root/fs/f2fs/super.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. f2fs_build_fault_attr
  2. f2fs_printk
  3. f2fs_sb_read_encoding
  4. limit_reserve_root
  5. init_once
  6. f2fs_set_qf_name
  7. f2fs_clear_qf_name
  8. f2fs_check_quota_options
  9. parse_options
  10. f2fs_alloc_inode
  11. f2fs_drop_inode
  12. f2fs_inode_dirtied
  13. f2fs_inode_synced
  14. f2fs_dirty_inode
  15. f2fs_free_inode
  16. destroy_percpu_info
  17. destroy_device_list
  18. f2fs_put_super
  19. f2fs_sync_fs
  20. f2fs_freeze
  21. f2fs_unfreeze
  22. f2fs_statfs_project
  23. f2fs_statfs
  24. f2fs_show_quota_options
  25. f2fs_show_options
  26. default_options
  27. f2fs_disable_checkpoint
  28. f2fs_enable_checkpoint
  29. f2fs_remount
  30. f2fs_quota_read
  31. f2fs_quota_write
  32. f2fs_get_dquots
  33. f2fs_get_reserved_space
  34. f2fs_quota_on_mount
  35. f2fs_enable_quota_files
  36. f2fs_quota_enable
  37. f2fs_enable_quotas
  38. f2fs_quota_sync
  39. f2fs_quota_on
  40. __f2fs_quota_off
  41. f2fs_quota_off
  42. f2fs_quota_off_umount
  43. f2fs_truncate_quota_inode_pages
  44. f2fs_dquot_commit
  45. f2fs_dquot_acquire
  46. f2fs_dquot_release
  47. f2fs_dquot_mark_dquot_dirty
  48. f2fs_dquot_commit_info
  49. f2fs_get_projid
  50. f2fs_quota_sync
  51. f2fs_quota_off_umount
  52. f2fs_get_context
  53. f2fs_set_context
  54. f2fs_dummy_context
  55. f2fs_nfs_get_inode
  56. f2fs_fh_to_dentry
  57. f2fs_fh_to_parent
  58. max_file_blocks
  59. __f2fs_commit_super
  60. sanity_check_area_boundary
  61. sanity_check_raw_super
  62. f2fs_sanity_check_ckpt
  63. init_sb_info
  64. init_percpu_info
  65. init_blkz_info
  66. read_raw_super_block
  67. f2fs_commit_super
  68. f2fs_scan_devices
  69. f2fs_setup_casefold
  70. f2fs_tuning_parameters
  71. f2fs_fill_super
  72. f2fs_mount
  73. kill_f2fs_super
  74. init_inodecache
  75. destroy_inodecache
  76. init_f2fs_fs
  77. exit_f2fs_fs

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * fs/f2fs/super.c
   4  *
   5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6  *             http://www.samsung.com/
   7  */
   8 #include <linux/module.h>
   9 #include <linux/init.h>
  10 #include <linux/fs.h>
  11 #include <linux/statfs.h>
  12 #include <linux/buffer_head.h>
  13 #include <linux/backing-dev.h>
  14 #include <linux/kthread.h>
  15 #include <linux/parser.h>
  16 #include <linux/mount.h>
  17 #include <linux/seq_file.h>
  18 #include <linux/proc_fs.h>
  19 #include <linux/random.h>
  20 #include <linux/exportfs.h>
  21 #include <linux/blkdev.h>
  22 #include <linux/quotaops.h>
  23 #include <linux/f2fs_fs.h>
  24 #include <linux/sysfs.h>
  25 #include <linux/quota.h>
  26 #include <linux/unicode.h>
  27 
  28 #include "f2fs.h"
  29 #include "node.h"
  30 #include "segment.h"
  31 #include "xattr.h"
  32 #include "gc.h"
  33 #include "trace.h"
  34 
  35 #define CREATE_TRACE_POINTS
  36 #include <trace/events/f2fs.h>
  37 
  38 static struct kmem_cache *f2fs_inode_cachep;
  39 
  40 #ifdef CONFIG_F2FS_FAULT_INJECTION
  41 
  42 const char *f2fs_fault_name[FAULT_MAX] = {
  43         [FAULT_KMALLOC]         = "kmalloc",
  44         [FAULT_KVMALLOC]        = "kvmalloc",
  45         [FAULT_PAGE_ALLOC]      = "page alloc",
  46         [FAULT_PAGE_GET]        = "page get",
  47         [FAULT_ALLOC_BIO]       = "alloc bio",
  48         [FAULT_ALLOC_NID]       = "alloc nid",
  49         [FAULT_ORPHAN]          = "orphan",
  50         [FAULT_BLOCK]           = "no more block",
  51         [FAULT_DIR_DEPTH]       = "too big dir depth",
  52         [FAULT_EVICT_INODE]     = "evict_inode fail",
  53         [FAULT_TRUNCATE]        = "truncate fail",
  54         [FAULT_READ_IO]         = "read IO error",
  55         [FAULT_CHECKPOINT]      = "checkpoint error",
  56         [FAULT_DISCARD]         = "discard error",
  57         [FAULT_WRITE_IO]        = "write IO error",
  58 };
  59 
  60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
  61                                                         unsigned int type)
  62 {
  63         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
  64 
  65         if (rate) {
  66                 atomic_set(&ffi->inject_ops, 0);
  67                 ffi->inject_rate = rate;
  68         }
  69 
  70         if (type)
  71                 ffi->inject_type = type;
  72 
  73         if (!rate && !type)
  74                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
  75 }
  76 #endif
  77 
  78 /* f2fs-wide shrinker description */
  79 static struct shrinker f2fs_shrinker_info = {
  80         .scan_objects = f2fs_shrink_scan,
  81         .count_objects = f2fs_shrink_count,
  82         .seeks = DEFAULT_SEEKS,
  83 };
  84 
  85 enum {
  86         Opt_gc_background,
  87         Opt_disable_roll_forward,
  88         Opt_norecovery,
  89         Opt_discard,
  90         Opt_nodiscard,
  91         Opt_noheap,
  92         Opt_heap,
  93         Opt_user_xattr,
  94         Opt_nouser_xattr,
  95         Opt_acl,
  96         Opt_noacl,
  97         Opt_active_logs,
  98         Opt_disable_ext_identify,
  99         Opt_inline_xattr,
 100         Opt_noinline_xattr,
 101         Opt_inline_xattr_size,
 102         Opt_inline_data,
 103         Opt_inline_dentry,
 104         Opt_noinline_dentry,
 105         Opt_flush_merge,
 106         Opt_noflush_merge,
 107         Opt_nobarrier,
 108         Opt_fastboot,
 109         Opt_extent_cache,
 110         Opt_noextent_cache,
 111         Opt_noinline_data,
 112         Opt_data_flush,
 113         Opt_reserve_root,
 114         Opt_resgid,
 115         Opt_resuid,
 116         Opt_mode,
 117         Opt_io_size_bits,
 118         Opt_fault_injection,
 119         Opt_fault_type,
 120         Opt_lazytime,
 121         Opt_nolazytime,
 122         Opt_quota,
 123         Opt_noquota,
 124         Opt_usrquota,
 125         Opt_grpquota,
 126         Opt_prjquota,
 127         Opt_usrjquota,
 128         Opt_grpjquota,
 129         Opt_prjjquota,
 130         Opt_offusrjquota,
 131         Opt_offgrpjquota,
 132         Opt_offprjjquota,
 133         Opt_jqfmt_vfsold,
 134         Opt_jqfmt_vfsv0,
 135         Opt_jqfmt_vfsv1,
 136         Opt_whint,
 137         Opt_alloc,
 138         Opt_fsync,
 139         Opt_test_dummy_encryption,
 140         Opt_checkpoint_disable,
 141         Opt_checkpoint_disable_cap,
 142         Opt_checkpoint_disable_cap_perc,
 143         Opt_checkpoint_enable,
 144         Opt_err,
 145 };
 146 
 147 static match_table_t f2fs_tokens = {
 148         {Opt_gc_background, "background_gc=%s"},
 149         {Opt_disable_roll_forward, "disable_roll_forward"},
 150         {Opt_norecovery, "norecovery"},
 151         {Opt_discard, "discard"},
 152         {Opt_nodiscard, "nodiscard"},
 153         {Opt_noheap, "no_heap"},
 154         {Opt_heap, "heap"},
 155         {Opt_user_xattr, "user_xattr"},
 156         {Opt_nouser_xattr, "nouser_xattr"},
 157         {Opt_acl, "acl"},
 158         {Opt_noacl, "noacl"},
 159         {Opt_active_logs, "active_logs=%u"},
 160         {Opt_disable_ext_identify, "disable_ext_identify"},
 161         {Opt_inline_xattr, "inline_xattr"},
 162         {Opt_noinline_xattr, "noinline_xattr"},
 163         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
 164         {Opt_inline_data, "inline_data"},
 165         {Opt_inline_dentry, "inline_dentry"},
 166         {Opt_noinline_dentry, "noinline_dentry"},
 167         {Opt_flush_merge, "flush_merge"},
 168         {Opt_noflush_merge, "noflush_merge"},
 169         {Opt_nobarrier, "nobarrier"},
 170         {Opt_fastboot, "fastboot"},
 171         {Opt_extent_cache, "extent_cache"},
 172         {Opt_noextent_cache, "noextent_cache"},
 173         {Opt_noinline_data, "noinline_data"},
 174         {Opt_data_flush, "data_flush"},
 175         {Opt_reserve_root, "reserve_root=%u"},
 176         {Opt_resgid, "resgid=%u"},
 177         {Opt_resuid, "resuid=%u"},
 178         {Opt_mode, "mode=%s"},
 179         {Opt_io_size_bits, "io_bits=%u"},
 180         {Opt_fault_injection, "fault_injection=%u"},
 181         {Opt_fault_type, "fault_type=%u"},
 182         {Opt_lazytime, "lazytime"},
 183         {Opt_nolazytime, "nolazytime"},
 184         {Opt_quota, "quota"},
 185         {Opt_noquota, "noquota"},
 186         {Opt_usrquota, "usrquota"},
 187         {Opt_grpquota, "grpquota"},
 188         {Opt_prjquota, "prjquota"},
 189         {Opt_usrjquota, "usrjquota=%s"},
 190         {Opt_grpjquota, "grpjquota=%s"},
 191         {Opt_prjjquota, "prjjquota=%s"},
 192         {Opt_offusrjquota, "usrjquota="},
 193         {Opt_offgrpjquota, "grpjquota="},
 194         {Opt_offprjjquota, "prjjquota="},
 195         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
 196         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
 197         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
 198         {Opt_whint, "whint_mode=%s"},
 199         {Opt_alloc, "alloc_mode=%s"},
 200         {Opt_fsync, "fsync_mode=%s"},
 201         {Opt_test_dummy_encryption, "test_dummy_encryption"},
 202         {Opt_checkpoint_disable, "checkpoint=disable"},
 203         {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
 204         {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
 205         {Opt_checkpoint_enable, "checkpoint=enable"},
 206         {Opt_err, NULL},
 207 };
 208 
 209 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
 210 {
 211         struct va_format vaf;
 212         va_list args;
 213         int level;
 214 
 215         va_start(args, fmt);
 216 
 217         level = printk_get_level(fmt);
 218         vaf.fmt = printk_skip_level(fmt);
 219         vaf.va = &args;
 220         printk("%c%cF2FS-fs (%s): %pV\n",
 221                KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
 222 
 223         va_end(args);
 224 }
 225 
 226 #ifdef CONFIG_UNICODE
 227 static const struct f2fs_sb_encodings {
 228         __u16 magic;
 229         char *name;
 230         char *version;
 231 } f2fs_sb_encoding_map[] = {
 232         {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
 233 };
 234 
 235 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
 236                                  const struct f2fs_sb_encodings **encoding,
 237                                  __u16 *flags)
 238 {
 239         __u16 magic = le16_to_cpu(sb->s_encoding);
 240         int i;
 241 
 242         for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
 243                 if (magic == f2fs_sb_encoding_map[i].magic)
 244                         break;
 245 
 246         if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
 247                 return -EINVAL;
 248 
 249         *encoding = &f2fs_sb_encoding_map[i];
 250         *flags = le16_to_cpu(sb->s_encoding_flags);
 251 
 252         return 0;
 253 }
 254 #endif
 255 
 256 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
 257 {
 258         block_t limit = min((sbi->user_block_count << 1) / 1000,
 259                         sbi->user_block_count - sbi->reserved_blocks);
 260 
 261         /* limit is 0.2% */
 262         if (test_opt(sbi, RESERVE_ROOT) &&
 263                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
 264                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
 265                 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
 266                           F2FS_OPTION(sbi).root_reserved_blocks);
 267         }
 268         if (!test_opt(sbi, RESERVE_ROOT) &&
 269                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
 270                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
 271                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
 272                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
 273                 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
 274                           from_kuid_munged(&init_user_ns,
 275                                            F2FS_OPTION(sbi).s_resuid),
 276                           from_kgid_munged(&init_user_ns,
 277                                            F2FS_OPTION(sbi).s_resgid));
 278 }
 279 
 280 static void init_once(void *foo)
 281 {
 282         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 283 
 284         inode_init_once(&fi->vfs_inode);
 285 }
 286 
 287 #ifdef CONFIG_QUOTA
 288 static const char * const quotatypes[] = INITQFNAMES;
 289 #define QTYPE2NAME(t) (quotatypes[t])
 290 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
 291                                                         substring_t *args)
 292 {
 293         struct f2fs_sb_info *sbi = F2FS_SB(sb);
 294         char *qname;
 295         int ret = -EINVAL;
 296 
 297         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
 298                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
 299                 return -EINVAL;
 300         }
 301         if (f2fs_sb_has_quota_ino(sbi)) {
 302                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
 303                 return 0;
 304         }
 305 
 306         qname = match_strdup(args);
 307         if (!qname) {
 308                 f2fs_err(sbi, "Not enough memory for storing quotafile name");
 309                 return -ENOMEM;
 310         }
 311         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
 312                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
 313                         ret = 0;
 314                 else
 315                         f2fs_err(sbi, "%s quota file already specified",
 316                                  QTYPE2NAME(qtype));
 317                 goto errout;
 318         }
 319         if (strchr(qname, '/')) {
 320                 f2fs_err(sbi, "quotafile must be on filesystem root");
 321                 goto errout;
 322         }
 323         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
 324         set_opt(sbi, QUOTA);
 325         return 0;
 326 errout:
 327         kvfree(qname);
 328         return ret;
 329 }
 330 
 331 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
 332 {
 333         struct f2fs_sb_info *sbi = F2FS_SB(sb);
 334 
 335         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
 336                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
 337                 return -EINVAL;
 338         }
 339         kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
 340         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
 341         return 0;
 342 }
 343 
 344 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
 345 {
 346         /*
 347          * We do the test below only for project quotas. 'usrquota' and
 348          * 'grpquota' mount options are allowed even without quota feature
 349          * to support legacy quotas in quota files.
