root/fs/ntfs/mft.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. map_mft_record_page
  2. map_mft_record
  3. unmap_mft_record_page
  4. unmap_mft_record
  5. map_extent_mft_record
  6. __mark_mft_record_dirty
  7. ntfs_sync_mft_mirror_umount
  8. ntfs_sync_mft_mirror
  9. write_mft_record_nolock
  10. ntfs_may_write_mft_record
  11. ntfs_mft_bitmap_find_and_alloc_free_rec_nolock
  12. ntfs_mft_bitmap_extend_allocation_nolock
  13. ntfs_mft_bitmap_extend_initialized_nolock
  14. ntfs_mft_data_extend_allocation_nolock
  15. ntfs_mft_record_layout
  16. ntfs_mft_record_format
  17. ntfs_mft_record_alloc
  18. ntfs_extent_mft_record_free

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /**
   3  * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
   4  *
   5  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   6  * Copyright (c) 2002 Richard Russon
   7  */
   8 
   9 #include <linux/buffer_head.h>
  10 #include <linux/slab.h>
  11 #include <linux/swap.h>
  12 #include <linux/bio.h>
  13 
  14 #include "attrib.h"
  15 #include "aops.h"
  16 #include "bitmap.h"
  17 #include "debug.h"
  18 #include "dir.h"
  19 #include "lcnalloc.h"
  20 #include "malloc.h"
  21 #include "mft.h"
  22 #include "ntfs.h"
  23 
  24 #define MAX_BHS (PAGE_SIZE / NTFS_BLOCK_SIZE)
  25 
  26 /**
  27  * map_mft_record_page - map the page in which a specific mft record resides
  28  * @ni:         ntfs inode whose mft record page to map
  29  *
  30  * This maps the page in which the mft record of the ntfs inode @ni is situated
  31  * and returns a pointer to the mft record within the mapped page.
  32  *
  33  * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
  34  * contains the negative error code returned.
  35  */
  36 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
  37 {
  38         loff_t i_size;
  39         ntfs_volume *vol = ni->vol;
  40         struct inode *mft_vi = vol->mft_ino;
  41         struct page *page;
  42         unsigned long index, end_index;
  43         unsigned ofs;
  44 
  45         BUG_ON(ni->page);
  46         /*
  47          * The index into the page cache and the offset within the page cache
  48          * page of the wanted mft record. FIXME: We need to check for
  49          * overflowing the unsigned long, but I don't think we would ever get
  50          * here if the volume was that big...
  51          */
  52         index = (u64)ni->mft_no << vol->mft_record_size_bits >>
  53                         PAGE_SHIFT;
  54         ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
  55 
  56         i_size = i_size_read(mft_vi);
  57         /* The maximum valid index into the page cache for $MFT's data. */
  58         end_index = i_size >> PAGE_SHIFT;
  59 
  60         /* If the wanted index is out of bounds the mft record doesn't exist. */
  61         if (unlikely(index >= end_index)) {
  62                 if (index > end_index || (i_size & ~PAGE_MASK) < ofs +
  63                                 vol->mft_record_size) {
  64                         page = ERR_PTR(-ENOENT);
  65                         ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
  66                                         "which is beyond the end of the mft.  "
  67                                         "This is probably a bug in the ntfs "
  68                                         "driver.", ni->mft_no);
  69                         goto err_out;
  70                 }
  71         }
  72         /* Read, map, and pin the page. */
  73         page = ntfs_map_page(mft_vi->i_mapping, index);
  74         if (!IS_ERR(page)) {
  75                 /* Catch multi sector transfer fixup errors. */
  76                 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
  77                                 ofs)))) {
  78                         ni->page = page;
  79                         ni->page_ofs = ofs;
  80                         return page_address(page) + ofs;
  81                 }
  82                 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
  83                                 "Run chkdsk.", ni->mft_no);
  84                 ntfs_unmap_page(page);
  85                 page = ERR_PTR(-EIO);
  86                 NVolSetErrors(vol);
  87         }
  88 err_out:
  89         ni->page = NULL;
  90         ni->page_ofs = 0;
  91         return (void*)page;
  92 }
  93 
  94 /**
  95  * map_mft_record - map, pin and lock an mft record
  96  * @ni:         ntfs inode whose MFT record to map
  97  *
  98  * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
  99  * for the mutex if it was already locked by someone else.
 100  *
 101  * The page of the record is mapped using map_mft_record_page() before being
 102  * returned to the caller.
 103  *
 104  * This in turn uses ntfs_map_page() to get the page containing the wanted mft
 105  * record (it in turn calls read_cache_page() which reads it in from disk if
 106  * necessary, increments the use count on the page so that it cannot disappear
 107  * under us and returns a reference to the page cache page).
 108  *
 109  * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
 110  * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
 111  * and the post-read mst fixups on each mft record in the page have been
 112  * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
 113  * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
 114  * ntfs_map_page() waits for PG_locked to become clear and checks if
 115  * PG_uptodate is set and returns an error code if not. This provides
 116  * sufficient protection against races when reading/using the page.
 117  *
 118  * However there is the write mapping to think about. Doing the above described
 119  * checking here will be fine, because when initiating the write we will set
 120  * PG_locked and clear PG_uptodate making sure nobody is touching the page
 121  * contents. Doing the locking this way means that the commit to disk code in
 122  * the page cache code paths is automatically sufficiently locked with us as
 123  * we will not touch a page that has been locked or is not uptodate. The only
 124  * locking problem then is them locking the page while we are accessing it.
