root/fs/udf/inode.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __udf_clear_extent_cache
  2. udf_clear_extent_cache
  3. udf_read_extent_cache
  4. udf_update_extent_cache
  5. udf_evict_inode
  6. udf_write_failed
  7. udf_writepage
  8. udf_writepages
  9. udf_readpage
  10. udf_readpages
  11. udf_write_begin
  12. udf_direct_IO
  13. udf_bmap
  14. udf_expand_file_adinicb
  15. udf_expand_dir_adinicb
  16. udf_get_block
  17. udf_getblk
  18. udf_do_extend_file
  19. udf_do_extend_final_block
  20. udf_extend_file
  21. inode_getblk
  22. udf_split_extents
  23. udf_prealloc_extents
  24. udf_merge_extents
  25. udf_update_extents
  26. udf_bread
  27. udf_setsize
  28. udf_read_inode
  29. udf_alloc_i_data
  30. udf_convert_permissions
  31. udf_update_extra_perms
  32. udf_write_inode
  33. udf_sync_inode
  34. udf_adjust_time
  35. udf_update_inode
  36. __udf_iget
  37. udf_setup_indirect_aext
  38. __udf_add_aext
  39. udf_add_aext
  40. udf_write_aext
  41. udf_next_aext
  42. udf_current_aext
  43. udf_insert_aext
  44. udf_delete_aext
  45. inode_bmap
  46. udf_block_map

   1 /*
   2  * inode.c
   3  *
   4  * PURPOSE
   5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6  *
   7  * COPYRIGHT
   8  *  This file is distributed under the terms of the GNU General Public
   9  *  License (GPL). Copies of the GPL can be obtained from:
  10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11  *  Each contributing author retains all rights to their own work.
  12  *
  13  *  (C) 1998 Dave Boynton
  14  *  (C) 1998-2004 Ben Fennema
  15  *  (C) 1999-2000 Stelias Computing Inc
  16  *
  17  * HISTORY
  18  *
  19  *  10/04/98 dgb  Added rudimentary directory functions
  20  *  10/07/98      Fully working udf_block_map! It works!
  21  *  11/25/98      bmap altered to better support extents
  22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23  *                and udf_read_inode
  24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25  *                block boundaries (which is not actually allowed)
  26  *  12/20/98      added support for strategy 4096
  27  *  03/07/99      rewrote udf_block_map (again)
  28  *                New funcs, inode_bmap, udf_next_aext
  29  *  04/19/99      Support for writing device EA's for major/minor #
  30  */
  31 
  32 #include "udfdecl.h"
  33 #include <linux/mm.h>
  34 #include <linux/module.h>
  35 #include <linux/pagemap.h>
  36 #include <linux/writeback.h>
  37 #include <linux/slab.h>
  38 #include <linux/crc-itu-t.h>
  39 #include <linux/mpage.h>
  40 #include <linux/uio.h>
  41 #include <linux/bio.h>
  42 
  43 #include "udf_i.h"
  44 #include "udf_sb.h"
  45 
  46 #define EXTENT_MERGE_SIZE 5
  47 
  48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49                          FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50                          FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51 
  52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53                          FE_PERM_O_DELETE)
  54 
  55 static umode_t udf_convert_permissions(struct fileEntry *);
  56 static int udf_update_inode(struct inode *, int);
  57 static int udf_sync_inode(struct inode *inode);
  58 static int udf_alloc_i_data(struct inode *inode, size_t size);
  59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61                               struct kernel_lb_addr, uint32_t);
  62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63                               struct kernel_long_ad *, int *);
  64 static void udf_prealloc_extents(struct inode *, int, int,
  65                                  struct kernel_long_ad *, int *);
  66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68                                int, struct extent_position *);
  69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70 
  71 static void __udf_clear_extent_cache(struct inode *inode)
  72 {
  73         struct udf_inode_info *iinfo = UDF_I(inode);
  74 
  75         if (iinfo->cached_extent.lstart != -1) {
  76                 brelse(iinfo->cached_extent.epos.bh);
  77                 iinfo->cached_extent.lstart = -1;
  78         }
  79 }
  80 
  81 /* Invalidate extent cache */
  82 static void udf_clear_extent_cache(struct inode *inode)
  83 {
  84         struct udf_inode_info *iinfo = UDF_I(inode);
  85 
  86         spin_lock(&iinfo->i_extent_cache_lock);
  87         __udf_clear_extent_cache(inode);
  88         spin_unlock(&iinfo->i_extent_cache_lock);
  89 }
  90 
  91 /* Return contents of extent cache */
  92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93                                  loff_t *lbcount, struct extent_position *pos)
  94 {
  95         struct udf_inode_info *iinfo = UDF_I(inode);
  96         int ret = 0;
  97 
  98         spin_lock(&iinfo->i_extent_cache_lock);
  99         if ((iinfo->cached_extent.lstart <= bcount) &&
 100             (iinfo->cached_extent.lstart != -1)) {
 101                 /* Cache hit */
 102                 *lbcount = iinfo->cached_extent.lstart;
 103                 memcpy(pos, &iinfo->cached_extent.epos,
 104                        sizeof(struct extent_position));
 105                 if (pos->bh)
 106                         get_bh(pos->bh);
 107                 ret = 1;
 108         }
 109         spin_unlock(&iinfo->i_extent_cache_lock);
 110         return ret;
 111 }
 112 
 113 /* Add extent to extent cache */
 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115                                     struct extent_position *pos)
 116 {
 117         struct udf_inode_info *iinfo = UDF_I(inode);
 118 
 119         spin_lock(&iinfo->i_extent_cache_lock);
 120         /* Invalidate previously cached extent */
 121         __udf_clear_extent_cache(inode);
 122         if (pos->bh)
 123                 get_bh(pos->bh);
 124         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125         iinfo->cached_extent.lstart = estart;
 126         switch (iinfo->i_alloc_type) {
 127         case ICBTAG_FLAG_AD_SHORT:
 128                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129                 break;
 130         case ICBTAG_FLAG_AD_LONG:
 131                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132                 break;
 133         }
 134         spin_unlock(&iinfo->i_extent_cache_lock);
 135 }
 136 
 137 void udf_evict_inode(struct inode *inode)
 138 {
 139         struct udf_inode_info *iinfo = UDF_I(inode);
 140         int want_delete = 0;
 141 
 142         if (!inode->i_nlink && !is_bad_inode(inode)) {
 143                 want_delete = 1;
 144                 udf_setsize(inode, 0);
 145                 udf_update_inode(inode, IS_SYNC(inode));
 146         }
 147         truncate_inode_pages_final(&inode->i_data);
 148         invalidate_inode_buffers(inode);
 149         clear_inode(inode);
 150         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 151             inode->i_size != iinfo->i_lenExtents) {
 152                 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 153                          inode->i_ino, inode->i_mode,
 154                          (unsigned long long)inode->i_size,
 155                          (unsigned long long)iinfo->i_lenExtents);
 156         }
 157         kfree(iinfo->i_ext.i_data);
 158         iinfo->i_ext.i_data = NULL;
 159         udf_clear_extent_cache(inode);
 160         if (want_delete) {
 161                 udf_free_inode(inode);
 162         }
 163 }
 164 
 165 static void udf_write_failed(struct address_space *mapping, loff_t to)
 166 {
 167         struct inode *inode = mapping->host;
 168         struct udf_inode_info *iinfo = UDF_I(inode);
 169         loff_t isize = inode->i_size;
 170 
 171         if (to > isize) {
 172                 truncate_pagecache(inode, isize);
 173                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 174                         down_write(&iinfo->i_data_sem);
 175                         udf_clear_extent_cache(inode);
 176                         udf_truncate_extents(inode);
 177                         up_write(&iinfo->i_data_sem);
 178                 }
 179         }
 180 }
 181 
 182 static int udf_writepage(struct page *page, struct writeback_control *wbc)
 183 {
 184         return block_write_full_page(page, udf_get_block, wbc);
 185 }
 186 
 187 static int udf_writepages(struct address_space *mapping,
 188                         struct writeback_control *wbc)
 189 {
 190         return mpage_writepages(mapping, wbc, udf_get_block);
 191 }
 192 
 193 static int udf_readpage(struct file *file, struct page *page)
 194 {
 195         return mpage_readpage(page, udf_get_block);
 196 }
 197 
 198 static int udf_readpages(struct file *file, struct address_space *mapping,
 199                         struct list_head *pages, unsigned nr_pages)
 200 {
 201         return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 202 }
 203 
 204 static int udf_write_begin(struct file *file, struct address_space *mapping,
 205                         loff_t pos, unsigned len, unsigned flags,
 206                         struct page **pagep, void **fsdata)
 207 {
 208         int ret;
 209 
 210         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 211         if (unlikely(ret))
 212                 udf_write_failed(mapping, pos + len);
 213         return ret;
 214 }
 215 
 216 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 217 {
 218         struct file *file = iocb->ki_filp;
 219         struct address_space *mapping = file->f_mapping;
 220         struct inode *inode = mapping->host;
 221         size_t count = iov_iter_count(iter);
 222         ssize_t ret;
 223 
 224         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 225         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 226                 udf_write_failed(mapping, iocb->ki_pos + count);
 227         return ret;
 228 }
 229 
 230 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 231 {
 232         return generic_block_bmap(mapping, block, udf_get_block);
 233 }
 234 
 235 const struct address_space_operations udf_aops = {
 236         .readpage       = udf_readpage,
 237         .readpages      = udf_readpages,
 238         .writepage      = udf_writepage,
 239         .writepages     = udf_writepages,
 240         .write_begin    = udf_write_begin,
 241         .write_end      = generic_write_end,
 242         .direct_IO      = udf_direct_IO,
 243         .bmap           = udf_bmap,
 244 };
 245 
 246 /*
 247  * Expand file stored in ICB to a normal one-block-file
 248  *
 249  * This function requires i_data_sem for writing and releases it.
