522                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1523                 len = inode->i_sb->s_blocksize;
1524 
1525                 f2fs_put_page(page, 1);
1526 
1527                 flags = FIEMAP_EXTENT_LAST;
1528         }
1529 
1530         if (phys)
1531                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1532 
1533         return (err < 0 ? err : 0);
1534 }
1535 
1536 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1537                 u64 start, u64 len)
1538 {
1539         struct buffer_head map_bh;
1540         sector_t start_blk, last_blk;
1541         pgoff_t next_pgofs;
1542         u64 logical = 0, phys = 0, size = 0;
1543         u32 flags = 0;
1544         int ret = 0;
1545 
1546         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1547                 ret = f2fs_precache_extents(inode);
1548                 if (ret)
1549                         return ret;
1550         }
1551 
1552         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1553         if (ret)
1554                 return ret;
1555 
1556         inode_lock(inode);
1557 
1558         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1559                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1560                 goto out;
1561         }
1562 
1563         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1564                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1565                 if (ret != -EAGAIN)
1566                         goto out;
1567         }
1568 
1569         if (logical_to_blk(inode, len) == 0)
1570                 len = blk_to_logical(inode, 1);
1571 
1572         start_blk = logical_to_blk(inode, start);
1573         last_blk = logical_to_blk(inode, start + len - 1);
1574 
1575 next:
1576         memset(&map_bh, 0, sizeof(struct buffer_head));
1577         map_bh.b_size = len;
1578 
1579         ret = get_data_block(inode, start_blk, &map_bh, 0,
1580                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1581         if (ret)
1582                 goto out;
1583 
1584         /* HOLE */
1585         if (!buffer_mapped(&map_bh)) {
1586                 start_blk = next_pgofs;
1587 
1588                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1589                                         F2FS_I_SB(inode)->max_file_blocks))
1590                         goto prep_next;
1591 
1592                 flags |= FIEMAP_EXTENT_LAST;
1593         }
1594 
1595         if (size) {
1596                 if (IS_ENCRYPTED(inode))
1597                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1598 
1599                 ret = fiemap_fill_next_extent(fieinfo, logical,
1600                                 phys, size, flags);
1601         }
1602 
1603         if (start_blk > last_blk || ret)
1604                 goto out;
1605 
1606         logical = blk_to_logical(inode, start_blk);
1607         phys = blk_to_logical(inode, map_bh.b_blocknr);
1608         size = map_bh.b_size;
1609         flags = 0;
1610         if (buffer_unwritten(&map_bh))
1611                 flags = FIEMAP_EXTENT_UNWRITTEN;
1612 
1613         start_blk += logical_to_blk(inode, size);
1614 
1615 prep_next:
1616         cond_resched();
1617         if (fatal_signal_pending(current))
1618                 ret = -EINTR;
1619         else
1620                 goto next;
1621 out:
1622         if (ret == 1)
1623                 ret = 0;
1624 
1625         inode_unlock(inode);
1626         return ret;
1627 }
1628 
1629 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1630 {
1631         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1632             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1633                 return inode->i_sb->s_maxbytes;
1634 
1635         return i_size_read(inode);
1636 }
1637 
1638 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1639                                         unsigned nr_pages,
1640                                         struct f2fs_map_blocks *map,
1641                                         struct bio **bio_ret,
1642                                         sector_t *last_block_in_bio,
1643                                         bool is_readahead)
1644 {
1645         struct bio *bio = *bio_ret;
1646         const unsigned blkbits = inode->i_blkbits;
1647         const unsigned blocksize = 1 << blkbits;
1648         sector_t block_in_file;
1649         sector_t last_block;
1650         sector_t last_block_in_file;
1651         sector_t block_nr;
1652         int ret = 0;
1653 
1654         block_in_file = (sector_t)page_index(page);
1655         last_block = block_in_file + nr_pages;
1656         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1657                                                         blkbits;
1658         if (last_block > last_block_in_file)
1659                 last_block = last_block_in_file;
1660 
1661         /* just zeroing out page which is beyond EOF */
1662         if (block_in_file >= last_block)
1663                 goto zero_out;
1664         /*
1665          * Map blocks using the previous result first.
1666          */
1667         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1668                         block_in_file > map->m_lblk &&
1669                         block_in_file < (map->m_lblk + map->m_len))
1670                 goto got_it;
1671 
1672         /*
1673          * Then do more f2fs_map_blocks() calls until we are
1674          * done with this page.
1675          */
1676         map->m_lblk = block_in_file;
1677         map->m_len = last_block - block_in_file;
1678 
1679         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1680         if (ret)
1681                 goto out;
1682 got_it:
1683         if ((map->m_flags & F2FS_MAP_MAPPED)) {
1684                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1685                 SetPageMappedToDisk(page);
1686 
1687                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1688                                         !cleancache_get_page(page))) {
1689                         SetPageUptodate(page);
1690                         goto confused;
1691                 }
1692 
1693                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1694                                                 DATA_GENERIC_ENHANCE_READ)) {
1695                         ret = -EFSCORRUPTED;
1696                         goto out;
1697                 }
1698         } else {
1699 zero_out:
1700                 zero_user_segment(page, 0, PAGE_SIZE);
1701                 if (f2fs_need_verity(inode, page->index) &&
1702                     !fsverity_verify_page(page)) {
1703                         ret = -EIO;
1704                         goto out;
1705                 }
1706                 if (!PageUptodate(page))
1707                         SetPageUptodate(page);
1708                 unlock_page(page);
1709                 goto out;
1710         }
1711 
1712         /*
1713          * This page will go to BIO.  Do we need to send this
1714          * BIO off first?
1715          */
1716         if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1717                                 *last_block_in_bio, block_nr)) {
1718 submit_and_realloc:
1719                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1720                 bio = NULL;
1721         }
1722         if (bio == NULL) {
1723                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1724                                 is_readahead ? REQ_RAHEAD : 0, page->index);
1725                 if (IS_ERR(bio)) {
1726                         ret = PTR_ERR(bio);
1727                         bio = NULL;
1728                         goto out;
1729                 }
1730         }
1731 
1732         /*
1733          * If the page is under writeback, we need to wait for
1734          * its completion to see the correct decrypted data.
1735          */
1736         f2fs_wait_on_block_writeback(inode, block_nr);
1737 
1738         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1739                 goto submit_and_realloc;
1740 
1741         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1742         ClearPageError(page);
1743         *last_block_in_bio = block_nr;
1744         goto out;
1745 confused:
1746         if (bio) {
1747                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1748                 bio = NULL;
1749         }
1750         unlock_page(page);
1751 out:
1752         *bio_ret = bio;
1753         return ret;
1754 }
1755 
1756 /*
1757  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1758  * Major change was from block_size == page_size in f2fs by default.