 125  *
 126  * So that code will end up having to own the mrec_lock of all mft
 127  * records/inodes present in the page before I/O can proceed. In that case we
 128  * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
 129  * accessing anything without owning the mrec_lock mutex.  But we do need to
 130  * use them because of the read_cache_page() invocation and the code becomes so
 131  * much simpler this way that it is well worth it.
 132  *
 133  * The mft record is now ours and we return a pointer to it. You need to check
 134  * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
 135  * the error code.
 136  *
 137  * NOTE: Caller is responsible for setting the mft record dirty before calling
 138  * unmap_mft_record(). This is obviously only necessary if the caller really
 139  * modified the mft record...
 140  * Q: Do we want to recycle one of the VFS inode state bits instead?
 141  * A: No, the inode ones mean we want to change the mft record, not we want to
 142  * write it out.
 143  */
 144 MFT_RECORD *map_mft_record(ntfs_inode *ni)
 145 {
 146         MFT_RECORD *m;
 147 
 148         ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 149 
 150         /* Make sure the ntfs inode doesn't go away. */
 151         atomic_inc(&ni->count);
 152 
 153         /* Serialize access to this mft record. */
 154         mutex_lock(&ni->mrec_lock);
 155 
 156         m = map_mft_record_page(ni);
 157         if (!IS_ERR(m))
 158                 return m;
 159 
 160         mutex_unlock(&ni->mrec_lock);
 161         atomic_dec(&ni->count);
 162         ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
 163         return m;
 164 }
 165 
 166 /**
 167  * unmap_mft_record_page - unmap the page in which a specific mft record resides
 168  * @ni:         ntfs inode whose mft record page to unmap
 169  *
 170  * This unmaps the page in which the mft record of the ntfs inode @ni is
 171  * situated and returns. This is a NOOP if highmem is not configured.
 172  *
 173  * The unmap happens via ntfs_unmap_page() which in turn decrements the use
 174  * count on the page thus releasing it from the pinned state.
 175  *
 176  * We do not actually unmap the page from memory of course, as that will be
 177  * done by the page cache code itself when memory pressure increases or
 178  * whatever.
 179  */
 180 static inline void unmap_mft_record_page(ntfs_inode *ni)
 181 {
 182         BUG_ON(!ni->page);
 183 
 184         // TODO: If dirty, blah...
 185         ntfs_unmap_page(ni->page);
 186         ni->page = NULL;
 187         ni->page_ofs = 0;
 188         return;
 189 }
 190 
 191 /**
 192  * unmap_mft_record - release a mapped mft record
 193  * @ni:         ntfs inode whose MFT record to unmap
 194  *
 195  * We release the page mapping and the mrec_lock mutex which unmaps the mft
 196  * record and releases it for others to get hold of. We also release the ntfs
 197  * inode by decrementing the ntfs inode reference count.
 198  *
 199  * NOTE: If caller has modified the mft record, it is imperative to set the mft
 200  * record dirty BEFORE calling unmap_mft_record().
 201  */
 202 void unmap_mft_record(ntfs_inode *ni)
 203 {
 204         struct page *page = ni->page;
 205 
 206         BUG_ON(!page);
 207 
 208         ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 209 
 210         unmap_mft_record_page(ni);
 211         mutex_unlock(&ni->mrec_lock);
 212         atomic_dec(&ni->count);
 213         /*
 214          * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
 215          * ntfs_clear_extent_inode() in the extent inode case, and to the
 216          * caller in the non-extent, yet pure ntfs inode case, to do the actual
 217          * tear down of all structures and freeing of all allocated memory.
 218          */
 219         return;
 220 }
 221 
 222 /**
 223  * map_extent_mft_record - load an extent inode and attach it to its base
 224  * @base_ni:    base ntfs inode
 225  * @mref:       mft reference of the extent inode to load
 226  * @ntfs_ino:   on successful return, pointer to the ntfs_inode structure
 227  *
 228  * Load the extent mft record @mref and attach it to its base inode @base_ni.
 229  * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
 230  * PTR_ERR(result) gives the negative error code.
 231  *
 232  * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
 233  * structure of the mapped extent inode.
 234  */
 235 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
 236                 ntfs_inode **ntfs_ino)
 237 {
 238         MFT_RECORD *m;
 239         ntfs_inode *ni = NULL;
 240         ntfs_inode **extent_nis = NULL;
 241         int i;
 242         unsigned long mft_no = MREF(mref);
 243         u16 seq_no = MSEQNO(mref);
 244         bool destroy_ni = false;
 245 
 246         ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
 247                         mft_no, base_ni->mft_no);
 248         /* Make sure the base ntfs inode doesn't go away. */
 249         atomic_inc(&base_ni->count);
 250         /*
 251          * Check if this extent inode has already been added to the base inode,
 252          * in which case just return it. If not found, add it to the base
 253          * inode before returning it.