 350          */
 351         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
 352                 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
 353                 return -1;
 354         }
 355         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
 356                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
 357                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
 358                 if (test_opt(sbi, USRQUOTA) &&
 359                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
 360                         clear_opt(sbi, USRQUOTA);
 361 
 362                 if (test_opt(sbi, GRPQUOTA) &&
 363                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
 364                         clear_opt(sbi, GRPQUOTA);
 365 
 366                 if (test_opt(sbi, PRJQUOTA) &&
 367                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
 368                         clear_opt(sbi, PRJQUOTA);
 369 
 370                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
 371                                 test_opt(sbi, PRJQUOTA)) {
 372                         f2fs_err(sbi, "old and new quota format mixing");
 373                         return -1;
 374                 }
 375 
 376                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
 377                         f2fs_err(sbi, "journaled quota format not specified");
 378                         return -1;
 379                 }
 380         }
 381 
 382         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
 383                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
 384                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
 385         }
 386         return 0;
 387 }
 388 #endif
 389 
 390 static int parse_options(struct super_block *sb, char *options)
 391 {
 392         struct f2fs_sb_info *sbi = F2FS_SB(sb);
 393         substring_t args[MAX_OPT_ARGS];
 394         char *p, *name;
 395         int arg = 0;
 396         kuid_t uid;
 397         kgid_t gid;
 398 #ifdef CONFIG_QUOTA
 399         int ret;
 400 #endif
 401 
 402         if (!options)
 403                 return 0;
 404 
 405         while ((p = strsep(&options, ",")) != NULL) {
 406                 int token;
 407                 if (!*p)
 408                         continue;
 409                 /*
 410                  * Initialize args struct so we know whether arg was
 411                  * found; some options take optional arguments.
 412                  */
 413                 args[0].to = args[0].from = NULL;
 414                 token = match_token(p, f2fs_tokens, args);
 415 
 416                 switch (token) {
 417                 case Opt_gc_background:
 418                         name = match_strdup(&args[0]);
 419 
 420                         if (!name)
 421                                 return -ENOMEM;
 422                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
 423                                 set_opt(sbi, BG_GC);
 424                                 clear_opt(sbi, FORCE_FG_GC);
 425                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
 426                                 clear_opt(sbi, BG_GC);
 427                                 clear_opt(sbi, FORCE_FG_GC);
 428                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
 429                                 set_opt(sbi, BG_GC);
 430                                 set_opt(sbi, FORCE_FG_GC);
 431                         } else {
 432                                 kvfree(name);
 433                                 return -EINVAL;
 434                         }
 435                         kvfree(name);
 436                         break;
 437                 case Opt_disable_roll_forward:
 438                         set_opt(sbi, DISABLE_ROLL_FORWARD);
 439                         break;
 440                 case Opt_norecovery:
 441                         /* this option mounts f2fs with ro */
 442                         set_opt(sbi, NORECOVERY);
 443                         if (!f2fs_readonly(sb))
 444                                 return -EINVAL;
 445                         break;
 446                 case Opt_discard:
 447                         set_opt(sbi, DISCARD);
 448                         break;
 449                 case Opt_nodiscard:
 450                         if (f2fs_sb_has_blkzoned(sbi)) {
 451                                 f2fs_warn(sbi, "discard is required for zoned block devices");
 452                                 return -EINVAL;
 453                         }
 454                         clear_opt(sbi, DISCARD);
 455                         break;
 456                 case Opt_noheap:
 457                         set_opt(sbi, NOHEAP);
 458                         break;
 459                 case Opt_heap:
 460                         clear_opt(sbi, NOHEAP);
 461                         break;
 462 #ifdef CONFIG_F2FS_FS_XATTR
 463                 case Opt_user_xattr:
 464                         set_opt(sbi, XATTR_USER);
 465                         break;
 466                 case Opt_nouser_xattr:
 467                         clear_opt(sbi, XATTR_USER);
 468                         break;
 469                 case Opt_inline_xattr:
 470                         set_opt(sbi, INLINE_XATTR);
 471                         break;
 472                 case Opt_noinline_xattr:
 473                         clear_opt(sbi, INLINE_XATTR);
 474                         break;
 475                 case Opt_inline_xattr_size:
 476                         if (args->from && match_int(args, &arg))
 477                                 return -EINVAL;
 478                         set_opt(sbi, INLINE_XATTR_SIZE);
 479                         F2FS_OPTION(sbi).inline_xattr_size = arg;
 480                         break;
 481 #else
 482                 case Opt_user_xattr:
 483                         f2fs_info(sbi, "user_xattr options not supported");
 484                         break;
 485                 case Opt_nouser_xattr:
 486                         f2fs_info(sbi, "nouser_xattr options not supported");
 487                         break;
 488                 case Opt_inline_xattr:
 489                         f2fs_info(sbi, "inline_xattr options not supported");
 490                         break;
 491                 case Opt_noinline_xattr:
 492                         f2fs_info(sbi, "noinline_xattr options not supported");
 493                         break;
 494 #endif
 495 #ifdef CONFIG_F2FS_FS_POSIX_ACL
 496                 case Opt_acl:
 497                         set_opt(sbi, POSIX_ACL);
 498                         break;
 499                 case Opt_noacl:
 500                         clear_opt(sbi, POSIX_ACL);
 501                         break;
 502 #else
 503                 case Opt_acl:
 504                         f2fs_info(sbi, "acl options not supported");
 505                         break;
 506                 case Opt_noacl:
 507                         f2fs_info(sbi, "noacl options not supported");
 508                         break;
 509 #endif
 510                 case Opt_active_logs:
 511                         if (args->from && match_int(args, &arg))
 512                                 return -EINVAL;
 513                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 514                                 return -EINVAL;
 515                         F2FS_OPTION(sbi).active_logs = arg;
 516                         break;
 517                 case Opt_disable_ext_identify:
 518                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
 519                         break;
 520                 case Opt_inline_data:
 521                         set_opt(sbi, INLINE_DATA);
 522                         break;
 523                 case Opt_inline_dentry:
 524                         set_opt(sbi, INLINE_DENTRY);
 525                         break;
 526                 case Opt_noinline_dentry:
 527                         clear_opt(sbi, INLINE_DENTRY);
 528                         break;
 529                 case Opt_flush_merge:
 530                         set_opt(sbi, FLUSH_MERGE);
 531                         break;
 532                 case Opt_noflush_merge:
 533                         clear_opt(sbi, FLUSH_MERGE);
 534                         break;
 535                 case Opt_nobarrier:
 536                         set_opt(sbi, NOBARRIER);
 537                         break;
 538                 case Opt_fastboot:
 539                         set_opt(sbi, FASTBOOT);
 540                         break;
 541                 case Opt_extent_cache:
 542                         set_opt(sbi, EXTENT_CACHE);
 543                         break;
 544                 case Opt_noextent_cache:
 545                         clear_opt(sbi, EXTENT_CACHE);
 546                         break;
 547                 case Opt_noinline_data:
 548                         clear_opt(sbi, INLINE_DATA);
 549                         break;
 550                 case Opt_data_flush:
 551                         set_opt(sbi, DATA_FLUSH);
 552                         break;
 553                 case Opt_reserve_root:
 554                         if (args->from && match_int(args, &arg))
 555                                 return -EINVAL;
 556                         if (test_opt(sbi, RESERVE_ROOT)) {
 557                                 f2fs_info(sbi, "Preserve previous reserve_root=%u",
 558                                           F2FS_OPTION(sbi).root_reserved_blocks);
 559                         } else {
 560                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
 561                                 set_opt(sbi, RESERVE_ROOT);
 562                         }
 563                         break;
 564                 case Opt_resuid:
 565                         if (args->from && match_int(args, &arg))
 566                                 return -EINVAL;
 567                         uid = make_kuid(current_user_ns(), arg);
 568                         if (!uid_valid(uid)) {
 569                                 f2fs_err(sbi, "Invalid uid value %d", arg);
 570                                 return -EINVAL;
 571                         }
 572                         F2FS_OPTION(sbi).s_resuid = uid;
 573                         break;
 574                 case Opt_resgid:
 575                         if (args->from && match_int(args, &arg))
 576                                 return -EINVAL;
 577                         gid = make_kgid(current_user_ns(), arg);
 578                         if (!gid_valid(gid)) {
 579                                 f2fs_err(sbi, "Invalid gid value %d", arg);
 580                                 return -EINVAL;
 581                         }
 582                         F2FS_OPTION(sbi).s_resgid = gid;
 583                         break;
 584                 case Opt_mode:
 585                         name = match_strdup(&args[0]);
 586 
 587                         if (!name)
 588                                 return -ENOMEM;
 589                         if (strlen(name) == 8 &&
 590                                         !strncmp(name, "adaptive", 8)) {
 591                                 if (f2fs_sb_has_blkzoned(sbi)) {
 592                                         f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
 593                                         kvfree(name);
 594                                         return -EINVAL;
 595                                 }
 596                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
 597                         } else if (strlen(name) == 3 &&
 598                                         !strncmp(name, "lfs", 3)) {
 599                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
 600                         } else {
 601                                 kvfree(name);
 602                                 return -EINVAL;
 603                         }
 604                         kvfree(name);
 605                         break;
 606                 case Opt_io_size_bits:
 607                         if (args->from && match_int(args, &arg))
 608                                 return -EINVAL;
 609                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
 610                                 f2fs_warn(sbi, "Not support %d, larger than %d",
 611                                           1 << arg, BIO_MAX_PAGES);
 612                                 return -EINVAL;
 613                         }
 614                         F2FS_OPTION(sbi).write_io_size_bits = arg;
 615                         break;
 616 #ifdef CONFIG_F2FS_FAULT_INJECTION
 617                 case Opt_fault_injection:
 618                         if (args->from && match_int(args, &arg))
 619                                 return -EINVAL;
 620                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
 621                         set_opt(sbi, FAULT_INJECTION);
 622                         break;
 623 
 624                 case Opt_fault_type:
 625                         if (args->from && match_int(args, &arg))
 626                                 return -EINVAL;
 627                         f2fs_build_fault_attr(sbi, 0, arg);
 628                         set_opt(sbi, FAULT_INJECTION);
 629                         break;
 630 #else
 631                 case Opt_fault_injection:
 632                         f2fs_info(sbi, "fault_injection options not supported");
 633                         break;
 634 
 635                 case Opt_fault_type:
 636                         f2fs_info(sbi, "fault_type options not supported");
 637                         break;
 638 #endif
 639                 case Opt_lazytime:
 640                         sb->s_flags |= SB_LAZYTIME;
 641                         break;
 642                 case Opt_nolazytime:
 643                         sb->s_flags &= ~SB_LAZYTIME;
 644                         break;
 645 #ifdef CONFIG_QUOTA
 646                 case Opt_quota:
 647                 case Opt_usrquota:
 648                         set_opt(sbi, USRQUOTA);
 649                         break;
 650                 case Opt_grpquota:
 651                         set_opt(sbi, GRPQUOTA);
 652                         break;
 653                 case Opt_prjquota:
 654                         set_opt(sbi, PRJQUOTA);
 655                         break;
 656                 case Opt_usrjquota:
 657                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
 658                         if (ret)
 659                                 return ret;
 660                         break;
 661                 case Opt_grpjquota:
 662                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
 663                         if (ret)
 664                                 return ret;
 665                         break;
 666                 case Opt_prjjquota:
 667                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
 668                         if (ret)
 669                                 return ret;
 670                         break;
 671                 case Opt_offusrjquota:
 672                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
 673                         if (ret)
 674                                 return ret;
 675                         break;
 676                 case Opt_offgrpjquota:
 677                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
 678                         if (ret)
 679                                 return ret;
 680                         break;
 681                 case Opt_offprjjquota:
 682                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
 683                         if (ret)
 684                                 return ret;
 685                         break;
 686                 case Opt_jqfmt_vfsold:
 687                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
 688                         break;
 689                 case Opt_jqfmt_vfsv0:
 690                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
 691                         break;
 692                 case Opt_jqfmt_vfsv1:
 693                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
 694                         break;
 695                 case Opt_noquota:
 696                         clear_opt(sbi, QUOTA);
 697                         clear_opt(sbi, USRQUOTA);
 698                         clear_opt(sbi, GRPQUOTA);
 699                         clear_opt(sbi, PRJQUOTA);
 700                         break;
 701 #else
 702                 case Opt_quota:
 703                 case Opt_usrquota:
 704                 case Opt_grpquota:
 705                 case Opt_prjquota:
 706                 case Opt_usrjquota:
 707                 case Opt_grpjquota:
 708                 case Opt_prjjquota:
 709                 case Opt_offusrjquota:
 710                 case Opt_offgrpjquota:
 711                 case Opt_offprjjquota:
 712                 case Opt_jqfmt_vfsold:
 713                 case Opt_jqfmt_vfsv0:
 714                 case Opt_jqfmt_vfsv1:
 715                 case Opt_noquota:
 716                         f2fs_info(sbi, "quota operations not supported");
 717                         break;
 718 #endif
 719                 case Opt_whint:
 720                         name = match_strdup(&args[0]);
 721                         if (!name)
 722                                 return -ENOMEM;
 723                         if (strlen(name) == 10 &&
 724                                         !strncmp(name, "user-based", 10)) {
 725                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
 726                         } else if (strlen(name) == 3 &&
 727                                         !strncmp(name, "off", 3)) {
 728                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
 729                         } else if (strlen(name) == 8 &&
 730                                         !strncmp(name, "fs-based", 8)) {
 731                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
 732                         } else {
 733                                 kvfree(name);
 734                                 return -EINVAL;
 735                         }
 736                         kvfree(name);
 737                         break;
 738                 case Opt_alloc:
 739                         name = match_strdup(&args[0]);
 740                         if (!name)
 741                                 return -ENOMEM;
 742 
 743                         if (strlen(name) == 7 &&
 744                                         !strncmp(name, "default", 7)) {
 745                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
 746                         } else if (strlen(name) == 5 &&
 747                                         !strncmp(name, "reuse", 5)) {
 748                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
 749                         } else {
 750                                 kvfree(name);
 751                                 return -EINVAL;
 752                         }
 753                         kvfree(name);
 754                         break;
 755                 case Opt_fsync:
 756                         name = match_strdup(&args[0]);
 757                         if (!name)
 758                                 return -ENOMEM;
 759                         if (strlen(name) == 5 &&
 760                                         !strncmp(name, "posix", 5)) {
 761                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
 762                         } else if (strlen(name) == 6 &&
 763                                         !strncmp(name, "strict", 6)) {
 764                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
 765                         } else if (strlen(name) == 9 &&
 766                                         !strncmp(name, "nobarrier", 9)) {
 767                                 F2FS_OPTION(sbi).fsync_mode =
 768                                                         FSYNC_MODE_NOBARRIER;
 769                         } else {
 770                                 kvfree(name);
 771                                 return -EINVAL;
 772                         }
 773                         kvfree(name);
 774                         break;
 775                 case Opt_test_dummy_encryption:
 776 #ifdef CONFIG_FS_ENCRYPTION
 777                         if (!f2fs_sb_has_encrypt(sbi)) {
 778                                 f2fs_err(sbi, "Encrypt feature is off");
 779                                 return -EINVAL;
 780                         }
 781 
 782                         F2FS_OPTION(sbi).test_dummy_encryption = true;
 783                         f2fs_info(sbi, "Test dummy encryption mode enabled");
 784 #else
 785                         f2fs_info(sbi, "Test dummy encryption mount option ignored");
 786 #endif
 787                         break;
 788                 case Opt_checkpoint_disable_cap_perc:
 789                         if (args->from && match_int(args, &arg))
 790                                 return -EINVAL;
 791                         if (arg < 0 || arg > 100)
 792                                 return -EINVAL;
 793                         if (arg == 100)
 794                                 F2FS_OPTION(sbi).unusable_cap =
 795                                         sbi->user_block_count;
 796                         else
 797                                 F2FS_OPTION(sbi).unusable_cap =
 798                                         (sbi->user_block_count / 100) * arg;
 799                         set_opt(sbi, DISABLE_CHECKPOINT);
 800                         break;
 801                 case Opt_checkpoint_disable_cap:
 802                         if (args->from && match_int(args, &arg))
 803                                 return -EINVAL;
 804                         F2FS_OPTION(sbi).unusable_cap = arg;
 805                         set_opt(sbi, DISABLE_CHECKPOINT);
 806                         break;
 807                 case Opt_checkpoint_disable:
 808                         set_opt(sbi, DISABLE_CHECKPOINT);
 809                         break;
 810                 case Opt_checkpoint_enable:
 811                         clear_opt(sbi, DISABLE_CHECKPOINT);
 812                         break;
 813                 default:
 814                         f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
 815                                  p);
 816                         return -EINVAL;
 817                 }
 818         }
 819 #ifdef CONFIG_QUOTA
 820         if (f2fs_check_quota_options(sbi))
 821                 return -EINVAL;
 822 #else
 823         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
 824                 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
 825                 return -EINVAL;
 826         }
 827         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
 828                 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
 829                 return -EINVAL;
 830         }
 831 #endif
 832 #ifndef CONFIG_UNICODE
 833         if (f2fs_sb_has_casefold(sbi)) {
 834                 f2fs_err(sbi,
 835                         "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
 836                 return -EINVAL;
 837         }
 838 #endif
 839 
 840         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
 841                 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
 842                          F2FS_IO_SIZE_KB(sbi));
 843                 return -EINVAL;
 844         }
 845 
 846         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
 847                 int min_size, max_size;
 848 
 849                 if (!f2fs_sb_has_extra_attr(sbi) ||
 850                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
 851                         f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
 852                         return -EINVAL;
 853                 }
 854                 if (!test_opt(sbi, INLINE_XATTR)) {
 855                         f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
 856                         return -EINVAL;
 857                 }
 858 
 859                 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
 860                 max_size = MAX_INLINE_XATTR_SIZE;
 861 
 862                 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
 863                                 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
 864                         f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
 865                                  min_size, max_size);
 866                         return -EINVAL;
 867                 }
 868         }
 869 
 870         if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
 871                 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
 872                 return -EINVAL;
 873         }
 874 
 875         /* Not pass down write hints if the number of active logs is lesser
 876          * than NR_CURSEG_TYPE.
