root/fs/eventpoll.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_file_epoll
  2. ep_set_ffd
  3. ep_cmp_ffd
  4. ep_is_linked
  5. ep_pwq_from_wait
  6. ep_item_from_wait
  7. ep_item_from_epqueue
  8. ep_op_has_event
  9. ep_nested_calls_init
  10. ep_events_available
  11. ep_busy_loop_end
  12. ep_busy_loop
  13. ep_reset_busy_poll_napi_id
  14. ep_set_busy_poll_napi_id
  15. ep_busy_loop
  16. ep_reset_busy_poll_napi_id
  17. ep_set_busy_poll_napi_id
  18. ep_call_nested
  19. ep_poll_wakeup_proc
  20. ep_poll_safewake
  21. ep_poll_safewake
  22. ep_remove_wait_queue
  23. ep_unregister_pollwait
  24. ep_wakeup_source
  25. ep_pm_stay_awake
  26. ep_has_wakeup_source
  27. ep_pm_stay_awake_rcu
  28. ep_scan_ready_list
  29. epi_rcu_free
  30. ep_remove
  31. ep_free
  32. ep_eventpoll_release
  33. ep_item_poll
  34. ep_read_events_proc
  35. ep_eventpoll_poll
  36. ep_show_fdinfo
  37. eventpoll_release_file
  38. ep_alloc
  39. ep_find
  40. ep_find_tfd
  41. get_epoll_tfile_raw_ptr
  42. list_add_tail_lockless
  43. chain_epi_lockless
  44. ep_poll_callback
  45. ep_ptable_queue_proc
  46. ep_rbtree_insert
  47. path_count_inc
  48. path_count_init
  49. reverse_path_check_proc
  50. reverse_path_check
  51. ep_create_wakeup_source
  52. ep_destroy_wakeup_source
  53. ep_insert
  54. ep_modify
  55. ep_send_events_proc
  56. ep_send_events
  57. ep_set_mstimeout
  58. ep_poll
  59. ep_loop_check_proc
  60. ep_loop_check
  61. clear_tfile_check_list
  62. do_epoll_create
  63. SYSCALL_DEFINE1
  64. SYSCALL_DEFINE1
  65. SYSCALL_DEFINE4
  66. do_epoll_wait
  67. SYSCALL_DEFINE4
  68. SYSCALL_DEFINE6
  69. COMPAT_SYSCALL_DEFINE6
  70. eventpoll_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *  fs/eventpoll.c (Efficient event retrieval implementation)
   4  *  Copyright (C) 2001,...,2009  Davide Libenzi
   5  *
   6  *  Davide Libenzi <davidel@xmailserver.org>
   7  */
   8 
   9 #include <linux/init.h>
  10 #include <linux/kernel.h>
  11 #include <linux/sched/signal.h>
  12 #include <linux/fs.h>
  13 #include <linux/file.h>
  14 #include <linux/signal.h>
  15 #include <linux/errno.h>
  16 #include <linux/mm.h>
  17 #include <linux/slab.h>
  18 #include <linux/poll.h>
  19 #include <linux/string.h>
  20 #include <linux/list.h>
  21 #include <linux/hash.h>
  22 #include <linux/spinlock.h>
  23 #include <linux/syscalls.h>
  24 #include <linux/rbtree.h>
  25 #include <linux/wait.h>
  26 #include <linux/eventpoll.h>
  27 #include <linux/mount.h>
  28 #include <linux/bitops.h>
  29 #include <linux/mutex.h>
  30 #include <linux/anon_inodes.h>
  31 #include <linux/device.h>
  32 #include <linux/uaccess.h>
  33 #include <asm/io.h>
  34 #include <asm/mman.h>
  35 #include <linux/atomic.h>
  36 #include <linux/proc_fs.h>
  37 #include <linux/seq_file.h>
  38 #include <linux/compat.h>
  39 #include <linux/rculist.h>
  40 #include <net/busy_poll.h>
  41 
  42 /*
  43  * LOCKING:
  44  * There are three level of locking required by epoll :
  45  *
  46  * 1) epmutex (mutex)
  47  * 2) ep->mtx (mutex)
  48  * 3) ep->lock (rwlock)
  49  *
  50  * The acquire order is the one listed above, from 1 to 3.
  51  * We need a rwlock (ep->lock) because we manipulate objects
  52  * from inside the poll callback, that might be triggered from
  53  * a wake_up() that in turn might be called from IRQ context.
  54  * So we can't sleep inside the poll callback and hence we need
  55  * a spinlock. During the event transfer loop (from kernel to
  56  * user space) we could end up sleeping due a copy_to_user(), so
  57  * we need a lock that will allow us to sleep. This lock is a
  58  * mutex (ep->mtx). It is acquired during the event transfer loop,
  59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60  * Then we also need a global mutex to serialize eventpoll_release_file()
  61  * and ep_free().
  62  * This mutex is acquired by ep_free() during the epoll file
  63  * cleanup path and it is also acquired by eventpoll_release_file()
  64  * if a file has been pushed inside an epoll set and it is then
  65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  66  * It is also acquired when inserting an epoll fd onto another epoll
  67  * fd. We do this so that we walk the epoll tree and ensure that this
  68  * insertion does not create a cycle of epoll file descriptors, which
  69  * could lead to deadlock. We need a global mutex to prevent two
  70  * simultaneous inserts (A into B and B into A) from racing and
  71  * constructing a cycle without either insert observing that it is
  72  * going to.
  73  * It is necessary to acquire multiple "ep->mtx"es at once in the
  74  * case when one epoll fd is added to another. In this case, we
  75  * always acquire the locks in the order of nesting (i.e. after
  76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  77  * before e2->mtx). Since we disallow cycles of epoll file
  78  * descriptors, this ensures that the mutexes are well-ordered. In
  79  * order to communicate this nesting to lockdep, when walking a tree
  80  * of epoll file descriptors, we use the current recursion depth as
  81  * the lockdep subkey.
  82  * It is possible to drop the "ep->mtx" and to use the global
  83  * mutex "epmutex" (together with "ep->lock") to have it working,
  84  * but having "ep->mtx" will make the interface more scalable.
  85  * Events that require holding "epmutex" are very rare, while for
  86  * normal operations the epoll private "ep->mtx" will guarantee
  87  * a better scalability.
  88  */
  89 
  90 /* Epoll private bits inside the event mask */
  91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  92 
  93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  94 
  95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
  96                                 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
  97 
  98 /* Maximum number of nesting allowed inside epoll sets */
  99 #define EP_MAX_NESTS 4
 100 
 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 102 
 103 #define EP_UNACTIVE_PTR ((void *) -1L)
 104 
 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 106 
 107 struct epoll_filefd {
 108         struct file *file;
 109         int fd;
 110 } __packed;
 111 
 112 /*
 113  * Structure used to track possible nested calls, for too deep recursions
 114  * and loop cycles.
 115  */
 116 struct nested_call_node {
 117         struct list_head llink;
 118         void *cookie;
 119         void *ctx;
 120 };
 121 
 122 /*
 123  * This structure is used as collector for nested calls, to check for
 124  * maximum recursion dept and loop cycles.
 125  */
 126 struct nested_calls {
 127         struct list_head tasks_call_list;
 128         spinlock_t lock;
 129 };
 130 
 131 /*
 132  * Each file descriptor added to the eventpoll interface will
 133  * have an entry of this type linked to the "rbr" RB tree.
 134  * Avoid increasing the size of this struct, there can be many thousands
 135  * of these on a server and we do not want this to take another cache line.
 136  */
 137 struct epitem {
 138         union {
 139                 /* RB tree node links this structure to the eventpoll RB tree */
 140                 struct rb_node rbn;
 141                 /* Used to free the struct epitem */
 142                 struct rcu_head rcu;
 143         };
 144 
 145         /* List header used to link this structure to the eventpoll ready list */
 146         struct list_head rdllink;
 147 
 148         /*
 149          * Works together "struct eventpoll"->ovflist in keeping the
 150          * single linked chain of items.
 151          */
 152         struct epitem *next;
 153 
 154         /* The file descriptor information this item refers to */
 155         struct epoll_filefd ffd;
 156 
 157         /* Number of active wait queue attached to poll operations */
 158         int nwait;
 159 
 160         /* List containing poll wait queues */
 161         struct list_head pwqlist;
 162 
 163         /* The "container" of this item */
 164         struct eventpoll *ep;
 165 
 166         /* List header used to link this item to the "struct file" items list */
 167         struct list_head fllink;
 168 
 169         /* wakeup_source used when EPOLLWAKEUP is set */
 170         struct wakeup_source __rcu *ws;
 171 
 172         /* The structure that describe the interested events and the source fd */
 173         struct epoll_event event;
 174 };
 175 
 176 /*
 177  * This structure is stored inside the "private_data" member of the file
 178  * structure and represents the main data structure for the eventpoll
 179  * interface.
 180  */
 181 struct eventpoll {
 182         /*
 183          * This mutex is used to ensure that files are not removed
 184          * while epoll is using them. This is held during the event
 185          * collection loop, the file cleanup path, the epoll file exit
 186          * code and the ctl operations.
 187          */
 188         struct mutex mtx;
 189 
 190         /* Wait queue used by sys_epoll_wait() */
 191         wait_queue_head_t wq;
 192 
 193         /* Wait queue used by file->poll() */
 194         wait_queue_head_t poll_wait;
 195 
 196         /* List of ready file descriptors */
 197         struct list_head rdllist;
 198 
 199         /* Lock which protects rdllist and ovflist */
 200         rwlock_t lock;
 201 
 202         /* RB tree root used to store monitored fd structs */
 203         struct rb_root_cached rbr;
 204 
 205         /*
 206          * This is a single linked list that chains all the "struct epitem" that
 207          * happened while transferring ready events to userspace w/out
 208          * holding ->lock.