 254          */
 255         mutex_lock(&base_ni->extent_lock);
 256         if (base_ni->nr_extents > 0) {
 257                 extent_nis = base_ni->ext.extent_ntfs_inos;
 258                 for (i = 0; i < base_ni->nr_extents; i++) {
 259                         if (mft_no != extent_nis[i]->mft_no)
 260                                 continue;
 261                         ni = extent_nis[i];
 262                         /* Make sure the ntfs inode doesn't go away. */
 263                         atomic_inc(&ni->count);
 264                         break;
 265                 }
 266         }
 267         if (likely(ni != NULL)) {
 268                 mutex_unlock(&base_ni->extent_lock);
 269                 atomic_dec(&base_ni->count);
 270                 /* We found the record; just have to map and return it. */
 271                 m = map_mft_record(ni);
 272                 /* map_mft_record() has incremented this on success. */
 273                 atomic_dec(&ni->count);
 274                 if (!IS_ERR(m)) {
 275                         /* Verify the sequence number. */
 276                         if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
 277                                 ntfs_debug("Done 1.");
 278                                 *ntfs_ino = ni;
 279                                 return m;
 280                         }
 281                         unmap_mft_record(ni);
 282                         ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 283                                         "reference! Corrupt filesystem. "
 284                                         "Run chkdsk.");
 285                         return ERR_PTR(-EIO);
 286                 }
 287 map_err_out:
 288                 ntfs_error(base_ni->vol->sb, "Failed to map extent "
 289                                 "mft record, error code %ld.", -PTR_ERR(m));
 290                 return m;
 291         }
 292         /* Record wasn't there. Get a new ntfs inode and initialize it. */
 293         ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
 294         if (unlikely(!ni)) {
 295                 mutex_unlock(&base_ni->extent_lock);
 296                 atomic_dec(&base_ni->count);
 297                 return ERR_PTR(-ENOMEM);
 298         }
 299         ni->vol = base_ni->vol;
 300         ni->seq_no = seq_no;
 301         ni->nr_extents = -1;
 302         ni->ext.base_ntfs_ino = base_ni;
 303         /* Now map the record. */
 304         m = map_mft_record(ni);
 305         if (IS_ERR(m)) {
 306                 mutex_unlock(&base_ni->extent_lock);
 307                 atomic_dec(&base_ni->count);
 308                 ntfs_clear_extent_inode(ni);
 309                 goto map_err_out;
 310         }
 311         /* Verify the sequence number if it is present. */
 312         if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
 313                 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 314                                 "reference! Corrupt filesystem. Run chkdsk.");
 315                 destroy_ni = true;
 316                 m = ERR_PTR(-EIO);
 317                 goto unm_err_out;
 318         }
 319         /* Attach extent inode to base inode, reallocating memory if needed. */
 320         if (!(base_ni->nr_extents & 3)) {
 321                 ntfs_inode **tmp;
 322                 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
 323 
 324                 tmp = kmalloc(new_size, GFP_NOFS);
 325                 if (unlikely(!tmp)) {
 326                         ntfs_error(base_ni->vol->sb, "Failed to allocate "
 327                                         "internal buffer.");
 328                         destroy_ni = true;
 329                         m = ERR_PTR(-ENOMEM);
 330                         goto unm_err_out;
 331                 }
 332                 if (base_ni->nr_extents) {
 333                         BUG_ON(!base_ni->ext.extent_ntfs_inos);
 334                         memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
 335                                         4 * sizeof(ntfs_inode *));
 336                         kfree(base_ni->ext.extent_ntfs_inos);
 337                 }
 338                 base_ni->ext.extent_ntfs_inos = tmp;
 339         }
 340         base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
 341         mutex_unlock(&base_ni->extent_lock);
 342         atomic_dec(&base_ni->count);
 343         ntfs_debug("Done 2.");
 344         *ntfs_ino = ni;
 345         return m;
 346 unm_err_out:
 347         unmap_mft_record(ni);
 348         mutex_unlock(&base_ni->extent_lock);
 349         atomic_dec(&base_ni->count);
 350         /*
 351          * If the extent inode was not attached to the base inode we need to
 352          * release it or we will leak memory.
 353          */
 354         if (destroy_ni)
 355                 ntfs_clear_extent_inode(ni);
 356         return m;
 357 }
 358 
 359 #ifdef NTFS_RW
 360 
 361 /**
 362  * __mark_mft_record_dirty - set the mft record and the page containing it dirty
 363  * @ni:         ntfs inode describing the mapped mft record
 364  *
 365  * Internal function.  Users should call mark_mft_record_dirty() instead.
 366  *
 367  * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
 368  * as well as the page containing the mft record, dirty.  Also, mark the base
 369  * vfs inode dirty.  This ensures that any changes to the mft record are
 370  * written out to disk.
 371  *
 372  * NOTE:  We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
 373  * on the base vfs inode, because even though file data may have been modified,
 374  * it is dirty in the inode meta data rather than the data page cache of the
 375  * inode, and thus there are no data pages that need writing out.  Therefore, a
 376  * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
 377  * other hand, is not sufficient, because ->write_inode needs to be called even
 378  * in case of fdatasync. This needs to happen or the file data would not
 379  * necessarily hit the device synchronously, even though the vfs inode has the
 380  * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
 381  * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
 382  * which is not what I_DIRTY_SYNC on its own would suggest.