 877          */
 878         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
 879                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
 880         return 0;
 881 }
 882 
 883 static struct inode *f2fs_alloc_inode(struct super_block *sb)
 884 {
 885         struct f2fs_inode_info *fi;
 886 
 887         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 888         if (!fi)
 889                 return NULL;
 890 
 891         init_once((void *) fi);
 892 
 893         /* Initialize f2fs-specific inode info */
 894         atomic_set(&fi->dirty_pages, 0);
 895         init_rwsem(&fi->i_sem);
 896         INIT_LIST_HEAD(&fi->dirty_list);
 897         INIT_LIST_HEAD(&fi->gdirty_list);
 898         INIT_LIST_HEAD(&fi->inmem_ilist);
 899         INIT_LIST_HEAD(&fi->inmem_pages);
 900         mutex_init(&fi->inmem_lock);
 901         init_rwsem(&fi->i_gc_rwsem[READ]);
 902         init_rwsem(&fi->i_gc_rwsem[WRITE]);
 903         init_rwsem(&fi->i_mmap_sem);
 904         init_rwsem(&fi->i_xattr_sem);
 905 
 906         /* Will be used by directory only */
 907         fi->i_dir_level = F2FS_SB(sb)->dir_level;
 908 
 909         return &fi->vfs_inode;
 910 }
 911 
 912 static int f2fs_drop_inode(struct inode *inode)
 913 {
 914         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 915         int ret;
 916 
 917         /*
 918          * during filesystem shutdown, if checkpoint is disabled,
 919          * drop useless meta/node dirty pages.
 920          */
 921         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
 922                 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
 923                         inode->i_ino == F2FS_META_INO(sbi)) {
 924                         trace_f2fs_drop_inode(inode, 1);
 925                         return 1;
 926                 }
 927         }
 928 
 929         /*
 930          * This is to avoid a deadlock condition like below.
 931          * writeback_single_inode(inode)
 932          *  - f2fs_write_data_page
 933          *    - f2fs_gc -> iput -> evict
 934          *       - inode_wait_for_writeback(inode)
 935          */
 936         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
 937                 if (!inode->i_nlink && !is_bad_inode(inode)) {
 938                         /* to avoid evict_inode call simultaneously */
 939                         atomic_inc(&inode->i_count);
 940                         spin_unlock(&inode->i_lock);
 941 
 942                         /* some remained atomic pages should discarded */
 943                         if (f2fs_is_atomic_file(inode))
 944                                 f2fs_drop_inmem_pages(inode);
 945 
 946                         /* should remain fi->extent_tree for writepage */
 947                         f2fs_destroy_extent_node(inode);
 948 
 949                         sb_start_intwrite(inode->i_sb);
 950                         f2fs_i_size_write(inode, 0);
 951 
 952                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
 953                                         inode, NULL, 0, DATA);
 954                         truncate_inode_pages_final(inode->i_mapping);
 955 
 956                         if (F2FS_HAS_BLOCKS(inode))
 957                                 f2fs_truncate(inode);
 958 
 959                         sb_end_intwrite(inode->i_sb);
 960 
 961                         spin_lock(&inode->i_lock);
 962                         atomic_dec(&inode->i_count);
 963                 }
 964                 trace_f2fs_drop_inode(inode, 0);
 965                 return 0;
 966         }
 967         ret = generic_drop_inode(inode);
 968         if (!ret)
 969                 ret = fscrypt_drop_inode(inode);
 970         trace_f2fs_drop_inode(inode, ret);
 971         return ret;
 972 }
 973 
 974 int f2fs_inode_dirtied(struct inode *inode, bool sync)
 975 {
 976         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 977         int ret = 0;
 978 
 979         spin_lock(&sbi->inode_lock[DIRTY_META]);
 980         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
 981                 ret = 1;
 982         } else {
 983                 set_inode_flag(inode, FI_DIRTY_INODE);
 984                 stat_inc_dirty_inode(sbi, DIRTY_META);
 985         }
 986         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
 987                 list_add_tail(&F2FS_I(inode)->gdirty_list,
 988                                 &sbi->inode_list[DIRTY_META]);
 989                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
 990         }
 991         spin_unlock(&sbi->inode_lock[DIRTY_META]);
 992         return ret;
 993 }
 994 
 995 void f2fs_inode_synced(struct inode *inode)
 996 {
 997         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 998 
 999         spin_lock(&sbi->inode_lock[DIRTY_META]);
1000         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1001                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1002                 return;
1003         }
1004         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1005                 list_del_init(&F2FS_I(inode)->gdirty_list);
1006                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1007         }
1008         clear_inode_flag(inode, FI_DIRTY_INODE);
1009         clear_inode_flag(inode, FI_AUTO_RECOVER);
1010         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1011         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1012 }
1013 
1014 /*
1015  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1016  *
1017  * We should call set_dirty_inode to write the dirty inode through write_inode.
1018  */
1019 static void f2fs_dirty_inode(struct inode *inode, int flags)
1020 {
1021         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1022 
1023         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1024                         inode->i_ino == F2FS_META_INO(sbi))
1025                 return;
1026 
1027         if (flags == I_DIRTY_TIME)
1028                 return;
1029 
1030         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1031                 clear_inode_flag(inode, FI_AUTO_RECOVER);
1032 
1033         f2fs_inode_dirtied(inode, false);
1034 }
1035 
1036 static void f2fs_free_inode(struct inode *inode)
1037 {
1038         fscrypt_free_inode(inode);
1039         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1040 }
1041 
1042 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1043 {
1044         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1045         percpu_counter_destroy(&sbi->total_valid_inode_count);
1046 }
1047 
1048 static void destroy_device_list(struct f2fs_sb_info *sbi)
1049 {
1050         int i;
1051 
1052         for (i = 0; i < sbi->s_ndevs; i++) {
1053                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1054 #ifdef CONFIG_BLK_DEV_ZONED
1055                 kvfree(FDEV(i).blkz_seq);
1056 #endif
1057         }
1058         kvfree(sbi->devs);
1059 }
1060 
1061 static void f2fs_put_super(struct super_block *sb)
1062 {
1063         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1064         int i;
1065         bool dropped;
1066 
1067         f2fs_quota_off_umount(sb);
1068 
1069         /* prevent remaining shrinker jobs */
1070         mutex_lock(&sbi->umount_mutex);
1071 
1072         /*
1073          * We don't need to do checkpoint when superblock is clean.
1074          * But, the previous checkpoint was not done by umount, it needs to do
1075          * clean checkpoint again.
1076          */
1077         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1078                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1079                 struct cp_control cpc = {
1080                         .reason = CP_UMOUNT,
1081                 };
1082                 f2fs_write_checkpoint(sbi, &cpc);
1083         }
1084 
1085         /* be sure to wait for any on-going discard commands */
1086         dropped = f2fs_issue_discard_timeout(sbi);
1087 
1088         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1089                                         !sbi->discard_blks && !dropped) {
1090                 struct cp_control cpc = {
1091                         .reason = CP_UMOUNT | CP_TRIMMED,
1092                 };
1093                 f2fs_write_checkpoint(sbi, &cpc);
1094         }
1095 
1096         /*
1097          * normally superblock is clean, so we need to release this.
1098          * In addition, EIO will skip do checkpoint, we need this as well.
1099          */
1100         f2fs_release_ino_entry(sbi, true);
1101 
1102         f2fs_leave_shrinker(sbi);
1103         mutex_unlock(&sbi->umount_mutex);
1104 
1105         /* our cp_error case, we can wait for any writeback page */
1106         f2fs_flush_merged_writes(sbi);
1107 
1108         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1109 
1110         f2fs_bug_on(sbi, sbi->fsync_node_num);
1111 
1112         iput(sbi->node_inode);
1113         sbi->node_inode = NULL;
1114 
1115         iput(sbi->meta_inode);
1116         sbi->meta_inode = NULL;
1117 
1118         /*
1119          * iput() can update stat information, if f2fs_write_checkpoint()
1120          * above failed with error.
1121          */
1122         f2fs_destroy_stats(sbi);
1123 
1124         /* destroy f2fs internal modules */
1125         f2fs_destroy_node_manager(sbi);
1126         f2fs_destroy_segment_manager(sbi);
1127 
1128         kvfree(sbi->ckpt);
1129 
1130         f2fs_unregister_sysfs(sbi);
1131 
1132         sb->s_fs_info = NULL;
1133         if (sbi->s_chksum_driver)
1134                 crypto_free_shash(sbi->s_chksum_driver);
1135         kvfree(sbi->raw_super);
1136 
1137         destroy_device_list(sbi);
1138         mempool_destroy(sbi->write_io_dummy);
1139 #ifdef CONFIG_QUOTA
1140         for (i = 0; i < MAXQUOTAS; i++)
1141                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1142 #endif
1143         destroy_percpu_info(sbi);
1144         for (i = 0; i < NR_PAGE_TYPE; i++)
1145                 kvfree(sbi->write_io[i]);
1146 #ifdef CONFIG_UNICODE
1147         utf8_unload(sbi->s_encoding);
1148 #endif
1149         kvfree(sbi);
1150 }
1151 
1152 int f2fs_sync_fs(struct super_block *sb, int sync)
1153 {
1154         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1155         int err = 0;
1156 
1157         if (unlikely(f2fs_cp_error(sbi)))
1158                 return 0;
1159         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1160                 return 0;
1161 
1162         trace_f2fs_sync_fs(sb, sync);
1163 
1164         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1165                 return -EAGAIN;
1166 
1167         if (sync) {
1168                 struct cp_control cpc;
1169 
1170                 cpc.reason = __get_cp_reason(sbi);
1171 
1172                 mutex_lock(&sbi->gc_mutex);
1173                 err = f2fs_write_checkpoint(sbi, &cpc);
1174                 mutex_unlock(&sbi->gc_mutex);
1175         }
1176         f2fs_trace_ios(NULL, 1);
1177 
1178         return err;
1179 }
1180 
1181 static int f2fs_freeze(struct super_block *sb)
1182 {
1183         if (f2fs_readonly(sb))
1184                 return 0;
1185 
1186         /* IO error happened before */
1187         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1188                 return -EIO;
1189 
1190         /* must be clean, since sync_filesystem() was already called */
1191         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1192                 return -EINVAL;
1193         return 0;
1194 }
1195 
1196 static int f2fs_unfreeze(struct super_block *sb)
1197 {
1198         return 0;
1199 }
1200 
1201 #ifdef CONFIG_QUOTA
1202 static int f2fs_statfs_project(struct super_block *sb,
1203                                 kprojid_t projid, struct kstatfs *buf)
1204 {
1205         struct kqid qid;
1206         struct dquot *dquot;
1207         u64 limit;
1208         u64 curblock;
1209 
1210         qid = make_kqid_projid(projid);
1211         dquot = dqget(sb, qid);
1212         if (IS_ERR(dquot))
1213                 return PTR_ERR(dquot);
1214         spin_lock(&dquot->dq_dqb_lock);
1215 
1216         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1217                                         dquot->dq_dqb.dqb_bhardlimit);
1218         if (limit)
1219                 limit >>= sb->s_blocksize_bits;
1220 
1221         if (limit && buf->f_blocks > limit) {
1222                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1223                 buf->f_blocks = limit;
1224                 buf->f_bfree = buf->f_bavail =
1225                         (buf->f_blocks > curblock) ?