 209          */
 210         struct epitem *ovflist;
 211 
 212         /* wakeup_source used when ep_scan_ready_list is running */
 213         struct wakeup_source *ws;
 214 
 215         /* The user that created the eventpoll descriptor */
 216         struct user_struct *user;
 217 
 218         struct file *file;
 219 
 220         /* used to optimize loop detection check */
 221         int visited;
 222         struct list_head visited_list_link;
 223 
 224 #ifdef CONFIG_NET_RX_BUSY_POLL
 225         /* used to track busy poll napi_id */
 226         unsigned int napi_id;
 227 #endif
 228 };
 229 
 230 /* Wait structure used by the poll hooks */
 231 struct eppoll_entry {
 232         /* List header used to link this structure to the "struct epitem" */
 233         struct list_head llink;
 234 
 235         /* The "base" pointer is set to the container "struct epitem" */
 236         struct epitem *base;
 237 
 238         /*
 239          * Wait queue item that will be linked to the target file wait
 240          * queue head.
 241          */
 242         wait_queue_entry_t wait;
 243 
 244         /* The wait queue head that linked the "wait" wait queue item */
 245         wait_queue_head_t *whead;
 246 };
 247 
 248 /* Wrapper struct used by poll queueing */
 249 struct ep_pqueue {
 250         poll_table pt;
 251         struct epitem *epi;
 252 };
 253 
 254 /* Used by the ep_send_events() function as callback private data */
 255 struct ep_send_events_data {
 256         int maxevents;
 257         struct epoll_event __user *events;
 258         int res;
 259 };
 260 
 261 /*
 262  * Configuration options available inside /proc/sys/fs/epoll/
 263  */
 264 /* Maximum number of epoll watched descriptors, per user */
 265 static long max_user_watches __read_mostly;
 266 
 267 /*
 268  * This mutex is used to serialize ep_free() and eventpoll_release_file().
 269  */
 270 static DEFINE_MUTEX(epmutex);
 271 
 272 /* Used to check for epoll file descriptor inclusion loops */
 273 static struct nested_calls poll_loop_ncalls;
 274 
 275 /* Slab cache used to allocate "struct epitem" */
 276 static struct kmem_cache *epi_cache __read_mostly;
 277 
 278 /* Slab cache used to allocate "struct eppoll_entry" */
 279 static struct kmem_cache *pwq_cache __read_mostly;
 280 
 281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
 282 static LIST_HEAD(visited_list);
 283 
 284 /*
 285  * List of files with newly added links, where we may need to limit the number
 286  * of emanating paths. Protected by the epmutex.
 287  */
 288 static LIST_HEAD(tfile_check_list);
 289 
 290 #ifdef CONFIG_SYSCTL
 291 
 292 #include <linux/sysctl.h>
 293 
 294 static long long_zero;
 295 static long long_max = LONG_MAX;
 296 
 297 struct ctl_table epoll_table[] = {
 298         {
 299                 .procname       = "max_user_watches",
 300                 .data           = &max_user_watches,
 301                 .maxlen         = sizeof(max_user_watches),
 302                 .mode           = 0644,
 303                 .proc_handler   = proc_doulongvec_minmax,
 304                 .extra1         = &long_zero,
 305                 .extra2         = &long_max,
 306         },
 307         { }
 308 };
 309 #endif /* CONFIG_SYSCTL */
 310 
 311 static const struct file_operations eventpoll_fops;
 312 
 313 static inline int is_file_epoll(struct file *f)
 314 {
 315         return f->f_op == &eventpoll_fops;
 316 }
 317 
 318 /* Setup the structure that is used as key for the RB tree */
 319 static inline void ep_set_ffd(struct epoll_filefd *ffd,
 320                               struct file *file, int fd)
 321 {
 322         ffd->file = file;
 323         ffd->fd = fd;
 324 }
 325 
 326 /* Compare RB tree keys */
 327 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 328                              struct epoll_filefd *p2)
 329 {
 330         return (p1->file > p2->file ? +1:
 331                 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 332 }
 333 
 334 /* Tells us if the item is currently linked */
 335 static inline int ep_is_linked(struct epitem *epi)
 336 {
 337         return !list_empty(&epi->rdllink);
 338 }
 339 
 340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 341 {
 342         return container_of(p, struct eppoll_entry, wait);
 343 }
 344 
 345 /* Get the "struct epitem" from a wait queue pointer */
 346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 347 {
 348         return container_of(p, struct eppoll_entry, wait)->base;
 349 }
 350 
 351 /* Get the "struct epitem" from an epoll queue wrapper */
 352 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 353 {
 354         return container_of(p, struct ep_pqueue, pt)->epi;
 355 }
 356 
 357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
 358 static inline int ep_op_has_event(int op)
 359 {
 360         return op != EPOLL_CTL_DEL;
 361 }
 362 
 363 /* Initialize the poll safe wake up structure */
 364 static void ep_nested_calls_init(struct nested_calls *ncalls)
 365 {
 366         INIT_LIST_HEAD(&ncalls->tasks_call_list);
 367         spin_lock_init(&ncalls->lock);
 368 }
 369 
 370 /**
 371  * ep_events_available - Checks if ready events might be available.
 372  *
 373  * @ep: Pointer to the eventpoll context.
 374  *
 375  * Returns: Returns a value different than zero if ready events are available,
 376  *          or zero otherwise.
 377  */
 378 static inline int ep_events_available(struct eventpoll *ep)
 379 {
 380         return !list_empty_careful(&ep->rdllist) ||
 381                 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 382 }
 383 
 384 #ifdef CONFIG_NET_RX_BUSY_POLL
 385 static bool ep_busy_loop_end(void *p, unsigned long start_time)
 386 {
 387         struct eventpoll *ep = p;
 388 
 389         return ep_events_available(ep) || busy_loop_timeout(start_time);
 390 }
 391 
 392 /*
 393  * Busy poll if globally on and supporting sockets found && no events,
 394  * busy loop will return if need_resched or ep_events_available.
 395  *
 396  * we must do our busy polling with irqs enabled
 397  */
 398 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
 399 {
 400         unsigned int napi_id = READ_ONCE(ep->napi_id);
 401 
 402         if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
 403                 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
 404 }
 405 
 406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 407 {
 408         if (ep->napi_id)
 409                 ep->napi_id = 0;
 410 }
 411 
 412 /*
 413  * Set epoll busy poll NAPI ID from sk.
 414  */
 415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 416 {
 417         struct eventpoll *ep;
 418         unsigned int napi_id;
 419         struct socket *sock;
 420         struct sock *sk;
 421         int err;
 422 
 423         if (!net_busy_loop_on())
 424                 return;
 425 
 426         sock = sock_from_file(epi->ffd.file, &err);
 427         if (!sock)
 428                 return;
 429 
 430         sk = sock->sk;
 431         if (!sk)
 432                 return;
 433 
 434         napi_id = READ_ONCE(sk->sk_napi_id);
 435         ep = epi->ep;
 436 
 437         /* Non-NAPI IDs can be rejected
 438          *      or
 439          * Nothing to do if we already have this ID
 440          */
 441         if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 442                 return;
 443 
 444         /* record NAPI ID for use in next busy poll */
 445         ep->napi_id = napi_id;
 446 }
 447 
 448 #else
 449 
 450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
 451 {
 452 }
 453 
 454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 455 {
 456 }
 457 
 458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 459 {
 460 }
 461 
 462 #endif /* CONFIG_NET_RX_BUSY_POLL */
 463 
 464 /**
 465  * ep_call_nested - Perform a bound (possibly) nested call, by checking
 466  *                  that the recursion limit is not exceeded, and that
 467  *                  the same nested call (by the meaning of same cookie) is
 468  *                  no re-entered.
 469  *
 470  * @ncalls: Pointer to the nested_calls structure to be used for this call.
 471  * @nproc: Nested call core function pointer.
 472  * @priv: Opaque data to be passed to the @nproc callback.
 473  * @cookie: Cookie to be used to identify this nested call.
 474  * @ctx: This instance context.
 475  *
 476  * Returns: Returns the code returned by the @nproc callback, or -1 if
 477  *          the maximum recursion limit has been exceeded.
 478  */
 479 static int ep_call_nested(struct nested_calls *ncalls,
 480                           int (*nproc)(void *, void *, int), void *priv,
 481                           void *cookie, void *ctx)
 482 {
 483         int error, call_nests = 0;
 484         unsigned long flags;
 485         struct list_head *lsthead = &ncalls->tasks_call_list;
 486         struct nested_call_node *tncur;
 487         struct nested_call_node tnode;
 488 
 489         spin_lock_irqsave(&ncalls->lock, flags);
 490 
 491         /*
 492          * Try to see if the current task is already inside this wakeup call.
 493          * We use a list here, since the population inside this set is always
 494          * very much limited.
 495          */
 496         list_for_each_entry(tncur, lsthead, llink) {
 497                 if (tncur->ctx == ctx &&
 498                     (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
 499                         /*
 500                          * Ops ... loop detected or maximum nest level reached.
 501                          * We abort this wake by breaking the cycle itself.
 502                          */
 503                         error = -1;
 504                         goto out_unlock;
 505                 }
 506         }
 507 
 508         /* Add the current task and cookie to the list */
 509         tnode.ctx = ctx;
 510         tnode.cookie = cookie;
 511         list_add(&tnode.llink, lsthead);
 512 
 513         spin_unlock_irqrestore(&ncalls->lock, flags);
 514 
 515         /* Call the nested function */
 516         error = (*nproc)(priv, cookie, call_nests);
 517 
 518         /* Remove the current task from the list */
 519         spin_lock_irqsave(&ncalls->lock, flags);
 520         list_del(&tnode.llink);
 521 out_unlock:
 522         spin_unlock_irqrestore(&ncalls->lock, flags);
 523 
 524         return error;
 525 }
 526 
 527 /*
 528  * As described in commit 0ccf831cb lockdep: annotate epoll
 529  * the use of wait queues used by epoll is done in a very controlled
 530  * manner. Wake ups can nest inside each other, but are never done
 531  * with the same locking. For example:
 532  *
 533  *   dfd = socket(...);
 534  *   efd1 = epoll_create();
 535  *   efd2 = epoll_create();
 536  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 537  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 538  *
 539  * When a packet arrives to the device underneath "dfd", the net code will
 540  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 541  * callback wakeup entry on that queue, and the wake_up() performed by the
 542  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 543  * (efd1) notices that it may have some event ready, so it needs to wake up
 544  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 545  * that ends up in another wake_up(), after having checked about the
 546  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 547  * avoid stack blasting.
 548  *
 549  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 550  * this special case of epoll.