1759  *
1760  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1761  * this function ever deviates from doing just read-ahead, it should either
1762  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1763  * from read-ahead.
1764  */
1765 static int f2fs_mpage_readpages(struct address_space *mapping,
1766                         struct list_head *pages, struct page *page,
1767                         unsigned nr_pages, bool is_readahead)
1768 {
1769         struct bio *bio = NULL;
1770         sector_t last_block_in_bio = 0;
1771         struct inode *inode = mapping->host;
1772         struct f2fs_map_blocks map;
1773         int ret = 0;
1774 
1775         map.m_pblk = 0;
1776         map.m_lblk = 0;
1777         map.m_len = 0;
1778         map.m_flags = 0;
1779         map.m_next_pgofs = NULL;
1780         map.m_next_extent = NULL;
1781         map.m_seg_type = NO_CHECK_TYPE;
1782         map.m_may_create = false;
1783 
1784         for (; nr_pages; nr_pages--) {
1785                 if (pages) {
1786                         page = list_last_entry(pages, struct page, lru);
1787 
1788                         prefetchw(&page->flags);
1789                         list_del(&page->lru);
1790                         if (add_to_page_cache_lru(page, mapping,
1791                                                   page_index(page),
1792                                                   readahead_gfp_mask(mapping)))
1793                                 goto next_page;
1794                 }
1795 
1796                 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1797                                         &last_block_in_bio, is_readahead);
1798                 if (ret) {
1799                         SetPageError(page);
1800                         zero_user_segment(page, 0, PAGE_SIZE);
1801                         unlock_page(page);
1802                 }
1803 next_page:
1804                 if (pages)
1805                         put_page(page);
1806         }
1807         BUG_ON(pages && !list_empty(pages));
1808         if (bio)
1809                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1810         return pages ? 0 : ret;
1811 }
1812 
1813 static int f2fs_read_data_page(struct file *file, struct page *page)
1814 {
1815         struct inode *inode = page_file_mapping(page)->host;
1816         int ret = -EAGAIN;
1817 
1818         trace_f2fs_readpage(page, DATA);
1819 
1820         /* If the file has inline data, try to read it directly */
1821         if (f2fs_has_inline_data(inode))
1822                 ret = f2fs_read_inline_data(inode, page);
1823         if (ret == -EAGAIN)
1824                 ret = f2fs_mpage_readpages(page_file_mapping(page),
1825                                                 NULL, page, 1, false);
1826         return ret;
1827 }
1828 
1829 static int f2fs_read_data_pages(struct file *file,
1830                         struct address_space *mapping,
1831                         struct list_head *pages, unsigned nr_pages)
1832 {
1833         struct inode *inode = mapping->host;
1834         struct page *page = list_last_entry(pages, struct page, lru);
1835 
1836         trace_f2fs_readpages(inode, page, nr_pages);
1837 
1838         /* If the file has inline data, skip readpages */
1839         if (f2fs_has_inline_data(inode))
1840                 return 0;
1841 
1842         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1843 }
1844 
1845 static int encrypt_one_page(struct f2fs_io_info *fio)
1846 {
1847         struct inode *inode = fio->page->mapping->host;
1848         struct page *mpage;
1849         gfp_t gfp_flags = GFP_NOFS;
1850 
1851         if (!f2fs_encrypted_file(inode))
1852                 return 0;
1853 
1854         /* wait for GCed page writeback via META_MAPPING */
1855         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1856 
1857 retry_encrypt:
1858         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1859                                                                PAGE_SIZE, 0,
1860                                                                gfp_flags);
1861         if (IS_ERR(fio->encrypted_page)) {
1862                 /* flush pending IOs and wait for a while in the ENOMEM case */
1863                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1864                         f2fs_flush_merged_writes(fio->sbi);
1865                         congestion_wait(BLK_RW_ASYNC, HZ/50);
1866                         gfp_flags |= __GFP_NOFAIL;
1867                         goto retry_encrypt;
1868                 }
1869                 return PTR_ERR(fio->encrypted_page);
1870         }
1871 
1872         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1873         if (mpage) {
1874                 if (PageUptodate(mpage))
1875                         memcpy(page_address(mpage),
1876                                 page_address(fio->encrypted_page), PAGE_SIZE);
1877                 f2fs_put_page(mpage, 1);
1878         }
1879         return 0;
1880 }
1881 
1882 static inline bool check_inplace_update_policy(struct inode *inode,
1883                                 struct f2fs_io_info *fio)
1884 {
1885         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1886         unsigned int policy = SM_I(sbi)->ipu_policy;
1887 
1888         if (policy & (0x1 << F2FS_IPU_FORCE))
1889                 return true;
1890         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1891                 return true;
1892         if (policy & (0x1 << F2FS_IPU_UTIL) &&
1893                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1894                 return true;
1895         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1896                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1897                 return true;
1898 
1899         /*
1900          * IPU for rewrite async pages
1901          */
1902         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1903                         fio && fio->op == REQ_OP_WRITE &&
1904                         !(fio->op_flags & REQ_SYNC) &&
1905                         !IS_ENCRYPTED(inode))
1906                 return true;
1907 
1908         /* this is only set during fdatasync */
1909         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1910                         is_inode_flag_set(inode, FI_NEED_IPU))
1911                 return true;
1912 
1913         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1915                 return true;
1916 
1917         return false;
1918 }
1919 
1920 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1921 {
1922         if (f2fs_is_pinned_file(inode))
1923                 return true;
1924 
1925         /* if this is cold file, we should overwrite to avoid fragmentation */
1926         if (file_is_cold(inode))
1927                 return true;
1928 
1929         return check_inplace_update_policy(inode, fio);
1930 }
1931 
1932 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1933 {
1934         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1935 
1936         if (test_opt(sbi, LFS))
1937                 return true;
1938         if (S_ISDIR(inode->i_mode))
1939                 return true;
1940         if (IS_NOQUOTA(inode))
1941                 return true;
1942         if (f2fs_is_atomic_file(inode))
1943                 return true;
1944         if (fio) {
1945                 if (is_cold_data(fio->page))
1946                         return true;
1947                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1948                         return true;
1949                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1950                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1951                         return true;
1952         }
1953         return false;
1954 }
1955 
1956 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1957 {
1958         struct inode *inode = fio->page->mapping->host;
1959 
1960         if (f2fs_should_update_outplace(inode, fio))
1961                 return false;
1962 
1963         return f2fs_should_update_inplace(inode, fio);
1964 }
1965 
1966 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1967 {
1968         struct page *page = fio->page;
1969         struct inode *inode = page->mapping->host;
1970         struct dnode_of_data dn;
1971         struct extent_info ei = {0,0,0};
1972         struct node_info ni;
1973         bool ipu_force = false;
1974         int err = 0;
1975 
1976         set_new_dnode(&dn, inode, NULL, NULL, 0);
1977         if (need_inplace_update(fio) &&
1978                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1979                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1980 
1981                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1982                                                 DATA_GENERIC_ENHANCE))
1983                         return -EFSCORRUPTED;
1984 
1985                 ipu_force = true;
1986                 fio->need_lock = LOCK_DONE;
1987                 goto got_it;
1988         }
1989 
1990         /* Deadlock due to between page->lock and f2fs_lock_op */
1991         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1992                 return -EAGAIN;
1993 
1994         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1995         if (err)
1996                 goto out;
1997 
1998         fio->old_blkaddr = dn.data_blkaddr;
1999 
2000         /* This page is already truncated */
2001         if (fio->old_blkaddr == NULL_ADDR) {
2002                 ClearPageUptodate(page);
2003                 clear_cold_data(page);
2004                 goto out_writepage;
2005         }
2006 got_it:
2007         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2008                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2009                                                 DATA_GENERIC_ENHANCE)) {
2010                 err = -EFSCORRUPTED;
2011                 goto out_writepage;
2012         }
2013         /*
2014          * If current allocation needs SSR,
2015          * it had better in-place writes for updated data.