1226                          (buf->f_blocks - curblock) : 0;
1227         }
1228 
1229         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1230                                         dquot->dq_dqb.dqb_ihardlimit);
1231 
1232         if (limit && buf->f_files > limit) {
1233                 buf->f_files = limit;
1234                 buf->f_ffree =
1235                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1236                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1237         }
1238 
1239         spin_unlock(&dquot->dq_dqb_lock);
1240         dqput(dquot);
1241         return 0;
1242 }
1243 #endif
1244 
1245 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1246 {
1247         struct super_block *sb = dentry->d_sb;
1248         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1249         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1250         block_t total_count, user_block_count, start_count;
1251         u64 avail_node_count;
1252 
1253         total_count = le64_to_cpu(sbi->raw_super->block_count);
1254         user_block_count = sbi->user_block_count;
1255         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1256         buf->f_type = F2FS_SUPER_MAGIC;
1257         buf->f_bsize = sbi->blocksize;
1258 
1259         buf->f_blocks = total_count - start_count;
1260         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1261                                                 sbi->current_reserved_blocks;
1262 
1263         spin_lock(&sbi->stat_lock);
1264         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1265                 buf->f_bfree = 0;
1266         else
1267                 buf->f_bfree -= sbi->unusable_block_count;
1268         spin_unlock(&sbi->stat_lock);
1269 
1270         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1271                 buf->f_bavail = buf->f_bfree -
1272                                 F2FS_OPTION(sbi).root_reserved_blocks;
1273         else
1274                 buf->f_bavail = 0;
1275 
1276         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1277 
1278         if (avail_node_count > user_block_count) {
1279                 buf->f_files = user_block_count;
1280                 buf->f_ffree = buf->f_bavail;
1281         } else {
1282                 buf->f_files = avail_node_count;
1283                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1284                                         buf->f_bavail);
1285         }
1286 
1287         buf->f_namelen = F2FS_NAME_LEN;
1288         buf->f_fsid.val[0] = (u32)id;
1289         buf->f_fsid.val[1] = (u32)(id >> 32);
1290 
1291 #ifdef CONFIG_QUOTA
1292         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1293                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1294                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1295         }
1296 #endif
1297         return 0;
1298 }
1299 
1300 static inline void f2fs_show_quota_options(struct seq_file *seq,
1301                                            struct super_block *sb)
1302 {
1303 #ifdef CONFIG_QUOTA
1304         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1305 
1306         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1307                 char *fmtname = "";
1308 
1309                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1310                 case QFMT_VFS_OLD:
1311                         fmtname = "vfsold";
1312                         break;
1313                 case QFMT_VFS_V0:
1314                         fmtname = "vfsv0";
1315                         break;
1316                 case QFMT_VFS_V1:
1317                         fmtname = "vfsv1";
1318                         break;
1319                 }
1320                 seq_printf(seq, ",jqfmt=%s", fmtname);
1321         }
1322 
1323         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1324                 seq_show_option(seq, "usrjquota",
1325                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1326 
1327         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1328                 seq_show_option(seq, "grpjquota",
1329                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1330 
1331         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1332                 seq_show_option(seq, "prjjquota",
1333                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1334 #endif
1335 }
1336 
1337 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1338 {
1339         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1340 
1341         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1342                 if (test_opt(sbi, FORCE_FG_GC))
1343                         seq_printf(seq, ",background_gc=%s", "sync");
1344                 else
1345                         seq_printf(seq, ",background_gc=%s", "on");
1346         } else {
1347                 seq_printf(seq, ",background_gc=%s", "off");
1348         }
1349         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1350                 seq_puts(seq, ",disable_roll_forward");
1351         if (test_opt(sbi, NORECOVERY))
1352                 seq_puts(seq, ",norecovery");
1353         if (test_opt(sbi, DISCARD))
1354                 seq_puts(seq, ",discard");
1355         else
1356                 seq_puts(seq, ",nodiscard");
1357         if (test_opt(sbi, NOHEAP))
1358                 seq_puts(seq, ",no_heap");
1359         else
1360                 seq_puts(seq, ",heap");
1361 #ifdef CONFIG_F2FS_FS_XATTR
1362         if (test_opt(sbi, XATTR_USER))
1363                 seq_puts(seq, ",user_xattr");
1364         else
1365                 seq_puts(seq, ",nouser_xattr");
1366         if (test_opt(sbi, INLINE_XATTR))
1367                 seq_puts(seq, ",inline_xattr");
1368         else
1369                 seq_puts(seq, ",noinline_xattr");
1370         if (test_opt(sbi, INLINE_XATTR_SIZE))
1371                 seq_printf(seq, ",inline_xattr_size=%u",
1372                                         F2FS_OPTION(sbi).inline_xattr_size);
1373 #endif
1374 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1375         if (test_opt(sbi, POSIX_ACL))
1376                 seq_puts(seq, ",acl");
1377         else
1378                 seq_puts(seq, ",noacl");
1379 #endif
1380         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1381                 seq_puts(seq, ",disable_ext_identify");
1382         if (test_opt(sbi, INLINE_DATA))
1383                 seq_puts(seq, ",inline_data");
1384         else
1385                 seq_puts(seq, ",noinline_data");
1386         if (test_opt(sbi, INLINE_DENTRY))
1387                 seq_puts(seq, ",inline_dentry");
1388         else
1389                 seq_puts(seq, ",noinline_dentry");
1390         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1391                 seq_puts(seq, ",flush_merge");
1392         if (test_opt(sbi, NOBARRIER))
1393                 seq_puts(seq, ",nobarrier");
1394         if (test_opt(sbi, FASTBOOT))
1395                 seq_puts(seq, ",fastboot");
1396         if (test_opt(sbi, EXTENT_CACHE))
1397                 seq_puts(seq, ",extent_cache");
1398         else
1399                 seq_puts(seq, ",noextent_cache");
1400         if (test_opt(sbi, DATA_FLUSH))
1401                 seq_puts(seq, ",data_flush");
1402 
1403         seq_puts(seq, ",mode=");
1404         if (test_opt(sbi, ADAPTIVE))
1405                 seq_puts(seq, "adaptive");
1406         else if (test_opt(sbi, LFS))
1407                 seq_puts(seq, "lfs");
1408         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1409         if (test_opt(sbi, RESERVE_ROOT))
1410                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1411                                 F2FS_OPTION(sbi).root_reserved_blocks,
1412                                 from_kuid_munged(&init_user_ns,
1413                                         F2FS_OPTION(sbi).s_resuid),
1414                                 from_kgid_munged(&init_user_ns,
1415                                         F2FS_OPTION(sbi).s_resgid));
1416         if (F2FS_IO_SIZE_BITS(sbi))
1417                 seq_printf(seq, ",io_bits=%u",
1418                                 F2FS_OPTION(sbi).write_io_size_bits);
1419 #ifdef CONFIG_F2FS_FAULT_INJECTION
1420         if (test_opt(sbi, FAULT_INJECTION)) {
1421                 seq_printf(seq, ",fault_injection=%u",
1422                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1423                 seq_printf(seq, ",fault_type=%u",
1424                                 F2FS_OPTION(sbi).fault_info.inject_type);
1425         }
1426 #endif
1427 #ifdef CONFIG_QUOTA
1428         if (test_opt(sbi, QUOTA))
1429                 seq_puts(seq, ",quota");
1430         if (test_opt(sbi, USRQUOTA))
1431                 seq_puts(seq, ",usrquota");
1432         if (test_opt(sbi, GRPQUOTA))
1433                 seq_puts(seq, ",grpquota");
1434         if (test_opt(sbi, PRJQUOTA))
1435                 seq_puts(seq, ",prjquota");
1436 #endif
1437         f2fs_show_quota_options(seq, sbi->sb);
1438         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1439                 seq_printf(seq, ",whint_mode=%s", "user-based");
1440         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1441                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1442 #ifdef CONFIG_FS_ENCRYPTION
1443         if (F2FS_OPTION(sbi).test_dummy_encryption)
1444                 seq_puts(seq, ",test_dummy_encryption");
1445 #endif
1446 
1447         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1448                 seq_printf(seq, ",alloc_mode=%s", "default");
1449         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1450                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1451 
1452         if (test_opt(sbi, DISABLE_CHECKPOINT))
1453                 seq_printf(seq, ",checkpoint=disable:%u",
1454                                 F2FS_OPTION(sbi).unusable_cap);
1455         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1456                 seq_printf(seq, ",fsync_mode=%s", "posix");
1457         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1458                 seq_printf(seq, ",fsync_mode=%s", "strict");
1459         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1460                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1461         return 0;
1462 }
1463 
1464 static void default_options(struct f2fs_sb_info *sbi)
1465 {
1466         /* init some FS parameters */
1467         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1468         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1469         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1470         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1471         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1472         F2FS_OPTION(sbi).test_dummy_encryption = false;
1473         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1474         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1475 
1476         set_opt(sbi, BG_GC);
1477         set_opt(sbi, INLINE_XATTR);
1478         set_opt(sbi, INLINE_DATA);
1479         set_opt(sbi, INLINE_DENTRY);
1480         set_opt(sbi, EXTENT_CACHE);
1481         set_opt(sbi, NOHEAP);
1482         clear_opt(sbi, DISABLE_CHECKPOINT);
1483         F2FS_OPTION(sbi).unusable_cap = 0;
1484         sbi->sb->s_flags |= SB_LAZYTIME;
1485         set_opt(sbi, FLUSH_MERGE);
1486         set_opt(sbi, DISCARD);
1487         if (f2fs_sb_has_blkzoned(sbi))
1488                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1489         else
1490                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1491 
1492 #ifdef CONFIG_F2FS_FS_XATTR
1493         set_opt(sbi, XATTR_USER);
1494 #endif
1495 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1496         set_opt(sbi, POSIX_ACL);
1497 #endif
1498 
1499         f2fs_build_fault_attr(sbi, 0, 0);
1500 }
1501 
1502 #ifdef CONFIG_QUOTA
1503 static int f2fs_enable_quotas(struct super_block *sb);
1504 #endif
1505 
1506 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1507 {
1508         unsigned int s_flags = sbi->sb->s_flags;
1509         struct cp_control cpc;
1510         int err = 0;
1511         int ret;
1512         block_t unusable;
1513 
1514         if (s_flags & SB_RDONLY) {
1515                 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1516                 return -EINVAL;
1517         }
1518         sbi->sb->s_flags |= SB_ACTIVE;
1519 
1520         f2fs_update_time(sbi, DISABLE_TIME);
1521 
1522         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1523                 mutex_lock(&sbi->gc_mutex);
1524                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1525                 if (err == -ENODATA) {
1526                         err = 0;
1527                         break;
1528                 }
1529                 if (err && err != -EAGAIN)
1530                         break;
1531         }
1532 
1533         ret = sync_filesystem(sbi->sb);
1534         if (ret || err) {
1535                 err = ret ? ret: err;
1536                 goto restore_flag;
1537         }
1538 
1539         unusable = f2fs_get_unusable_blocks(sbi);
1540         if (f2fs_disable_cp_again(sbi, unusable)) {
1541                 err = -EAGAIN;
1542                 goto restore_flag;
1543         }
1544 
1545         mutex_lock(&sbi->gc_mutex);
1546         cpc.reason = CP_PAUSE;
1547         set_sbi_flag(sbi, SBI_CP_DISABLED);
1548         err = f2fs_write_checkpoint(sbi, &cpc);
1549         if (err)
1550                 goto out_unlock;
1551 
1552         spin_lock(&sbi->stat_lock);
1553         sbi->unusable_block_count = unusable;
1554         spin_unlock(&sbi->stat_lock);
1555 
1556 out_unlock:
1557         mutex_unlock(&sbi->gc_mutex);
1558 restore_flag:
1559         sbi->sb->s_flags = s_flags;     /* Restore MS_RDONLY status */
1560         return err;
1561 }
1562 
1563 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1564 {
1565         mutex_lock(&sbi->gc_mutex);
1566         f2fs_dirty_to_prefree(sbi);
1567 
1568         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1569         set_sbi_flag(sbi, SBI_IS_DIRTY);
1570         mutex_unlock(&sbi->gc_mutex);
1571 
1572         f2fs_sync_fs(sbi->sb, 1);
1573 }
1574 
1575 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1576 {
1577         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1578         struct f2fs_mount_info org_mount_opt;
1579         unsigned long old_sb_flags;
1580         int err;
1581         bool need_restart_gc = false;
1582         bool need_stop_gc = false;
1583         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1584         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1585         bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1586         bool checkpoint_changed;
1587 #ifdef CONFIG_QUOTA
1588         int i, j;
1589 #endif
1590 
1591         /*
1592          * Save the old mount options in case we
1593          * need to restore them.
1594          */
1595         org_mount_opt = sbi->mount_opt;
1596         old_sb_flags = sb->s_flags;
1597 
1598 #ifdef CONFIG_QUOTA
1599         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1600         for (i = 0; i < MAXQUOTAS; i++) {
1601                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1602                         org_mount_opt.s_qf_names[i] =
1603                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1604                                 GFP_KERNEL);
1605                         if (!org_mount_opt.s_qf_names[i]) {
1606                                 for (j = 0; j < i; j++)
1607                                         kvfree(org_mount_opt.s_qf_names[j]);
1608                                 return -ENOMEM;
1609                         }
1610                 } else {
1611                         org_mount_opt.s_qf_names[i] = NULL;
1612                 }
1613         }
1614 #endif
1615 
1616         /* recover superblocks we couldn't write due to previous RO mount */
1617         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1618                 err = f2fs_commit_super(sbi, false);
1619                 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1620                           err);
1621                 if (!err)
1622                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1623         }
1624 
1625         default_options(sbi);
1626 
1627         /* parse mount options */
1628         err = parse_options(sb, data);
1629         if (err)
1630                 goto restore_opts;
1631         checkpoint_changed =
1632                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1633 
1634         /*
1635          * Previous and new state of filesystem is RO,
1636          * so skip checking GC and FLUSH_MERGE conditions.
1637          */
1638         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1639                 goto skip;
1640 
1641 #ifdef CONFIG_QUOTA
1642         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1643                 err = dquot_suspend(sb, -1);
1644                 if (err < 0)
1645                         goto restore_opts;
1646         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1647                 /* dquot_resume needs RW */
1648                 sb->s_flags &= ~SB_RDONLY;
1649                 if (sb_any_quota_suspended(sb)) {
1650                         dquot_resume(sb, -1);
1651                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1652                         err = f2fs_enable_quotas(sb);
1653                         if (err)
1654                                 goto restore_opts;
1655                 }
1656         }
1657 #endif
1658         /* disallow enable/disable extent_cache dynamically */
1659         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1660                 err = -EINVAL;
1661                 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1662                 goto restore_opts;
1663         }
1664 
1665         if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1666                 err = -EINVAL;
1667                 f2fs_warn(sbi, "switch io_bits option is not allowed");
1668                 goto restore_opts;
1669         }
1670 
1671         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1672                 err = -EINVAL;
1673                 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1674                 goto restore_opts;
1675         }
1676 
1677         /*
1678          * We stop the GC thread if FS is mounted as RO
1679          * or if background_gc = off is passed in mount
1680          * option. Also sync the filesystem.
1681          */
1682         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1683                 if (sbi->gc_thread) {
1684                         f2fs_stop_gc_thread(sbi);
1685                         need_restart_gc = true;
1686                 }
1687         } else if (!sbi->gc_thread) {
1688                 err = f2fs_start_gc_thread(sbi);
1689                 if (err)
1690                         goto restore_opts;
1691                 need_stop_gc = true;
1692         }
1693 
1694         if (*flags & SB_RDONLY ||
1695                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1696                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1697                 sync_inodes_sb(sb);
1698 
1699                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1700                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1701                 f2fs_sync_fs(sb, 1);
1702                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1703         }
1704 
1705         if (checkpoint_changed) {
1706                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1707                         err = f2fs_disable_checkpoint(sbi);
1708                         if (err)
1709                                 goto restore_gc;
1710                 } else {
1711                         f2fs_enable_checkpoint(sbi);
1712                 }
1713         }
1714 
1715         /*
1716          * We stop issue flush thread if FS is mounted as RO
1717          * or if flush_merge is not passed in mount option.