 551  */
 552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
 553 
 554 static struct nested_calls poll_safewake_ncalls;
 555 
 556 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
 557 {
 558         unsigned long flags;
 559         wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
 560 
 561         spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
 562         wake_up_locked_poll(wqueue, EPOLLIN);
 563         spin_unlock_irqrestore(&wqueue->lock, flags);
 564 
 565         return 0;
 566 }
 567 
 568 static void ep_poll_safewake(wait_queue_head_t *wq)
 569 {
 570         int this_cpu = get_cpu();
 571 
 572         ep_call_nested(&poll_safewake_ncalls,
 573                        ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
 574 
 575         put_cpu();
 576 }
 577 
 578 #else
 579 
 580 static void ep_poll_safewake(wait_queue_head_t *wq)
 581 {
 582         wake_up_poll(wq, EPOLLIN);
 583 }
 584 
 585 #endif
 586 
 587 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 588 {
 589         wait_queue_head_t *whead;
 590 
 591         rcu_read_lock();
 592         /*
 593          * If it is cleared by POLLFREE, it should be rcu-safe.
 594          * If we read NULL we need a barrier paired with
 595          * smp_store_release() in ep_poll_callback(), otherwise
 596          * we rely on whead->lock.
 597          */
 598         whead = smp_load_acquire(&pwq->whead);
 599         if (whead)
 600                 remove_wait_queue(whead, &pwq->wait);
 601         rcu_read_unlock();
 602 }
 603 
 604 /*
 605  * This function unregisters poll callbacks from the associated file
 606  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 607  * ep_free).
 608  */
 609 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 610 {
 611         struct list_head *lsthead = &epi->pwqlist;
 612         struct eppoll_entry *pwq;
 613 
 614         while (!list_empty(lsthead)) {
 615                 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 616 
 617                 list_del(&pwq->llink);
 618                 ep_remove_wait_queue(pwq);
 619                 kmem_cache_free(pwq_cache, pwq);
 620         }
 621 }
 622 
 623 /* call only when ep->mtx is held */
 624 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 625 {
 626         return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 627 }
 628 
 629 /* call only when ep->mtx is held */
 630 static inline void ep_pm_stay_awake(struct epitem *epi)
 631 {
 632         struct wakeup_source *ws = ep_wakeup_source(epi);
 633 
 634         if (ws)
 635                 __pm_stay_awake(ws);
 636 }
 637 
 638 static inline bool ep_has_wakeup_source(struct epitem *epi)
 639 {
 640         return rcu_access_pointer(epi->ws) ? true : false;
 641 }
 642 
 643 /* call when ep->mtx cannot be held (ep_poll_callback) */
 644 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 645 {
 646         struct wakeup_source *ws;
 647 
 648         rcu_read_lock();
 649         ws = rcu_dereference(epi->ws);
 650         if (ws)
 651                 __pm_stay_awake(ws);
 652         rcu_read_unlock();
 653 }
 654 
 655 /**
 656  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 657  *                      the scan code, to call f_op->poll(). Also allows for
 658  *                      O(NumReady) performance.
 659  *
 660  * @ep: Pointer to the epoll private data structure.
 661  * @sproc: Pointer to the scan callback.
 662  * @priv: Private opaque data passed to the @sproc callback.
 663  * @depth: The current depth of recursive f_op->poll calls.
 664  * @ep_locked: caller already holds ep->mtx
 665  *
 666  * Returns: The same integer error code returned by the @sproc callback.
 667  */
 668 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
 669                               __poll_t (*sproc)(struct eventpoll *,
 670                                            struct list_head *, void *),
 671                               void *priv, int depth, bool ep_locked)
 672 {
 673         __poll_t res;
 674         int pwake = 0;
 675         struct epitem *epi, *nepi;
 676         LIST_HEAD(txlist);
 677 
 678         lockdep_assert_irqs_enabled();
 679 
 680         /*
 681          * We need to lock this because we could be hit by
 682          * eventpoll_release_file() and epoll_ctl().
 683          */
 684 
 685         if (!ep_locked)
 686                 mutex_lock_nested(&ep->mtx, depth);
 687 
 688         /*
 689          * Steal the ready list, and re-init the original one to the
 690          * empty list. Also, set ep->ovflist to NULL so that events
 691          * happening while looping w/out locks, are not lost. We cannot
 692          * have the poll callback to queue directly on ep->rdllist,
 693          * because we want the "sproc" callback to be able to do it
 694          * in a lockless way.
 695          */
 696         write_lock_irq(&ep->lock);
 697         list_splice_init(&ep->rdllist, &txlist);
 698         WRITE_ONCE(ep->ovflist, NULL);
 699         write_unlock_irq(&ep->lock);
 700 
 701         /*
 702          * Now call the callback function.
 703          */
 704         res = (*sproc)(ep, &txlist, priv);
 705 
 706         write_lock_irq(&ep->lock);
 707         /*
 708          * During the time we spent inside the "sproc" callback, some
 709          * other events might have been queued by the poll callback.
 710          * We re-insert them inside the main ready-list here.
 711          */
 712         for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 713              nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 714                 /*
 715                  * We need to check if the item is already in the list.
 716                  * During the "sproc" callback execution time, items are
 717                  * queued into ->ovflist but the "txlist" might already
 718                  * contain them, and the list_splice() below takes care of them.
 719                  */
 720                 if (!ep_is_linked(epi)) {
 721                         /*
 722                          * ->ovflist is LIFO, so we have to reverse it in order
 723                          * to keep in FIFO.
 724                          */
 725                         list_add(&epi->rdllink, &ep->rdllist);
 726                         ep_pm_stay_awake(epi);
 727                 }
 728         }
 729         /*
 730          * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 731          * releasing the lock, events will be queued in the normal way inside
 732          * ep->rdllist.
 733          */
 734         WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 735 
 736         /*
 737          * Quickly re-inject items left on "txlist".
 738          */
 739         list_splice(&txlist, &ep->rdllist);
 740         __pm_relax(ep->ws);
 741 
 742         if (!list_empty(&ep->rdllist)) {
 743                 /*
 744                  * Wake up (if active) both the eventpoll wait list and
 745                  * the ->poll() wait list (delayed after we release the lock).
 746                  */
 747                 if (waitqueue_active(&ep->wq))
 748                         wake_up(&ep->wq);
 749                 if (waitqueue_active(&ep->poll_wait))
 750                         pwake++;
 751         }
 752         write_unlock_irq(&ep->lock);
 753 
 754         if (!ep_locked)
 755                 mutex_unlock(&ep->mtx);
 756 
 757         /* We have to call this outside the lock */
 758         if (pwake)
 759                 ep_poll_safewake(&ep->poll_wait);
 760 
 761         return res;
 762 }
 763 
 764 static void epi_rcu_free(struct rcu_head *head)
 765 {
 766         struct epitem *epi = container_of(head, struct epitem, rcu);
 767         kmem_cache_free(epi_cache, epi);
 768 }
 769 
 770 /*
 771  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 772  * all the associated resources. Must be called with "mtx" held.
 773  */
 774 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 775 {
 776         struct file *file = epi->ffd.file;
 777 
 778         lockdep_assert_irqs_enabled();
 779 
 780         /*
 781          * Removes poll wait queue hooks.
 782          */
 783         ep_unregister_pollwait(ep, epi);
 784 
 785         /* Remove the current item from the list of epoll hooks */
 786         spin_lock(&file->f_lock);
 787         list_del_rcu(&epi->fllink);
 788         spin_unlock(&file->f_lock);
 789 
 790         rb_erase_cached(&epi->rbn, &ep->rbr);
 791 
 792         write_lock_irq(&ep->lock);
 793         if (ep_is_linked(epi))
 794                 list_del_init(&epi->rdllink);
 795         write_unlock_irq(&ep->lock);
 796 
 797         wakeup_source_unregister(ep_wakeup_source(epi));
 798         /*
 799          * At this point it is safe to free the eventpoll item. Use the union
 800          * field epi->rcu, since we are trying to minimize the size of
 801          * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 802          * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 803          * use of the rbn field.
 804          */
 805         call_rcu(&epi->rcu, epi_rcu_free);
 806 
 807         atomic_long_dec(&ep->user->epoll_watches);
 808 
 809         return 0;
 810 }
 811 
 812 static void ep_free(struct eventpoll *ep)
 813 {
 814         struct rb_node *rbp;
 815         struct epitem *epi;
 816 
 817         /* We need to release all tasks waiting for these file */
 818         if (waitqueue_active(&ep->poll_wait))
 819                 ep_poll_safewake(&ep->poll_wait);
 820 
 821         /*
 822          * We need to lock this because we could be hit by
 823          * eventpoll_release_file() while we're freeing the "struct eventpoll".
 824          * We do not need to hold "ep->mtx" here because the epoll file
 825          * is on the way to be removed and no one has references to it
 826          * anymore. The only hit might come from eventpoll_release_file() but
 827          * holding "epmutex" is sufficient here.
 828          */
 829         mutex_lock(&epmutex);
 830 
 831         /*
 832          * Walks through the whole tree by unregistering poll callbacks.
 833          */
 834         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 835                 epi = rb_entry(rbp, struct epitem, rbn);
 836 
 837                 ep_unregister_pollwait(ep, epi);
 838                 cond_resched();
 839         }
 840 
 841         /*
 842          * Walks through the whole tree by freeing each "struct epitem". At this
 843          * point we are sure no poll callbacks will be lingering around, and also by
 844          * holding "epmutex" we can be sure that no file cleanup code will hit
 845          * us during this operation. So we can avoid the lock on "ep->lock".
 846          * We do not need to lock ep->mtx, either, we only do it to prevent
 847          * a lockdep warning.
 848          */
 849         mutex_lock(&ep->mtx);
 850         while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 851                 epi = rb_entry(rbp, struct epitem, rbn);
 852                 ep_remove(ep, epi);
 853                 cond_resched();
 854         }
 855         mutex_unlock(&ep->mtx);
 856 
 857         mutex_unlock(&epmutex);
 858         mutex_destroy(&ep->mtx);
 859         free_uid(ep->user);
 860         wakeup_source_unregister(ep->ws);
 861         kfree(ep);
 862 }
 863 
 864 static int ep_eventpoll_release(struct inode *inode, struct file *file)
 865 {
 866         struct eventpoll *ep = file->private_data;
 867 
 868         if (ep)
 869                 ep_free(ep);
 870 
 871         return 0;
 872 }
 873 
 874 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 875                                void *priv);
 876 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 877                                  poll_table *pt);
 878 
 879 /*
 880  * Differs from ep_eventpoll_poll() in that internal callers already have
 881  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 882  * is correctly annotated.