 383  */
 384 void __mark_mft_record_dirty(ntfs_inode *ni)
 385 {
 386         ntfs_inode *base_ni;
 387 
 388         ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 389         BUG_ON(NInoAttr(ni));
 390         mark_ntfs_record_dirty(ni->page, ni->page_ofs);
 391         /* Determine the base vfs inode and mark it dirty, too. */
 392         mutex_lock(&ni->extent_lock);
 393         if (likely(ni->nr_extents >= 0))
 394                 base_ni = ni;
 395         else
 396                 base_ni = ni->ext.base_ntfs_ino;
 397         mutex_unlock(&ni->extent_lock);
 398         __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC);
 399 }
 400 
 401 static const char *ntfs_please_email = "Please email "
 402                 "linux-ntfs-dev@lists.sourceforge.net and say that you saw "
 403                 "this message.  Thank you.";
 404 
 405 /**
 406  * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
 407  * @vol:        ntfs volume on which the mft record to synchronize resides
 408  * @mft_no:     mft record number of mft record to synchronize
 409  * @m:          mapped, mst protected (extent) mft record to synchronize
 410  *
 411  * Write the mapped, mst protected (extent) mft record @m with mft record
 412  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
 413  * bypassing the page cache and the $MFTMirr inode itself.
 414  *
 415  * This function is only for use at umount time when the mft mirror inode has
 416  * already been disposed off.  We BUG() if we are called while the mft mirror
 417  * inode is still attached to the volume.
 418  *
 419  * On success return 0.  On error return -errno.
 420  *
 421  * NOTE:  This function is not implemented yet as I am not convinced it can
 422  * actually be triggered considering the sequence of commits we do in super.c::
 423  * ntfs_put_super().  But just in case we provide this place holder as the
 424  * alternative would be either to BUG() or to get a NULL pointer dereference
 425  * and Oops.
 426  */
 427 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
 428                 const unsigned long mft_no, MFT_RECORD *m)
 429 {
 430         BUG_ON(vol->mftmirr_ino);
 431         ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
 432                         "implemented yet.  %s", ntfs_please_email);
 433         return -EOPNOTSUPP;
 434 }
 435 
 436 /**
 437  * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
 438  * @vol:        ntfs volume on which the mft record to synchronize resides
 439  * @mft_no:     mft record number of mft record to synchronize
 440  * @m:          mapped, mst protected (extent) mft record to synchronize
 441  * @sync:       if true, wait for i/o completion
 442  *
 443  * Write the mapped, mst protected (extent) mft record @m with mft record
 444  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
 445  *
 446  * On success return 0.  On error return -errno and set the volume errors flag
 447  * in the ntfs volume @vol.
 448  *
 449  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 450  *
 451  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 452  * schedule i/o via ->writepage or do it via kntfsd or whatever.
 453  */
 454 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
 455                 MFT_RECORD *m, int sync)
 456 {
 457         struct page *page;
 458         unsigned int blocksize = vol->sb->s_blocksize;
 459         int max_bhs = vol->mft_record_size / blocksize;
 460         struct buffer_head *bhs[MAX_BHS];
 461         struct buffer_head *bh, *head;
 462         u8 *kmirr;
 463         runlist_element *rl;
 464         unsigned int block_start, block_end, m_start, m_end, page_ofs;
 465         int i_bhs, nr_bhs, err = 0;
 466         unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 467 
 468         ntfs_debug("Entering for inode 0x%lx.", mft_no);
 469         BUG_ON(!max_bhs);
 470         if (WARN_ON(max_bhs > MAX_BHS))
 471                 return -EINVAL;
 472         if (unlikely(!vol->mftmirr_ino)) {
 473                 /* This could happen during umount... */
 474                 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
 475                 if (likely(!err))
 476                         return err;
 477                 goto err_out;
 478         }
 479         /* Get the page containing the mirror copy of the mft record @m. */
 480         page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
 481                         (PAGE_SHIFT - vol->mft_record_size_bits));
 482         if (IS_ERR(page)) {
 483                 ntfs_error(vol->sb, "Failed to map mft mirror page.");
 484                 err = PTR_ERR(page);
 485                 goto err_out;
 486         }
 487         lock_page(page);
 488         BUG_ON(!PageUptodate(page));
 489         ClearPageUptodate(page);
 490         /* Offset of the mft mirror record inside the page. */
 491         page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
 492         /* The address in the page of the mirror copy of the mft record @m. */
 493         kmirr = page_address(page) + page_ofs;
 494         /* Copy the mst protected mft record to the mirror. */
 495         memcpy(kmirr, m, vol->mft_record_size);
 496         /* Create uptodate buffers if not present. */
 497         if (unlikely(!page_has_buffers(page))) {
 498                 struct buffer_head *tail;
 499 
 500                 bh = head = alloc_page_buffers(page, blocksize, true);
 501                 do {
 502                         set_buffer_uptodate(bh);
 503                         tail = bh;
 504                         bh = bh->b_this_page;
 505                 } while (bh);
 506                 tail->b_this_page = head;
 507                 attach_page_buffers(page, head);
 508         }
 509         bh = head = page_buffers(page);
 510         BUG_ON(!bh);
 511         rl = NULL;
 512         nr_bhs = 0;
 513         block_start = 0;
 514         m_start = kmirr - (u8*)page_address(page);
 515         m_end = m_start + vol->mft_record_size;
 516         do {
 517                 block_end = block_start + blocksize;
 518                 /* If the buffer is outside the mft record, skip it. */
 519                 if (block_end <= m_start)
 520                         continue;
 521                 if (unlikely(block_start >= m_end))
 522                         break;
 523                 /* Need to map the buffer if it is not mapped already. */
 524                 if (unlikely(!buffer_mapped(bh))) {
 525                         VCN vcn;
 526                         LCN lcn;
 527                         unsigned int vcn_ofs;
 528 
 529                         bh->b_bdev = vol->sb->s_bdev;
 530                         /* Obtain the vcn and offset of the current block. */
 531                         vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
 532                                         (block_start - m_start);
 533                         vcn_ofs = vcn & vol->cluster_size_mask;
 534                         vcn >>= vol->cluster_size_bits;
 535                         if (!rl) {
 536                                 down_read(&NTFS_I(vol->mftmirr_ino)->
 537                                                 runlist.lock);
 538                                 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
 539                                 /*
 540                                  * $MFTMirr always has the whole of its runlist
 541                                  * in memory.