1718          */
1719         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1720                 clear_opt(sbi, FLUSH_MERGE);
1721                 f2fs_destroy_flush_cmd_control(sbi, false);
1722         } else {
1723                 err = f2fs_create_flush_cmd_control(sbi);
1724                 if (err)
1725                         goto restore_gc;
1726         }
1727 skip:
1728 #ifdef CONFIG_QUOTA
1729         /* Release old quota file names */
1730         for (i = 0; i < MAXQUOTAS; i++)
1731                 kvfree(org_mount_opt.s_qf_names[i]);
1732 #endif
1733         /* Update the POSIXACL Flag */
1734         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1735                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1736 
1737         limit_reserve_root(sbi);
1738         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1739         return 0;
1740 restore_gc:
1741         if (need_restart_gc) {
1742                 if (f2fs_start_gc_thread(sbi))
1743                         f2fs_warn(sbi, "background gc thread has stopped");
1744         } else if (need_stop_gc) {
1745                 f2fs_stop_gc_thread(sbi);
1746         }
1747 restore_opts:
1748 #ifdef CONFIG_QUOTA
1749         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1750         for (i = 0; i < MAXQUOTAS; i++) {
1751                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1752                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1753         }
1754 #endif
1755         sbi->mount_opt = org_mount_opt;
1756         sb->s_flags = old_sb_flags;
1757         return err;
1758 }
1759 
1760 #ifdef CONFIG_QUOTA
1761 /* Read data from quotafile */
1762 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1763                                size_t len, loff_t off)
1764 {
1765         struct inode *inode = sb_dqopt(sb)->files[type];
1766         struct address_space *mapping = inode->i_mapping;
1767         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1768         int offset = off & (sb->s_blocksize - 1);
1769         int tocopy;
1770         size_t toread;
1771         loff_t i_size = i_size_read(inode);
1772         struct page *page;
1773         char *kaddr;
1774 
1775         if (off > i_size)
1776                 return 0;
1777 
1778         if (off + len > i_size)
1779                 len = i_size - off;
1780         toread = len;
1781         while (toread > 0) {
1782                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1783 repeat:
1784                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1785                 if (IS_ERR(page)) {
1786                         if (PTR_ERR(page) == -ENOMEM) {
1787                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1788                                 goto repeat;
1789                         }
1790                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1791                         return PTR_ERR(page);
1792                 }
1793 
1794                 lock_page(page);
1795 
1796                 if (unlikely(page->mapping != mapping)) {
1797                         f2fs_put_page(page, 1);
1798                         goto repeat;
1799                 }
1800                 if (unlikely(!PageUptodate(page))) {
1801                         f2fs_put_page(page, 1);
1802                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1803                         return -EIO;
1804                 }
1805 
1806                 kaddr = kmap_atomic(page);
1807                 memcpy(data, kaddr + offset, tocopy);
1808                 kunmap_atomic(kaddr);
1809                 f2fs_put_page(page, 1);
1810 
1811                 offset = 0;
1812                 toread -= tocopy;
1813                 data += tocopy;
1814                 blkidx++;
1815         }
1816         return len;
1817 }
1818 
1819 /* Write to quotafile */
1820 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1821                                 const char *data, size_t len, loff_t off)
1822 {
1823         struct inode *inode = sb_dqopt(sb)->files[type];
1824         struct address_space *mapping = inode->i_mapping;
1825         const struct address_space_operations *a_ops = mapping->a_ops;
1826         int offset = off & (sb->s_blocksize - 1);
1827         size_t towrite = len;
1828         struct page *page;
1829         void *fsdata = NULL;
1830         char *kaddr;
1831         int err = 0;
1832         int tocopy;
1833 
1834         while (towrite > 0) {
1835                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1836                                                                 towrite);
1837 retry:
1838                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1839                                                         &page, &fsdata);
1840                 if (unlikely(err)) {
1841                         if (err == -ENOMEM) {
1842                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1843                                 goto retry;
1844                         }
1845                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1846                         break;
1847                 }
1848 
1849                 kaddr = kmap_atomic(page);
1850                 memcpy(kaddr + offset, data, tocopy);
1851                 kunmap_atomic(kaddr);
1852                 flush_dcache_page(page);
1853 
1854                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1855                                                 page, fsdata);
1856                 offset = 0;
1857                 towrite -= tocopy;
1858                 off += tocopy;
1859                 data += tocopy;
1860                 cond_resched();
1861         }
1862 
1863         if (len == towrite)
1864                 return err;
1865         inode->i_mtime = inode->i_ctime = current_time(inode);
1866         f2fs_mark_inode_dirty_sync(inode, false);
1867         return len - towrite;
1868 }
1869 
1870 static struct dquot **f2fs_get_dquots(struct inode *inode)
1871 {
1872         return F2FS_I(inode)->i_dquot;
1873 }
1874 
1875 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1876 {
1877         return &F2FS_I(inode)->i_reserved_quota;
1878 }
1879 
1880 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1881 {
1882         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1883                 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1884                 return 0;
1885         }
1886 
1887         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1888                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1889 }
1890 
1891 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1892 {
1893         int enabled = 0;
1894         int i, err;
1895 
1896         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1897                 err = f2fs_enable_quotas(sbi->sb);
1898                 if (err) {
1899                         f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
1900                         return 0;
1901                 }
1902                 return 1;
1903         }
1904 
1905         for (i = 0; i < MAXQUOTAS; i++) {
1906                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1907                         err = f2fs_quota_on_mount(sbi, i);
1908                         if (!err) {
1909                                 enabled = 1;
1910                                 continue;
1911                         }
1912                         f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
1913                                  err, i);
1914                 }
1915         }
1916         return enabled;
1917 }
1918 
1919 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1920                              unsigned int flags)
1921 {
1922         struct inode *qf_inode;
1923         unsigned long qf_inum;
1924         int err;
1925 
1926         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1927 
1928         qf_inum = f2fs_qf_ino(sb, type);
1929         if (!qf_inum)
1930                 return -EPERM;
1931 
1932         qf_inode = f2fs_iget(sb, qf_inum);
1933         if (IS_ERR(qf_inode)) {
1934                 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
1935                 return PTR_ERR(qf_inode);
1936         }
1937 
1938         /* Don't account quota for quota files to avoid recursion */
1939         qf_inode->i_flags |= S_NOQUOTA;
1940         err = dquot_enable(qf_inode, type, format_id, flags);
1941         iput(qf_inode);
1942         return err;
1943 }
1944 
1945 static int f2fs_enable_quotas(struct super_block *sb)
1946 {
1947         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1948         int type, err = 0;
1949         unsigned long qf_inum;
1950         bool quota_mopt[MAXQUOTAS] = {
1951                 test_opt(sbi, USRQUOTA),
1952                 test_opt(sbi, GRPQUOTA),
1953                 test_opt(sbi, PRJQUOTA),
1954         };
1955 
1956         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1957                 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
1958                 return 0;
1959         }
1960 
1961         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1962 
1963         for (type = 0; type < MAXQUOTAS; type++) {
1964                 qf_inum = f2fs_qf_ino(sb, type);
1965                 if (qf_inum) {
1966                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1967                                 DQUOT_USAGE_ENABLED |
1968                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1969                         if (err) {
1970                                 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
1971                                          type, err);
1972                                 for (type--; type >= 0; type--)
1973                                         dquot_quota_off(sb, type);
1974                                 set_sbi_flag(F2FS_SB(sb),
1975                                                 SBI_QUOTA_NEED_REPAIR);
1976                                 return err;
1977                         }
1978                 }
1979         }
1980         return 0;
1981 }
1982 
1983 int f2fs_quota_sync(struct super_block *sb, int type)
1984 {
1985         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1986         struct quota_info *dqopt = sb_dqopt(sb);
1987         int cnt;
1988         int ret;
1989 
1990         /*
1991          * do_quotactl
1992          *  f2fs_quota_sync
1993          *  down_read(quota_sem)
1994          *  dquot_writeback_dquots()
1995          *  f2fs_dquot_commit
1996          *                            block_operation
1997          *                            down_read(quota_sem)
1998          */
1999         f2fs_lock_op(sbi);
2000 
2001         down_read(&sbi->quota_sem);
2002         ret = dquot_writeback_dquots(sb, type);
2003         if (ret)
2004                 goto out;
2005 
2006         /*
2007          * Now when everything is written we can discard the pagecache so
2008          * that userspace sees the changes.
2009          */
2010         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2011                 struct address_space *mapping;
2012 
2013                 if (type != -1 && cnt != type)
2014                         continue;
2015                 if (!sb_has_quota_active(sb, cnt))
2016                         continue;
2017 
2018                 mapping = dqopt->files[cnt]->i_mapping;
2019 
2020                 ret = filemap_fdatawrite(mapping);
2021                 if (ret)
2022                         goto out;
2023 
2024                 /* if we are using journalled quota */
2025                 if (is_journalled_quota(sbi))
2026                         continue;
2027 
2028                 ret = filemap_fdatawait(mapping);
2029                 if (ret)
2030                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2031 
2032                 inode_lock(dqopt->files[cnt]);
2033                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2034                 inode_unlock(dqopt->files[cnt]);
2035         }
2036 out:
2037         if (ret)
2038                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2039         up_read(&sbi->quota_sem);
2040         f2fs_unlock_op(sbi);
2041         return ret;
2042 }
2043 
2044 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2045                                                         const struct path *path)
2046 {
2047         struct inode *inode;
2048         int err;
2049 
2050         /* if quota sysfile exists, deny enabling quota with specific file */
2051         if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2052                 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2053                 return -EBUSY;
2054         }
2055 
2056         err = f2fs_quota_sync(sb, type);
2057         if (err)
2058                 return err;
2059 
2060         err = dquot_quota_on(sb, type, format_id, path);
2061         if (err)
2062                 return err;
2063 
2064         inode = d_inode(path->dentry);
2065 
2066         inode_lock(inode);
2067         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2068         f2fs_set_inode_flags(inode);
2069         inode_unlock(inode);
2070         f2fs_mark_inode_dirty_sync(inode, false);
2071 
2072         return 0;
2073 }
2074 
2075 static int __f2fs_quota_off(struct super_block *sb, int type)
2076 {
2077         struct inode *inode = sb_dqopt(sb)->files[type];
2078         int err;
2079 
2080         if (!inode || !igrab(inode))
2081                 return dquot_quota_off(sb, type);
2082 
2083         err = f2fs_quota_sync(sb, type);
2084         if (err)
2085                 goto out_put;
2086 
2087         err = dquot_quota_off(sb, type);
2088         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2089                 goto out_put;
2090 
2091         inode_lock(inode);
2092         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2093         f2fs_set_inode_flags(inode);
2094         inode_unlock(inode);
2095         f2fs_mark_inode_dirty_sync(inode, false);
2096 out_put:
2097         iput(inode);
2098         return err;
2099 }
2100 
2101 static int f2fs_quota_off(struct super_block *sb, int type)
2102 {
2103         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2104         int err;
2105 
2106         err = __f2fs_quota_off(sb, type);
2107 
2108         /*
2109          * quotactl can shutdown journalled quota, result in inconsistence
2110          * between quota record and fs data by following updates, tag the
2111          * flag to let fsck be aware of it.
2112          */
2113         if (is_journalled_quota(sbi))
2114                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2115         return err;
2116 }
2117 
2118 void f2fs_quota_off_umount(struct super_block *sb)
2119 {
2120         int type;
2121         int err;
2122 
2123         for (type = 0; type < MAXQUOTAS; type++) {
2124                 err = __f2fs_quota_off(sb, type);
2125                 if (err) {
2126                         int ret = dquot_quota_off(sb, type);
2127 
2128                         f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2129                                  type, err, ret);
2130                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2131                 }
2132         }
2133         /*
2134          * In case of checkpoint=disable, we must flush quota blocks.
2135          * This can cause NULL exception for node_inode in end_io, since
2136          * put_super already dropped it.
2137          */
2138         sync_filesystem(sb);
2139 }
2140 
2141 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2142 {
2143         struct quota_info *dqopt = sb_dqopt(sb);
2144         int type;
2145 
2146         for (type = 0; type < MAXQUOTAS; type++) {
2147                 if (!dqopt->files[type])
2148                         continue;
2149                 f2fs_inode_synced(dqopt->files[type]);
2150         }
2151 }
2152 
2153 static int f2fs_dquot_commit(struct dquot *dquot)
2154 {
2155         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2156         int ret;
2157 
2158         down_read(&sbi->quota_sem);
2159         ret = dquot_commit(dquot);
2160         if (ret < 0)
2161                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2162         up_read(&sbi->quota_sem);
2163         return ret;
2164 }
2165 
2166 static int f2fs_dquot_acquire(struct dquot *dquot)
2167 {
2168         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2169         int ret;
2170 
2171         down_read(&sbi->quota_sem);
2172         ret = dquot_acquire(dquot);
2173         if (ret < 0)
2174                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2175         up_read(&sbi->quota_sem);
2176         return ret;
2177 }
2178 
2179 static int f2fs_dquot_release(struct dquot *dquot)
2180 {
2181         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2182         int ret;
2183 
2184         down_read(&sbi->quota_sem);
2185         ret = dquot_release(dquot);
2186         if (ret < 0)
2187                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2188         up_read(&sbi->quota_sem);
2189         return ret;
2190 }
2191 
2192 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2193 {
2194         struct super_block *sb = dquot->dq_sb;
2195         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2196         int ret;
2197 
2198         down_read(&sbi->quota_sem);
2199         ret = dquot_mark_dquot_dirty(dquot);
2200 
2201         /* if we are using journalled quota */
2202         if (is_journalled_quota(sbi))
2203                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2204 
2205         up_read(&sbi->quota_sem);
2206         return ret;
2207 }
2208 
2209 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2210 {
2211         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2212         int ret;
2213 
2214         down_read(&sbi->quota_sem);
2215         ret = dquot_commit_info(sb, type);
2216         if (ret < 0)
2217                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2218         up_read(&sbi->quota_sem);
2219         return ret;
2220 }
2221 
2222 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2223 {
2224         *projid = F2FS_I(inode)->i_projid;
2225         return 0;
2226 }
2227 
2228 static const struct dquot_operations f2fs_quota_operations = {
2229         .get_reserved_space = f2fs_get_reserved_space,
2230         .write_dquot    = f2fs_dquot_commit,
2231         .acquire_dquot  = f2fs_dquot_acquire,
2232         .release_dquot  = f2fs_dquot_release,
2233         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2234         .write_info     = f2fs_dquot_commit_info,
2235         .alloc_dquot    = dquot_alloc,
2236         .destroy_dquot  = dquot_destroy,
2237         .get_projid     = f2fs_get_projid,
2238         .get_next_id    = dquot_get_next_id,
2239 };
2240 
2241 static const struct quotactl_ops f2fs_quotactl_ops = {
2242         .quota_on       = f2fs_quota_on,
2243         .quota_off      = f2fs_quota_off,
2244         .quota_sync     = f2fs_quota_sync,
2245         .get_state      = dquot_get_state,
2246         .set_info       = dquot_set_dqinfo,
2247         .get_dqblk      = dquot_get_dqblk,
2248         .set_dqblk      = dquot_set_dqblk,
2249         .get_nextdqblk  = dquot_get_next_dqblk,
2250 };
2251 #else
2252 int f2fs_quota_sync(struct super_block *sb, int type)
2253 {
2254         return 0;
2255 }
2256 
2257 void f2fs_quota_off_umount(struct super_block *sb)
2258 {
2259 }
2260 #endif
2261 
2262 static const struct super_operations f2fs_sops = {
2263         .alloc_inode    = f2fs_alloc_inode,
2264         .free_inode     = f2fs_free_inode,
2265         .drop_inode     = f2fs_drop_inode,
2266         .write_inode    = f2fs_write_inode,
2267         .dirty_inode    = f2fs_dirty_inode,
2268         .show_options   = f2fs_show_options,
2269 #ifdef CONFIG_QUOTA
2270         .quota_read     = f2fs_quota_read,
2271         .quota_write    = f2fs_quota_write,
2272         .get_dquots     = f2fs_get_dquots,
2273 #endif
2274         .evict_inode    = f2fs_evict_inode,
2275         .put_super      = f2fs_put_super,
2276         .sync_fs        = f2fs_sync_fs,
2277         .freeze_fs      = f2fs_freeze,
2278         .unfreeze_fs    = f2fs_unfreeze,
2279         .statfs         = f2fs_statfs,
2280         .remount_fs     = f2fs_remount,
2281 };
2282 
2283 #ifdef CONFIG_FS_ENCRYPTION
2284 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2285 {
2286         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2287                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2288                                 ctx, len, NULL);
2289 }
2290 
2291 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2292                                                         void *fs_data)
2293 {
2294         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2295 
2296         /*
2297          * Encrypting the root directory is not allowed because fsck
2298          * expects lost+found directory to exist and remain unencrypted
2299          * if LOST_FOUND feature is enabled.