 883  */
 884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 885                                  int depth)
 886 {
 887         struct eventpoll *ep;
 888         bool locked;
 889 
 890         pt->_key = epi->event.events;
 891         if (!is_file_epoll(epi->ffd.file))
 892                 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
 893 
 894         ep = epi->ffd.file->private_data;
 895         poll_wait(epi->ffd.file, &ep->poll_wait, pt);
 896         locked = pt && (pt->_qproc == ep_ptable_queue_proc);
 897 
 898         return ep_scan_ready_list(epi->ffd.file->private_data,
 899                                   ep_read_events_proc, &depth, depth,
 900                                   locked) & epi->event.events;
 901 }
 902 
 903 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 904                                void *priv)
 905 {
 906         struct epitem *epi, *tmp;
 907         poll_table pt;
 908         int depth = *(int *)priv;
 909 
 910         init_poll_funcptr(&pt, NULL);
 911         depth++;
 912 
 913         list_for_each_entry_safe(epi, tmp, head, rdllink) {
 914                 if (ep_item_poll(epi, &pt, depth)) {
 915                         return EPOLLIN | EPOLLRDNORM;
 916                 } else {
 917                         /*
 918                          * Item has been dropped into the ready list by the poll
 919                          * callback, but it's not actually ready, as far as
 920                          * caller requested events goes. We can remove it here.
 921                          */
 922                         __pm_relax(ep_wakeup_source(epi));
 923                         list_del_init(&epi->rdllink);
 924                 }
 925         }
 926 
 927         return 0;
 928 }
 929 
 930 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 931 {
 932         struct eventpoll *ep = file->private_data;
 933         int depth = 0;
 934 
 935         /* Insert inside our poll wait queue */
 936         poll_wait(file, &ep->poll_wait, wait);
 937 
 938         /*
 939          * Proceed to find out if wanted events are really available inside
 940          * the ready list.
 941          */
 942         return ep_scan_ready_list(ep, ep_read_events_proc,
 943                                   &depth, depth, false);
 944 }
 945 
 946 #ifdef CONFIG_PROC_FS
 947 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 948 {
 949         struct eventpoll *ep = f->private_data;
 950         struct rb_node *rbp;
 951 
 952         mutex_lock(&ep->mtx);
 953         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 954                 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 955                 struct inode *inode = file_inode(epi->ffd.file);
 956 
 957                 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 958                            " pos:%lli ino:%lx sdev:%x\n",
 959                            epi->ffd.fd, epi->event.events,
 960                            (long long)epi->event.data,
 961                            (long long)epi->ffd.file->f_pos,
 962                            inode->i_ino, inode->i_sb->s_dev);
 963                 if (seq_has_overflowed(m))
 964                         break;
 965         }
 966         mutex_unlock(&ep->mtx);
 967 }
 968 #endif
 969 
 970 /* File callbacks that implement the eventpoll file behaviour */
 971 static const struct file_operations eventpoll_fops = {
 972 #ifdef CONFIG_PROC_FS
 973         .show_fdinfo    = ep_show_fdinfo,
 974 #endif
 975         .release        = ep_eventpoll_release,
 976         .poll           = ep_eventpoll_poll,
 977         .llseek         = noop_llseek,
 978 };
 979 
 980 /*
 981  * This is called from eventpoll_release() to unlink files from the eventpoll
 982  * interface. We need to have this facility to cleanup correctly files that are
 983  * closed without being removed from the eventpoll interface.
 984  */
 985 void eventpoll_release_file(struct file *file)
 986 {
 987         struct eventpoll *ep;
 988         struct epitem *epi, *next;
 989 
 990         /*
 991          * We don't want to get "file->f_lock" because it is not
 992          * necessary. It is not necessary because we're in the "struct file"
 993          * cleanup path, and this means that no one is using this file anymore.
 994          * So, for example, epoll_ctl() cannot hit here since if we reach this
 995          * point, the file counter already went to zero and fget() would fail.
 996          * The only hit might come from ep_free() but by holding the mutex
 997          * will correctly serialize the operation. We do need to acquire
 998          * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 999          * from anywhere but ep_free().
1000          *
1001          * Besides, ep_remove() acquires the lock, so we can't hold it here.
1002          */
1003         mutex_lock(&epmutex);
1004         list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1005                 ep = epi->ep;
1006                 mutex_lock_nested(&ep->mtx, 0);
1007                 ep_remove(ep, epi);
1008                 mutex_unlock(&ep->mtx);
1009         }
1010         mutex_unlock(&epmutex);
1011 }
1012 
1013 static int ep_alloc(struct eventpoll **pep)
1014 {
1015         int error;
1016         struct user_struct *user;
1017         struct eventpoll *ep;
1018 
1019         user = get_current_user();
1020         error = -ENOMEM;
1021         ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1022         if (unlikely(!ep))
1023                 goto free_uid;
1024 
1025         mutex_init(&ep->mtx);
1026         rwlock_init(&ep->lock);
1027         init_waitqueue_head(&ep->wq);
1028         init_waitqueue_head(&ep->poll_wait);
1029         INIT_LIST_HEAD(&ep->rdllist);
1030         ep->rbr = RB_ROOT_CACHED;
1031         ep->ovflist = EP_UNACTIVE_PTR;
1032         ep->user = user;
1033 
1034         *pep = ep;
1035 
1036         return 0;
1037 
1038 free_uid:
1039         free_uid(user);
1040         return error;
1041 }
1042 
1043 /*
1044  * Search the file inside the eventpoll tree. The RB tree operations
1045  * are protected by the "mtx" mutex, and ep_find() must be called with
1046  * "mtx" held.
1047  */
1048 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1049 {
1050         int kcmp;
1051         struct rb_node *rbp;
1052         struct epitem *epi, *epir = NULL;
1053         struct epoll_filefd ffd;
1054 
1055         ep_set_ffd(&ffd, file, fd);
1056         for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1057                 epi = rb_entry(rbp, struct epitem, rbn);
1058                 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1059                 if (kcmp > 0)
1060                         rbp = rbp->rb_right;
1061                 else if (kcmp < 0)
1062                         rbp = rbp->rb_left;
1063                 else {
1064                         epir = epi;
1065                         break;
1066                 }
1067         }
1068 
1069         return epir;
1070 }
1071 
1072 #ifdef CONFIG_CHECKPOINT_RESTORE
1073 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1074 {
1075         struct rb_node *rbp;
1076         struct epitem *epi;
1077 
1078         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079                 epi = rb_entry(rbp, struct epitem, rbn);
1080                 if (epi->ffd.fd == tfd) {
1081                         if (toff == 0)
1082                                 return epi;
1083                         else
1084                                 toff--;
1085                 }
1086                 cond_resched();
1087         }
1088 
1089         return NULL;
1090 }
1091 
1092 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1093                                      unsigned long toff)
1094 {
1095         struct file *file_raw;
1096         struct eventpoll *ep;
1097         struct epitem *epi;
1098 
1099         if (!is_file_epoll(file))
1100                 return ERR_PTR(-EINVAL);
1101 
1102         ep = file->private_data;
1103 
1104         mutex_lock(&ep->mtx);
1105         epi = ep_find_tfd(ep, tfd, toff);
1106         if (epi)
1107                 file_raw = epi->ffd.file;
1108         else
1109                 file_raw = ERR_PTR(-ENOENT);
1110         mutex_unlock(&ep->mtx);
1111 
1112         return file_raw;
1113 }
1114 #endif /* CONFIG_CHECKPOINT_RESTORE */
1115 
1116 /**
1117  * Adds a new entry to the tail of the list in a lockless way, i.e.
1118  * multiple CPUs are allowed to call this function concurrently.
1119  *
1120  * Beware: it is necessary to prevent any other modifications of the
1121  *         existing list until all changes are completed, in other words
1122  *         concurrent list_add_tail_lockless() calls should be protected
1123  *         with a read lock, where write lock acts as a barrier which
1124  *         makes sure all list_add_tail_lockless() calls are fully
1125  *         completed.
1126  *
1127  *        Also an element can be locklessly added to the list only in one
1128  *        direction i.e. either to the tail either to the head, otherwise
1129  *        concurrent access will corrupt the list.
1130  *
1131  * Returns %false if element has been already added to the list, %true
1132  * otherwise.
1133  */
1134 static inline bool list_add_tail_lockless(struct list_head *new,
1135                                           struct list_head *head)
1136 {
1137         struct list_head *prev;
1138 
1139         /*
1140          * This is simple 'new->next = head' operation, but cmpxchg()
1141          * is used in order to detect that same element has been just
1142          * added to the list from another CPU: the winner observes
1143          * new->next == new.
1144          */
1145         if (cmpxchg(&new->next, new, head) != new)
1146                 return false;
1147 
1148         /*
1149          * Initially ->next of a new element must be updated with the head
1150          * (we are inserting to the tail) and only then pointers are atomically
1151          * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1152          * updated before pointers are actually swapped and pointers are
1153          * swapped before prev->next is updated.
1154          */
1155 
1156         prev = xchg(&head->prev, new);
1157 
1158         /*
1159          * It is safe to modify prev->next and new->prev, because a new element
1160          * is added only to the tail and new->next is updated before XCHG.
1161          */
1162 
1163         prev->next = new;
1164         new->prev = prev;
1165 
1166         return true;
1167 }
1168 
1169 /**
1170  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1171  * i.e. multiple CPUs are allowed to call this function concurrently.
1172  *
1173  * Returns %false if epi element has been already chained, %true otherwise.
1174  */
1175 static inline bool chain_epi_lockless(struct epitem *epi)
1176 {
1177         struct eventpoll *ep = epi->ep;
1178 
1179         /* Fast preliminary check */
1180         if (epi->next != EP_UNACTIVE_PTR)
1181                 return false;
1182 
1183         /* Check that the same epi has not been just chained from another CPU */
1184         if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1185                 return false;
1186 
1187         /* Atomically exchange tail */
1188         epi->next = xchg(&ep->ovflist, epi);
1189 
1190         return true;
1191 }
1192 
1193 /*
1194  * This is the callback that is passed to the wait queue wakeup
1195  * mechanism. It is called by the stored file descriptors when they
1196  * have events to report.