 542                                  */
 543                                 BUG_ON(!rl);
 544                         }
 545                         /* Seek to element containing target vcn. */
 546                         while (rl->length && rl[1].vcn <= vcn)
 547                                 rl++;
 548                         lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 549                         /* For $MFTMirr, only lcn >= 0 is a successful remap. */
 550                         if (likely(lcn >= 0)) {
 551                                 /* Setup buffer head to correct block. */
 552                                 bh->b_blocknr = ((lcn <<
 553                                                 vol->cluster_size_bits) +
 554                                                 vcn_ofs) >> blocksize_bits;
 555                                 set_buffer_mapped(bh);
 556                         } else {
 557                                 bh->b_blocknr = -1;
 558                                 ntfs_error(vol->sb, "Cannot write mft mirror "
 559                                                 "record 0x%lx because its "
 560                                                 "location on disk could not "
 561                                                 "be determined (error code "
 562                                                 "%lli).", mft_no,
 563                                                 (long long)lcn);
 564                                 err = -EIO;
 565                         }
 566                 }
 567                 BUG_ON(!buffer_uptodate(bh));
 568                 BUG_ON(!nr_bhs && (m_start != block_start));
 569                 BUG_ON(nr_bhs >= max_bhs);
 570                 bhs[nr_bhs++] = bh;
 571                 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 572         } while (block_start = block_end, (bh = bh->b_this_page) != head);
 573         if (unlikely(rl))
 574                 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
 575         if (likely(!err)) {
 576                 /* Lock buffers and start synchronous write i/o on them. */
 577                 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 578                         struct buffer_head *tbh = bhs[i_bhs];
 579 
 580                         if (!trylock_buffer(tbh))
 581                                 BUG();
 582                         BUG_ON(!buffer_uptodate(tbh));
 583                         clear_buffer_dirty(tbh);
 584                         get_bh(tbh);
 585                         tbh->b_end_io = end_buffer_write_sync;
 586                         submit_bh(REQ_OP_WRITE, 0, tbh);
 587                 }
 588                 /* Wait on i/o completion of buffers. */
 589                 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 590                         struct buffer_head *tbh = bhs[i_bhs];
 591 
 592                         wait_on_buffer(tbh);
 593                         if (unlikely(!buffer_uptodate(tbh))) {
 594                                 err = -EIO;
 595                                 /*
 596                                  * Set the buffer uptodate so the page and
 597                                  * buffer states do not become out of sync.
 598                                  */
 599                                 set_buffer_uptodate(tbh);
 600                         }
 601                 }
 602         } else /* if (unlikely(err)) */ {
 603                 /* Clean the buffers. */
 604                 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 605                         clear_buffer_dirty(bhs[i_bhs]);
 606         }
 607         /* Current state: all buffers are clean, unlocked, and uptodate. */
 608         /* Remove the mst protection fixups again. */
 609         post_write_mst_fixup((NTFS_RECORD*)kmirr);
 610         flush_dcache_page(page);
 611         SetPageUptodate(page);
 612         unlock_page(page);
 613         ntfs_unmap_page(page);
 614         if (likely(!err)) {
 615                 ntfs_debug("Done.");
 616         } else {
 617                 ntfs_error(vol->sb, "I/O error while writing mft mirror "
 618                                 "record 0x%lx!", mft_no);
 619 err_out:
 620                 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
 621                                 "code %i).  Volume will be left marked dirty "
 622                                 "on umount.  Run ntfsfix on the partition "
 623                                 "after umounting to correct this.", -err);
 624                 NVolSetErrors(vol);
 625         }
 626         return err;
 627 }
 628 
 629 /**
 630  * write_mft_record_nolock - write out a mapped (extent) mft record
 631  * @ni:         ntfs inode describing the mapped (extent) mft record
 632  * @m:          mapped (extent) mft record to write
 633  * @sync:       if true, wait for i/o completion
 634  *
 635  * Write the mapped (extent) mft record @m described by the (regular or extent)
 636  * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
 637  * the mft mirror, that is also updated.
 638  *
 639  * We only write the mft record if the ntfs inode @ni is dirty and the first
 640  * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
 641  * of subsequent buffers because we could have raced with
 642  * fs/ntfs/aops.c::mark_ntfs_record_dirty().
 643  *
 644  * On success, clean the mft record and return 0.  On error, leave the mft
 645  * record dirty and return -errno.
 646  *
 647  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 648  * However, if the mft record has a counterpart in the mft mirror and @sync is
 649  * true, we write the mft record, wait for i/o completion, and only then write
 650  * the mft mirror copy.  This ensures that if the system crashes either the mft
 651  * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
 652  * false on the other hand, we start i/o on both and then wait for completion
 653  * on them.  This provides a speedup but no longer guarantees that you will end
 654  * up with a self-consistent mft record in the case of a crash but if you asked
 655  * for asynchronous writing you probably do not care about that anyway.
 656  *
 657  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 658  * schedule i/o via ->writepage or do it via kntfsd or whatever.