2300          *
2301          */
2302         if (f2fs_sb_has_lost_found(sbi) &&
2303                         inode->i_ino == F2FS_ROOT_INO(sbi))
2304                 return -EPERM;
2305 
2306         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2307                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2308                                 ctx, len, fs_data, XATTR_CREATE);
2309 }
2310 
2311 static bool f2fs_dummy_context(struct inode *inode)
2312 {
2313         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2314 }
2315 
2316 static const struct fscrypt_operations f2fs_cryptops = {
2317         .key_prefix     = "f2fs:",
2318         .get_context    = f2fs_get_context,
2319         .set_context    = f2fs_set_context,
2320         .dummy_context  = f2fs_dummy_context,
2321         .empty_dir      = f2fs_empty_dir,
2322         .max_namelen    = F2FS_NAME_LEN,
2323 };
2324 #endif
2325 
2326 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2327                 u64 ino, u32 generation)
2328 {
2329         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2330         struct inode *inode;
2331 
2332         if (f2fs_check_nid_range(sbi, ino))
2333                 return ERR_PTR(-ESTALE);
2334 
2335         /*
2336          * f2fs_iget isn't quite right if the inode is currently unallocated!
2337          * However f2fs_iget currently does appropriate checks to handle stale
2338          * inodes so everything is OK.
2339          */
2340         inode = f2fs_iget(sb, ino);
2341         if (IS_ERR(inode))
2342                 return ERR_CAST(inode);
2343         if (unlikely(generation && inode->i_generation != generation)) {
2344                 /* we didn't find the right inode.. */
2345                 iput(inode);
2346                 return ERR_PTR(-ESTALE);
2347         }
2348         return inode;
2349 }
2350 
2351 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2352                 int fh_len, int fh_type)
2353 {
2354         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2355                                     f2fs_nfs_get_inode);
2356 }
2357 
2358 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2359                 int fh_len, int fh_type)
2360 {
2361         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2362                                     f2fs_nfs_get_inode);
2363 }
2364 
2365 static const struct export_operations f2fs_export_ops = {
2366         .fh_to_dentry = f2fs_fh_to_dentry,
2367         .fh_to_parent = f2fs_fh_to_parent,
2368         .get_parent = f2fs_get_parent,
2369 };
2370 
2371 static loff_t max_file_blocks(void)
2372 {
2373         loff_t result = 0;
2374         loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2375 
2376         /*
2377          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2378          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2379          * space in inode.i_addr, it will be more safe to reassign
2380          * result as zero.
2381          */
2382 
2383         /* two direct node blocks */
2384         result += (leaf_count * 2);
2385 
2386         /* two indirect node blocks */
2387         leaf_count *= NIDS_PER_BLOCK;
2388         result += (leaf_count * 2);
2389 
2390         /* one double indirect node block */
2391         leaf_count *= NIDS_PER_BLOCK;
2392         result += leaf_count;
2393 
2394         return result;
2395 }
2396 
2397 static int __f2fs_commit_super(struct buffer_head *bh,
2398                         struct f2fs_super_block *super)
2399 {
2400         lock_buffer(bh);
2401         if (super)
2402                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2403         set_buffer_dirty(bh);
2404         unlock_buffer(bh);
2405 
2406         /* it's rare case, we can do fua all the time */
2407         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2408 }
2409 
2410 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2411                                         struct buffer_head *bh)
2412 {
2413         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2414                                         (bh->b_data + F2FS_SUPER_OFFSET);
2415         struct super_block *sb = sbi->sb;
2416         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2417         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2418         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2419         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2420         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2421         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2422         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2423         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2424         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2425         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2426         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2427         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2428         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2429         u64 main_end_blkaddr = main_blkaddr +
2430                                 (segment_count_main << log_blocks_per_seg);
2431         u64 seg_end_blkaddr = segment0_blkaddr +
2432                                 (segment_count << log_blocks_per_seg);
2433 
2434         if (segment0_blkaddr != cp_blkaddr) {
2435                 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2436                           segment0_blkaddr, cp_blkaddr);
2437                 return true;
2438         }
2439 
2440         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2441                                                         sit_blkaddr) {
2442                 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2443                           cp_blkaddr, sit_blkaddr,
2444                           segment_count_ckpt << log_blocks_per_seg);
2445                 return true;
2446         }
2447 
2448         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2449                                                         nat_blkaddr) {
2450                 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2451                           sit_blkaddr, nat_blkaddr,
2452                           segment_count_sit << log_blocks_per_seg);
2453                 return true;
2454         }
2455 
2456         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2457                                                         ssa_blkaddr) {
2458                 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2459                           nat_blkaddr, ssa_blkaddr,
2460                           segment_count_nat << log_blocks_per_seg);
2461                 return true;
2462         }
2463 
2464         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2465                                                         main_blkaddr) {
2466                 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2467                           ssa_blkaddr, main_blkaddr,
2468                           segment_count_ssa << log_blocks_per_seg);
2469                 return true;
2470         }
2471 
2472         if (main_end_blkaddr > seg_end_blkaddr) {
2473                 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2474                           main_blkaddr,
2475                           segment0_blkaddr +
2476                           (segment_count << log_blocks_per_seg),
2477                           segment_count_main << log_blocks_per_seg);
2478                 return true;
2479         } else if (main_end_blkaddr < seg_end_blkaddr) {
2480                 int err = 0;
2481                 char *res;
2482 
2483                 /* fix in-memory information all the time */
2484                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2485                                 segment0_blkaddr) >> log_blocks_per_seg);
2486 
2487                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2488                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2489                         res = "internally";
2490                 } else {
2491                         err = __f2fs_commit_super(bh, NULL);
2492                         res = err ? "failed" : "done";
2493                 }
2494                 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2495                           res, main_blkaddr,
2496                           segment0_blkaddr +
2497                           (segment_count << log_blocks_per_seg),
2498                           segment_count_main << log_blocks_per_seg);
2499                 if (err)
2500                         return true;
2501         }
2502         return false;
2503 }
2504 
2505 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2506                                 struct buffer_head *bh)
2507 {
2508         block_t segment_count, segs_per_sec, secs_per_zone;
2509         block_t total_sections, blocks_per_seg;
2510         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2511                                         (bh->b_data + F2FS_SUPER_OFFSET);
2512         unsigned int blocksize;
2513         size_t crc_offset = 0;
2514         __u32 crc = 0;
2515 
2516         if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2517                 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2518                           F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2519                 return -EINVAL;
2520         }
2521 
2522         /* Check checksum_offset and crc in superblock */
2523         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2524                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2525                 if (crc_offset !=
2526                         offsetof(struct f2fs_super_block, crc)) {
2527                         f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2528                                   crc_offset);
2529                         return -EFSCORRUPTED;
2530                 }
2531                 crc = le32_to_cpu(raw_super->crc);
2532                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2533                         f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2534                         return -EFSCORRUPTED;
2535                 }
2536         }
2537 
2538         /* Currently, support only 4KB page cache size */
2539         if (F2FS_BLKSIZE != PAGE_SIZE) {
2540                 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2541                           PAGE_SIZE);
2542                 return -EFSCORRUPTED;
2543         }
2544 
2545         /* Currently, support only 4KB block size */
2546         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2547         if (blocksize != F2FS_BLKSIZE) {
2548                 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2549                           blocksize);
2550                 return -EFSCORRUPTED;
2551         }
2552 
2553         /* check log blocks per segment */
2554         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2555                 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2556                           le32_to_cpu(raw_super->log_blocks_per_seg));
2557                 return -EFSCORRUPTED;
2558         }
2559 
2560         /* Currently, support 512/1024/2048/4096 bytes sector size */
2561         if (le32_to_cpu(raw_super->log_sectorsize) >
2562                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2563                 le32_to_cpu(raw_super->log_sectorsize) <
2564                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2565                 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2566                           le32_to_cpu(raw_super->log_sectorsize));
2567                 return -EFSCORRUPTED;
2568         }
2569         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2570                 le32_to_cpu(raw_super->log_sectorsize) !=
2571                         F2FS_MAX_LOG_SECTOR_SIZE) {
2572                 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2573                           le32_to_cpu(raw_super->log_sectors_per_block),
2574                           le32_to_cpu(raw_super->log_sectorsize));
2575                 return -EFSCORRUPTED;
2576         }
2577 
2578         segment_count = le32_to_cpu(raw_super->segment_count);
2579         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2580         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2581         total_sections = le32_to_cpu(raw_super->section_count);
2582 
2583         /* blocks_per_seg should be 512, given the above check */
2584         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2585 
2586         if (segment_count > F2FS_MAX_SEGMENT ||
2587                                 segment_count < F2FS_MIN_SEGMENTS) {
2588                 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2589                 return -EFSCORRUPTED;
2590         }
2591 
2592         if (total_sections > segment_count ||
2593                         total_sections < F2FS_MIN_SEGMENTS ||
2594                         segs_per_sec > segment_count || !segs_per_sec) {
2595                 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2596                           segment_count, total_sections, segs_per_sec);
2597                 return -EFSCORRUPTED;
2598         }
2599 
2600         if ((segment_count / segs_per_sec) < total_sections) {
2601                 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2602                           segment_count, segs_per_sec, total_sections);
2603                 return -EFSCORRUPTED;
2604         }
2605 
2606         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2607                 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2608                           segment_count, le64_to_cpu(raw_super->block_count));
2609                 return -EFSCORRUPTED;
2610         }
2611 
2612         if (secs_per_zone > total_sections || !secs_per_zone) {
2613                 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2614                           secs_per_zone, total_sections);
2615                 return -EFSCORRUPTED;
2616         }
2617         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2618                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2619                         (le32_to_cpu(raw_super->extension_count) +
2620                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2621                 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2622                           le32_to_cpu(raw_super->extension_count),
2623                           raw_super->hot_ext_count,
2624                           F2FS_MAX_EXTENSION);
2625                 return -EFSCORRUPTED;
2626         }
2627 
2628         if (le32_to_cpu(raw_super->cp_payload) >
2629                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2630                 f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2631                           le32_to_cpu(raw_super->cp_payload),
2632                           blocks_per_seg - F2FS_CP_PACKS);
2633                 return -EFSCORRUPTED;
2634         }
2635 
2636         /* check reserved ino info */
2637         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2638                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2639                 le32_to_cpu(raw_super->root_ino) != 3) {
2640                 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2641                           le32_to_cpu(raw_super->node_ino),
2642                           le32_to_cpu(raw_super->meta_ino),
2643                           le32_to_cpu(raw_super->root_ino));
2644                 return -EFSCORRUPTED;
2645         }
2646 
2647         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2648         if (sanity_check_area_boundary(sbi, bh))
2649                 return -EFSCORRUPTED;
2650 
2651         return 0;
2652 }
2653 
2654 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2655 {
2656         unsigned int total, fsmeta;
2657         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2658         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2659         unsigned int ovp_segments, reserved_segments;
2660         unsigned int main_segs, blocks_per_seg;
2661         unsigned int sit_segs, nat_segs;
2662         unsigned int sit_bitmap_size, nat_bitmap_size;
2663         unsigned int log_blocks_per_seg;
2664         unsigned int segment_count_main;
2665         unsigned int cp_pack_start_sum, cp_payload;
2666         block_t user_block_count, valid_user_blocks;
2667         block_t avail_node_count, valid_node_count;
2668         int i, j;
2669 
2670         total = le32_to_cpu(raw_super->segment_count);
2671         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2672         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2673         fsmeta += sit_segs;
2674         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2675         fsmeta += nat_segs;
2676         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2677         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2678 
2679         if (unlikely(fsmeta >= total))
2680                 return 1;
2681 
2682         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2683         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2684 
2685         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2686                         ovp_segments == 0 || reserved_segments == 0)) {
2687                 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2688                 return 1;
2689         }
2690 
2691         user_block_count = le64_to_cpu(ckpt->user_block_count);
2692         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2693         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2694         if (!user_block_count || user_block_count >=
2695                         segment_count_main << log_blocks_per_seg) {
2696                 f2fs_err(sbi, "Wrong user_block_count: %u",
2697                          user_block_count);
2698                 return 1;
2699         }
2700 
2701         valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2702         if (valid_user_blocks > user_block_count) {
2703                 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2704                          valid_user_blocks, user_block_count);
2705                 return 1;
2706         }
2707 
2708         valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2709         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2710         if (valid_node_count > avail_node_count) {
2711                 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2712                          valid_node_count, avail_node_count);
2713                 return 1;
2714         }
2715 
2716         main_segs = le32_to_cpu(raw_super->segment_count_main);
2717         blocks_per_seg = sbi->blocks_per_seg;
2718 
2719         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2720                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2721                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2722                         return 1;
2723                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2724                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2725                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2726                                 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2727                                          i, j,
2728                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2729                                 return 1;
2730                         }
2731                 }
2732         }
2733         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2734                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2735                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2736                         return 1;
2737                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2738                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2739                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2740                                 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2741                                          i, j,
2742                                          le32_to_cpu(ckpt->cur_data_segno[i]));
2743                                 return 1;
2744                         }
2745                 }
2746         }
2747         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2748                 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2749                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2750                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2751                                 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2752                                          i, j,
2753                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2754                                 return 1;
2755                         }
2756                 }
2757         }
2758 
2759         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2760         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2761 
2762         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2763                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2764                 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2765                          sit_bitmap_size, nat_bitmap_size);
2766                 return 1;
2767         }
2768 
2769         cp_pack_start_sum = __start_sum_addr(sbi);
2770         cp_payload = __cp_payload(sbi);
2771         if (cp_pack_start_sum < cp_payload + 1 ||
2772                 cp_pack_start_sum > blocks_per_seg - 1 -
2773                         NR_CURSEG_TYPE) {
2774                 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2775                          cp_pack_start_sum);
2776                 return 1;
2777         }
2778 
2779         if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2780                 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2781                 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2782                           "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2783                           "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2784                           le32_to_cpu(ckpt->checksum_offset));
2785                 return 1;
2786         }
2787 
2788         if (unlikely(f2fs_cp_error(sbi))) {
2789                 f2fs_err(sbi, "A bug case: need to run fsck");
2790                 return 1;
2791         }
2792         return 0;
2793 }
2794 
2795 static void init_sb_info(struct f2fs_sb_info *sbi)
2796 {
2797         struct f2fs_super_block *raw_super = sbi->raw_super;
2798         int i;
2799 
2800         sbi->log_sectors_per_block =
2801                 le32_to_cpu(raw_super->log_sectors_per_block);
2802         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2803         sbi->blocksize = 1 << sbi->log_blocksize;
2804         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2805         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2806         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2807         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2808         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2809         sbi->total_node_count =
2810                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2811                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2812         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2813         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2814         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2815         sbi->cur_victim_sec = NULL_SECNO;
2816         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2817         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2818         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2819         sbi->migration_granularity = sbi->segs_per_sec;
2820 
2821         sbi->dir_level = DEF_DIR_LEVEL;
2822         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2823         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2824         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2825         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2826         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2827         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2828                                 DEF_UMOUNT_DISCARD_TIMEOUT;
2829         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2830 
2831         for (i = 0; i < NR_COUNT_TYPE; i++)
2832                 atomic_set(&sbi->nr_pages[i], 0);
2833 
2834         for (i = 0; i < META; i++)
2835                 atomic_set(&sbi->wb_sync_req[i], 0);
2836 
2837         INIT_LIST_HEAD(&sbi->s_list);
2838         mutex_init(&sbi->umount_mutex);
2839         init_rwsem(&sbi->io_order_lock);
2840         spin_lock_init(&sbi->cp_lock);
2841 
2842         sbi->dirty_device = 0;
2843         spin_lock_init(&sbi->dev_lock);
2844 
2845         init_rwsem(&sbi->sb_lock);
2846 }
2847 
2848 static int init_percpu_info(struct f2fs_sb_info *sbi)
2849 {
2850         int err;
2851 
2852         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2853         if (err)
2854                 return err;
2855 
2856         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2857                                                                 GFP_KERNEL);
2858         if (err)
2859                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2860 
2861         return err;
2862 }
2863 
2864 #ifdef CONFIG_BLK_DEV_ZONED
2865 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2866 {
2867         struct block_device *bdev = FDEV(devi).bdev;
2868         sector_t nr_sectors = bdev->bd_part->nr_sects;
2869         sector_t sector = 0;
2870         struct blk_zone *zones;
2871         unsigned int i, nr_zones;
2872         unsigned int n = 0;
2873         int err = -EIO;
2874 
2875         if (!f2fs_sb_has_blkzoned(sbi))
2876                 return 0;
2877 
2878         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2879                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2880                 return -EINVAL;
2881         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2882         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2883                                 __ilog2_u32(sbi->blocks_per_blkz))
2884                 return -EINVAL;
2885         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2886         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2887                                         sbi->log_blocks_per_blkz;
2888         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2889                 FDEV(devi).nr_blkz++;
2890 
2891         FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
2892                                         BITS_TO_LONGS(FDEV(devi).nr_blkz)
2893                                         * sizeof(unsigned long),
2894                                         GFP_KERNEL);
2895         if (!FDEV(devi).blkz_seq)
2896                 return -ENOMEM;
2897 
2898 #define F2FS_REPORT_NR_ZONES   4096
2899 
2900         zones = f2fs_kzalloc(sbi,
2901                              array_size(F2FS_REPORT_NR_ZONES,
2902                                         sizeof(struct blk_zone)),
2903                              GFP_KERNEL);
2904         if (!zones)
2905                 return -ENOMEM;
2906 
2907         /* Get block zones type */
2908         while (zones && sector < nr_sectors) {
2909 
2910                 nr_zones = F2FS_REPORT_NR_ZONES;
2911                 err = blkdev_report_zones(bdev, sector, zones, &nr_zones);
2912                 if (err)
2913                         break;
2914                 if (!nr_zones) {
2915                         err = -EIO;
2916                         break;
2917                 }
2918 
2919                 for (i = 0; i < nr_zones; i++) {
2920                         if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL)
2921                                 set_bit(n, FDEV(devi).blkz_seq);
2922                         sector += zones[i].len;
2923                         n++;
2924                 }
2925         }
2926 
2927         kvfree(zones);
2928 
2929         return err;
2930 }
2931 #endif
2932 
2933 /*
2934  * Read f2fs raw super block.