2016          */
2017         if (ipu_force ||
2018                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2019                                         need_inplace_update(fio))) {
2020                 err = encrypt_one_page(fio);
2021                 if (err)
2022                         goto out_writepage;
2023 
2024                 set_page_writeback(page);
2025                 ClearPageError(page);
2026                 f2fs_put_dnode(&dn);
2027                 if (fio->need_lock == LOCK_REQ)
2028                         f2fs_unlock_op(fio->sbi);
2029                 err = f2fs_inplace_write_data(fio);
2030                 if (err) {
2031                         if (f2fs_encrypted_file(inode))
2032                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2033                         if (PageWriteback(page))
2034                                 end_page_writeback(page);
2035                 } else {
2036                         set_inode_flag(inode, FI_UPDATE_WRITE);
2037                 }
2038                 trace_f2fs_do_write_data_page(fio->page, IPU);
2039                 return err;
2040         }
2041 
2042         if (fio->need_lock == LOCK_RETRY) {
2043                 if (!f2fs_trylock_op(fio->sbi)) {
2044                         err = -EAGAIN;
2045                         goto out_writepage;
2046                 }
2047                 fio->need_lock = LOCK_REQ;
2048         }
2049 
2050         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2051         if (err)
2052                 goto out_writepage;
2053 
2054         fio->version = ni.version;
2055 
2056         err = encrypt_one_page(fio);
2057         if (err)
2058                 goto out_writepage;
2059 
2060         set_page_writeback(page);
2061         ClearPageError(page);
2062 
2063         /* LFS mode write path */
2064         f2fs_outplace_write_data(&dn, fio);
2065         trace_f2fs_do_write_data_page(page, OPU);
2066         set_inode_flag(inode, FI_APPEND_WRITE);
2067         if (page->index == 0)
2068                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2069 out_writepage:
2070         f2fs_put_dnode(&dn);
2071 out:
2072         if (fio->need_lock == LOCK_REQ)
2073                 f2fs_unlock_op(fio->sbi);
2074         return err;
2075 }
2076 
2077 static int __write_data_page(struct page *page, bool *submitted,
2078                                 struct bio **bio,
2079                                 sector_t *last_block,
2080                                 struct writeback_control *wbc,
2081                                 enum iostat_type io_type)
2082 {
2083         struct inode *inode = page->mapping->host;
2084         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2085         loff_t i_size = i_size_read(inode);
2086         const pgoff_t end_index = ((unsigned long long) i_size)
2087                                                         >> PAGE_SHIFT;
2088         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2089         unsigned offset = 0;
2090         bool need_balance_fs = false;
2091         int err = 0;
2092         struct f2fs_io_info fio = {
2093                 .sbi = sbi,
2094                 .ino = inode->i_ino,
2095                 .type = DATA,
2096                 .op = REQ_OP_WRITE,
2097                 .op_flags = wbc_to_write_flags(wbc),
2098                 .old_blkaddr = NULL_ADDR,
2099                 .page = page,
2100                 .encrypted_page = NULL,
2101                 .submitted = false,
2102                 .need_lock = LOCK_RETRY,
2103                 .io_type = io_type,
2104                 .io_wbc = wbc,
2105                 .bio = bio,
2106                 .last_block = last_block,
2107         };
2108 
2109         trace_f2fs_writepage(page, DATA);
2110 
2111         /* we should bypass data pages to proceed the kworkder jobs */
2112         if (unlikely(f2fs_cp_error(sbi))) {
2113                 mapping_set_error(page->mapping, -EIO);
2114                 /*
2115                  * don't drop any dirty dentry pages for keeping lastest
2116                  * directory structure.
2117                  */
2118                 if (S_ISDIR(inode->i_mode))
2119                         goto redirty_out;
2120                 goto out;
2121         }
2122 
2123         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2124                 goto redirty_out;
2125 
2126         if (page->index < end_index || f2fs_verity_in_progress(inode))
2127                 goto write;
2128 
2129         /*
2130          * If the offset is out-of-range of file size,
2131          * this page does not have to be written to disk.