1197  *
1198  * This callback takes a read lock in order not to content with concurrent
1199  * events from another file descriptors, thus all modifications to ->rdllist
1200  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1201  * ep_scan_ready_list(), which stops all list modifications and guarantees
1202  * that lists state is seen correctly.
1203  *
1204  * Another thing worth to mention is that ep_poll_callback() can be called
1205  * concurrently for the same @epi from different CPUs if poll table was inited
1206  * with several wait queues entries.  Plural wakeup from different CPUs of a
1207  * single wait queue is serialized by wq.lock, but the case when multiple wait
1208  * queues are used should be detected accordingly.  This is detected using
1209  * cmpxchg() operation.
1210  */
1211 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1212 {
1213         int pwake = 0;
1214         struct epitem *epi = ep_item_from_wait(wait);
1215         struct eventpoll *ep = epi->ep;
1216         __poll_t pollflags = key_to_poll(key);
1217         unsigned long flags;
1218         int ewake = 0;
1219 
1220         read_lock_irqsave(&ep->lock, flags);
1221 
1222         ep_set_busy_poll_napi_id(epi);
1223 
1224         /*
1225          * If the event mask does not contain any poll(2) event, we consider the
1226          * descriptor to be disabled. This condition is likely the effect of the
1227          * EPOLLONESHOT bit that disables the descriptor when an event is received,
1228          * until the next EPOLL_CTL_MOD will be issued.
1229          */
1230         if (!(epi->event.events & ~EP_PRIVATE_BITS))
1231                 goto out_unlock;
1232 
1233         /*
1234          * Check the events coming with the callback. At this stage, not
1235          * every device reports the events in the "key" parameter of the
1236          * callback. We need to be able to handle both cases here, hence the
1237          * test for "key" != NULL before the event match test.
1238          */
1239         if (pollflags && !(pollflags & epi->event.events))
1240                 goto out_unlock;
1241 
1242         /*
1243          * If we are transferring events to userspace, we can hold no locks
1244          * (because we're accessing user memory, and because of linux f_op->poll()
1245          * semantics). All the events that happen during that period of time are
1246          * chained in ep->ovflist and requeued later on.
1247          */
1248         if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1249                 if (chain_epi_lockless(epi))
1250                         ep_pm_stay_awake_rcu(epi);
1251         } else if (!ep_is_linked(epi)) {
1252                 /* In the usual case, add event to ready list. */
1253                 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1254                         ep_pm_stay_awake_rcu(epi);
1255         }
1256 
1257         /*
1258          * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1259          * wait list.
1260          */
1261         if (waitqueue_active(&ep->wq)) {
1262                 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1263                                         !(pollflags & POLLFREE)) {
1264                         switch (pollflags & EPOLLINOUT_BITS) {
1265                         case EPOLLIN:
1266                                 if (epi->event.events & EPOLLIN)
1267                                         ewake = 1;
1268                                 break;
1269                         case EPOLLOUT:
1270                                 if (epi->event.events & EPOLLOUT)
1271                                         ewake = 1;
1272                                 break;
1273                         case 0:
1274                                 ewake = 1;
1275                                 break;
1276                         }
1277                 }
1278                 wake_up(&ep->wq);
1279         }
1280         if (waitqueue_active(&ep->poll_wait))
1281                 pwake++;
1282 
1283 out_unlock:
1284         read_unlock_irqrestore(&ep->lock, flags);
1285 
1286         /* We have to call this outside the lock */
1287         if (pwake)
1288                 ep_poll_safewake(&ep->poll_wait);
1289 
1290         if (!(epi->event.events & EPOLLEXCLUSIVE))
1291                 ewake = 1;
1292 
1293         if (pollflags & POLLFREE) {
1294                 /*
1295                  * If we race with ep_remove_wait_queue() it can miss
1296                  * ->whead = NULL and do another remove_wait_queue() after
1297                  * us, so we can't use __remove_wait_queue().
1298                  */
1299                 list_del_init(&wait->entry);
1300                 /*
1301                  * ->whead != NULL protects us from the race with ep_free()
1302                  * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1303                  * held by the caller. Once we nullify it, nothing protects
1304                  * ep/epi or even wait.
1305                  */
1306                 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1307         }
1308 
1309         return ewake;
1310 }
1311 
1312 /*
1313  * This is the callback that is used to add our wait queue to the
1314  * target file wakeup lists.
1315  */
1316 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1317                                  poll_table *pt)
1318 {
1319         struct epitem *epi = ep_item_from_epqueue(pt);
1320         struct eppoll_entry *pwq;
1321 
1322         if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1323                 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1324                 pwq->whead = whead;
1325                 pwq->base = epi;
1326                 if (epi->event.events & EPOLLEXCLUSIVE)
1327                         add_wait_queue_exclusive(whead, &pwq->wait);
1328                 else
1329                         add_wait_queue(whead, &pwq->wait);
1330                 list_add_tail(&pwq->llink, &epi->pwqlist);
1331                 epi->nwait++;
1332         } else {
1333                 /* We have to signal that an error occurred */
1334                 epi->nwait = -1;
1335         }
1336 }
1337 
1338 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1339 {
1340         int kcmp;
1341         struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1342         struct epitem *epic;
1343         bool leftmost = true;
1344 
1345         while (*p) {
1346                 parent = *p;
1347                 epic = rb_entry(parent, struct epitem, rbn);
1348                 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1349                 if (kcmp > 0) {
1350                         p = &parent->rb_right;
1351                         leftmost = false;
1352                 } else
1353                         p = &parent->rb_left;
1354         }
1355         rb_link_node(&epi->rbn, parent, p);
1356         rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1357 }
1358 
1359 
1360 
1361 #define PATH_ARR_SIZE 5
1362 /*
1363  * These are the number paths of length 1 to 5, that we are allowing to emanate
1364  * from a single file of interest. For example, we allow 1000 paths of length
1365  * 1, to emanate from each file of interest. This essentially represents the
1366  * potential wakeup paths, which need to be limited in order to avoid massive
1367  * uncontrolled wakeup storms. The common use case should be a single ep which
1368  * is connected to n file sources. In this case each file source has 1 path
1369  * of length 1. Thus, the numbers below should be more than sufficient. These
1370  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1371  * and delete can't add additional paths. Protected by the epmutex.
1372  */
1373 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1374 static int path_count[PATH_ARR_SIZE];
1375 
1376 static int path_count_inc(int nests)
1377 {
1378         /* Allow an arbitrary number of depth 1 paths */
1379         if (nests == 0)
1380                 return 0;
1381 
1382         if (++path_count[nests] > path_limits[nests])
1383                 return -1;
1384         return 0;
1385 }
1386 
1387 static void path_count_init(void)
1388 {
1389         int i;
1390 
1391         for (i = 0; i < PATH_ARR_SIZE; i++)
1392                 path_count[i] = 0;
1393 }
1394 
1395 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1396 {
1397         int error = 0;
1398         struct file *file = priv;
1399         struct file *child_file;
1400         struct epitem *epi;
1401 
1402         /* CTL_DEL can remove links here, but that can't increase our count */
1403         rcu_read_lock();
1404         list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1405                 child_file = epi->ep->file;
1406                 if (is_file_epoll(child_file)) {
1407                         if (list_empty(&child_file->f_ep_links)) {
1408                                 if (path_count_inc(call_nests)) {
1409                                         error = -1;
1410                                         break;
1411                                 }
1412                         } else {
1413                                 error = ep_call_nested(&poll_loop_ncalls,
1414                                                         reverse_path_check_proc,
1415                                                         child_file, child_file,
1416                                                         current);
1417                         }
1418                         if (error != 0)
1419                                 break;
1420                 } else {
1421                         printk(KERN_ERR "reverse_path_check_proc: "
1422                                 "file is not an ep!\n");
1423                 }
1424         }
1425         rcu_read_unlock();
1426         return error;
1427 }
1428 
1429 /**
1430  * reverse_path_check - The tfile_check_list is list of file *, which have
1431  *                      links that are proposed to be newly added. We need to
1432  *                      make sure that those added links don't add too many
1433  *                      paths such that we will spend all our time waking up
1434  *                      eventpoll objects.
1435  *
1436  * Returns: Returns zero if the proposed links don't create too many paths,
1437  *          -1 otherwise.
1438  */
1439 static int reverse_path_check(void)
1440 {
1441         int error = 0;
1442         struct file *current_file;
1443 
1444         /* let's call this for all tfiles */
1445         list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1446                 path_count_init();
1447                 error = ep_call_nested(&poll_loop_ncalls,
1448                                         reverse_path_check_proc, current_file,
1449                                         current_file, current);
1450                 if (error)
1451                         break;
1452         }
1453         return error;
1454 }
1455 
1456 static int ep_create_wakeup_source(struct epitem *epi)
1457 {
1458         const char *name;
1459         struct wakeup_source *ws;
1460 
1461         if (!epi->ep->ws) {
1462                 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1463                 if (!epi->ep->ws)
1464                         return -ENOMEM;
1465         }
1466 
1467         name = epi->ffd.file->f_path.dentry->d_name.name;
1468         ws = wakeup_source_register(NULL, name);
1469 
1470         if (!ws)
1471                 return -ENOMEM;
1472         rcu_assign_pointer(epi->ws, ws);
1473 
1474         return 0;
1475 }
1476 
1477 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1478 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1479 {
1480         struct wakeup_source *ws = ep_wakeup_source(epi);
1481 
1482         RCU_INIT_POINTER(epi->ws, NULL);
1483 
1484         /*
1485          * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1486          * used internally by wakeup_source_remove, too (called by
1487          * wakeup_source_unregister), so we cannot use call_rcu
1488          */
1489         synchronize_rcu();
1490         wakeup_source_unregister(ws);
1491 }
1492 
1493 /*
1494  * Must be called with "mtx" held.