2935  * Because we have two copies of super block, so read both of them
2936  * to get the first valid one. If any one of them is broken, we pass
2937  * them recovery flag back to the caller.
2938  */
2939 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2940                         struct f2fs_super_block **raw_super,
2941                         int *valid_super_block, int *recovery)
2942 {
2943         struct super_block *sb = sbi->sb;
2944         int block;
2945         struct buffer_head *bh;
2946         struct f2fs_super_block *super;
2947         int err = 0;
2948 
2949         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2950         if (!super)
2951                 return -ENOMEM;
2952 
2953         for (block = 0; block < 2; block++) {
2954                 bh = sb_bread(sb, block);
2955                 if (!bh) {
2956                         f2fs_err(sbi, "Unable to read %dth superblock",
2957                                  block + 1);
2958                         err = -EIO;
2959                         continue;
2960                 }
2961 
2962                 /* sanity checking of raw super */
2963                 err = sanity_check_raw_super(sbi, bh);
2964                 if (err) {
2965                         f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
2966                                  block + 1);
2967                         brelse(bh);
2968                         continue;
2969                 }
2970 
2971                 if (!*raw_super) {
2972                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2973                                                         sizeof(*super));
2974                         *valid_super_block = block;
2975                         *raw_super = super;
2976                 }
2977                 brelse(bh);
2978         }
2979 
2980         /* Fail to read any one of the superblocks*/
2981         if (err < 0)
2982                 *recovery = 1;
2983 
2984         /* No valid superblock */
2985         if (!*raw_super)
2986                 kvfree(super);
2987         else
2988                 err = 0;
2989 
2990         return err;
2991 }
2992 
2993 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2994 {
2995         struct buffer_head *bh;
2996         __u32 crc = 0;
2997         int err;
2998 
2999         if ((recover && f2fs_readonly(sbi->sb)) ||
3000                                 bdev_read_only(sbi->sb->s_bdev)) {
3001                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3002                 return -EROFS;
3003         }
3004 
3005         /* we should update superblock crc here */
3006         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3007                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3008                                 offsetof(struct f2fs_super_block, crc));
3009                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3010         }
3011 
3012         /* write back-up superblock first */
3013         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3014         if (!bh)
3015                 return -EIO;
3016         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3017         brelse(bh);
3018 
3019         /* if we are in recovery path, skip writing valid superblock */
3020         if (recover || err)
3021                 return err;
3022 
3023         /* write current valid superblock */
3024         bh = sb_bread(sbi->sb, sbi->valid_super_block);
3025         if (!bh)
3026                 return -EIO;
3027         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3028         brelse(bh);
3029         return err;
3030 }
3031 
3032 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3033 {
3034         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3035         unsigned int max_devices = MAX_DEVICES;
3036         int i;
3037 
3038         /* Initialize single device information */
3039         if (!RDEV(0).path[0]) {
3040                 if (!bdev_is_zoned(sbi->sb->s_bdev))
3041                         return 0;
3042                 max_devices = 1;
3043         }
3044 
3045         /*
3046          * Initialize multiple devices information, or single
3047          * zoned block device information.
3048          */
3049         sbi->devs = f2fs_kzalloc(sbi,
3050                                  array_size(max_devices,
3051                                             sizeof(struct f2fs_dev_info)),
3052                                  GFP_KERNEL);
3053         if (!sbi->devs)
3054                 return -ENOMEM;
3055 
3056         for (i = 0; i < max_devices; i++) {
3057 
3058                 if (i > 0 && !RDEV(i).path[0])
3059                         break;
3060 
3061                 if (max_devices == 1) {
3062                         /* Single zoned block device mount */
3063                         FDEV(0).bdev =
3064                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3065                                         sbi->sb->s_mode, sbi->sb->s_type);
3066                 } else {
3067                         /* Multi-device mount */
3068                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3069                         FDEV(i).total_segments =
3070                                 le32_to_cpu(RDEV(i).total_segments);
3071                         if (i == 0) {
3072                                 FDEV(i).start_blk = 0;
3073                                 FDEV(i).end_blk = FDEV(i).start_blk +
3074                                     (FDEV(i).total_segments <<
3075                                     sbi->log_blocks_per_seg) - 1 +
3076                                     le32_to_cpu(raw_super->segment0_blkaddr);
3077                         } else {
3078                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3079                                 FDEV(i).end_blk = FDEV(i).start_blk +
3080                                         (FDEV(i).total_segments <<
3081                                         sbi->log_blocks_per_seg) - 1;
3082                         }
3083                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3084                                         sbi->sb->s_mode, sbi->sb->s_type);
3085                 }
3086                 if (IS_ERR(FDEV(i).bdev))
3087                         return PTR_ERR(FDEV(i).bdev);
3088 
3089                 /* to release errored devices */
3090                 sbi->s_ndevs = i + 1;
3091 
3092 #ifdef CONFIG_BLK_DEV_ZONED
3093                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3094                                 !f2fs_sb_has_blkzoned(sbi)) {
3095                         f2fs_err(sbi, "Zoned block device feature not enabled\n");
3096                         return -EINVAL;
3097                 }
3098                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3099                         if (init_blkz_info(sbi, i)) {
3100                                 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3101                                 return -EINVAL;
3102                         }
3103                         if (max_devices == 1)
3104                                 break;
3105                         f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3106                                   i, FDEV(i).path,
3107                                   FDEV(i).total_segments,
3108                                   FDEV(i).start_blk, FDEV(i).end_blk,
3109                                   bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3110                                   "Host-aware" : "Host-managed");
3111                         continue;
3112                 }
3113 #endif
3114                 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3115                           i, FDEV(i).path,
3116                           FDEV(i).total_segments,
3117                           FDEV(i).start_blk, FDEV(i).end_blk);
3118         }
3119         f2fs_info(sbi,
3120                   "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3121         return 0;
3122 }
3123 
3124 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3125 {
3126 #ifdef CONFIG_UNICODE
3127         if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3128                 const struct f2fs_sb_encodings *encoding_info;
3129                 struct unicode_map *encoding;
3130                 __u16 encoding_flags;
3131 
3132                 if (f2fs_sb_has_encrypt(sbi)) {
3133                         f2fs_err(sbi,
3134                                 "Can't mount with encoding and encryption");
3135                         return -EINVAL;
3136                 }
3137 
3138                 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3139                                           &encoding_flags)) {
3140                         f2fs_err(sbi,
3141                                  "Encoding requested by superblock is unknown");
3142                         return -EINVAL;
3143                 }
3144 
3145                 encoding = utf8_load(encoding_info->version);
3146                 if (IS_ERR(encoding)) {
3147                         f2fs_err(sbi,
3148                                  "can't mount with superblock charset: %s-%s "
3149                                  "not supported by the kernel. flags: 0x%x.",
3150                                  encoding_info->name, encoding_info->version,
3151                                  encoding_flags);
3152                         return PTR_ERR(encoding);
3153                 }
3154                 f2fs_info(sbi, "Using encoding defined by superblock: "
3155                          "%s-%s with flags 0x%hx", encoding_info->name,
3156                          encoding_info->version?:"\b", encoding_flags);
3157 
3158                 sbi->s_encoding = encoding;
3159                 sbi->s_encoding_flags = encoding_flags;
3160                 sbi->sb->s_d_op = &f2fs_dentry_ops;
3161         }
3162 #else
3163         if (f2fs_sb_has_casefold(sbi)) {
3164                 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3165                 return -EINVAL;
3166         }
3167 #endif
3168         return 0;
3169 }
3170 
3171 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3172 {
3173         struct f2fs_sm_info *sm_i = SM_I(sbi);
3174 
3175         /* adjust parameters according to the volume size */
3176         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3177                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3178                 sm_i->dcc_info->discard_granularity = 1;
3179                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3180         }
3181 
3182         sbi->readdir_ra = 1;
3183 }
3184 
3185 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3186 {
3187         struct f2fs_sb_info *sbi;
3188         struct f2fs_super_block *raw_super;
3189         struct inode *root;
3190         int err;
3191         bool skip_recovery = false, need_fsck = false;
3192         char *options = NULL;
3193         int recovery, i, valid_super_block;
3194         struct curseg_info *seg_i;
3195         int retry_cnt = 1;
3196 
3197 try_onemore:
3198         err = -EINVAL;
3199         raw_super = NULL;
3200         valid_super_block = -1;
3201         recovery = 0;
3202 
3203         /* allocate memory for f2fs-specific super block info */
3204         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3205         if (!sbi)
3206                 return -ENOMEM;
3207 
3208         sbi->sb = sb;
3209 
3210         /* Load the checksum driver */
3211         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3212         if (IS_ERR(sbi->s_chksum_driver)) {
3213                 f2fs_err(sbi, "Cannot load crc32 driver.");
3214                 err = PTR_ERR(sbi->s_chksum_driver);
3215                 sbi->s_chksum_driver = NULL;
3216                 goto free_sbi;
3217         }
3218 
3219         /* set a block size */
3220         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3221                 f2fs_err(sbi, "unable to set blocksize");
3222                 goto free_sbi;
3223         }
3224 
3225         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3226                                                                 &recovery);
3227         if (err)
3228                 goto free_sbi;
3229 
3230         sb->s_fs_info = sbi;
3231         sbi->raw_super = raw_super;
3232 
3233         /* precompute checksum seed for metadata */
3234         if (f2fs_sb_has_inode_chksum(sbi))
3235                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3236                                                 sizeof(raw_super->uuid));
3237 
3238         /*
3239          * The BLKZONED feature indicates that the drive was formatted with
3240          * zone alignment optimization. This is optional for host-aware
3241          * devices, but mandatory for host-managed zoned block devices.