 250  * This function requires i_mutex held
 251  */
 252 int udf_expand_file_adinicb(struct inode *inode)
 253 {
 254         struct page *page;
 255         char *kaddr;
 256         struct udf_inode_info *iinfo = UDF_I(inode);
 257         int err;
 258         struct writeback_control udf_wbc = {
 259                 .sync_mode = WB_SYNC_NONE,
 260                 .nr_to_write = 1,
 261         };
 262 
 263         WARN_ON_ONCE(!inode_is_locked(inode));
 264         if (!iinfo->i_lenAlloc) {
 265                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 266                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 267                 else
 268                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 269                 /* from now on we have normal address_space methods */
 270                 inode->i_data.a_ops = &udf_aops;
 271                 up_write(&iinfo->i_data_sem);
 272                 mark_inode_dirty(inode);
 273                 return 0;
 274         }
 275         /*
 276          * Release i_data_sem so that we can lock a page - page lock ranks
 277          * above i_data_sem. i_mutex still protects us against file changes.
 278          */
 279         up_write(&iinfo->i_data_sem);
 280 
 281         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 282         if (!page)
 283                 return -ENOMEM;
 284 
 285         if (!PageUptodate(page)) {
 286                 kaddr = kmap_atomic(page);
 287                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
 288                        PAGE_SIZE - iinfo->i_lenAlloc);
 289                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 290                         iinfo->i_lenAlloc);
 291                 flush_dcache_page(page);
 292                 SetPageUptodate(page);
 293                 kunmap_atomic(kaddr);
 294         }
 295         down_write(&iinfo->i_data_sem);
 296         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 297                iinfo->i_lenAlloc);
 298         iinfo->i_lenAlloc = 0;
 299         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 300                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 301         else
 302                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 303         /* from now on we have normal address_space methods */
 304         inode->i_data.a_ops = &udf_aops;
 305         up_write(&iinfo->i_data_sem);
 306         err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 307         if (err) {
 308                 /* Restore everything back so that we don't lose data... */
 309                 lock_page(page);
 310                 down_write(&iinfo->i_data_sem);
 311                 kaddr = kmap_atomic(page);
 312                 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 313                        inode->i_size);
 314                 kunmap_atomic(kaddr);
 315                 unlock_page(page);
 316                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 317                 inode->i_data.a_ops = &udf_adinicb_aops;
 318                 up_write(&iinfo->i_data_sem);
 319         }
 320         put_page(page);
 321         mark_inode_dirty(inode);
 322 
 323         return err;
 324 }
 325 
 326 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 327                                             udf_pblk_t *block, int *err)
 328 {
 329         udf_pblk_t newblock;
 330         struct buffer_head *dbh = NULL;
 331         struct kernel_lb_addr eloc;
 332         uint8_t alloctype;
 333         struct extent_position epos;
 334 
 335         struct udf_fileident_bh sfibh, dfibh;
 336         loff_t f_pos = udf_ext0_offset(inode);
 337         int size = udf_ext0_offset(inode) + inode->i_size;
 338         struct fileIdentDesc cfi, *sfi, *dfi;
 339         struct udf_inode_info *iinfo = UDF_I(inode);
 340 
 341         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 342                 alloctype = ICBTAG_FLAG_AD_SHORT;
 343         else
 344                 alloctype = ICBTAG_FLAG_AD_LONG;
 345 
 346         if (!inode->i_size) {
 347                 iinfo->i_alloc_type = alloctype;
 348                 mark_inode_dirty(inode);
 349                 return NULL;
 350         }
 351 
 352         /* alloc block, and copy data to it */
 353         *block = udf_new_block(inode->i_sb, inode,
 354                                iinfo->i_location.partitionReferenceNum,
 355                                iinfo->i_location.logicalBlockNum, err);
 356         if (!(*block))
 357                 return NULL;
 358         newblock = udf_get_pblock(inode->i_sb, *block,
 359                                   iinfo->i_location.partitionReferenceNum,
 360                                 0);
 361         if (!newblock)
 362                 return NULL;
 363         dbh = udf_tgetblk(inode->i_sb, newblock);
 364         if (!dbh)
 365                 return NULL;
 366         lock_buffer(dbh);
 367         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 368         set_buffer_uptodate(dbh);
 369         unlock_buffer(dbh);
 370         mark_buffer_dirty_inode(dbh, inode);
 371 
 372         sfibh.soffset = sfibh.eoffset =
 373                         f_pos & (inode->i_sb->s_blocksize - 1);
 374         sfibh.sbh = sfibh.ebh = NULL;
 375         dfibh.soffset = dfibh.eoffset = 0;
 376         dfibh.sbh = dfibh.ebh = dbh;
 377         while (f_pos < size) {
 378                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 379                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 380                                          NULL, NULL, NULL);
 381                 if (!sfi) {
 382                         brelse(dbh);
 383                         return NULL;
 384                 }
 385                 iinfo->i_alloc_type = alloctype;
 386                 sfi->descTag.tagLocation = cpu_to_le32(*block);
 387                 dfibh.soffset = dfibh.eoffset;
 388                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 389                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 390                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 391                                  sfi->fileIdent +
 392                                         le16_to_cpu(sfi->lengthOfImpUse))) {
 393                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 394                         brelse(dbh);
 395                         return NULL;
 396                 }
 397         }
 398         mark_buffer_dirty_inode(dbh, inode);
 399 
 400         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 401                 iinfo->i_lenAlloc);
 402         iinfo->i_lenAlloc = 0;
 403         eloc.logicalBlockNum = *block;
 404         eloc.partitionReferenceNum =
 405                                 iinfo->i_location.partitionReferenceNum;
 406         iinfo->i_lenExtents = inode->i_size;
 407         epos.bh = NULL;
 408         epos.block = iinfo->i_location;
 409         epos.offset = udf_file_entry_alloc_offset(inode);
 410         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 411         /* UniqueID stuff */
 412 
 413         brelse(epos.bh);
 414         mark_inode_dirty(inode);
 415         return dbh;
 416 }
 417 
 418 static int udf_get_block(struct inode *inode, sector_t block,
 419                          struct buffer_head *bh_result, int create)
 420 {
 421         int err, new;
 422         sector_t phys = 0;
 423         struct udf_inode_info *iinfo;
 424 
 425         if (!create) {
 426                 phys = udf_block_map(inode, block);
 427                 if (phys)
 428                         map_bh(bh_result, inode->i_sb, phys);
 429                 return 0;
 430         }
 431 
 432         err = -EIO;
 433         new = 0;
 434         iinfo = UDF_I(inode);
 435 
 436         down_write(&iinfo->i_data_sem);
 437         if (block == iinfo->i_next_alloc_block + 1) {
 438                 iinfo->i_next_alloc_block++;
 439                 iinfo->i_next_alloc_goal++;
 440         }
 441 
 442         udf_clear_extent_cache(inode);
 443         phys = inode_getblk(inode, block, &err, &new);
 444         if (!phys)
 445                 goto abort;
 446 
 447         if (new)
 448                 set_buffer_new(bh_result);
 449         map_bh(bh_result, inode->i_sb, phys);
 450 
 451 abort:
 452         up_write(&iinfo->i_data_sem);
 453         return err;
 454 }
 455 
 456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 457                                       int create, int *err)
 458 {
 459         struct buffer_head *bh;
 460         struct buffer_head dummy;
 461 
 462         dummy.b_state = 0;
 463         dummy.b_blocknr = -1000;
 464         *err = udf_get_block(inode, block, &dummy, create);
 465         if (!*err && buffer_mapped(&dummy)) {
 466                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 467                 if (buffer_new(&dummy)) {
 468                         lock_buffer(bh);
 469                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 470                         set_buffer_uptodate(bh);
 471                         unlock_buffer(bh);
 472                         mark_buffer_dirty_inode(bh, inode);
 473                 }
 474                 return bh;
 475         }
 476 
 477         return NULL;
 478 }
 479 
 480 /* Extend the file with new blocks totaling 'new_block_bytes',
 481  * return the number of extents added
 482  */
 483 static int udf_do_extend_file(struct inode *inode,
 484                               struct extent_position *last_pos,
 485                               struct kernel_long_ad *last_ext,
 486                               loff_t new_block_bytes)
 487 {
 488         uint32_t add;
 489         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 490         struct super_block *sb = inode->i_sb;
 491         struct kernel_lb_addr prealloc_loc = {};
 492         uint32_t prealloc_len = 0;
 493         struct udf_inode_info *iinfo;
 494         int err;
 495 
 496         /* The previous extent is fake and we should not extend by anything
 497          * - there's nothing to do... */
 498         if (!new_block_bytes && fake)
 499                 return 0;
 500 
 501         iinfo = UDF_I(inode);
 502         /* Round the last extent up to a multiple of block size */
 503         if (last_ext->extLength & (sb->s_blocksize - 1)) {
 504                 last_ext->extLength =
 505                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 506                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 507                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 508                 iinfo->i_lenExtents =
 509                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
 510                         ~(sb->s_blocksize - 1);
 511         }
 512 
 513         /* Last extent are just preallocated blocks? */
 514         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 515                                                 EXT_NOT_RECORDED_ALLOCATED) {
 516                 /* Save the extent so that we can reattach it to the end */
 517                 prealloc_loc = last_ext->extLocation;
 518                 prealloc_len = last_ext->extLength;
 519                 /* Mark the extent as a hole */
 520                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 521                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 522                 last_ext->extLocation.logicalBlockNum = 0;
 523                 last_ext->extLocation.partitionReferenceNum = 0;
 524         }
 525 
 526         /* Can we merge with the previous extent? */
 527         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 528                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
 529                 add = (1 << 30) - sb->s_blocksize -
 530                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 531                 if (add > new_block_bytes)
 532                         add = new_block_bytes;
 533                 new_block_bytes -= add;
 534                 last_ext->extLength += add;
 535         }
 536 
 537         if (fake) {
 538                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
 539                              last_ext->extLength, 1);
 540                 count++;
 541         } else {
 542                 struct kernel_lb_addr tmploc;
 543                 uint32_t tmplen;
 544 
 545                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
 546                                 last_ext->extLength, 1);
 547                 /*
 548                  * We've rewritten the last extent but there may be empty
 549                  * indirect extent after it - enter it.