 659  */
 660 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
 661 {
 662         ntfs_volume *vol = ni->vol;
 663         struct page *page = ni->page;
 664         unsigned int blocksize = vol->sb->s_blocksize;
 665         unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 666         int max_bhs = vol->mft_record_size / blocksize;
 667         struct buffer_head *bhs[MAX_BHS];
 668         struct buffer_head *bh, *head;
 669         runlist_element *rl;
 670         unsigned int block_start, block_end, m_start, m_end;
 671         int i_bhs, nr_bhs, err = 0;
 672 
 673         ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 674         BUG_ON(NInoAttr(ni));
 675         BUG_ON(!max_bhs);
 676         BUG_ON(!PageLocked(page));
 677         if (WARN_ON(max_bhs > MAX_BHS)) {
 678                 err = -EINVAL;
 679                 goto err_out;
 680         }
 681         /*
 682          * If the ntfs_inode is clean no need to do anything.  If it is dirty,
 683          * mark it as clean now so that it can be redirtied later on if needed.
 684          * There is no danger of races since the caller is holding the locks
 685          * for the mft record @m and the page it is in.
 686          */
 687         if (!NInoTestClearDirty(ni))
 688                 goto done;
 689         bh = head = page_buffers(page);
 690         BUG_ON(!bh);
 691         rl = NULL;
 692         nr_bhs = 0;
 693         block_start = 0;
 694         m_start = ni->page_ofs;
 695         m_end = m_start + vol->mft_record_size;
 696         do {
 697                 block_end = block_start + blocksize;
 698                 /* If the buffer is outside the mft record, skip it. */
 699                 if (block_end <= m_start)
 700                         continue;
 701                 if (unlikely(block_start >= m_end))
 702                         break;
 703                 /*
 704                  * If this block is not the first one in the record, we ignore
 705                  * the buffer's dirty state because we could have raced with a
 706                  * parallel mark_ntfs_record_dirty().
 707                  */
 708                 if (block_start == m_start) {
 709                         /* This block is the first one in the record. */
 710                         if (!buffer_dirty(bh)) {
 711                                 BUG_ON(nr_bhs);
 712                                 /* Clean records are not written out. */
 713                                 break;
 714                         }
 715                 }
 716                 /* Need to map the buffer if it is not mapped already. */
 717                 if (unlikely(!buffer_mapped(bh))) {
 718                         VCN vcn;
 719                         LCN lcn;
 720                         unsigned int vcn_ofs;
 721 
 722                         bh->b_bdev = vol->sb->s_bdev;
 723                         /* Obtain the vcn and offset of the current block. */
 724                         vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
 725                                         (block_start - m_start);
 726                         vcn_ofs = vcn & vol->cluster_size_mask;
 727                         vcn >>= vol->cluster_size_bits;
 728                         if (!rl) {
 729                                 down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 730                                 rl = NTFS_I(vol->mft_ino)->runlist.rl;
 731                                 BUG_ON(!rl);
 732                         }
 733                         /* Seek to element containing target vcn. */
 734                         while (rl->length && rl[1].vcn <= vcn)
 735                                 rl++;
 736                         lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 737                         /* For $MFT, only lcn >= 0 is a successful remap. */
 738                         if (likely(lcn >= 0)) {
 739                                 /* Setup buffer head to correct block. */
 740                                 bh->b_blocknr = ((lcn <<
 741                                                 vol->cluster_size_bits) +
 742                                                 vcn_ofs) >> blocksize_bits;
 743                                 set_buffer_mapped(bh);
 744                         } else {
 745                                 bh->b_blocknr = -1;
 746                                 ntfs_error(vol->sb, "Cannot write mft record "
 747                                                 "0x%lx because its location "
 748                                                 "on disk could not be "
 749                                                 "determined (error code %lli).",
 750                                                 ni->mft_no, (long long)lcn);
 751                                 err = -EIO;
 752                         }
 753                 }
 754                 BUG_ON(!buffer_uptodate(bh));
 755                 BUG_ON(!nr_bhs && (m_start != block_start));
 756                 BUG_ON(nr_bhs >= max_bhs);
 757                 bhs[nr_bhs++] = bh;
 758                 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 759         } while (block_start = block_end, (bh = bh->b_this_page) != head);
 760         if (unlikely(rl))
 761                 up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 762         if (!nr_bhs)
 763                 goto done;
 764         if (unlikely(err))
 765                 goto cleanup_out;
 766         /* Apply the mst protection fixups. */
 767         err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
 768         if (err) {
 769                 ntfs_error(vol->sb, "Failed to apply mst fixups!");
 770                 goto cleanup_out;
 771         }
 772         flush_dcache_mft_record_page(ni);
 773         /* Lock buffers and start synchronous write i/o on them. */
 774         for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 775                 struct buffer_head *tbh = bhs[i_bhs];
 776 
 777                 if (!trylock_buffer(tbh))
 778                         BUG();
 779                 BUG_ON(!buffer_uptodate(tbh));
 780                 clear_buffer_dirty(tbh);
 781                 get_bh(tbh);
 782                 tbh->b_end_io = end_buffer_write_sync;
 783                 submit_bh(REQ_OP_WRITE, 0, tbh);
 784         }
 785         /* Synchronize the mft mirror now if not @sync. */
 786         if (!sync && ni->mft_no < vol->mftmirr_size)
 787                 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 788         /* Wait on i/o completion of buffers. */
 789         for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 790                 struct buffer_head *tbh = bhs[i_bhs];
 791 
 792                 wait_on_buffer(tbh);
 793                 if (unlikely(!buffer_uptodate(tbh))) {
 794                         err = -EIO;
 795                         /*
 796                          * Set the buffer uptodate so the page and buffer
 797                          * states do not become out of sync.