3242          */
3243 #ifndef CONFIG_BLK_DEV_ZONED
3244         if (f2fs_sb_has_blkzoned(sbi)) {
3245                 f2fs_err(sbi, "Zoned block device support is not enabled");
3246                 err = -EOPNOTSUPP;
3247                 goto free_sb_buf;
3248         }
3249 #endif
3250         default_options(sbi);
3251         /* parse mount options */
3252         options = kstrdup((const char *)data, GFP_KERNEL);
3253         if (data && !options) {
3254                 err = -ENOMEM;
3255                 goto free_sb_buf;
3256         }
3257 
3258         err = parse_options(sb, options);
3259         if (err)
3260                 goto free_options;
3261 
3262         sbi->max_file_blocks = max_file_blocks();
3263         sb->s_maxbytes = sbi->max_file_blocks <<
3264                                 le32_to_cpu(raw_super->log_blocksize);
3265         sb->s_max_links = F2FS_LINK_MAX;
3266 
3267         err = f2fs_setup_casefold(sbi);
3268         if (err)
3269                 goto free_options;
3270 
3271 #ifdef CONFIG_QUOTA
3272         sb->dq_op = &f2fs_quota_operations;
3273         sb->s_qcop = &f2fs_quotactl_ops;
3274         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3275 
3276         if (f2fs_sb_has_quota_ino(sbi)) {
3277                 for (i = 0; i < MAXQUOTAS; i++) {
3278                         if (f2fs_qf_ino(sbi->sb, i))
3279                                 sbi->nquota_files++;
3280                 }
3281         }
3282 #endif
3283 
3284         sb->s_op = &f2fs_sops;
3285 #ifdef CONFIG_FS_ENCRYPTION
3286         sb->s_cop = &f2fs_cryptops;
3287 #endif
3288 #ifdef CONFIG_FS_VERITY
3289         sb->s_vop = &f2fs_verityops;
3290 #endif
3291         sb->s_xattr = f2fs_xattr_handlers;
3292         sb->s_export_op = &f2fs_export_ops;
3293         sb->s_magic = F2FS_SUPER_MAGIC;
3294         sb->s_time_gran = 1;
3295         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3296                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3297         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3298         sb->s_iflags |= SB_I_CGROUPWB;
3299 
3300         /* init f2fs-specific super block info */
3301         sbi->valid_super_block = valid_super_block;
3302         mutex_init(&sbi->gc_mutex);
3303         mutex_init(&sbi->writepages);
3304         mutex_init(&sbi->cp_mutex);
3305         mutex_init(&sbi->resize_mutex);
3306         init_rwsem(&sbi->node_write);
3307         init_rwsem(&sbi->node_change);
3308 
3309         /* disallow all the data/node/meta page writes */
3310         set_sbi_flag(sbi, SBI_POR_DOING);
3311         spin_lock_init(&sbi->stat_lock);
3312 
3313         /* init iostat info */
3314         spin_lock_init(&sbi->iostat_lock);
3315         sbi->iostat_enable = false;
3316 
3317         for (i = 0; i < NR_PAGE_TYPE; i++) {
3318                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3319                 int j;
3320 
3321                 sbi->write_io[i] =
3322                         f2fs_kmalloc(sbi,
3323                                      array_size(n,
3324                                                 sizeof(struct f2fs_bio_info)),
3325                                      GFP_KERNEL);
3326                 if (!sbi->write_io[i]) {
3327                         err = -ENOMEM;
3328                         goto free_bio_info;
3329                 }
3330 
3331                 for (j = HOT; j < n; j++) {
3332                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3333                         sbi->write_io[i][j].sbi = sbi;
3334                         sbi->write_io[i][j].bio = NULL;
3335                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3336                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3337                 }
3338         }
3339 
3340         init_rwsem(&sbi->cp_rwsem);
3341         init_rwsem(&sbi->quota_sem);
3342         init_waitqueue_head(&sbi->cp_wait);
3343         init_sb_info(sbi);
3344 
3345         err = init_percpu_info(sbi);
3346         if (err)
3347                 goto free_bio_info;
3348 
3349         if (F2FS_IO_ALIGNED(sbi)) {
3350                 sbi->write_io_dummy =
3351                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3352                 if (!sbi->write_io_dummy) {
3353                         err = -ENOMEM;
3354                         goto free_percpu;
3355                 }
3356         }
3357 
3358         /* get an inode for meta space */
3359         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3360         if (IS_ERR(sbi->meta_inode)) {
3361                 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3362                 err = PTR_ERR(sbi->meta_inode);
3363                 goto free_io_dummy;
3364         }
3365 
3366         err = f2fs_get_valid_checkpoint(sbi);
3367         if (err) {
3368                 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3369                 goto free_meta_inode;
3370         }
3371 
3372         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3373                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3374         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3375                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3376                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3377         }
3378 
3379         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3380                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3381 
3382         /* Initialize device list */
3383         err = f2fs_scan_devices(sbi);
3384         if (err) {
3385                 f2fs_err(sbi, "Failed to find devices");
3386                 goto free_devices;
3387         }
3388 
3389         sbi->total_valid_node_count =
3390                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3391         percpu_counter_set(&sbi->total_valid_inode_count,
3392                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3393         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3394         sbi->total_valid_block_count =
3395                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3396         sbi->last_valid_block_count = sbi->total_valid_block_count;
3397         sbi->reserved_blocks = 0;
3398         sbi->current_reserved_blocks = 0;
3399         limit_reserve_root(sbi);
3400 
3401         for (i = 0; i < NR_INODE_TYPE; i++) {
3402                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3403                 spin_lock_init(&sbi->inode_lock[i]);
3404         }
3405         mutex_init(&sbi->flush_lock);
3406 
3407         f2fs_init_extent_cache_info(sbi);
3408 
3409         f2fs_init_ino_entry_info(sbi);
3410 
3411         f2fs_init_fsync_node_info(sbi);
3412 
3413         /* setup f2fs internal modules */
3414         err = f2fs_build_segment_manager(sbi);
3415         if (err) {
3416                 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3417                          err);
3418                 goto free_sm;
3419         }
3420         err = f2fs_build_node_manager(sbi);
3421         if (err) {
3422                 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3423                          err);
3424                 goto free_nm;
3425         }
3426 
3427         /* For write statistics */
3428         if (sb->s_bdev->bd_part)
3429                 sbi->sectors_written_start =
3430                         (u64)part_stat_read(sb->s_bdev->bd_part,
3431                                             sectors[STAT_WRITE]);
3432 
3433         /* Read accumulated write IO statistics if exists */
3434         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3435         if (__exist_node_summaries(sbi))
3436                 sbi->kbytes_written =
3437                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3438 
3439         f2fs_build_gc_manager(sbi);
3440 
3441         err = f2fs_build_stats(sbi);
3442         if (err)
3443                 goto free_nm;
3444 
3445         /* get an inode for node space */
3446         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3447         if (IS_ERR(sbi->node_inode)) {
3448                 f2fs_err(sbi, "Failed to read node inode");
3449                 err = PTR_ERR(sbi->node_inode);
3450                 goto free_stats;
3451         }
3452 
3453         /* read root inode and dentry */
3454         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3455         if (IS_ERR(root)) {
3456                 f2fs_err(sbi, "Failed to read root inode");
3457                 err = PTR_ERR(root);
3458                 goto free_node_inode;
3459         }
3460         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3461                         !root->i_size || !root->i_nlink) {
3462                 iput(root);
3463                 err = -EINVAL;
3464                 goto free_node_inode;
3465         }
3466 
3467         sb->s_root = d_make_root(root); /* allocate root dentry */
3468         if (!sb->s_root) {
3469                 err = -ENOMEM;
3470                 goto free_node_inode;
3471         }
3472 
3473         err = f2fs_register_sysfs(sbi);
3474         if (err)
3475                 goto free_root_inode;
3476 
3477 #ifdef CONFIG_QUOTA
3478         /* Enable quota usage during mount */
3479         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3480                 err = f2fs_enable_quotas(sb);
3481                 if (err)
3482                         f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3483         }
3484 #endif
3485         /* if there are nt orphan nodes free them */
3486         err = f2fs_recover_orphan_inodes(sbi);
3487         if (err)
3488                 goto free_meta;
3489 
3490         if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3491                 goto reset_checkpoint;
3492 
3493         /* recover fsynced data */
3494         if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3495                         !test_opt(sbi, NORECOVERY)) {
3496                 /*
3497                  * mount should be failed, when device has readonly mode, and
3498                  * previous checkpoint was not done by clean system shutdown.
3499                  */
3500                 if (f2fs_hw_is_readonly(sbi)) {
3501                         if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3502                                 err = -EROFS;
3503                                 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3504                                 goto free_meta;
3505                         }
3506                         f2fs_info(sbi, "write access unavailable, skipping recovery");
3507                         goto reset_checkpoint;
3508                 }
3509 
3510                 if (need_fsck)
3511                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3512 
3513                 if (skip_recovery)
3514                         goto reset_checkpoint;
3515 
3516                 err = f2fs_recover_fsync_data(sbi, false);
3517                 if (err < 0) {
3518                         if (err != -ENOMEM)
3519                                 skip_recovery = true;
3520                         need_fsck = true;
3521                         f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3522                                  err);
3523                         goto free_meta;
3524                 }
3525         } else {
3526                 err = f2fs_recover_fsync_data(sbi, true);
3527 
3528                 if (!f2fs_readonly(sb) && err > 0) {
3529                         err = -EINVAL;
3530                         f2fs_err(sbi, "Need to recover fsync data");
3531                         goto free_meta;
3532                 }
3533         }
3534 reset_checkpoint:
3535         /* f2fs_recover_fsync_data() cleared this already */
3536         clear_sbi_flag(sbi, SBI_POR_DOING);
3537 
3538         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3539                 err = f2fs_disable_checkpoint(sbi);
3540                 if (err)
3541                         goto sync_free_meta;
3542         } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3543                 f2fs_enable_checkpoint(sbi);
3544         }
3545 
3546         /*
3547          * If filesystem is not mounted as read-only then
3548          * do start the gc_thread.
3549          */
3550         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3551                 /* After POR, we can run background GC thread.*/
3552                 err = f2fs_start_gc_thread(sbi);
3553                 if (err)
3554                         goto sync_free_meta;
3555         }
3556         kvfree(options);
3557 
3558         /* recover broken superblock */
3559         if (recovery) {
3560                 err = f2fs_commit_super(sbi, true);
3561                 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3562                           sbi->valid_super_block ? 1 : 2, err);
3563         }
3564 
3565         f2fs_join_shrinker(sbi);
3566 
3567         f2fs_tuning_parameters(sbi);
3568 
3569         f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3570                     cur_cp_version(F2FS_CKPT(sbi)));
3571         f2fs_update_time(sbi, CP_TIME);
3572         f2fs_update_time(sbi, REQ_TIME);
3573         clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3574         return 0;
3575 
3576 sync_free_meta:
3577         /* safe to flush all the data */
3578         sync_filesystem(sbi->sb);
3579         retry_cnt = 0;
3580 
3581 free_meta:
3582 #ifdef CONFIG_QUOTA
3583         f2fs_truncate_quota_inode_pages(sb);
3584         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3585                 f2fs_quota_off_umount(sbi->sb);
3586 #endif
3587         /*
3588          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3589          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3590          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3591          * falls into an infinite loop in f2fs_sync_meta_pages().
3592          */
3593         truncate_inode_pages_final(META_MAPPING(sbi));
3594         /* evict some inodes being cached by GC */
3595         evict_inodes(sb);
3596         f2fs_unregister_sysfs(sbi);
3597 free_root_inode:
3598         dput(sb->s_root);
3599         sb->s_root = NULL;
3600 free_node_inode:
3601         f2fs_release_ino_entry(sbi, true);
3602         truncate_inode_pages_final(NODE_MAPPING(sbi));
3603         iput(sbi->node_inode);
3604         sbi->node_inode = NULL;
3605 free_stats:
3606         f2fs_destroy_stats(sbi);
3607 free_nm:
3608         f2fs_destroy_node_manager(sbi);
3609 free_sm:
3610         f2fs_destroy_segment_manager(sbi);
3611 free_devices:
3612         destroy_device_list(sbi);
3613         kvfree(sbi->ckpt);
3614 free_meta_inode:
3615         make_bad_inode(sbi->meta_inode);
3616         iput(sbi->meta_inode);
3617         sbi->meta_inode = NULL;
3618 free_io_dummy:
3619         mempool_destroy(sbi->write_io_dummy);
3620 free_percpu:
3621         destroy_percpu_info(sbi);
3622 free_bio_info:
3623         for (i = 0; i < NR_PAGE_TYPE; i++)
3624                 kvfree(sbi->write_io[i]);
3625 
3626 #ifdef CONFIG_UNICODE
3627         utf8_unload(sbi->s_encoding);
3628 #endif
3629 free_options:
3630 #ifdef CONFIG_QUOTA
3631         for (i = 0; i < MAXQUOTAS; i++)
3632                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3633 #endif
3634         kvfree(options);
3635 free_sb_buf:
3636         kvfree(raw_super);
3637 free_sbi:
3638         if (sbi->s_chksum_driver)
3639                 crypto_free_shash(sbi->s_chksum_driver);
3640         kvfree(sbi);
3641 
3642         /* give only one another chance */
3643         if (retry_cnt > 0 && skip_recovery) {
3644                 retry_cnt--;
3645                 shrink_dcache_sb(sb);
3646                 goto try_onemore;
3647         }
3648         return err;
3649 }
3650 
3651 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3652                         const char *dev_name, void *data)
3653 {
3654         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3655 }
3656 
3657 static void kill_f2fs_super(struct super_block *sb)
3658 {
3659         if (sb->s_root) {
3660                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3661 
3662                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3663                 f2fs_stop_gc_thread(sbi);
3664                 f2fs_stop_discard_thread(sbi);
3665 
3666                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3667                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3668                         struct cp_control cpc = {
3669                                 .reason = CP_UMOUNT,
3670                         };
3671                         f2fs_write_checkpoint(sbi, &cpc);
3672                 }
3673 
3674                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3675                         sb->s_flags &= ~SB_RDONLY;
3676         }
3677         kill_block_super(sb);
3678 }
3679 
3680 static struct file_system_type f2fs_fs_type = {
3681         .owner          = THIS_MODULE,
3682         .name           = "f2fs",
3683         .mount          = f2fs_mount,
3684         .kill_sb        = kill_f2fs_super,
3685         .fs_flags       = FS_REQUIRES_DEV,
3686 };
3687 MODULE_ALIAS_FS("f2fs");
3688 
3689 static int __init init_inodecache(void)
3690 {
3691         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3692                         sizeof(struct f2fs_inode_info), 0,
3693                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3694         if (!f2fs_inode_cachep)
3695                 return -ENOMEM;
3696         return 0;
3697 }
3698 
3699 static void destroy_inodecache(void)
3700 {
3701         /*
3702          * Make sure all delayed rcu free inodes are flushed before we
3703          * destroy cache.
3704          */
3705         rcu_barrier();
3706         kmem_cache_destroy(f2fs_inode_cachep);
3707 }
3708 
3709 static int __init init_f2fs_fs(void)
3710 {
3711         int err;
3712 
3713         if (PAGE_SIZE != F2FS_BLKSIZE) {
3714                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3715                                 PAGE_SIZE, F2FS_BLKSIZE);
3716                 return -EINVAL;
3717         }
3718 
3719         f2fs_build_trace_ios();
3720 
3721         err = init_inodecache();
3722         if (err)
3723                 goto fail;
3724         err = f2fs_create_node_manager_caches();
3725         if (err)
3726                 goto free_inodecache;
3727         err = f2fs_create_segment_manager_caches();
3728         if (err)
3729                 goto free_node_manager_caches;
3730         err = f2fs_create_checkpoint_caches();
3731         if (err)
3732                 goto free_segment_manager_caches;
3733         err = f2fs_create_extent_cache();
3734         if (err)
3735                 goto free_checkpoint_caches;
3736         err = f2fs_init_sysfs();
3737         if (err)
3738                 goto free_extent_cache;
3739         err = register_shrinker(&f2fs_shrinker_info);
3740         if (err)
3741                 goto free_sysfs;
3742         err = register_filesystem(&f2fs_fs_type);
3743         if (err)
3744                 goto free_shrinker;
3745         f2fs_create_root_stats();
3746         err = f2fs_init_post_read_processing();
3747         if (err)
3748                 goto free_root_stats;
3749         return 0;
3750 
3751 free_root_stats:
3752         f2fs_destroy_root_stats();
3753         unregister_filesystem(&f2fs_fs_type);
3754 free_shrinker:
3755         unregister_shrinker(&f2fs_shrinker_info);
3756 free_sysfs:
3757         f2fs_exit_sysfs();
3758 free_extent_cache:
3759         f2fs_destroy_extent_cache();
3760 free_checkpoint_caches:
3761         f2fs_destroy_checkpoint_caches();
3762 free_segment_manager_caches:
3763         f2fs_destroy_segment_manager_caches();
3764 free_node_manager_caches:
3765         f2fs_destroy_node_manager_caches();
3766 free_inodecache:
3767         destroy_inodecache();
3768 fail:
3769         return err;
3770 }
3771 
3772 static void __exit exit_f2fs_fs(void)
3773 {
3774         f2fs_destroy_post_read_processing();
3775         f2fs_destroy_root_stats();
3776         unregister_filesystem(&f2fs_fs_type);
3777         unregister_shrinker(&f2fs_shrinker_info);
3778         f2fs_exit_sysfs();
3779         f2fs_destroy_extent_cache();
3780         f2fs_destroy_checkpoint_caches();
3781         f2fs_destroy_segment_manager_caches();
3782         f2fs_destroy_node_manager_caches();
3783         destroy_inodecache();
3784         f2fs_destroy_trace_ios();
3785 }
3786 
3787 module_init(init_f2fs_fs)
3788 module_exit(exit_f2fs_fs)
3789 
3790 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3791 MODULE_DESCRIPTION("Flash Friendly File System");
3792 MODULE_LICENSE("GPL");
3793 

/* [<][>][^][v][top][bottom][index][help] */