 550                  */
 551                 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 552         }
 553 
 554         /* Managed to do everything necessary? */
 555         if (!new_block_bytes)
 556                 goto out;
 557 
 558         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 559         last_ext->extLocation.logicalBlockNum = 0;
 560         last_ext->extLocation.partitionReferenceNum = 0;
 561         add = (1 << 30) - sb->s_blocksize;
 562         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 563 
 564         /* Create enough extents to cover the whole hole */
 565         while (new_block_bytes > add) {
 566                 new_block_bytes -= add;
 567                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 568                                    last_ext->extLength, 1);
 569                 if (err)
 570                         return err;
 571                 count++;
 572         }
 573         if (new_block_bytes) {
 574                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 575                         new_block_bytes;
 576                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 577                                    last_ext->extLength, 1);
 578                 if (err)
 579                         return err;
 580                 count++;
 581         }
 582 
 583 out:
 584         /* Do we have some preallocated blocks saved? */
 585         if (prealloc_len) {
 586                 err = udf_add_aext(inode, last_pos, &prealloc_loc,
 587                                    prealloc_len, 1);
 588                 if (err)
 589                         return err;
 590                 last_ext->extLocation = prealloc_loc;
 591                 last_ext->extLength = prealloc_len;
 592                 count++;
 593         }
 594 
 595         /* last_pos should point to the last written extent... */
 596         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 597                 last_pos->offset -= sizeof(struct short_ad);
 598         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 599                 last_pos->offset -= sizeof(struct long_ad);
 600         else
 601                 return -EIO;
 602 
 603         return count;
 604 }
 605 
 606 /* Extend the final block of the file to final_block_len bytes */
 607 static void udf_do_extend_final_block(struct inode *inode,
 608                                       struct extent_position *last_pos,
 609                                       struct kernel_long_ad *last_ext,
 610                                       uint32_t final_block_len)
 611 {
 612         struct super_block *sb = inode->i_sb;
 613         uint32_t added_bytes;
 614 
 615         added_bytes = final_block_len -
 616                       (last_ext->extLength & (sb->s_blocksize - 1));
 617         last_ext->extLength += added_bytes;
 618         UDF_I(inode)->i_lenExtents += added_bytes;
 619 
 620         udf_write_aext(inode, last_pos, &last_ext->extLocation,
 621                         last_ext->extLength, 1);
 622 }
 623 
 624 static int udf_extend_file(struct inode *inode, loff_t newsize)
 625 {
 626 
 627         struct extent_position epos;
 628         struct kernel_lb_addr eloc;
 629         uint32_t elen;
 630         int8_t etype;
 631         struct super_block *sb = inode->i_sb;
 632         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 633         unsigned long partial_final_block;
 634         int adsize;
 635         struct udf_inode_info *iinfo = UDF_I(inode);
 636         struct kernel_long_ad extent;
 637         int err = 0;
 638         int within_final_block;
 639 
 640         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 641                 adsize = sizeof(struct short_ad);
 642         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 643                 adsize = sizeof(struct long_ad);
 644         else
 645                 BUG();
 646 
 647         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 648         within_final_block = (etype != -1);
 649 
 650         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 651             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 652                 /* File has no extents at all or has empty last
 653                  * indirect extent! Create a fake extent... */
 654                 extent.extLocation.logicalBlockNum = 0;
 655                 extent.extLocation.partitionReferenceNum = 0;
 656                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 657         } else {
 658                 epos.offset -= adsize;
 659                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
 660                                       &extent.extLength, 0);
 661                 extent.extLength |= etype << 30;
 662         }
 663 
 664         partial_final_block = newsize & (sb->s_blocksize - 1);
 665 
 666         /* File has extent covering the new size (could happen when extending
 667          * inside a block)?
 668          */
 669         if (within_final_block) {
 670                 /* Extending file within the last file block */
 671                 udf_do_extend_final_block(inode, &epos, &extent,
 672                                           partial_final_block);
 673         } else {
 674                 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 675                              partial_final_block;
 676                 err = udf_do_extend_file(inode, &epos, &extent, add);
 677         }
 678 
 679         if (err < 0)
 680                 goto out;
 681         err = 0;
 682         iinfo->i_lenExtents = newsize;
 683 out:
 684         brelse(epos.bh);
 685         return err;
 686 }
 687 
 688 static sector_t inode_getblk(struct inode *inode, sector_t block,
 689                              int *err, int *new)
 690 {
 691         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 692         struct extent_position prev_epos, cur_epos, next_epos;
 693         int count = 0, startnum = 0, endnum = 0;
 694         uint32_t elen = 0, tmpelen;
 695         struct kernel_lb_addr eloc, tmpeloc;
 696         int c = 1;
 697         loff_t lbcount = 0, b_off = 0;
 698         udf_pblk_t newblocknum, newblock;
 699         sector_t offset = 0;
 700         int8_t etype;
 701         struct udf_inode_info *iinfo = UDF_I(inode);
 702         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 703         int lastblock = 0;
 704         bool isBeyondEOF;
 705 
 706         *err = 0;
 707         *new = 0;
 708         prev_epos.offset = udf_file_entry_alloc_offset(inode);
 709         prev_epos.block = iinfo->i_location;
 710         prev_epos.bh = NULL;
 711         cur_epos = next_epos = prev_epos;
 712         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 713 
 714         /* find the extent which contains the block we are looking for.
 715            alternate between laarr[0] and laarr[1] for locations of the
 716            current extent, and the previous extent */
 717         do {
 718                 if (prev_epos.bh != cur_epos.bh) {
 719                         brelse(prev_epos.bh);
 720                         get_bh(cur_epos.bh);
 721                         prev_epos.bh = cur_epos.bh;
 722                 }
 723                 if (cur_epos.bh != next_epos.bh) {
 724                         brelse(cur_epos.bh);
 725                         get_bh(next_epos.bh);
 726                         cur_epos.bh = next_epos.bh;
 727                 }
 728 
 729                 lbcount += elen;
 730 
 731                 prev_epos.block = cur_epos.block;
 732                 cur_epos.block = next_epos.block;
 733 
 734                 prev_epos.offset = cur_epos.offset;
 735                 cur_epos.offset = next_epos.offset;
 736 
 737                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 738                 if (etype == -1)
 739                         break;
 740 
 741                 c = !c;
 742 
 743                 laarr[c].extLength = (etype << 30) | elen;
 744                 laarr[c].extLocation = eloc;
 745 
 746                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 747                         pgoal = eloc.logicalBlockNum +
 748                                 ((elen + inode->i_sb->s_blocksize - 1) >>
 749                                  inode->i_sb->s_blocksize_bits);
 750 
 751                 count++;
 752         } while (lbcount + elen <= b_off);
 753 
 754         b_off -= lbcount;
 755         offset = b_off >> inode->i_sb->s_blocksize_bits;
 756         /*
 757          * Move prev_epos and cur_epos into indirect extent if we are at
 758          * the pointer to it
 759          */
 760         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 761         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 762 
 763         /* if the extent is allocated and recorded, return the block
 764            if the extent is not a multiple of the blocksize, round up */
 765 
 766         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 767                 if (elen & (inode->i_sb->s_blocksize - 1)) {
 768                         elen = EXT_RECORDED_ALLOCATED |
 769                                 ((elen + inode->i_sb->s_blocksize - 1) &
 770                                  ~(inode->i_sb->s_blocksize - 1));
 771                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 772                 }
 773                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 774                 goto out_free;
 775         }
 776 
 777         /* Are we beyond EOF? */
 778         if (etype == -1) {
 779                 int ret;
 780                 loff_t hole_len;
 781                 isBeyondEOF = true;
 782                 if (count) {
 783                         if (c)
 784                                 laarr[0] = laarr[1];
 785                         startnum = 1;
 786                 } else {
 787                         /* Create a fake extent when there's not one */
 788                         memset(&laarr[0].extLocation, 0x00,
 789                                 sizeof(struct kernel_lb_addr));
 790                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 791                         /* Will udf_do_extend_file() create real extent from
 792                            a fake one? */
 793                         startnum = (offset > 0);
 794                 }
 795                 /* Create extents for the hole between EOF and offset */
 796                 hole_len = (loff_t)offset << inode->i_blkbits;
 797                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 798                 if (ret < 0) {
 799                         *err = ret;
 800                         newblock = 0;
 801                         goto out_free;
 802                 }
 803                 c = 0;
 804                 offset = 0;
 805                 count += ret;
 806                 /* We are not covered by a preallocated extent? */
 807                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 808                                                 EXT_NOT_RECORDED_ALLOCATED) {
 809                         /* Is there any real extent? - otherwise we overwrite