1495  */
1496 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1497                      struct file *tfile, int fd, int full_check)
1498 {
1499         int error, pwake = 0;
1500         __poll_t revents;
1501         long user_watches;
1502         struct epitem *epi;
1503         struct ep_pqueue epq;
1504 
1505         lockdep_assert_irqs_enabled();
1506 
1507         user_watches = atomic_long_read(&ep->user->epoll_watches);
1508         if (unlikely(user_watches >= max_user_watches))
1509                 return -ENOSPC;
1510         if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1511                 return -ENOMEM;
1512 
1513         /* Item initialization follow here ... */
1514         INIT_LIST_HEAD(&epi->rdllink);
1515         INIT_LIST_HEAD(&epi->fllink);
1516         INIT_LIST_HEAD(&epi->pwqlist);
1517         epi->ep = ep;
1518         ep_set_ffd(&epi->ffd, tfile, fd);
1519         epi->event = *event;
1520         epi->nwait = 0;
1521         epi->next = EP_UNACTIVE_PTR;
1522         if (epi->event.events & EPOLLWAKEUP) {
1523                 error = ep_create_wakeup_source(epi);
1524                 if (error)
1525                         goto error_create_wakeup_source;
1526         } else {
1527                 RCU_INIT_POINTER(epi->ws, NULL);
1528         }
1529 
1530         /* Initialize the poll table using the queue callback */
1531         epq.epi = epi;
1532         init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1533 
1534         /*
1535          * Attach the item to the poll hooks and get current event bits.
1536          * We can safely use the file* here because its usage count has
1537          * been increased by the caller of this function. Note that after
1538          * this operation completes, the poll callback can start hitting
1539          * the new item.
1540          */
1541         revents = ep_item_poll(epi, &epq.pt, 1);
1542 
1543         /*
1544          * We have to check if something went wrong during the poll wait queue
1545          * install process. Namely an allocation for a wait queue failed due
1546          * high memory pressure.
1547          */
1548         error = -ENOMEM;
1549         if (epi->nwait < 0)
1550                 goto error_unregister;
1551 
1552         /* Add the current item to the list of active epoll hook for this file */
1553         spin_lock(&tfile->f_lock);
1554         list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1555         spin_unlock(&tfile->f_lock);
1556 
1557         /*
1558          * Add the current item to the RB tree. All RB tree operations are
1559          * protected by "mtx", and ep_insert() is called with "mtx" held.
1560          */
1561         ep_rbtree_insert(ep, epi);
1562 
1563         /* now check if we've created too many backpaths */
1564         error = -EINVAL;
1565         if (full_check && reverse_path_check())
1566                 goto error_remove_epi;
1567 
1568         /* We have to drop the new item inside our item list to keep track of it */
1569         write_lock_irq(&ep->lock);
1570 
1571         /* record NAPI ID of new item if present */
1572         ep_set_busy_poll_napi_id(epi);
1573 
1574         /* If the file is already "ready" we drop it inside the ready list */
1575         if (revents && !ep_is_linked(epi)) {
1576                 list_add_tail(&epi->rdllink, &ep->rdllist);
1577                 ep_pm_stay_awake(epi);
1578 
1579                 /* Notify waiting tasks that events are available */
1580                 if (waitqueue_active(&ep->wq))
1581                         wake_up(&ep->wq);
1582                 if (waitqueue_active(&ep->poll_wait))
1583                         pwake++;
1584         }
1585 
1586         write_unlock_irq(&ep->lock);
1587 
1588         atomic_long_inc(&ep->user->epoll_watches);
1589 
1590         /* We have to call this outside the lock */
1591         if (pwake)
1592                 ep_poll_safewake(&ep->poll_wait);
1593 
1594         return 0;
1595 
1596 error_remove_epi:
1597         spin_lock(&tfile->f_lock);
1598         list_del_rcu(&epi->fllink);
1599         spin_unlock(&tfile->f_lock);
1600 
1601         rb_erase_cached(&epi->rbn, &ep->rbr);
1602 
1603 error_unregister:
1604         ep_unregister_pollwait(ep, epi);
1605 
1606         /*
1607          * We need to do this because an event could have been arrived on some
1608          * allocated wait queue. Note that we don't care about the ep->ovflist
1609          * list, since that is used/cleaned only inside a section bound by "mtx".
1610          * And ep_insert() is called with "mtx" held.
1611          */
1612         write_lock_irq(&ep->lock);
1613         if (ep_is_linked(epi))
1614                 list_del_init(&epi->rdllink);
1615         write_unlock_irq(&ep->lock);
1616 
1617         wakeup_source_unregister(ep_wakeup_source(epi));
1618 
1619 error_create_wakeup_source:
1620         kmem_cache_free(epi_cache, epi);
1621 
1622         return error;
1623 }
1624 
1625 /*
1626  * Modify the interest event mask by dropping an event if the new mask
1627  * has a match in the current file status. Must be called with "mtx" held.
1628  */
1629 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1630                      const struct epoll_event *event)
1631 {
1632         int pwake = 0;
1633         poll_table pt;
1634 
1635         lockdep_assert_irqs_enabled();
1636 
1637         init_poll_funcptr(&pt, NULL);
1638 
1639         /*
1640          * Set the new event interest mask before calling f_op->poll();
1641          * otherwise we might miss an event that happens between the
1642          * f_op->poll() call and the new event set registering.
1643          */
1644         epi->event.events = event->events; /* need barrier below */
1645         epi->event.data = event->data; /* protected by mtx */
1646         if (epi->event.events & EPOLLWAKEUP) {
1647                 if (!ep_has_wakeup_source(epi))
1648                         ep_create_wakeup_source(epi);
1649         } else if (ep_has_wakeup_source(epi)) {
1650                 ep_destroy_wakeup_source(epi);
1651         }
1652 
1653         /*
1654          * The following barrier has two effects:
1655          *
1656          * 1) Flush epi changes above to other CPUs.  This ensures
1657          *    we do not miss events from ep_poll_callback if an
1658          *    event occurs immediately after we call f_op->poll().
1659          *    We need this because we did not take ep->lock while
1660          *    changing epi above (but ep_poll_callback does take
1661          *    ep->lock).
1662          *
1663          * 2) We also need to ensure we do not miss _past_ events
1664          *    when calling f_op->poll().  This barrier also
1665          *    pairs with the barrier in wq_has_sleeper (see
1666          *    comments for wq_has_sleeper).
1667          *
1668          * This barrier will now guarantee ep_poll_callback or f_op->poll
1669          * (or both) will notice the readiness of an item.
1670          */
1671         smp_mb();
1672 
1673         /*
1674          * Get current event bits. We can safely use the file* here because
1675          * its usage count has been increased by the caller of this function.
1676          * If the item is "hot" and it is not registered inside the ready
1677          * list, push it inside.
1678          */
1679         if (ep_item_poll(epi, &pt, 1)) {
1680                 write_lock_irq(&ep->lock);
1681                 if (!ep_is_linked(epi)) {
1682                         list_add_tail(&epi->rdllink, &ep->rdllist);
1683                         ep_pm_stay_awake(epi);
1684 
1685                         /* Notify waiting tasks that events are available */
1686                         if (waitqueue_active(&ep->wq))
1687                                 wake_up(&ep->wq);
1688                         if (waitqueue_active(&ep->poll_wait))
1689                                 pwake++;
1690                 }
1691                 write_unlock_irq(&ep->lock);
1692         }
1693 
1694         /* We have to call this outside the lock */
1695         if (pwake)
1696                 ep_poll_safewake(&ep->poll_wait);
1697 
1698         return 0;
1699 }
1700 
1701 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1702                                void *priv)
1703 {
1704         struct ep_send_events_data *esed = priv;
1705         __poll_t revents;
1706         struct epitem *epi, *tmp;
1707         struct epoll_event __user *uevent = esed->events;
1708         struct wakeup_source *ws;
1709         poll_table pt;
1710 
1711         init_poll_funcptr(&pt, NULL);
1712         esed->res = 0;
1713 
1714         /*
1715          * We can loop without lock because we are passed a task private list.
1716          * Items cannot vanish during the loop because ep_scan_ready_list() is
1717          * holding "mtx" during this call.
1718          */
1719         lockdep_assert_held(&ep->mtx);
1720 
1721         list_for_each_entry_safe(epi, tmp, head, rdllink) {
1722                 if (esed->res >= esed->maxevents)
1723                         break;
1724 
1725                 /*
1726                  * Activate ep->ws before deactivating epi->ws to prevent
1727                  * triggering auto-suspend here (in case we reactive epi->ws
1728                  * below).
1729                  *
1730                  * This could be rearranged to delay the deactivation of epi->ws
1731                  * instead, but then epi->ws would temporarily be out of sync
1732                  * with ep_is_linked().
1733                  */
1734                 ws = ep_wakeup_source(epi);
1735                 if (ws) {
1736                         if (ws->active)
1737                                 __pm_stay_awake(ep->ws);
1738                         __pm_relax(ws);
1739                 }
1740 
1741                 list_del_init(&epi->rdllink);
1742 
1743                 /*
1744                  * If the event mask intersect the caller-requested one,
1745                  * deliver the event to userspace. Again, ep_scan_ready_list()
1746                  * is holding ep->mtx, so no operations coming from userspace
1747                  * can change the item.
1748                  */
1749                 revents = ep_item_poll(epi, &pt, 1);
1750                 if (!revents)
1751                         continue;
1752 
1753                 if (__put_user(revents, &uevent->events) ||
1754                     __put_user(epi->event.data, &uevent->data)) {
1755                         list_add(&epi->rdllink, head);
1756                         ep_pm_stay_awake(epi);
1757                         if (!esed->res)
1758                                 esed->res = -EFAULT;
1759                         return 0;
1760                 }
1761                 esed->res++;
1762                 uevent++;
1763                 if (epi->event.events & EPOLLONESHOT)
1764                         epi->event.events &= EP_PRIVATE_BITS;
1765                 else if (!(epi->event.events & EPOLLET)) {
1766                         /*
1767                          * If this file has been added with Level
1768                          * Trigger mode, we need to insert back inside
1769                          * the ready list, so that the next call to
1770                          * epoll_wait() will check again the events
1771                          * availability. At this point, no one can insert
1772                          * into ep->rdllist besides us. The epoll_ctl()
1773                          * callers are locked out by
1774                          * ep_scan_ready_list() holding "mtx" and the
1775                          * poll callback will queue them in ep->ovflist.