2132          */
2133         offset = i_size & (PAGE_SIZE - 1);
2134         if ((page->index >= end_index + 1) || !offset)
2135                 goto out;
2136 
2137         zero_user_segment(page, offset, PAGE_SIZE);
2138 write:
2139         if (f2fs_is_drop_cache(inode))
2140                 goto out;
2141         /* we should not write 0'th page having journal header */
2142         if (f2fs_is_volatile_file(inode) && (!page->index ||
2143                         (!wbc->for_reclaim &&
2144                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2145                 goto redirty_out;
2146 
2147         /* Dentry blocks are controlled by checkpoint */
2148         if (S_ISDIR(inode->i_mode)) {
2149                 fio.need_lock = LOCK_DONE;
2150                 err = f2fs_do_write_data_page(&fio);
2151                 goto done;
2152         }
2153 
2154         if (!wbc->for_reclaim)
2155                 need_balance_fs = true;
2156         else if (has_not_enough_free_secs(sbi, 0, 0))
2157                 goto redirty_out;
2158         else
2159                 set_inode_flag(inode, FI_HOT_DATA);
2160 
2161         err = -EAGAIN;
2162         if (f2fs_has_inline_data(inode)) {
2163                 err = f2fs_write_inline_data(inode, page);
2164                 if (!err)
2165                         goto out;
2166         }
2167 
2168         if (err == -EAGAIN) {
2169                 err = f2fs_do_write_data_page(&fio);
2170                 if (err == -EAGAIN) {
2171                         fio.need_lock = LOCK_REQ;
2172                         err = f2fs_do_write_data_page(&fio);
2173                 }
2174         }
2175 
2176         if (err) {
2177                 file_set_keep_isize(inode);
2178         } else {
2179                 down_write(&F2FS_I(inode)->i_sem);
2180                 if (F2FS_I(inode)->last_disk_size < psize)
2181                         F2FS_I(inode)->last_disk_size = psize;
2182                 up_write(&F2FS_I(inode)->i_sem);
2183         }
2184 
2185 done:
2186         if (err && err != -ENOENT)
2187                 goto redirty_out;
2188 
2189 out:
2190         inode_dec_dirty_pages(inode);
2191         if (err) {
2192                 ClearPageUptodate(page);
2193                 clear_cold_data(page);
2194         }
2195 
2196         if (wbc->for_reclaim) {
2197                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2198                 clear_inode_flag(inode, FI_HOT_DATA);
2199                 f2fs_remove_dirty_inode(inode);
2200                 submitted = NULL;
2201         }
2202 
2203         unlock_page(page);
2204         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2205                                         !F2FS_I(inode)->cp_task) {
2206                 f2fs_submit_ipu_bio(sbi, bio, page);
2207                 f2fs_balance_fs(sbi, need_balance_fs);
2208         }
2209 
2210         if (unlikely(f2fs_cp_error(sbi))) {
2211                 f2fs_submit_ipu_bio(sbi, bio, page);
2212                 f2fs_submit_merged_write(sbi, DATA);
2213                 submitted = NULL;
2214         }
2215 
2216         if (submitted)
2217                 *submitted = fio.submitted;
2218 
2219         return 0;
2220 
2221 redirty_out:
2222         redirty_page_for_writepage(wbc, page);
2223         /*
2224          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2225          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2226          * file_write_and_wait_range() will see EIO error, which is critical
2227          * to return value of fsync() followed by atomic_write failure to user.
2228          */
2229         if (!err || wbc->for_reclaim)
2230                 return AOP_WRITEPAGE_ACTIVATE;
2231         unlock_page(page);
2232         return err;
2233 }
2234 
2235 static int f2fs_write_data_page(struct page *page,
2236                                         struct writeback_control *wbc)
2237 {
2238         return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2239 }
2240 
2241 /*
2242  * This function was copied from write_cche_pages from mm/page-writeback.c.
2243  * The major change is making write step of cold data page separately from
2244  * warm/hot data page.
2245  */
2246 static int f2fs_write_cache_pages(struct address_space *mapping,
2247                                         struct writeback_control *wbc,
2248                                         enum iostat_type io_type)
2249 {
2250         int ret = 0;
2251         int done = 0;
2252         struct pagevec pvec;
2253         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2254         struct bio *bio = NULL;
2255         sector_t last_block;
2256         int nr_pages;
2257         pgoff_t uninitialized_var(writeback_index);
2258         pgoff_t index;
2259         pgoff_t end;            /* Inclusive */
2260         pgoff_t done_index;
2261         int cycled;
2262         int range_whole = 0;
2263         xa_mark_t tag;
2264         int nwritten = 0;
2265 
2266         pagevec_init(&pvec);
2267 
2268         if (get_dirty_pages(mapping->host) <=
2269                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2270                 set_inode_flag(mapping->host, FI_HOT_DATA);
2271         else
2272                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2273 
2274         if (wbc->range_cyclic) {
2275                 writeback_index = mapping->writeback_index; /* prev offset */
2276                 index = writeback_index;
2277                 if (index == 0)
2278                         cycled = 1;
2279                 else
2280                         cycled = 0;
2281                 end = -1;
2282         } else {
2283                 index = wbc->range_start >> PAGE_SHIFT;
2284                 end = wbc->range_end >> PAGE_SHIFT;
2285                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2286                         range_whole = 1;
2287                 cycled = 1; /* ignore range_cyclic tests */
2288         }
2289         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2290                 tag = PAGECACHE_TAG_TOWRITE;
2291         else
2292                 tag = PAGECACHE_TAG_DIRTY;
2293 retry:
2294         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2295                 tag_pages_for_writeback(mapping, index, end);
2296         done_index = index;
2297         while (!done && (index <= end)) {
2298                 int i;
2299 
2300                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2301                                 tag);
2302                 if (nr_pages == 0)
2303                         break;
2304 
2305                 for (i = 0; i < nr_pages; i++) {
2306                         struct page *page = pvec.pages[i];
2307                         bool submitted = false;
2308 
2309                         /* give a priority to WB_SYNC threads */
2310                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2311                                         wbc->sync_mode == WB_SYNC_NONE) {
2312                                 done = 1;
2313                                 break;
2314                         }
2315 
2316                         done_index = page->index;
2317 retry_write:
2318                         lock_page(page);
2319 
2320                         if (unlikely(page->mapping != mapping)) {
2321 continue_unlock:
2322                                 unlock_page(page);
2323                                 continue;
2324                         }
2325 
2326                         if (!PageDirty(page)) {
2327                                 /* someone wrote it for us */
2328                                 goto continue_unlock;
2329                         }
2330 
2331                         if (PageWriteback(page)) {
2332                                 if (wbc->sync_mode != WB_SYNC_NONE) {
2333                                         f2fs_wait_on_page_writeback(page,
2334                                                         DATA, true, true);
2335                                         f2fs_submit_ipu_bio(sbi, &bio, page);
2336                                 } else {
2337                                         goto continue_unlock;
2338                                 }
2339                         }
2340 
2341                         if (!clear_page_dirty_for_io(page))
2342                                 goto continue_unlock;
2343 
2344                         ret = __write_data_page(page, &submitted, &bio,
2345                                         &last_block, wbc, io_type);
2346                         if (unlikely(ret)) {
2347                                 /*
2348                                  * keep nr_to_write, since vfs uses this to
2349                                  * get # of written pages.