 810                          * the fake one... */
 811                         if (count)
 812                                 c = !c;
 813                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 814                                 inode->i_sb->s_blocksize;
 815                         memset(&laarr[c].extLocation, 0x00,
 816                                 sizeof(struct kernel_lb_addr));
 817                         count++;
 818                 }
 819                 endnum = c + 1;
 820                 lastblock = 1;
 821         } else {
 822                 isBeyondEOF = false;
 823                 endnum = startnum = ((count > 2) ? 2 : count);
 824 
 825                 /* if the current extent is in position 0,
 826                    swap it with the previous */
 827                 if (!c && count != 1) {
 828                         laarr[2] = laarr[0];
 829                         laarr[0] = laarr[1];
 830                         laarr[1] = laarr[2];
 831                         c = 1;
 832                 }
 833 
 834                 /* if the current block is located in an extent,
 835                    read the next extent */
 836                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 837                 if (etype != -1) {
 838                         laarr[c + 1].extLength = (etype << 30) | elen;
 839                         laarr[c + 1].extLocation = eloc;
 840                         count++;
 841                         startnum++;
 842                         endnum++;
 843                 } else
 844                         lastblock = 1;
 845         }
 846 
 847         /* if the current extent is not recorded but allocated, get the
 848          * block in the extent corresponding to the requested block */
 849         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 850                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 851         else { /* otherwise, allocate a new block */
 852                 if (iinfo->i_next_alloc_block == block)
 853                         goal = iinfo->i_next_alloc_goal;
 854 
 855                 if (!goal) {
 856                         if (!(goal = pgoal)) /* XXX: what was intended here? */
 857                                 goal = iinfo->i_location.logicalBlockNum + 1;
 858                 }
 859 
 860                 newblocknum = udf_new_block(inode->i_sb, inode,
 861                                 iinfo->i_location.partitionReferenceNum,
 862                                 goal, err);
 863                 if (!newblocknum) {
 864                         *err = -ENOSPC;
 865                         newblock = 0;
 866                         goto out_free;
 867                 }
 868                 if (isBeyondEOF)
 869                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 870         }
 871 
 872         /* if the extent the requsted block is located in contains multiple
 873          * blocks, split the extent into at most three extents. blocks prior
 874          * to requested block, requested block, and blocks after requested
 875          * block */
 876         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 877 
 878         /* We preallocate blocks only for regular files. It also makes sense
 879          * for directories but there's a problem when to drop the
 880          * preallocation. We might use some delayed work for that but I feel
 881          * it's overengineering for a filesystem like UDF. */
 882         if (S_ISREG(inode->i_mode))
 883                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 884 
 885         /* merge any continuous blocks in laarr */
 886         udf_merge_extents(inode, laarr, &endnum);
 887 
 888         /* write back the new extents, inserting new extents if the new number
 889          * of extents is greater than the old number, and deleting extents if
 890          * the new number of extents is less than the old number */
 891         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 892 
 893         newblock = udf_get_pblock(inode->i_sb, newblocknum,
 894                                 iinfo->i_location.partitionReferenceNum, 0);
 895         if (!newblock) {
 896                 *err = -EIO;
 897                 goto out_free;
 898         }
 899         *new = 1;
 900         iinfo->i_next_alloc_block = block;
 901         iinfo->i_next_alloc_goal = newblocknum;
 902         inode->i_ctime = current_time(inode);
 903 
 904         if (IS_SYNC(inode))
 905                 udf_sync_inode(inode);
 906         else
 907                 mark_inode_dirty(inode);
 908 out_free:
 909         brelse(prev_epos.bh);
 910         brelse(cur_epos.bh);
 911         brelse(next_epos.bh);
 912         return newblock;
 913 }
 914 
 915 static void udf_split_extents(struct inode *inode, int *c, int offset,
 916                                udf_pblk_t newblocknum,
 917                                struct kernel_long_ad *laarr, int *endnum)
 918 {
 919         unsigned long blocksize = inode->i_sb->s_blocksize;
 920         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 921 
 922         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 923             (laarr[*c].extLength >> 30) ==
 924                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 925                 int curr = *c;
 926                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 927                             blocksize - 1) >> blocksize_bits;
 928                 int8_t etype = (laarr[curr].extLength >> 30);
 929 
 930                 if (blen == 1)
 931                         ;
 932                 else if (!offset || blen == offset + 1) {
 933                         laarr[curr + 2] = laarr[curr + 1];
 934                         laarr[curr + 1] = laarr[curr];
 935                 } else {
 936                         laarr[curr + 3] = laarr[curr + 1];
 937                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 938                 }
 939 
 940                 if (offset) {
 941                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 942                                 udf_free_blocks(inode->i_sb, inode,
 943                                                 &laarr[curr].extLocation,
 944                                                 0, offset);
 945                                 laarr[curr].extLength =
 946                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
 947                                         (offset << blocksize_bits);
 948                                 laarr[curr].extLocation.logicalBlockNum = 0;
 949                                 laarr[curr].extLocation.
 950                                                 partitionReferenceNum = 0;
 951                         } else
 952                                 laarr[curr].extLength = (etype << 30) |
 953                                         (offset << blocksize_bits);
 954                         curr++;
 955                         (*c)++;
 956                         (*endnum)++;
 957                 }
 958 
 959                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
 960                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 961                         laarr[curr].extLocation.partitionReferenceNum =
 962                                 UDF_I(inode)->i_location.partitionReferenceNum;
 963                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 964                         blocksize;
 965                 curr++;
 966 
 967                 if (blen != offset + 1) {
 968                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 969                                 laarr[curr].extLocation.logicalBlockNum +=
 970                                                                 offset + 1;
 971                         laarr[curr].extLength = (etype << 30) |
 972                                 ((blen - (offset + 1)) << blocksize_bits);
 973                         curr++;
 974                         (*endnum)++;
 975                 }
 976         }
 977 }
 978 
 979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 980                                  struct kernel_long_ad *laarr,
 981                                  int *endnum)
 982 {
 983         int start, length = 0, currlength = 0, i;
 984 
 985         if (*endnum >= (c + 1)) {
 986                 if (!lastblock)
 987                         return;
 988                 else
 989                         start = c;
 990         } else {
 991                 if ((laarr[c + 1].extLength >> 30) ==
 992                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 993                         start = c + 1;
 994                         length = currlength =
 995                                 (((laarr[c + 1].extLength &
 996                                         UDF_EXTENT_LENGTH_MASK) +
 997                                 inode->i_sb->s_blocksize - 1) >>
 998                                 inode->i_sb->s_blocksize_bits);
 999                 } else
1000                         start = c;
1001         }
1002 
1003         for (i = start + 1; i <= *endnum; i++) {
1004                 if (i == *endnum) {
1005                         if (lastblock)
1006                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007                 } else if ((laarr[i].extLength >> 30) ==
1008                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009                         length += (((laarr[i].extLength &
1010                                                 UDF_EXTENT_LENGTH_MASK) +
1011                                     inode->i_sb->s_blocksize - 1) >>
1012                                     inode->i_sb->s_blocksize_bits);
1013                 } else
1014                         break;
1015         }
1016 
1017         if (length) {
1018                 int next = laarr[start].extLocation.logicalBlockNum +
1019                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020                           inode->i_sb->s_blocksize - 1) >>
1021                           inode->i_sb->s_blocksize_bits);
1022                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023                                 laarr[start].extLocation.partitionReferenceNum,
1024                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026                                 currlength);
1027                 if (numalloc)   {
1028                         if (start == (c + 1))
1029                                 laarr[start].extLength +=
1030                                         (numalloc <<
1031                                          inode->i_sb->s_blocksize_bits);
1032                         else {
1033                                 memmove(&laarr[c + 2], &laarr[c + 1],
1034                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1035                                 (*endnum)++;
1036                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1037                                 laarr[c + 1].extLocation.partitionReferenceNum =
1038                                         laarr[c].extLocation.