 798                          */
 799                         if (PageUptodate(page))
 800                                 set_buffer_uptodate(tbh);
 801                 }
 802         }
 803         /* If @sync, now synchronize the mft mirror. */
 804         if (sync && ni->mft_no < vol->mftmirr_size)
 805                 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 806         /* Remove the mst protection fixups again. */
 807         post_write_mst_fixup((NTFS_RECORD*)m);
 808         flush_dcache_mft_record_page(ni);
 809         if (unlikely(err)) {
 810                 /* I/O error during writing.  This is really bad! */
 811                 ntfs_error(vol->sb, "I/O error while writing mft record "
 812                                 "0x%lx!  Marking base inode as bad.  You "
 813                                 "should unmount the volume and run chkdsk.",
 814                                 ni->mft_no);
 815                 goto err_out;
 816         }
 817 done:
 818         ntfs_debug("Done.");
 819         return 0;
 820 cleanup_out:
 821         /* Clean the buffers. */
 822         for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 823                 clear_buffer_dirty(bhs[i_bhs]);
 824 err_out:
 825         /*
 826          * Current state: all buffers are clean, unlocked, and uptodate.
 827          * The caller should mark the base inode as bad so that no more i/o
 828          * happens.  ->clear_inode() will still be invoked so all extent inodes
 829          * and other allocated memory will be freed.
 830          */
 831         if (err == -ENOMEM) {
 832                 ntfs_error(vol->sb, "Not enough memory to write mft record.  "
 833                                 "Redirtying so the write is retried later.");
 834                 mark_mft_record_dirty(ni);
 835                 err = 0;
 836         } else
 837                 NVolSetErrors(vol);
 838         return err;
 839 }
 840 
 841 /**
 842  * ntfs_may_write_mft_record - check if an mft record may be written out
 843  * @vol:        [IN]  ntfs volume on which the mft record to check resides
 844  * @mft_no:     [IN]  mft record number of the mft record to check
 845  * @m:          [IN]  mapped mft record to check
 846  * @locked_ni:  [OUT] caller has to unlock this ntfs inode if one is returned
 847  *
 848  * Check if the mapped (base or extent) mft record @m with mft record number
 849  * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
 850  * and possible the ntfs inode of the mft record is locked and the base vfs
 851  * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
 852  * caller is responsible for unlocking the ntfs inode and unpinning the base
 853  * vfs inode.
 854  *
 855  * Return 'true' if the mft record may be written out and 'false' if not.
 856  *
 857  * The caller has locked the page and cleared the uptodate flag on it which
 858  * means that we can safely write out any dirty mft records that do not have
 859  * their inodes in icache as determined by ilookup5() as anyone
 860  * opening/creating such an inode would block when attempting to map the mft
 861  * record in read_cache_page() until we are finished with the write out.
 862  *
 863  * Here is a description of the tests we perform:
 864  *
 865  * If the inode is found in icache we know the mft record must be a base mft
 866  * record.  If it is dirty, we do not write it and return 'false' as the vfs
 867  * inode write paths will result in the access times being updated which would
 868  * cause the base mft record to be redirtied and written out again.  (We know
 869  * the access time update will modify the base mft record because Windows
 870  * chkdsk complains if the standard information attribute is not in the base
 871  * mft record.)
 872  *
 873  * If the inode is in icache and not dirty, we attempt to lock the mft record
 874  * and if we find the lock was already taken, it is not safe to write the mft
 875  * record and we return 'false'.
 876  *
 877  * If we manage to obtain the lock we have exclusive access to the mft record,
 878  * which also allows us safe writeout of the mft record.  We then set
 879  * @locked_ni to the locked ntfs inode and return 'true'.
 880  *
 881  * Note we cannot just lock the mft record and sleep while waiting for the lock
 882  * because this would deadlock due to lock reversal (normally the mft record is
 883  * locked before the page is locked but we already have the page locked here
 884  * when we try to lock the mft record).
 885  *
 886  * If the inode is not in icache we need to perform further checks.
 887  *
 888  * If the mft record is not a FILE record or it is a base mft record, we can
 889  * safely write it and return 'true'.
 890  *
 891  * We now know the mft record is an extent mft record.  We check if the inode
 892  * corresponding to its base mft record is in icache and obtain a reference to
 893  * it if it is.  If it is not, we can safely write it and return 'true'.
 894  *
 895  * We now have the base inode for the extent mft record.  We check if it has an
 896  * ntfs inode for the extent mft record attached and if not it is safe to write
 897  * the extent mft record and we return 'true'.
 898  *
 899  * The ntfs inode for the extent mft record is attached to the base inode so we
 900  * attempt to lock the extent mft record and if we find the lock was already
 901  * taken, it is not safe to write the extent mft record and we return 'false'.
 902  *
 903  * If we manage to obtain the lock we have exclusive access to the extent mft
 904  * record, which also allows us safe writeout of the extent mft record.  We
 905  * set the ntfs inode of the extent mft record clean and then set @locked_ni to
 906  * the now locked ntfs inode and return 'true'.