1776                          */
1777                         list_add_tail(&epi->rdllink, &ep->rdllist);
1778                         ep_pm_stay_awake(epi);
1779                 }
1780         }
1781 
1782         return 0;
1783 }
1784 
1785 static int ep_send_events(struct eventpoll *ep,
1786                           struct epoll_event __user *events, int maxevents)
1787 {
1788         struct ep_send_events_data esed;
1789 
1790         esed.maxevents = maxevents;
1791         esed.events = events;
1792 
1793         ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1794         return esed.res;
1795 }
1796 
1797 static inline struct timespec64 ep_set_mstimeout(long ms)
1798 {
1799         struct timespec64 now, ts = {
1800                 .tv_sec = ms / MSEC_PER_SEC,
1801                 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1802         };
1803 
1804         ktime_get_ts64(&now);
1805         return timespec64_add_safe(now, ts);
1806 }
1807 
1808 /**
1809  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1810  *           event buffer.
1811  *
1812  * @ep: Pointer to the eventpoll context.
1813  * @events: Pointer to the userspace buffer where the ready events should be
1814  *          stored.
1815  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1816  * @timeout: Maximum timeout for the ready events fetch operation, in
1817  *           milliseconds. If the @timeout is zero, the function will not block,
1818  *           while if the @timeout is less than zero, the function will block
1819  *           until at least one event has been retrieved (or an error
1820  *           occurred).
1821  *
1822  * Returns: Returns the number of ready events which have been fetched, or an
1823  *          error code, in case of error.
1824  */
1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1826                    int maxevents, long timeout)
1827 {
1828         int res = 0, eavail, timed_out = 0;
1829         u64 slack = 0;
1830         wait_queue_entry_t wait;
1831         ktime_t expires, *to = NULL;
1832 
1833         lockdep_assert_irqs_enabled();
1834 
1835         if (timeout > 0) {
1836                 struct timespec64 end_time = ep_set_mstimeout(timeout);
1837 
1838                 slack = select_estimate_accuracy(&end_time);
1839                 to = &expires;
1840                 *to = timespec64_to_ktime(end_time);
1841         } else if (timeout == 0) {
1842                 /*
1843                  * Avoid the unnecessary trip to the wait queue loop, if the
1844                  * caller specified a non blocking operation. We still need
1845                  * lock because we could race and not see an epi being added
1846                  * to the ready list while in irq callback. Thus incorrectly
1847                  * returning 0 back to userspace.
1848                  */
1849                 timed_out = 1;
1850 
1851                 write_lock_irq(&ep->lock);
1852                 eavail = ep_events_available(ep);
1853                 write_unlock_irq(&ep->lock);
1854 
1855                 goto send_events;
1856         }
1857 
1858 fetch_events:
1859 
1860         if (!ep_events_available(ep))
1861                 ep_busy_loop(ep, timed_out);
1862 
1863         eavail = ep_events_available(ep);
1864         if (eavail)
1865                 goto send_events;
1866 
1867         /*
1868          * Busy poll timed out.  Drop NAPI ID for now, we can add
1869          * it back in when we have moved a socket with a valid NAPI
1870          * ID onto the ready list.
1871          */
1872         ep_reset_busy_poll_napi_id(ep);
1873 
1874         do {
1875                 /*
1876                  * Internally init_wait() uses autoremove_wake_function(),
1877                  * thus wait entry is removed from the wait queue on each
1878                  * wakeup. Why it is important? In case of several waiters
1879                  * each new wakeup will hit the next waiter, giving it the
1880                  * chance to harvest new event. Otherwise wakeup can be
1881                  * lost. This is also good performance-wise, because on
1882                  * normal wakeup path no need to call __remove_wait_queue()
1883                  * explicitly, thus ep->lock is not taken, which halts the
1884                  * event delivery.
1885                  */
1886                 init_wait(&wait);
1887                 write_lock_irq(&ep->lock);
1888                 __add_wait_queue_exclusive(&ep->wq, &wait);
1889                 write_unlock_irq(&ep->lock);
1890 
1891                 /*
1892                  * We don't want to sleep if the ep_poll_callback() sends us
1893                  * a wakeup in between. That's why we set the task state
1894                  * to TASK_INTERRUPTIBLE before doing the checks.
1895                  */
1896                 set_current_state(TASK_INTERRUPTIBLE);
1897                 /*
1898                  * Always short-circuit for fatal signals to allow
1899                  * threads to make a timely exit without the chance of
1900                  * finding more events available and fetching
1901                  * repeatedly.
1902                  */
1903                 if (fatal_signal_pending(current)) {
1904                         res = -EINTR;
1905                         break;
1906                 }
1907 
1908                 eavail = ep_events_available(ep);
1909                 if (eavail)
1910                         break;
1911                 if (signal_pending(current)) {
1912                         res = -EINTR;
1913                         break;
1914                 }
1915 
1916                 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1917                         timed_out = 1;
1918                         break;
1919                 }
1920 
1921                 /* We were woken up, thus go and try to harvest some events */
1922                 eavail = 1;
1923 
1924         } while (0);
1925 
1926         __set_current_state(TASK_RUNNING);
1927 
1928         if (!list_empty_careful(&wait.entry)) {
1929                 write_lock_irq(&ep->lock);
1930                 __remove_wait_queue(&ep->wq, &wait);
1931                 write_unlock_irq(&ep->lock);
1932         }
1933 
1934 send_events:
1935         /*
1936          * Try to transfer events to user space. In case we get 0 events and
1937          * there's still timeout left over, we go trying again in search of
1938          * more luck.
1939          */
1940         if (!res && eavail &&
1941             !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1942                 goto fetch_events;
1943 
1944         return res;
1945 }
1946 
1947 /**
1948  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1949  *                      API, to verify that adding an epoll file inside another
1950  *                      epoll structure, does not violate the constraints, in
1951  *                      terms of closed loops, or too deep chains (which can
1952  *                      result in excessive stack usage).
1953  *
1954  * @priv: Pointer to the epoll file to be currently checked.
1955  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1956  *          data structure pointer.
1957  * @call_nests: Current dept of the @ep_call_nested() call stack.
1958  *
1959  * Returns: Returns zero if adding the epoll @file inside current epoll
1960  *          structure @ep does not violate the constraints, or -1 otherwise.
1961  */
1962 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1963 {
1964         int error = 0;
1965         struct file *file = priv;
1966         struct eventpoll *ep = file->private_data;
1967         struct eventpoll *ep_tovisit;
1968         struct rb_node *rbp;
1969         struct epitem *epi;
1970 
1971         mutex_lock_nested(&ep->mtx, call_nests + 1);
1972         ep->visited = 1;
1973         list_add(&ep->visited_list_link, &visited_list);
1974         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1975                 epi = rb_entry(rbp, struct epitem, rbn);
1976                 if (unlikely(is_file_epoll(epi->ffd.file))) {
1977                         ep_tovisit = epi->ffd.file->private_data;
1978                         if (ep_tovisit->visited)
1979                                 continue;
1980                         error = ep_call_nested(&poll_loop_ncalls,
1981                                         ep_loop_check_proc, epi->ffd.file,
1982                                         ep_tovisit, current);
1983                         if (error != 0)
1984                                 break;
1985                 } else {
1986                         /*
1987                          * If we've reached a file that is not associated with
1988                          * an ep, then we need to check if the newly added
1989                          * links are going to add too many wakeup paths. We do
1990                          * this by adding it to the tfile_check_list, if it's
1991                          * not already there, and calling reverse_path_check()
1992                          * during ep_insert().
1993                          */
1994                         if (list_empty(&epi->ffd.file->f_tfile_llink))
1995                                 list_add(&epi->ffd.file->f_tfile_llink,
1996                                          &tfile_check_list);
1997                 }
1998         }
1999         mutex_unlock(&ep->mtx);
2000 
2001         return error;
2002 }
2003 
2004 /**
2005  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2006  *                 another epoll file (represented by @ep) does not create
2007  *                 closed loops or too deep chains.
2008  *
2009  * @ep: Pointer to the epoll private data structure.
2010  * @file: Pointer to the epoll file to be checked.
2011  *
2012  * Returns: Returns zero if adding the epoll @file inside current epoll
2013  *          structure @ep does not violate the constraints, or -1 otherwise.
2014  */
2015 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2016 {
2017         int ret;
2018         struct eventpoll *ep_cur, *ep_next;
2019 
2020         ret = ep_call_nested(&poll_loop_ncalls,
2021                               ep_loop_check_proc, file, ep, current);
2022         /* clear visited list */
2023         list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2024                                                         visited_list_link) {
2025                 ep_cur->visited = 0;
2026                 list_del(&ep_cur->visited_list_link);
2027         }
2028         return ret;
2029 }
2030 
2031 static void clear_tfile_check_list(void)
2032 {
2033         struct file *file;
2034 
2035         /* first clear the tfile_check_list */
2036         while (!list_empty(&tfile_check_list)) {
2037                 file = list_first_entry(&tfile_check_list, struct file,
2038                                         f_tfile_llink);
2039                 list_del_init(&file->f_tfile_llink);
2040         }
2041         INIT_LIST_HEAD(&tfile_check_list);
2042 }
2043 
2044 /*
2045  * Open an eventpoll file descriptor.
2046  */
2047 static int do_epoll_create(int flags)
2048 {
2049         int error, fd;
2050         struct eventpoll *ep = NULL;
2051         struct file *file;
2052 
2053         /* Check the EPOLL_* constant for consistency.  */
2054         BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2055 
2056         if (flags & ~EPOLL_CLOEXEC)
2057                 return -EINVAL;
2058         /*
2059          * Create the internal data structure ("struct eventpoll").
2060          */
2061         error = ep_alloc(&ep);
2062         if (error < 0)
2063                 return error;
2064         /*
2065          * Creates all the items needed to setup an eventpoll file. That is,
2066          * a file structure and a free file descriptor.