1039                                                         partitionReferenceNum;
1040                                 laarr[c + 1].extLength =
1041                                         EXT_NOT_RECORDED_ALLOCATED |
1042                                         (numalloc <<
1043                                          inode->i_sb->s_blocksize_bits);
1044                                 start = c + 1;
1045                         }
1046 
1047                         for (i = start + 1; numalloc && i < *endnum; i++) {
1048                                 int elen = ((laarr[i].extLength &
1049                                                 UDF_EXTENT_LENGTH_MASK) +
1050                                             inode->i_sb->s_blocksize - 1) >>
1051                                             inode->i_sb->s_blocksize_bits;
1052 
1053                                 if (elen > numalloc) {
1054                                         laarr[i].extLength -=
1055                                                 (numalloc <<
1056                                                  inode->i_sb->s_blocksize_bits);
1057                                         numalloc = 0;
1058                                 } else {
1059                                         numalloc -= elen;
1060                                         if (*endnum > (i + 1))
1061                                                 memmove(&laarr[i],
1062                                                         &laarr[i + 1],
1063                                                         sizeof(struct long_ad) *
1064                                                         (*endnum - (i + 1)));
1065                                         i--;
1066                                         (*endnum)--;
1067                                 }
1068                         }
1069                         UDF_I(inode)->i_lenExtents +=
1070                                 numalloc << inode->i_sb->s_blocksize_bits;
1071                 }
1072         }
1073 }
1074 
1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076                               int *endnum)
1077 {
1078         int i;
1079         unsigned long blocksize = inode->i_sb->s_blocksize;
1080         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081 
1082         for (i = 0; i < (*endnum - 1); i++) {
1083                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085 
1086                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087                         (((li->extLength >> 30) ==
1088                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089                         ((lip1->extLocation.logicalBlockNum -
1090                           li->extLocation.logicalBlockNum) ==
1091                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092                         blocksize - 1) >> blocksize_bits)))) {
1093 
1094                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1097                                 lip1->extLength = (lip1->extLength -
1098                                                   (li->extLength &
1099                                                    UDF_EXTENT_LENGTH_MASK) +
1100                                                    UDF_EXTENT_LENGTH_MASK) &
1101                                                         ~(blocksize - 1);
1102                                 li->extLength = (li->extLength &
1103                                                  UDF_EXTENT_FLAG_MASK) +
1104                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1105                                                 blocksize;
1106                                 lip1->extLocation.logicalBlockNum =
1107                                         li->extLocation.logicalBlockNum +
1108                                         ((li->extLength &
1109                                                 UDF_EXTENT_LENGTH_MASK) >>
1110                                                 blocksize_bits);
1111                         } else {
1112                                 li->extLength = lip1->extLength +
1113                                         (((li->extLength &
1114                                                 UDF_EXTENT_LENGTH_MASK) +
1115                                          blocksize - 1) & ~(blocksize - 1));
1116                                 if (*endnum > (i + 2))
1117                                         memmove(&laarr[i + 1], &laarr[i + 2],
1118                                                 sizeof(struct long_ad) *
1119                                                 (*endnum - (i + 2)));
1120                                 i--;
1121                                 (*endnum)--;
1122                         }
1123                 } else if (((li->extLength >> 30) ==
1124                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1125                            ((lip1->extLength >> 30) ==
1126                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1127                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1128                                         ((li->extLength &
1129                                           UDF_EXTENT_LENGTH_MASK) +
1130                                          blocksize - 1) >> blocksize_bits);
1131                         li->extLocation.logicalBlockNum = 0;
1132                         li->extLocation.partitionReferenceNum = 0;
1133 
1134                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1135                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1136                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1137                                 lip1->extLength = (lip1->extLength -
1138                                                    (li->extLength &
1139                                                    UDF_EXTENT_LENGTH_MASK) +
1140                                                    UDF_EXTENT_LENGTH_MASK) &
1141                                                    ~(blocksize - 1);
1142                                 li->extLength = (li->extLength &
1143                                                  UDF_EXTENT_FLAG_MASK) +
1144                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1145                                                 blocksize;
1146                         } else {
1147                                 li->extLength = lip1->extLength +
1148                                         (((li->extLength &
1149                                                 UDF_EXTENT_LENGTH_MASK) +
1150                                           blocksize - 1) & ~(blocksize - 1));
1151                                 if (*endnum > (i + 2))
1152                                         memmove(&laarr[i + 1], &laarr[i + 2],
1153                                                 sizeof(struct long_ad) *
1154                                                 (*endnum - (i + 2)));
1155                                 i--;
1156                                 (*endnum)--;
1157                         }
1158                 } else if ((li->extLength >> 30) ==
1159                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1160                         udf_free_blocks(inode->i_sb, inode,
1161                                         &li->extLocation, 0,
1162                                         ((li->extLength &
1163                                                 UDF_EXTENT_LENGTH_MASK) +
1164                                          blocksize - 1) >> blocksize_bits);
1165                         li->extLocation.logicalBlockNum = 0;
1166                         li->extLocation.partitionReferenceNum = 0;
1167                         li->extLength = (li->extLength &
1168                                                 UDF_EXTENT_LENGTH_MASK) |
1169                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1170                 }
1171         }
1172 }
1173 
1174 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1175                                int startnum, int endnum,
1176                                struct extent_position *epos)
1177 {
1178         int start = 0, i;
1179         struct kernel_lb_addr tmploc;
1180         uint32_t tmplen;
1181 
1182         if (startnum > endnum) {
1183                 for (i = 0; i < (startnum - endnum); i++)
1184                         udf_delete_aext(inode, *epos);
1185         } else if (startnum < endnum) {
1186                 for (i = 0; i < (endnum - startnum); i++) {
1187                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1188                                         laarr[i].extLength);
1189                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1190                                       &laarr[i].extLength, 1);
1191                         start++;
1192                 }
1193         }
1194 
1195         for (i = start; i < endnum; i++) {
1196                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1197                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1198                                laarr[i].extLength, 1);
1199         }
1200 }
1201 
1202 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1203                               int create, int *err)
1204 {
1205         struct buffer_head *bh = NULL;
1206 
1207         bh = udf_getblk(inode, block, create, err);
1208         if (!bh)
1209                 return NULL;
1210 
1211         if (buffer_uptodate(bh))
1212                 return bh;
1213 
1214         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1215 
1216         wait_on_buffer(bh);
1217         if (buffer_uptodate(bh))
1218                 return bh;
1219 
1220         brelse(bh);
1221         *err = -EIO;
1222         return NULL;
1223 }
1224 
1225 int udf_setsize(struct inode *inode, loff_t newsize)
1226 {
1227         int err;
1228         struct udf_inode_info *iinfo;
1229         unsigned int bsize = i_blocksize(inode);
1230 
1231         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1232               S_ISLNK(inode->i_mode)))
1233                 return -EINVAL;
1234         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1235                 return -EPERM;
1236 
1237         iinfo = UDF_I(inode);
1238         if (newsize > inode->i_size) {
1239                 down_write(&iinfo->i_data_sem);
1240                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1241                         if (bsize <
1242                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1243                                 err = udf_expand_file_adinicb(inode);
1244                                 if (err)
1245                                         return err;
1246                                 down_write(&iinfo->i_data_sem);
1247                         } else {
1248                                 iinfo->i_lenAlloc = newsize;
1249                                 goto set_size;
1250                         }
1251                 }
1252                 err = udf_extend_file(inode, newsize);
1253                 if (err) {
1254                         up_write(&iinfo->i_data_sem);
1255                         return err;
1256                 }
1257 set_size:
1258                 up_write(&iinfo->i_data_sem);
1259                 truncate_setsize(inode, newsize);
1260         } else {
1261                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1262                         down_write(&iinfo->i_data_sem);
1263                         udf_clear_extent_cache(inode);
1264                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1265                                0x00, bsize - newsize -
1266                                udf_file_entry_alloc_offset(inode));
1267                         iinfo->i_lenAlloc = newsize;
1268                         truncate_setsize(inode, newsize);
1269                         up_write(&iinfo->i_data_sem);
1270                         goto update_time;
1271                 }
1272                 err = block_truncate_page(inode->i_mapping, newsize,
1273                                           udf_get_block);
1274                 if (err)
1275                         return err;
1276                 truncate_setsize(inode, newsize);
1277                 down_write(&iinfo->i_data_sem);
1278                 udf_clear_extent_cache(inode);
1279                 err = udf_truncate_extents(inode);
1280                 up_write(&iinfo->i_data_sem);
1281                 if (err)
1282                         return err;
1283         }
1284 update_time:
1285         inode->i_mtime = inode->i_ctime = current_time(inode);
1286         if (IS_SYNC(inode))
1287                 udf_sync_inode(inode);
1288         else
1289                 mark_inode_dirty(inode);
1290         return 0;
1291 }
1292 
1293 /*
1294  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1295  * arbitrary - just that we hopefully don't limit any real use of rewritten
1296  * inode on write-once media but avoid looping for too long on corrupted media.
1297  */
1298 #define UDF_MAX_ICB_NESTING 1024
1299 
1300 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1301 {
1302         struct buffer_head *bh = NULL;
1303         struct fileEntry *fe;
1304         struct extendedFileEntry *efe;
1305         uint16_t ident;
1306         struct udf_inode_info *iinfo = UDF_I(inode);
1307         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1308         struct kernel_lb_addr *iloc = &iinfo->i_location;
1309         unsigned int link_count;
1310         unsigned int indirections = 0;
1311         int bs = inode->i_sb->s_blocksize;
1312         int ret = -EIO;
1313         uint32_t uid, gid;
1314 
1315 reread:
1316         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1317                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1318                           iloc->partitionReferenceNum, sbi->s_partitions);
1319                 return -EIO;
1320         }
1321 
1322         if (iloc->logicalBlockNum >=
1323             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1324                 udf_debug("block=%u, partition=%u out of range\n",
1325                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1326                 return -EIO;
1327         }
1328 
1329         /*
1330          * Set defaults, but the inode is still incomplete!