2350                                  */
2351                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2352                                         unlock_page(page);
2353                                         ret = 0;
2354                                         continue;
2355                                 } else if (ret == -EAGAIN) {
2356                                         ret = 0;
2357                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2358                                                 cond_resched();
2359                                                 congestion_wait(BLK_RW_ASYNC,
2360                                                                         HZ/50);
2361                                                 goto retry_write;
2362                                         }
2363                                         continue;
2364                                 }
2365                                 done_index = page->index + 1;
2366                                 done = 1;
2367                                 break;
2368                         } else if (submitted) {
2369                                 nwritten++;
2370                         }
2371 
2372                         if (--wbc->nr_to_write <= 0 &&
2373                                         wbc->sync_mode == WB_SYNC_NONE) {
2374                                 done = 1;
2375                                 break;
2376                         }
2377                 }
2378                 pagevec_release(&pvec);
2379                 cond_resched();
2380         }
2381 
2382         if (!cycled && !done) {
2383                 cycled = 1;
2384                 index = 0;
2385                 end = writeback_index - 1;
2386                 goto retry;
2387         }
2388         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2389                 mapping->writeback_index = done_index;
2390 
2391         if (nwritten)
2392                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2393                                                                 NULL, 0, DATA);
2394         /* submit cached bio of IPU write */
2395         if (bio)
2396                 __submit_bio(sbi, bio, DATA);
2397 
2398         return ret;
2399 }
2400 
2401 static inline bool __should_serialize_io(struct inode *inode,
2402                                         struct writeback_control *wbc)
2403 {
2404         if (!S_ISREG(inode->i_mode))
2405                 return false;
2406         if (IS_NOQUOTA(inode))
2407                 return false;
2408         /* to avoid deadlock in path of data flush */
2409         if (F2FS_I(inode)->cp_task)
2410                 return false;
2411         if (wbc->sync_mode != WB_SYNC_ALL)
2412                 return true;
2413         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2414                 return true;
2415         return false;
2416 }
2417 
2418 static int __f2fs_write_data_pages(struct address_space *mapping,
2419                                                 struct writeback_control *wbc,
2420                                                 enum iostat_type io_type)
2421 {
2422         struct inode *inode = mapping->host;
2423         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2424         struct blk_plug plug;
2425         int ret;
2426         bool locked = false;
2427 
2428         /* deal with chardevs and other special file */
2429         if (!mapping->a_ops->writepage)
2430                 return 0;
2431 
2432         /* skip writing if there is no dirty page in this inode */
2433         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2434                 return 0;
2435 
2436         /* during POR, we don't need to trigger writepage at all. */
2437         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2438                 goto skip_write;
2439 
2440         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2441                         wbc->sync_mode == WB_SYNC_NONE &&
2442                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2443                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
2444                 goto skip_write;
2445 
2446         /* skip writing during file defragment */
2447         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2448                 goto skip_write;
2449 
2450         trace_f2fs_writepages(mapping->host, wbc, DATA);
2451 
2452         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2453         if (wbc->sync_mode == WB_SYNC_ALL)
2454                 atomic_inc(&sbi->wb_sync_req[DATA]);
2455         else if (atomic_read(&sbi->wb_sync_req[DATA]))
2456                 goto skip_write;
2457 
2458         if (__should_serialize_io(inode, wbc)) {
2459                 mutex_lock(&sbi->writepages);
2460                 locked = true;
2461         }
2462 
2463         blk_start_plug(&plug);
2464         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2465         blk_finish_plug(&plug);
2466 
2467         if (locked)
2468                 mutex_unlock(&sbi->writepages);
2469 
2470         if (wbc->sync_mode == WB_SYNC_ALL)
2471                 atomic_dec(&sbi->wb_sync_req[DATA]);
2472         /*
2473          * if some pages were truncated, we cannot guarantee its mapping->host
2474          * to detect pending bios.
2475          */
2476 
2477         f2fs_remove_dirty_inode(inode);
2478         return ret;
2479 
2480 skip_write:
2481         wbc->pages_skipped += get_dirty_pages(inode);
2482         trace_f2fs_writepages(mapping->host, wbc, DATA);
2483         return 0;
2484 }
2485 
2486 static int f2fs_write_data_pages(struct address_space *mapping,
2487                             struct writeback_control *wbc)
2488 {
2489         struct inode *inode = mapping->host;
2490 
2491         return __f2fs_write_data_pages(mapping, wbc,
2492                         F2FS_I(inode)->cp_task == current ?
2493                         FS_CP_DATA_IO : FS_DATA_IO);
2494 }
2495 
2496 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2497 {
2498         struct inode *inode = mapping->host;
2499         loff_t i_size = i_size_read(inode);
2500 
2501         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2502         if (to > i_size && !f2fs_verity_in_progress(inode)) {
2503                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2504                 down_write(&F2FS_I(inode)->i_mmap_sem);
2505 
2506                 truncate_pagecache(inode, i_size);
2507                 if (!IS_NOQUOTA(inode))
2508                         f2fs_truncate_blocks(inode, i_size, true);
2509 
2510                 up_write(&F2FS_I(inode)->i_mmap_sem);
2511                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2512         }
2513 }
2514 
2515 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2516                         struct page *page, loff_t pos, unsigned len,
2517                         block_t *blk_addr, bool *node_changed)
2518 {
2519         struct inode *inode = page->mapping->host;
2520         pgoff_t index = page->index;
2521         struct dnode_of_data dn;
2522         struct page *ipage;
2523         bool locked = false;
2524         struct extent_info ei = {0,0,0};
2525         int err = 0;
2526         int flag;
2527 
2528         /*
2529          * we already allocated all the blocks, so we don't need to get
2530          * the block addresses when there is no need to fill the page.
2531          */
2532         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2533             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2534             !f2fs_verity_in_progress(inode))
2535                 return 0;
2536 
2537         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2538         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2539                 flag = F2FS_GET_BLOCK_DEFAULT;
2540         else
2541                 flag = F2FS_GET_BLOCK_PRE_AIO;
2542 
2543         if (f2fs_has_inline_data(inode) ||
2544                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2545                 __do_map_lock(sbi, flag, true);
2546                 locked = true;
2547         }
2548 restart:
2549         /* check inline_data */
2550         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2551         if (IS_ERR(ipage)) {
2552                 err = PTR_ERR(ipage);
2553                 goto unlock_out;
2554         }
2555 
2556         set_new_dnode(&dn, inode, ipage, ipage, 0);
2557 
2558         if (f2fs_has_inline_data(inode)) {
2559                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2560                         f2fs_do_read_inline_data(page, ipage);
2561                         set_inode_flag(inode, FI_DATA_EXIST);
2562                         if (inode->i_nlink)
2563                                 set_inline_node(ipage);
2564                 } else {
2565                         err = f2fs_convert_inline_page(&dn, page);
2566                         if (err)
2567                                 goto out;
2568                         if (dn.data_blkaddr == NULL_ADDR)
2569                                 err = f2fs_get_block(&dn, index);
2570                 }
2571         } else if (locked) {
2572                 err = f2fs_get_block(&dn, index);
2573         } else {
2574                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2575                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2576                 } else {
2577                         /* hole case */
2578                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2579                         if (err || dn.data_blkaddr == NULL_ADDR) {
2580                                 f2fs_put_dnode(&dn);
2581                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2582                                                                 true);
2583                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2584                                 locked = true;
2585                                 goto restart;
2586                         }
2587                 }
2588         }
2589 
2590         /* convert_inline_page can make node_changed */
2591         *blk_addr = dn.data_blkaddr;
2592         *node_changed = dn.node_changed;
2593 out:
2594         f2fs_put_dnode(&dn);
2595 unlock_out:
2596         if (locked)
2597                 __do_map_lock(sbi, flag, false);
2598         return err;
2599 }
2600 
2601 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2602                 loff_t pos, unsigned len, unsigned flags,
2603                 struct page **pagep, void **fsdata)
2604 {
2605         struct inode *inode = mapping->host;
2606         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2607         struct page *page = NULL;
2608         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2609         bool need_balance = false, drop_atomic = false;
2610         block_t blkaddr = NULL_ADDR;
2611         int err = 0;
2612 
2613         trace_f2fs_write_begin(inode, pos, len, flags);
2614 
2615         if (!f2fs_is_checkpoint_ready(sbi)) {
2616                 err = -ENOSPC;
2617                 goto fail;
2618         }
2619 
2620         if ((f2fs_is_atomic_file(inode) &&
2621                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2622                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2623                 err = -ENOMEM;
2624                 drop_atomic = true;
2625                 goto fail;
2626         }
2627 
2628         /*
2629          * We should check this at this moment to avoid deadlock on inode page
2630          * and #0 page. The locking rule for inline_data conversion should be:
2631          * lock_page(page #0) -> lock_page(inode_page)
2632          */
2633         if (index != 0) {
2634                 err = f2fs_convert_inline_inode(inode);
2635                 if (err)
2636                         goto fail;
2637         }
2638 repeat:
2639         /*
2640          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2641          * wait_for_stable_page. Will wait that below with our IO control.