2067          */
2068         fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2069         if (fd < 0) {
2070                 error = fd;
2071                 goto out_free_ep;
2072         }
2073         file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2074                                  O_RDWR | (flags & O_CLOEXEC));
2075         if (IS_ERR(file)) {
2076                 error = PTR_ERR(file);
2077                 goto out_free_fd;
2078         }
2079         ep->file = file;
2080         fd_install(fd, file);
2081         return fd;
2082 
2083 out_free_fd:
2084         put_unused_fd(fd);
2085 out_free_ep:
2086         ep_free(ep);
2087         return error;
2088 }
2089 
2090 SYSCALL_DEFINE1(epoll_create1, int, flags)
2091 {
2092         return do_epoll_create(flags);
2093 }
2094 
2095 SYSCALL_DEFINE1(epoll_create, int, size)
2096 {
2097         if (size <= 0)
2098                 return -EINVAL;
2099 
2100         return do_epoll_create(0);
2101 }
2102 
2103 /*
2104  * The following function implements the controller interface for
2105  * the eventpoll file that enables the insertion/removal/change of
2106  * file descriptors inside the interest set.
2107  */
2108 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2109                 struct epoll_event __user *, event)
2110 {
2111         int error;
2112         int full_check = 0;
2113         struct fd f, tf;
2114         struct eventpoll *ep;
2115         struct epitem *epi;
2116         struct epoll_event epds;
2117         struct eventpoll *tep = NULL;
2118 
2119         error = -EFAULT;
2120         if (ep_op_has_event(op) &&
2121             copy_from_user(&epds, event, sizeof(struct epoll_event)))
2122                 goto error_return;
2123 
2124         error = -EBADF;
2125         f = fdget(epfd);
2126         if (!f.file)
2127                 goto error_return;
2128 
2129         /* Get the "struct file *" for the target file */
2130         tf = fdget(fd);
2131         if (!tf.file)
2132                 goto error_fput;
2133 
2134         /* The target file descriptor must support poll */
2135         error = -EPERM;
2136         if (!file_can_poll(tf.file))
2137                 goto error_tgt_fput;
2138 
2139         /* Check if EPOLLWAKEUP is allowed */
2140         if (ep_op_has_event(op))
2141                 ep_take_care_of_epollwakeup(&epds);
2142 
2143         /*
2144          * We have to check that the file structure underneath the file descriptor
2145          * the user passed to us _is_ an eventpoll file. And also we do not permit
2146          * adding an epoll file descriptor inside itself.
2147          */
2148         error = -EINVAL;
2149         if (f.file == tf.file || !is_file_epoll(f.file))
2150                 goto error_tgt_fput;
2151 
2152         /*
2153          * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2154          * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2155          * Also, we do not currently supported nested exclusive wakeups.
2156          */
2157         if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2158                 if (op == EPOLL_CTL_MOD)
2159                         goto error_tgt_fput;
2160                 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2161                                 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2162                         goto error_tgt_fput;
2163         }
2164 
2165         /*
2166          * At this point it is safe to assume that the "private_data" contains
2167          * our own data structure.
2168          */
2169         ep = f.file->private_data;
2170 
2171         /*
2172          * When we insert an epoll file descriptor, inside another epoll file
2173          * descriptor, there is the change of creating closed loops, which are
2174          * better be handled here, than in more critical paths. While we are
2175          * checking for loops we also determine the list of files reachable
2176          * and hang them on the tfile_check_list, so we can check that we
2177          * haven't created too many possible wakeup paths.
2178          *
2179          * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2180          * the epoll file descriptor is attaching directly to a wakeup source,
2181          * unless the epoll file descriptor is nested. The purpose of taking the
2182          * 'epmutex' on add is to prevent complex toplogies such as loops and
2183          * deep wakeup paths from forming in parallel through multiple
2184          * EPOLL_CTL_ADD operations.
2185          */
2186         mutex_lock_nested(&ep->mtx, 0);
2187         if (op == EPOLL_CTL_ADD) {
2188                 if (!list_empty(&f.file->f_ep_links) ||
2189                                                 is_file_epoll(tf.file)) {
2190                         full_check = 1;
2191                         mutex_unlock(&ep->mtx);
2192                         mutex_lock(&epmutex);
2193                         if (is_file_epoll(tf.file)) {
2194                                 error = -ELOOP;
2195                                 if (ep_loop_check(ep, tf.file) != 0) {
2196                                         clear_tfile_check_list();
2197                                         goto error_tgt_fput;
2198                                 }
2199                         } else
2200                                 list_add(&tf.file->f_tfile_llink,
2201                                                         &tfile_check_list);
2202                         mutex_lock_nested(&ep->mtx, 0);
2203                         if (is_file_epoll(tf.file)) {
2204                                 tep = tf.file->private_data;
2205                                 mutex_lock_nested(&tep->mtx, 1);
2206                         }
2207                 }
2208         }
2209 
2210         /*
2211          * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2212          * above, we can be sure to be able to use the item looked up by
2213          * ep_find() till we release the mutex.
2214          */
2215         epi = ep_find(ep, tf.file, fd);
2216 
2217         error = -EINVAL;
2218         switch (op) {
2219         case EPOLL_CTL_ADD:
2220                 if (!epi) {
2221                         epds.events |= EPOLLERR | EPOLLHUP;
2222                         error = ep_insert(ep, &epds, tf.file, fd, full_check);
2223                 } else
2224                         error = -EEXIST;
2225                 if (full_check)
2226                         clear_tfile_check_list();
2227                 break;
2228         case EPOLL_CTL_DEL:
2229                 if (epi)
2230                         error = ep_remove(ep, epi);
2231                 else
2232                         error = -ENOENT;
2233                 break;
2234         case EPOLL_CTL_MOD:
2235                 if (epi) {
2236                         if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2237                                 epds.events |= EPOLLERR | EPOLLHUP;
2238                                 error = ep_modify(ep, epi, &epds);
2239                         }
2240                 } else
2241                         error = -ENOENT;
2242                 break;
2243         }
2244         if (tep != NULL)
2245                 mutex_unlock(&tep->mtx);
2246         mutex_unlock(&ep->mtx);
2247 
2248 error_tgt_fput:
2249         if (full_check)
2250                 mutex_unlock(&epmutex);
2251 
2252         fdput(tf);
2253 error_fput:
2254         fdput(f);
2255 error_return:
2256 
2257         return error;
2258 }
2259 
2260 /*
2261  * Implement the event wait interface for the eventpoll file. It is the kernel
2262  * part of the user space epoll_wait(2).
2263  */
2264 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2265                          int maxevents, int timeout)
2266 {
2267         int error;
2268         struct fd f;
2269         struct eventpoll *ep;
2270 
2271         /* The maximum number of event must be greater than zero */
2272         if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2273                 return -EINVAL;
2274 
2275         /* Verify that the area passed by the user is writeable */
2276         if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2277                 return -EFAULT;
2278 
2279         /* Get the "struct file *" for the eventpoll file */
2280         f = fdget(epfd);
2281         if (!f.file)
2282                 return -EBADF;
2283 
2284         /*
2285          * We have to check that the file structure underneath the fd
2286          * the user passed to us _is_ an eventpoll file.
2287          */
2288         error = -EINVAL;
2289         if (!is_file_epoll(f.file))
2290                 goto error_fput;
2291 
2292         /*
2293          * At this point it is safe to assume that the "private_data" contains
2294          * our own data structure.
2295          */
2296         ep = f.file->private_data;
2297 
2298         /* Time to fish for events ... */
2299         error = ep_poll(ep, events, maxevents, timeout);
2300 
2301 error_fput:
2302         fdput(f);
2303         return error;
2304 }
2305 
2306 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2307                 int, maxevents, int, timeout)
2308 {
2309         return do_epoll_wait(epfd, events, maxevents, timeout);
2310 }
2311 
2312 /*
2313  * Implement the event wait interface for the eventpoll file. It is the kernel
2314  * part of the user space epoll_pwait(2).
2315  */
2316 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2317                 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2318                 size_t, sigsetsize)
2319 {
2320         int error;
2321 
2322         /*
2323          * If the caller wants a certain signal mask to be set during the wait,
2324          * we apply it here.
2325          */
2326         error = set_user_sigmask(sigmask, sigsetsize);
2327         if (error)
2328                 return error;
2329 
2330         error = do_epoll_wait(epfd, events, maxevents, timeout);
2331         restore_saved_sigmask_unless(error == -EINTR);
2332 
2333         return error;
2334 }
2335 
2336 #ifdef CONFIG_COMPAT
2337 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2338                         struct epoll_event __user *, events,
2339                         int, maxevents, int, timeout,
2340                         const compat_sigset_t __user *, sigmask,
2341                         compat_size_t, sigsetsize)
2342 {
2343         long err;
2344 
2345         /*
2346          * If the caller wants a certain signal mask to be set during the wait,
2347          * we apply it here.
2348          */
2349         err = set_compat_user_sigmask(sigmask, sigsetsize);
2350         if (err)
2351                 return err;
2352 
2353         err = do_epoll_wait(epfd, events, maxevents, timeout);
2354         restore_saved_sigmask_unless(err == -EINTR);
2355 
2356         return err;
2357 }
2358 #endif
2359 
2360 static int __init eventpoll_init(void)
2361 {
2362         struct sysinfo si;
2363 
2364         si_meminfo(&si);
2365         /*
2366          * Allows top 4% of lomem to be allocated for epoll watches (per user).
2367          */
2368         max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2369                 EP_ITEM_COST;
2370         BUG_ON(max_user_watches < 0);
2371 
2372         /*
2373          * Initialize the structure used to perform epoll file descriptor
2374          * inclusion loops checks.
2375          */
2376         ep_nested_calls_init(&poll_loop_ncalls);
2377 
2378 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2379         /* Initialize the structure used to perform safe poll wait head wake ups */
2380         ep_nested_calls_init(&poll_safewake_ncalls);
2381 #endif
2382 
2383         /*
2384          * We can have many thousands of epitems, so prevent this from
2385          * using an extra cache line on 64-bit (and smaller) CPUs
2386          */
2387         BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2388 
2389         /* Allocates slab cache used to allocate "struct epitem" items */
2390         epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2391                         0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2392 
2393         /* Allocates slab cache used to allocate "struct eppoll_entry" */
2394         pwq_cache = kmem_cache_create("eventpoll_pwq",
2395                 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2396 
2397         return 0;
2398 }
2399 fs_initcall(eventpoll_init);

/* [<][>][^][v][top][bottom][index][help] */