1331          * Note: get_new_inode() sets the following on a new inode:
1332          *      i_sb = sb
1333          *      i_no = ino
1334          *      i_flags = sb->s_flags
1335          *      i_state = 0
1336          * clean_inode(): zero fills and sets
1337          *      i_count = 1
1338          *      i_nlink = 1
1339          *      i_op = NULL;
1340          */
1341         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1342         if (!bh) {
1343                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1344                 return -EIO;
1345         }
1346 
1347         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1348             ident != TAG_IDENT_USE) {
1349                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1350                         inode->i_ino, ident);
1351                 goto out;
1352         }
1353 
1354         fe = (struct fileEntry *)bh->b_data;
1355         efe = (struct extendedFileEntry *)bh->b_data;
1356 
1357         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1358                 struct buffer_head *ibh;
1359 
1360                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1361                 if (ident == TAG_IDENT_IE && ibh) {
1362                         struct kernel_lb_addr loc;
1363                         struct indirectEntry *ie;
1364 
1365                         ie = (struct indirectEntry *)ibh->b_data;
1366                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1367 
1368                         if (ie->indirectICB.extLength) {
1369                                 brelse(ibh);
1370                                 memcpy(&iinfo->i_location, &loc,
1371                                        sizeof(struct kernel_lb_addr));
1372                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1373                                         udf_err(inode->i_sb,
1374                                                 "too many ICBs in ICB hierarchy"
1375                                                 " (max %d supported)\n",
1376                                                 UDF_MAX_ICB_NESTING);
1377                                         goto out;
1378                                 }
1379                                 brelse(bh);
1380                                 goto reread;
1381                         }
1382                 }
1383                 brelse(ibh);
1384         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1385                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1386                         le16_to_cpu(fe->icbTag.strategyType));
1387                 goto out;
1388         }
1389         if (fe->icbTag.strategyType == cpu_to_le16(4))
1390                 iinfo->i_strat4096 = 0;
1391         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1392                 iinfo->i_strat4096 = 1;
1393 
1394         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1395                                                         ICBTAG_FLAG_AD_MASK;
1396         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1397             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1398             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1399                 ret = -EIO;
1400                 goto out;
1401         }
1402         iinfo->i_unique = 0;
1403         iinfo->i_lenEAttr = 0;
1404         iinfo->i_lenExtents = 0;
1405         iinfo->i_lenAlloc = 0;
1406         iinfo->i_next_alloc_block = 0;
1407         iinfo->i_next_alloc_goal = 0;
1408         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1409                 iinfo->i_efe = 1;
1410                 iinfo->i_use = 0;
1411                 ret = udf_alloc_i_data(inode, bs -
1412                                         sizeof(struct extendedFileEntry));
1413                 if (ret)
1414                         goto out;
1415                 memcpy(iinfo->i_ext.i_data,
1416                        bh->b_data + sizeof(struct extendedFileEntry),
1417                        bs - sizeof(struct extendedFileEntry));
1418         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1419                 iinfo->i_efe = 0;
1420                 iinfo->i_use = 0;
1421                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1422                 if (ret)
1423                         goto out;
1424                 memcpy(iinfo->i_ext.i_data,
1425                        bh->b_data + sizeof(struct fileEntry),
1426                        bs - sizeof(struct fileEntry));
1427         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1428                 iinfo->i_efe = 0;
1429                 iinfo->i_use = 1;
1430                 iinfo->i_lenAlloc = le32_to_cpu(
1431                                 ((struct unallocSpaceEntry *)bh->b_data)->
1432                                  lengthAllocDescs);
1433                 ret = udf_alloc_i_data(inode, bs -
1434                                         sizeof(struct unallocSpaceEntry));
1435                 if (ret)
1436                         goto out;
1437                 memcpy(iinfo->i_ext.i_data,
1438                        bh->b_data + sizeof(struct unallocSpaceEntry),
1439                        bs - sizeof(struct unallocSpaceEntry));
1440                 return 0;
1441         }
1442 
1443         ret = -EIO;
1444         read_lock(&sbi->s_cred_lock);
1445         uid = le32_to_cpu(fe->uid);
1446         if (uid == UDF_INVALID_ID ||
1447             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1448                 inode->i_uid = sbi->s_uid;
1449         else
1450                 i_uid_write(inode, uid);
1451 
1452         gid = le32_to_cpu(fe->gid);
1453         if (gid == UDF_INVALID_ID ||
1454             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1455                 inode->i_gid = sbi->s_gid;
1456         else
1457                 i_gid_write(inode, gid);
1458 
1459         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1460                         sbi->s_fmode != UDF_INVALID_MODE)
1461                 inode->i_mode = sbi->s_fmode;
1462         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1463                         sbi->s_dmode != UDF_INVALID_MODE)
1464                 inode->i_mode = sbi->s_dmode;
1465         else
1466                 inode->i_mode = udf_convert_permissions(fe);
1467         inode->i_mode &= ~sbi->s_umask;
1468         iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1469 
1470         read_unlock(&sbi->s_cred_lock);
1471 
1472         link_count = le16_to_cpu(fe->fileLinkCount);
1473         if (!link_count) {
1474                 if (!hidden_inode) {
1475                         ret = -ESTALE;
1476                         goto out;
1477                 }
1478                 link_count = 1;
1479         }
1480         set_nlink(inode, link_count);
1481 
1482         inode->i_size = le64_to_cpu(fe->informationLength);
1483         iinfo->i_lenExtents = inode->i_size;
1484 
1485         if (iinfo->i_efe == 0) {
1486                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1487                         (inode->i_sb->s_blocksize_bits - 9);
1488 
1489                 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1490                 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1491                 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1492 
1493                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1494                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1495                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1496                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1497                 iinfo->i_streamdir = 0;
1498                 iinfo->i_lenStreams = 0;
1499         } else {
1500                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1501                     (inode->i_sb->s_blocksize_bits - 9);
1502 
1503                 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1504                 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1505                 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1506                 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1507 
1508                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1509                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1510                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1511                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1512 
1513                 /* Named streams */
1514                 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1515                 iinfo->i_locStreamdir =
1516                         lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1517                 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1518                 if (iinfo->i_lenStreams >= inode->i_size)
1519                         iinfo->i_lenStreams -= inode->i_size;
1520                 else
1521                         iinfo->i_lenStreams = 0;
1522         }
1523         inode->i_generation = iinfo->i_unique;
1524 
1525         /*
1526          * Sanity check length of allocation descriptors and extended attrs to
1527          * avoid integer overflows
1528          */
1529         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1530                 goto out;
1531         /* Now do exact checks */
1532         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1533                 goto out;
1534         /* Sanity checks for files in ICB so that we don't get confused later */
1535         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1536                 /*
1537                  * For file in ICB data is stored in allocation descriptor
1538                  * so sizes should match
1539                  */
1540                 if (iinfo->i_lenAlloc != inode->i_size)
1541                         goto out;
1542                 /* File in ICB has to fit in there... */
1543                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1544                         goto out;
1545         }
1546 
1547         switch (fe->icbTag.fileType) {
1548         case ICBTAG_FILE_TYPE_DIRECTORY:
1549                 inode->i_op = &udf_dir_inode_operations;
1550                 inode->i_fop = &udf_dir_operations;
1551                 inode->i_mode |= S_IFDIR;
1552                 inc_nlink(inode);
1553                 break;
1554         case ICBTAG_FILE_TYPE_REALTIME:
1555         case ICBTAG_FILE_TYPE_REGULAR:
1556         case ICBTAG_FILE_TYPE_UNDEF:
1557         case ICBTAG_FILE_TYPE_VAT20:
1558                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1559                         inode->i_data.a_ops = &udf_adinicb_aops;
1560                 else
1561                         inode->i_data.a_ops = &udf_aops;
1562                 inode->i_op = &udf_file_inode_operations;
1563                 inode->i_fop = &udf_file_operations;
1564                 inode->i_mode |= S_IFREG;
1565                 break;
1566         case ICBTAG_FILE_TYPE_BLOCK:
1567                 inode->i_mode |= S_IFBLK;
1568                 break;
1569         case ICBTAG_FILE_TYPE_CHAR:
1570                 inode->i_mode |= S_IFCHR;
1571                 break;
1572         case ICBTAG_FILE_TYPE_FIFO:
1573                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1574                 break;
1575         case ICBTAG_FILE_TYPE_SOCKET:
1576                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1577                 break;
1578         case ICBTAG_FILE_TYPE_SYMLINK:
1579                 inode->i_data.a_ops = &udf_symlink_aops;
1580                 inode->i_op = &udf_symlink_inode_operations;
1581                 inode_nohighmem(inode);
1582                 inode->i_mode = S_IFLNK | 0777;
1583                 break;
1584         case ICBTAG_FILE_TYPE_MAIN:
1585                 udf_debug("METADATA FILE-----\n");
1586                 break;
1587         case ICBTAG_FILE_TYPE_MIRROR:
1588                 udf_debug("METADATA MIRROR FILE-----\n");
1589                 break;
1590         case ICBTAG_FILE_TYPE_BITMAP:
1591                 udf_debug("METADATA BITMAP FILE-----\n");
1592                 break;
1593         default:
1594                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1595                         inode->i_ino, fe->icbTag.fileType);
1596                 goto out;
1597         }
1598         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599                 struct deviceSpec *dsea =
1600                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1601                 if (dsea) {
1602                         init_special_inode(inode, inode->i_mode,
1603                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1604                                       le32_to_cpu(dsea->minorDeviceIdent)));
1605                         /* Developer ID ??? */
1606                 } else
1607                         goto out;
1608         }
1609         ret = 0;
1610 out:
1611         brelse(bh);
1612         return ret;
1613 }
1614 
1615 static int udf_alloc_i_data(struct inode *inode, size_t size)
1616 {
1617         struct udf_inode_info *iinfo = UDF_I(inode);
1618         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1619         if (!iinfo->i_ext.i_data)
1620                 return -ENOMEM;
1621         return 0;
1622 }
1623 
1624 static umode_t udf_convert_permissions(struct fileEntry *fe)
1625 {
1626         umode_t mode;
1627         uint32_t permissions;
1628         uint32_t flags;
1629 
1630         permissions = le32_to_cpu(fe->permissions);
1631         flags = le16_to_cpu(fe->icbTag.flags);
1632 
1633         mode =  ((permissions) & 0007) |
1634                 ((permissions >> 2) & 0070) |
1635                 ((permissions >> 4) & 0700) |
1636                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1637                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1638                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1639 
1640         return mode;
1641 }
1642 
1643 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1644 {
1645         struct udf_inode_info *iinfo = UDF_I(inode);
1646 
1647         /*
1648          * UDF 2.01 sec. 3.3.3.3 Note 2:
1649          * In Unix, delete permission tracks write
1650          */
1651         iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1652         if (mode & 0200)
1653                 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1654         if (mode & 0020)
1655                 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1656         if (mode & 0002)
1657                 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1658 }
1659 
1660 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1661 {
1662         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1663 }
1664 
1665 static int udf_sync_inode(struct inode *inode)
1666 {
1667         return udf_update_inode(inode, 1);
1668 }
1669 
1670 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1671 {
1672         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1673             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1674              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1675                 iinfo->i_crtime = time;
1676 }
1677 
1678 static int udf_update_inode(struct inode *inode, int do_sync)
1679 {
1680         struct buffer_head *bh = NULL;
1681         struct fileEntry *fe;
1682         struct extendedFileEntry *efe;
1683         uint64_t lb_recorded;
1684         uint32_t udfperms;
1685         uint16_t icbflags;
1686         uint16_t crclen;
1687         int err = 0;
1688         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1689         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1690         struct udf_inode_info *iinfo = UDF_I(inode);
1691 
1692         bh = udf_tgetblk(inode->i_sb,
1693                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1694         if (!bh) {