2642          */
2643         page = f2fs_pagecache_get_page(mapping, index,
2644                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2645         if (!page) {
2646                 err = -ENOMEM;
2647                 goto fail;
2648         }
2649 
2650         *pagep = page;
2651 
2652         err = prepare_write_begin(sbi, page, pos, len,
2653                                         &blkaddr, &need_balance);
2654         if (err)
2655                 goto fail;
2656 
2657         if (need_balance && !IS_NOQUOTA(inode) &&
2658                         has_not_enough_free_secs(sbi, 0, 0)) {
2659                 unlock_page(page);
2660                 f2fs_balance_fs(sbi, true);
2661                 lock_page(page);
2662                 if (page->mapping != mapping) {
2663                         /* The page got truncated from under us */
2664                         f2fs_put_page(page, 1);
2665                         goto repeat;
2666                 }
2667         }
2668 
2669         f2fs_wait_on_page_writeback(page, DATA, false, true);
2670 
2671         if (len == PAGE_SIZE || PageUptodate(page))
2672                 return 0;
2673 
2674         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2675             !f2fs_verity_in_progress(inode)) {
2676                 zero_user_segment(page, len, PAGE_SIZE);
2677                 return 0;
2678         }
2679 
2680         if (blkaddr == NEW_ADDR) {
2681                 zero_user_segment(page, 0, PAGE_SIZE);
2682                 SetPageUptodate(page);
2683         } else {
2684                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2685                                 DATA_GENERIC_ENHANCE_READ)) {
2686                         err = -EFSCORRUPTED;
2687                         goto fail;
2688                 }
2689                 err = f2fs_submit_page_read(inode, page, blkaddr);
2690                 if (err)
2691                         goto fail;
2692 
2693                 lock_page(page);
2694                 if (unlikely(page->mapping != mapping)) {
2695                         f2fs_put_page(page, 1);
2696                         goto repeat;
2697                 }
2698                 if (unlikely(!PageUptodate(page))) {
2699                         err = -EIO;
2700                         goto fail;
2701                 }
2702         }
2703         return 0;
2704 
2705 fail:
2706         f2fs_put_page(page, 1);
2707         f2fs_write_failed(mapping, pos + len);
2708         if (drop_atomic)
2709                 f2fs_drop_inmem_pages_all(sbi, false);
2710         return err;
2711 }
2712 
2713 static int f2fs_write_end(struct file *file,
2714                         struct address_space *mapping,
2715                         loff_t pos, unsigned len, unsigned copied,
2716                         struct page *page, void *fsdata)
2717 {
2718         struct inode *inode = page->mapping->host;
2719 
2720         trace_f2fs_write_end(inode, pos, len, copied);
2721 
2722         /*
2723          * This should be come from len == PAGE_SIZE, and we expect copied
2724          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2725          * let generic_perform_write() try to copy data again through copied=0.
2726          */
2727         if (!PageUptodate(page)) {
2728                 if (unlikely(copied != len))
2729                         copied = 0;
2730                 else
2731                         SetPageUptodate(page);
2732         }
2733         if (!copied)
2734                 goto unlock_out;
2735 
2736         set_page_dirty(page);
2737 
2738         if (pos + copied > i_size_read(inode) &&
2739             !f2fs_verity_in_progress(inode))
2740                 f2fs_i_size_write(inode, pos + copied);
2741 unlock_out:
2742         f2fs_put_page(page, 1);
2743         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2744         return copied;
2745 }
2746 
2747 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2748                            loff_t offset)
2749 {
2750         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2751         unsigned blkbits = i_blkbits;
2752         unsigned blocksize_mask = (1 << blkbits) - 1;
2753         unsigned long align = offset | iov_iter_alignment(iter);
2754         struct block_device *bdev = inode->i_sb->s_bdev;
2755 
2756         if (align & blocksize_mask) {
2757                 if (bdev)
2758                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
2759                 blocksize_mask = (1 << blkbits) - 1;
2760                 if (align & blocksize_mask)
2761                         return -EINVAL;
2762                 return 1;
2763         }
2764         return 0;
2765 }
2766 
2767 static void f2fs_dio_end_io(struct bio *bio)
2768 {
2769         struct f2fs_private_dio *dio = bio->bi_private;
2770 
2771         dec_page_count(F2FS_I_SB(dio->inode),
2772                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2773 
2774         bio->bi_private = dio->orig_private;
2775         bio->bi_end_io = dio->orig_end_io;
2776 
2777         kvfree(dio);
2778 
2779         bio_endio(bio);
2780 }
2781 
2782 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2783                                                         loff_t file_offset)
2784 {
2785         struct f2fs_private_dio *dio;
2786         bool write = (bio_op(bio) == REQ_OP_WRITE);
2787 
2788         dio = f2fs_kzalloc(F2FS_I_SB(inode),
2789                         sizeof(struct f2fs_private_dio), GFP_NOFS);
2790         if (!dio)
2791                 goto out;
2792 
2793         dio->inode = inode;
2794         dio->orig_end_io = bio->bi_end_io;
2795         dio->orig_private = bio->bi_private;
2796         dio->write = write;
2797 
2798         bio->bi_end_io = f2fs_dio_end_io;
2799         bio->bi_private = dio;
2800 
2801         inc_page_count(F2FS_I_SB(inode),
2802                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2803 
2804         submit_bio(bio);
2805         return;
2806 out:
2807         bio->bi_status = BLK_STS_IOERR;
2808         bio_endio(bio);
2809 }
2810 
2811 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2812 {
2813         struct address_space *mapping = iocb->ki_filp->f_mapping;
2814         struct inode *inode = mapping->host;
2815         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2816         struct f2fs_inode_info *fi = F2FS_I(inode);
2817         size_t count = iov_iter_count(iter);
2818         loff_t offset = iocb->ki_pos;
2819         int rw = iov_iter_rw(iter);
2820         int err;
2821         enum rw_hint hint = iocb->ki_hint;
2822         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2823         bool do_opu;
2824 
2825         err = check_direct_IO(inode, iter, offset);
2826         if (err)
2827                 return err < 0 ? err : 0;
2828 
2829         if (f2fs_force_buffered_io(inode, iocb, iter))
2830                 return 0;
2831 
2832         do_opu = allow_outplace_dio(inode, iocb, iter);
2833 
2834         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2835 
2836         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2837                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2838 
2839         if (iocb->ki_flags & IOCB_NOWAIT) {
2840                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2841                         iocb->ki_hint = hint;
2842                         err = -EAGAIN;
2843                         goto out;
2844                 }
2845                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2846                         up_read(&fi->i_gc_rwsem[rw]);
2847                         iocb->ki_hint = hint;