1695                 udf_debug("getblk failure\n");
1696                 return -EIO;
1697         }
1698 
1699         lock_buffer(bh);
1700         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1701         fe = (struct fileEntry *)bh->b_data;
1702         efe = (struct extendedFileEntry *)bh->b_data;
1703 
1704         if (iinfo->i_use) {
1705                 struct unallocSpaceEntry *use =
1706                         (struct unallocSpaceEntry *)bh->b_data;
1707 
1708                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1709                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1710                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1711                                         sizeof(struct unallocSpaceEntry));
1712                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1713                 crclen = sizeof(struct unallocSpaceEntry);
1714 
1715                 goto finish;
1716         }
1717 
1718         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1719                 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1720         else
1721                 fe->uid = cpu_to_le32(i_uid_read(inode));
1722 
1723         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1724                 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1725         else
1726                 fe->gid = cpu_to_le32(i_gid_read(inode));
1727 
1728         udfperms = ((inode->i_mode & 0007)) |
1729                    ((inode->i_mode & 0070) << 2) |
1730                    ((inode->i_mode & 0700) << 4);
1731 
1732         udfperms |= iinfo->i_extraPerms;
1733         fe->permissions = cpu_to_le32(udfperms);
1734 
1735         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1736                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1737         else
1738                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1739 
1740         fe->informationLength = cpu_to_le64(inode->i_size);
1741 
1742         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1743                 struct regid *eid;
1744                 struct deviceSpec *dsea =
1745                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1746                 if (!dsea) {
1747                         dsea = (struct deviceSpec *)
1748                                 udf_add_extendedattr(inode,
1749                                                      sizeof(struct deviceSpec) +
1750                                                      sizeof(struct regid), 12, 0x3);
1751                         dsea->attrType = cpu_to_le32(12);
1752                         dsea->attrSubtype = 1;
1753                         dsea->attrLength = cpu_to_le32(
1754                                                 sizeof(struct deviceSpec) +
1755                                                 sizeof(struct regid));
1756                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1757                 }
1758                 eid = (struct regid *)dsea->impUse;
1759                 memset(eid, 0, sizeof(*eid));
1760                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1761                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1762                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1763                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1764                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1765         }
1766 
1767         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1768                 lb_recorded = 0; /* No extents => no blocks! */
1769         else
1770                 lb_recorded =
1771                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1772                         (blocksize_bits - 9);
1773 
1774         if (iinfo->i_efe == 0) {
1775                 memcpy(bh->b_data + sizeof(struct fileEntry),
1776                        iinfo->i_ext.i_data,
1777                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1778                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1779 
1780                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1781                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1782                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1783                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1784                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1785                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1788                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1789                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1790                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1791                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1792                 crclen = sizeof(struct fileEntry);
1793         } else {
1794                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1795                        iinfo->i_ext.i_data,
1796                        inode->i_sb->s_blocksize -
1797                                         sizeof(struct extendedFileEntry));
1798                 efe->objectSize =
1799                         cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1800                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1801 
1802                 if (iinfo->i_streamdir) {
1803                         struct long_ad *icb_lad = &efe->streamDirectoryICB;
1804 
1805                         icb_lad->extLocation =
1806                                 cpu_to_lelb(iinfo->i_locStreamdir);
1807                         icb_lad->extLength =
1808                                 cpu_to_le32(inode->i_sb->s_blocksize);
1809                 }
1810 
1811                 udf_adjust_time(iinfo, inode->i_atime);
1812                 udf_adjust_time(iinfo, inode->i_mtime);
1813                 udf_adjust_time(iinfo, inode->i_ctime);
1814 
1815                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1816                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1817                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1818                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1819 
1820                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1821                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1822                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1823                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1824                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1825                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1826                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1827                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1828                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1829                 crclen = sizeof(struct extendedFileEntry);
1830         }
1831 
1832 finish:
1833         if (iinfo->i_strat4096) {
1834                 fe->icbTag.strategyType = cpu_to_le16(4096);
1835                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1836                 fe->icbTag.numEntries = cpu_to_le16(2);
1837         } else {
1838                 fe->icbTag.strategyType = cpu_to_le16(4);
1839                 fe->icbTag.numEntries = cpu_to_le16(1);
1840         }
1841 
1842         if (iinfo->i_use)
1843                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1844         else if (S_ISDIR(inode->i_mode))
1845                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1846         else if (S_ISREG(inode->i_mode))
1847                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1848         else if (S_ISLNK(inode->i_mode))
1849                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1850         else if (S_ISBLK(inode->i_mode))
1851                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1852         else if (S_ISCHR(inode->i_mode))
1853                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1854         else if (S_ISFIFO(inode->i_mode))
1855                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1856         else if (S_ISSOCK(inode->i_mode))
1857                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1858 
1859         icbflags =      iinfo->i_alloc_type |
1860                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1861                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1862                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1863                         (le16_to_cpu(fe->icbTag.flags) &
1864                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1865                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1866 
1867         fe->icbTag.flags = cpu_to_le16(icbflags);
1868         if (sbi->s_udfrev >= 0x0200)
1869                 fe->descTag.descVersion = cpu_to_le16(3);
1870         else
1871                 fe->descTag.descVersion = cpu_to_le16(2);
1872         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1873         fe->descTag.tagLocation = cpu_to_le32(
1874                                         iinfo->i_location.logicalBlockNum);
1875         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1876         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1877         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1878                                                   crclen));
1879         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1880 
1881         set_buffer_uptodate(bh);
1882         unlock_buffer(bh);
1883 
1884         /* write the data blocks */
1885         mark_buffer_dirty(bh);
1886         if (do_sync) {
1887                 sync_dirty_buffer(bh);
1888                 if (buffer_write_io_error(bh)) {
1889                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1890                                  inode->i_ino);
1891                         err = -EIO;
1892                 }
1893         }
1894         brelse(bh);
1895 
1896         return err;
1897 }
1898 
1899 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1900                          bool hidden_inode)
1901 {
1902         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1903         struct inode *inode = iget_locked(sb, block);
1904         int err;
1905 
1906         if (!inode)
1907                 return ERR_PTR(-ENOMEM);
1908 
1909         if (!(inode->i_state & I_NEW))
1910                 return inode;
1911 
1912         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1913         err = udf_read_inode(inode, hidden_inode);
1914         if (err < 0) {
1915                 iget_failed(inode);
1916                 return ERR_PTR(err);
1917         }
1918         unlock_new_inode(inode);
1919 
1920         return inode;
1921 }
1922 
1923 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1924                             struct extent_position *epos)
1925 {
1926         struct super_block *sb = inode->i_sb;
1927         struct buffer_head *bh;
1928         struct allocExtDesc *aed;
1929         struct extent_position nepos;
1930         struct kernel_lb_addr neloc;
1931         int ver, adsize;
1932 
1933         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1934                 adsize = sizeof(struct short_ad);
1935         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1936                 adsize = sizeof(struct long_ad);
1937         else
1938                 return -EIO;
1939 
1940         neloc.logicalBlockNum = block;
1941         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1942 
1943         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1944         if (!bh)
1945                 return -EIO;
1946         lock_buffer(bh);
1947         memset(bh->b_data, 0x00, sb->s_blocksize);
1948         set_buffer_uptodate(bh);
1949         unlock_buffer(bh);
1950         mark_buffer_dirty_inode(bh, inode);
1951 
1952         aed = (struct allocExtDesc *)(bh->b_data);
1953         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1954                 aed->previousAllocExtLocation =
1955                                 cpu_to_le32(epos->block.logicalBlockNum);
1956         }
1957         aed->lengthAllocDescs = cpu_to_le32(0);
1958         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1959                 ver = 3;
1960         else
1961                 ver = 2;
1962         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1963                     sizeof(struct tag));
1964 
1965         nepos.block = neloc;
1966         nepos.offset = sizeof(struct allocExtDesc);
1967         nepos.bh = bh;
1968 
1969         /*
1970          * Do we have to copy current last extent to make space for indirect
1971          * one?
1972          */
1973         if (epos->offset + adsize > sb->s_blocksize) {
1974                 struct kernel_lb_addr cp_loc;
1975                 uint32_t cp_len;
1976                 int cp_type;
1977 
1978                 epos->offset -= adsize;
1979                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1980                 cp_len |= ((uint32_t)cp_type) << 30;
1981 
1982                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1983                 udf_write_aext(inode, epos, &nepos.block,
1984                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1985         } else {
1986                 __udf_add_aext(inode, epos, &nepos.block,
1987                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1988         }
1989 
1990         brelse(epos->bh);
1991         *epos = nepos;
1992 
1993         return 0;
1994 }
1995 
1996 /*
1997  * Append extent at the given position - should be the first free one in inode
1998  * / indirect extent. This function assumes there is enough space in the inode
1999  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2000  */
2001 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2002                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2003 {
2004         struct udf_inode_info *iinfo = UDF_I(inode);
2005         struct allocExtDesc *aed;
2006         int adsize;
2007 
2008         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2009                 adsize = sizeof(struct short_ad);
2010         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2011                 adsize = sizeof(struct long_ad);
2012         else
2013                 return -EIO;
2014 
2015         if (!epos->bh) {
2016                 WARN_ON(iinfo->i_lenAlloc !=
2017                         epos->offset - udf_file_entry_alloc_offset(inode));
2018         } else {
2019                 aed = (struct allocExtDesc *)epos->bh->b_data;
2020                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2021                         epos->offset - sizeof(struct allocExtDesc));
2022                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2023         }
2024 
2025         udf_write_aext(inode, epos, eloc, elen, inc);
2026 
2027         if (!epos->bh) {
2028                 iinfo->i_lenAlloc += adsize;
2029                 mark_inode_dirty(inode);
2030         } else {
2031                 aed = (struct allocExtDesc *)epos->bh->b_data;
2032                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2033                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2035                         udf_update_tag(epos->bh->b_data,
2036                                         epos->offset + (inc ? 0 : adsize));
2037                 else
2038                         udf_update_tag(epos->bh->b_data,
2039                                         sizeof(struct allocExtDesc));
2040                 mark_buffer_dirty_inode(epos->bh, inode);
2041         }
2042 
2043         return 0;
2044 }
2045 
2046 /*
2047  * Append extent at given position - should be the first free one in inode
2048  * / indirect extent. Takes care of allocating and linking indirect blocks.
2049  */
2050 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2051                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2052 {
2053         int adsize;
2054         struct super_block *sb = inode->i_sb;
2055 
2056         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2057                 adsize = sizeof(struct short_ad);
2058         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2059                 adsize = sizeof(struct long_ad);
2060         else
2061                 return -EIO;
2062 
2063         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2064                 int err;
2065                 udf_pblk_t new_block;
2066 
2067                 new_block = udf_new_block(sb, NULL,
2068                                           epos->block.partitionReferenceNum,
2069                                           epos->block.logicalBlockNum, &err);
2070                 if (!new_block)
2071                         return -ENOSPC;
2072 
2073                 err = udf_setup_indirect_aext(inode, new_block, epos);
2074                 if (err)
2075                         return err;
2076         }
2077 
2078         return __udf_add_aext(inode, epos, eloc, elen, inc);
2079 }
2080 
2081 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2082                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083 {
2084         int adsize;
2085         uint8_t *ptr;
2086         struct short_ad *sad;
2087         struct long_ad *lad;
2088         struct udf_inode_info *iinfo = UDF_I(inode);
2089 
2090         if (!epos->bh)
2091                 ptr = iinfo->i_ext.i_data + epos->offset -
2092                         udf_file_entry_alloc_offset(inode) +
2093                         iinfo->i_lenEAttr;
2094         else
2095                 ptr = epos->bh->b_data + epos->offset;
2096 
2097         switch (iinfo->i_alloc_type) {
2098         case ICBTAG_FLAG_AD_SHORT:
2099                 sad = (struct short_ad *)ptr;
2100                 sad->extLength = cpu_to_le32(elen);
2101                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2102                 adsize = sizeof(struct short_ad);
2103                 break;
2104         case ICBTAG_FLAG_AD_LONG:
2105                 lad = (struct long_ad *)ptr;
2106                 lad->extLength = cpu_to_le32(elen);
2107                 lad->extLocation = cpu_to_lelb(*eloc);
2108                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2109                 adsize = sizeof(struct long_ad);
2110                 break;
2111         default:
2112                 return;
2113         }
2114 
2115         if (epos->bh) {
2116                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2117                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2118                         struct allocExtDesc *aed =
2119                                 (struct allocExtDesc *)epos->bh->b_data;
2120                         udf_update_tag(epos->bh->b_data,
2121                                        le32_to_cpu(aed->lengthAllocDescs) +
2122                                        sizeof(struct allocExtDesc));
2123                 }
2124                 mark_buffer_dirty_inode(epos->bh, inode);
2125         } else {
2126                 mark_inode_dirty(inode);
2127         }
2128 
2129         if (inc)
2130                 epos->offset += adsize;
2131 }
2132 
2133 /*
2134  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2135  * someone does some weird stuff.
2136  */
2137 #define UDF_MAX_INDIR_EXTS 16
2138 
2139 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2140                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2141 {
2142         int8_t etype;
2143         unsigned int indirections = 0;
2144 
2145         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2146                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2147                 udf_pblk_t block;
2148 
2149                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2150                         udf_err(inode->i_sb,
2151                                 "too many indirect extents in inode %lu\n",
2152                                 inode->i_ino);
2153                         return -1;
2154                 }
2155 
2156                 epos->block = *eloc;
2157                 epos->offset = sizeof(struct allocExtDesc);
2158                 brelse(epos->bh);
2159                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2160                 epos->bh = udf_tread(inode->i_sb, block);
2161                 if (!epos->bh) {
2162                         udf_debug("reading block %u failed!\n", block);
2163                         return -1;
2164                 }
2165         }
2166 
2167         return etype;
2168 }
2169 
2170 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2171                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172 {
2173         int alen;
2174         int8_t etype;
2175         uint8_t *ptr;
2176         struct short_ad *sad;
2177         struct long_ad *lad;
2178         struct udf_inode_info *iinfo = UDF_I(inode);
2179 
2180         if (!epos->bh) {
2181                 if (!epos->offset)
2182                         epos->offset = udf_file_entry_alloc_offset(inode);
2183                 ptr = iinfo->i_ext.i_data + epos->offset -
2184                         udf_file_entry_alloc_offset(inode) +
2185                         iinfo->i_lenEAttr;
2186                 alen = udf_file_entry_alloc_offset(inode) +
2187                                                         iinfo->i_lenAlloc;
2188         } else {
2189                 if (!epos->offset)
2190                         epos->offset = sizeof(struct allocExtDesc);
2191                 ptr = epos->bh->b_data + epos->offset;
2192                 alen = sizeof(struct allocExtDesc) +
2193                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2194                                                         lengthAllocDescs);
2195         }
2196 
2197         switch (iinfo->i_alloc_type) {
2198         case ICBTAG_FLAG_AD_SHORT:
2199                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2200                 if (!sad)
2201                         return -1;
2202                 etype = le32_to_cpu(sad->extLength) >> 30;
2203                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2204                 eloc->partitionReferenceNum =
2205                                 iinfo->i_location.partitionReferenceNum;
2206                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2207                 break;
2208         case ICBTAG_FLAG_AD_LONG:
2209                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2210                 if (!lad)
2211                         return -1;
2212                 etype = le32_to_cpu(lad->extLength) >> 30;
2213                 *eloc = lelb_to_cpu(lad->extLocation);
2214                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2215                 break;
2216         default:
2217                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2218                 return -1;
2219         }
2220 
2221         return etype;
2222 }
2223 
2224 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2225                               struct kernel_lb_addr neloc, uint32_t nelen)
2226 {
2227         struct kernel_lb_addr oeloc;
2228         uint32_t oelen;
2229         int8_t etype;
2230 
2231         if (epos.bh)
2232                 get_bh(epos.bh);
2233 
2234         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236                 neloc = oeloc;
2237                 nelen = (etype << 30) | oelen;
2238         }
2239         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240         brelse(epos.bh);
2241 
2242         return (nelen >> 30);
2243 }
2244 
2245 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246 {
2247         struct extent_position oepos;
2248         int adsize;
2249         int8_t etype;
2250         struct allocExtDesc *aed;
2251         struct udf_inode_info *iinfo;
2252         struct kernel_lb_addr eloc;
2253         uint32_t elen;
2254 
2255         if (epos.bh) {
2256                 get_bh(epos.bh);
2257                 get_bh(epos.bh);
2258         }
2259 
2260         iinfo = UDF_I(inode);
2261         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262                 adsize = sizeof(struct short_ad);
2263         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264                 adsize = sizeof(struct long_ad);
2265         else
2266                 adsize = 0;
2267 
2268         oepos = epos;
2269         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270                 return -1;
2271 
2272         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274                 if (oepos.bh != epos.bh) {
2275                         oepos.block = epos.block;
2276                         brelse(oepos.bh);
2277                         get_bh(epos.bh);
2278                         oepos.bh = epos.bh;
2279                         oepos.offset = epos.offset - adsize;
2280                 }
2281         }
2282         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283         elen = 0;
2284 
2285         if (epos.bh != oepos.bh) {
2286                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289                 if (!oepos.bh) {
2290                         iinfo->i_lenAlloc -= (adsize * 2);
2291                         mark_inode_dirty(inode);
2292                 } else {
2293                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2294                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297                                 udf_update_tag(oepos.bh->b_data,
2298                                                 oepos.offset - (2 * adsize));
2299                         else
2300                                 udf_update_tag(oepos.bh->b_data,
2301                                                 sizeof(struct allocExtDesc));
2302                         mark_buffer_dirty_inode(oepos.bh, inode);
2303                 }
2304         } else {
2305                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306                 if (!oepos.bh) {
2307                         iinfo->i_lenAlloc -= adsize;
2308                         mark_inode_dirty(inode);
2309                 } else {
2310                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2311                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314                                 udf_update_tag(oepos.bh->b_data,
2315                                                 epos.offset - adsize);
2316                         else
2317                                 udf_update_tag(oepos.bh->b_data,
2318                                                 sizeof(struct allocExtDesc));
2319                         mark_buffer_dirty_inode(oepos.bh, inode);
2320                 }
2321         }
2322 
2323         brelse(epos.bh);
2324         brelse(oepos.bh);
2325 
2326         return (elen >> 30);
2327 }
2328 
2329 int8_t inode_bmap(struct inode *inode, sector_t block,
2330                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2331                   uint32_t *elen, sector_t *offset)
2332 {
2333         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335         int8_t etype;
2336         struct udf_inode_info *iinfo;
2337 
2338         iinfo = UDF_I(inode);
2339         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340                 pos->offset = 0;
2341                 pos->block = iinfo->i_location;
2342                 pos->bh = NULL;
2343         }
2344         *elen = 0;
2345         do {
2346                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347                 if (etype == -1) {
2348                         *offset = (bcount - lbcount) >> blocksize_bits;
2349                         iinfo->i_lenExtents = lbcount;
2350                         return -1;
2351                 }
2352                 lbcount += *elen;
2353         } while (lbcount <= bcount);
2354         /* update extent cache */
2355         udf_update_extent_cache(inode, lbcount - *elen, pos);
2356         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357 
2358         return etype;
2359 }
2360 
2361 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362 {
2363         struct kernel_lb_addr eloc;
2364         uint32_t elen;
2365         sector_t offset;
2366         struct extent_position epos = {};
2367         udf_pblk_t ret;
2368 
2369         down_read(&UDF_I(inode)->i_data_sem);
2370 
2371         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372                                                 (EXT_RECORDED_ALLOCATED >> 30))
2373                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374         else
2375                 ret = 0;
2376 
2377         up_read(&UDF_I(inode)->i_data_sem);
2378         brelse(epos.bh);
2379 
2380         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381                 return udf_fixed_to_variable(ret);
2382         else
2383                 return ret;
2384 }

/* [<][>][^][v][top][bottom][index][help] */