2848                         err = -EAGAIN;
2849                         goto out;
2850                 }
2851         } else {
2852                 down_read(&fi->i_gc_rwsem[rw]);
2853                 if (do_opu)
2854                         down_read(&fi->i_gc_rwsem[READ]);
2855         }
2856 
2857         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2858                         iter, rw == WRITE ? get_data_block_dio_write :
2859                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
2860                         DIO_LOCKING | DIO_SKIP_HOLES);
2861 
2862         if (do_opu)
2863                 up_read(&fi->i_gc_rwsem[READ]);
2864 
2865         up_read(&fi->i_gc_rwsem[rw]);
2866 
2867         if (rw == WRITE) {
2868                 if (whint_mode == WHINT_MODE_OFF)
2869                         iocb->ki_hint = hint;
2870                 if (err > 0) {
2871                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2872                                                                         err);
2873                         if (!do_opu)
2874                                 set_inode_flag(inode, FI_UPDATE_WRITE);
2875                 } else if (err < 0) {
2876                         f2fs_write_failed(mapping, offset + count);
2877                 }
2878         }
2879 
2880 out:
2881         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2882 
2883         return err;
2884 }
2885 
2886 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2887                                                         unsigned int length)
2888 {
2889         struct inode *inode = page->mapping->host;
2890         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2891 
2892         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2893                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2894                 return;
2895 
2896         if (PageDirty(page)) {
2897                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2898                         dec_page_count(sbi, F2FS_DIRTY_META);
2899                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2900                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2901                 } else {
2902                         inode_dec_dirty_pages(inode);
2903                         f2fs_remove_dirty_inode(inode);
2904                 }
2905         }
2906 
2907         clear_cold_data(page);
2908 
2909         if (IS_ATOMIC_WRITTEN_PAGE(page))
2910                 return f2fs_drop_inmem_page(inode, page);
2911 
2912         f2fs_clear_page_private(page);
2913 }
2914 
2915 int f2fs_release_page(struct page *page, gfp_t wait)
2916 {
2917         /* If this is dirty page, keep PagePrivate */
2918         if (PageDirty(page))
2919                 return 0;
2920 
2921         /* This is atomic written page, keep Private */
2922         if (IS_ATOMIC_WRITTEN_PAGE(page))
2923                 return 0;
2924 
2925         clear_cold_data(page);
2926         f2fs_clear_page_private(page);
2927         return 1;
2928 }
2929 
2930 static int f2fs_set_data_page_dirty(struct page *page)
2931 {
2932         struct inode *inode = page_file_mapping(page)->host;
2933 
2934         trace_f2fs_set_page_dirty(page, DATA);
2935 
2936         if (!PageUptodate(page))
2937                 SetPageUptodate(page);
2938         if (PageSwapCache(page))
2939                 return __set_page_dirty_nobuffers(page);
2940 
2941         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2942                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2943                         f2fs_register_inmem_page(inode, page);
2944                         return 1;
2945                 }
2946                 /*
2947                  * Previously, this page has been registered, we just
2948                  * return here.
2949                  */
2950                 return 0;
2951         }
2952 
2953         if (!PageDirty(page)) {
2954                 __set_page_dirty_nobuffers(page);
2955                 f2fs_update_dirty_page(inode, page);
2956                 return 1;
2957         }
2958         return 0;
2959 }
2960 
2961 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2962 {
2963         struct inode *inode = mapping->host;
2964 
2965         if (f2fs_has_inline_data(inode))
2966                 return 0;
2967 
2968         /* make sure allocating whole blocks */
2969         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2970                 filemap_write_and_wait(mapping);
2971 
2972         return generic_block_bmap(mapping, block, get_data_block_bmap);
2973 }
2974 
2975 #ifdef CONFIG_MIGRATION
2976 #include <linux/migrate.h>
2977 
2978 int f2fs_migrate_page(struct address_space *mapping,
2979                 struct page *newpage, struct page *page, enum migrate_mode mode)
2980 {
2981         int rc, extra_count;
2982         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2983         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2984 
2985         BUG_ON(PageWriteback(page));
2986 
2987         /* migrating an atomic written page is safe with the inmem_lock hold */
2988         if (atomic_written) {
2989                 if (mode != MIGRATE_SYNC)
2990                         return -EBUSY;
2991                 if (!mutex_trylock(&fi->inmem_lock))
2992                         return -EAGAIN;
2993         }
2994 
2995         /* one extra reference was held for atomic_write page */
2996         extra_count = atomic_written ? 1 : 0;
2997         rc = migrate_page_move_mapping(mapping, newpage,
2998                                 page, extra_count);
2999         if (rc != MIGRATEPAGE_SUCCESS) {
3000                 if (atomic_written)
3001                         mutex_unlock(&fi->inmem_lock);
3002                 return rc;
3003         }
3004 
3005         if (atomic_written) {
3006                 struct inmem_pages *cur;
3007                 list_for_each_entry(cur, &fi->inmem_pages, list)
3008                         if (cur->page == page) {
3009                                 cur->page = newpage;
3010                                 break;
3011                         }
3012                 mutex_unlock(&fi->inmem_lock);
3013                 put_page(page);
3014                 get_page(newpage);
3015         }
3016 
3017         if (PagePrivate(page)) {
3018                 f2fs_set_page_private(newpage, page_private(page));
3019                 f2fs_clear_page_private(page);
3020         }
3021 
3022         if (mode != MIGRATE_SYNC_NO_COPY)
3023                 migrate_page_copy(newpage, page);
3024         else
3025                 migrate_page_states(newpage, page);
3026 
3027         return MIGRATEPAGE_SUCCESS;
3028 }
3029 #endif
3030 
3031 #ifdef CONFIG_SWAP
3032 /* Copied from generic_swapfile_activate() to check any holes */
3033 static int check_swap_activate(struct swap_info_struct *sis,
3034                                 struct file *swap_file, sector_t *span)
3035 {
3036         struct address_space *mapping = swap_file->f_mapping;
3037         struct inode *inode = mapping->host;
3038         unsigned blocks_per_page;
3039         unsigned long page_no;
3040         unsigned blkbits;
3041         sector_t probe_block;
3042         sector_t last_block;
3043         sector_t lowest_block = -1;
3044         sector_t highest_block = 0;
3045         int nr_extents = 0;
3046         int ret;
3047 
3048         blkbits = inode->i_blkbits;
3049         blocks_per_page = PAGE_SIZE >> blkbits;
3050 
3051         /*
3052          * Map all the blocks into the extent list.  This code doesn't try
3053          * to be very smart.
3054          */
3055         probe_block = 0;
3056         page_no = 0;
3057         last_block = i_size_read(inode) >> blkbits;
3058         while ((probe_block + blocks_per_page) <= last_block &&
3059                         page_no < sis->max) {
3060                 unsigned block_in_page;
3061                 sector_t first_block;
3062 
3063                 cond_resched();
3064 
3065                 first_block = bmap(inode, probe_block);
3066                 if (first_block == 0)
3067                         goto bad_bmap;
3068 
3069                 /*
3070                  * It must be PAGE_SIZE aligned on-disk
3071                  */
3072                 if (first_block & (blocks_per_page - 1)) {
3073                         probe_block++;
3074                         goto reprobe;
3075                 }
3076 
3077                 for (block_in_page = 1; block_in_page < blocks_per_page;
3078                                         block_in_page++) {
3079                         sector_t block;
3080 
3081                         block = bmap(inode, probe_block + block_in_page);
3082                         if (block == 0)
3083                                 goto bad_bmap;
3084                         if (block != first_block + block_in_page) {
3085                                 /* Discontiguity */
3086                                 probe_block++;
3087                                 goto reprobe;
3088                         }
3089                 }
3090 
3091                 first_block >>= (PAGE_SHIFT - blkbits);
3092                 if (page_no) {  /* exclude the header page */
3093                         if (first_block < lowest_block)
3094                                 lowest_block = first_block;
3095                         if (first_block > highest_block)
3096                                 highest_block = first_block;
3097                 }
3098 
3099                 /*
3100                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3101                  */
3102                 ret = add_swap_extent(sis, page_no, 1, first_block);
3103                 if (ret < 0)
3104                         goto out;
3105                 nr_extents += ret;
3106                 page_no++;
3107                 probe_block += blocks_per_page;
3108 reprobe:
3109                 continue;
3110         }
3111         ret = nr_extents;
3112         *span = 1 + highest_block - lowest_block;
3113         if (page_no == 0)
3114                 page_no = 1;    /* force Empty message */
3115         sis->max = page_no;
3116         sis->pages = page_no - 1;
3117         sis->highest_bit = page_no - 1;
3118 out:
3119         return ret;
3120 bad_bmap:
3121         pr_err("swapon: swapfile has holes\n");
3122         return -EINVAL;
3123 }
3124 
3125 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3126                                 sector_t *span)
3127 {
3128         struct inode *inode = file_inode(file);
3129         int ret;
3130 
3131         if (!S_ISREG(inode->i_mode))
3132                 return -EINVAL;
3133 
3134         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3135                 return -EROFS;
3136 
3137         ret = f2fs_convert_inline_inode(inode);
3138         if (ret)
3139                 return ret;
3140 
3141         ret = check_swap_activate(sis, file, span);
3142         if (ret < 0)
3143                 return ret;
3144 
3145         set_inode_flag(inode, FI_PIN_FILE);
3146         f2fs_precache_extents(inode);
3147         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3148         return ret;
3149 }
3150 
3151 static void f2fs_swap_deactivate(struct file *file)
3152 {
3153         struct inode *inode = file_inode(file);
3154 
3155         clear_inode_flag(inode, FI_PIN_FILE);
3156 }
3157 #else
3158 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3159                                 sector_t *span)
3160 {
3161         return -EOPNOTSUPP;
3162 }
3163 
3164 static void f2fs_swap_deactivate(struct file *file)
3165 {
3166 }
3167 #endif
3168 
3169 const struct address_space_operations f2fs_dblock_aops = {
3170         .readpage       = f2fs_read_data_page,
3171         .readpages      = f2fs_read_data_pages,
3172         .writepage      = f2fs_write_data_page,
3173         .writepages     = f2fs_write_data_pages,
3174         .write_begin    = f2fs_write_begin,
3175         .write_end      = f2fs_write_end,
3176         .set_page_dirty = f2fs_set_data_page_dirty,
3177         .invalidatepage = f2fs_invalidate_page,
3178         .releasepage    = f2fs_release_page,
3179         .direct_IO      = f2fs_direct_IO,
3180         .bmap           = f2fs_bmap,
3181         .swap_activate  = f2fs_swap_activate,
3182         .swap_deactivate = f2fs_swap_deactivate,
3183 #ifdef CONFIG_MIGRATION
3184         .migratepage    = f2fs_migrate_page,
3185 #endif
3186 };
3187 
3188 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3189 {
3190         struct address_space *mapping = page_mapping(page);
3191         unsigned long flags;
3192 
3193         xa_lock_irqsave(&mapping->i_pages, flags);
3194         __xa_clear_mark(&mapping->i_pages, page_index(page),
3195                                                 PAGECACHE_TAG_DIRTY);
3196         xa_unlock_irqrestore(&mapping->i_pages, flags);
3197 }
3198 
3199 int __init f2fs_init_post_read_processing(void)
3200 {
3201         bio_post_read_ctx_cache =
3202                 kmem_cache_create("f2fs_bio_post_read_ctx",
3203                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3204         if (!bio_post_read_ctx_cache)
3205                 goto fail;
3206         bio_post_read_ctx_pool =
3207                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3208                                          bio_post_read_ctx_cache);
3209         if (!bio_post_read_ctx_pool)
3210                 goto fail_free_cache;
3211         return 0;
3212 
3213 fail_free_cache:
3214         kmem_cache_destroy(bio_post_read_ctx_cache);
3215 fail:
3216         return -ENOMEM;
3217 }
3218 
3219 void __exit f2fs_destroy_post_read_processing(void)
3220 {
3221         mempool_destroy(bio_post_read_ctx_pool);
3222         kmem_cache_destroy(bio_post_read_ctx_cache);
3223 }

/* [<][>][^][v][top][bottom][index][help] */