 907  *
 908  * Note, the reason for actually writing dirty mft records here and not just
 909  * relying on the vfs inode dirty code paths is that we can have mft records
 910  * modified without them ever having actual inodes in memory.  Also we can have
 911  * dirty mft records with clean ntfs inodes in memory.  None of the described
 912  * cases would result in the dirty mft records being written out if we only
 913  * relied on the vfs inode dirty code paths.  And these cases can really occur
 914  * during allocation of new mft records and in particular when the
 915  * initialized_size of the $MFT/$DATA attribute is extended and the new space
 916  * is initialized using ntfs_mft_record_format().  The clean inode can then
 917  * appear if the mft record is reused for a new inode before it got written
 918  * out.
 919  */
 920 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
 921                 const MFT_RECORD *m, ntfs_inode **locked_ni)
 922 {
 923         struct super_block *sb = vol->sb;
 924         struct inode *mft_vi = vol->mft_ino;
 925         struct inode *vi;
 926         ntfs_inode *ni, *eni, **extent_nis;
 927         int i;
 928         ntfs_attr na;
 929 
 930         ntfs_debug("Entering for inode 0x%lx.", mft_no);
 931         /*
 932          * Normally we do not return a locked inode so set @locked_ni to NULL.
 933          */
 934         BUG_ON(!locked_ni);
 935         *locked_ni = NULL;
 936         /*
 937          * Check if the inode corresponding to this mft record is in the VFS
 938          * inode cache and obtain a reference to it if it is.
 939          */
 940         ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
 941         na.mft_no = mft_no;
 942         na.name = NULL;
 943         na.name_len = 0;
 944         na.type = AT_UNUSED;
 945         /*
 946          * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
 947          * we get here for it rather often.
 948          */
 949         if (!mft_no) {
 950                 /* Balance the below iput(). */
 951                 vi = igrab(mft_vi);
 952                 BUG_ON(vi != mft_vi);
 953         } else {
 954                 /*
 955                  * Have to use ilookup5_nowait() since ilookup5() waits for the
 956                  * inode lock which causes ntfs to deadlock when a concurrent
 957                  * inode write via the inode dirty code paths and the page
 958                  * dirty code path of the inode dirty code path when writing
 959                  * $MFT occurs.
 960                  */
 961                 vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
 962         }
 963         if (vi) {
 964                 ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
 965                 /* The inode is in icache. */
 966                 ni = NTFS_I(vi);
 967                 /* Take a reference to the ntfs inode. */
 968                 atomic_inc(&ni->count);
 969                 /* If the inode is dirty, do not write this record. */
 970                 if (NInoDirty(ni)) {
 971                         ntfs_debug("Inode 0x%lx is dirty, do not write it.",
 972                                         mft_no);
 973                         atomic_dec(&ni->count);
 974                         iput(vi);
 975                         return false;
 976                 }
 977                 ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
 978                 /* The inode is not dirty, try to take the mft record lock. */
 979                 if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
 980                         ntfs_debug("Mft record 0x%lx is already locked, do "
 981                                         "not write it.", mft_no);
 982                         atomic_dec(&ni->count);
 983                         iput(vi);
 984                         return false;
 985                 }
 986                 ntfs_debug("Managed to lock mft record 0x%lx, write it.",
 987                                 mft_no);
 988                 /*
 989                  * The write has to occur while we hold the mft record lock so
 990                  * return the locked ntfs inode.
 991                  */
 992                 *locked_ni = ni;
 993                 return true;
 994         }
 995         ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
 996         /* The inode is not in icache. */
 997         /* Write the record if it is not a mft record (type "FILE"). */
 998         if (!ntfs_is_mft_record(m->magic)) {
 999                 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1000                                 mft_no);
1001                 return true;
1002         }
1003         /* Write the mft record if it is a base inode. */
1004         if (!m->base_mft_record) {
1005                 ntfs_debug("Mft record 0x%lx is a base record, write it.",
1006                                 mft_no);
1007                 return true;
1008         }
1009         /*
1010          * This is an extent mft record.  Check if the inode corresponding to
1011          * its base mft record is in icache and obtain a reference to it if it
1012          * is.
1013          */
1014         na.mft_no = MREF_LE(m->base_mft_record);
1015         ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1016                         "inode 0x%lx in icache.", mft_no, na.mft_no);
1017         if (!na.mft_no) {
1018                 /* Balance the below iput(). */
1019                 vi = igrab(mft_vi);
1020                 BUG_ON(vi != mft_vi);
1021         } else
1022                 vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1023                                 &na);
1024         if (!vi) {
1025                 /*
1026                  * The base inode is not in icache, write this extent mft
1027                  * record.
1028                  */
1029                 ntfs_debug("Base inode 0x%lx is not in icache, write the "
1030                                 "extent record.", na.mft_no);
1031                 return true;
1032         }
1033         ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1034         /*
1035          * The base inode is in icache.  Check if it has the extent inode
1036          * corresponding to this extent mft record attached.
1037          */
1038         ni = NTFS_I(vi);
1039         mutex_lock(&ni->extent_lock);
1040         if (ni->nr_extents <= 0) {
1041                 /*
1042                  * The base inode has no attached extent inodes, write this
1043                  * extent mft record.
1044                  */
1045                 mutex_unlock(&ni->extent_lock);
1046                 iput(vi);
1047                 ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1048                                 "write the extent record.", na.mft_no);
1049                 return true;
1050         }
1051         /* Iterate over the attached extent inodes. */
1052         extent_nis = ni->ext.extent_ntfs_inos;
1053         for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1054                 if (mft_no == extent_nis[i]->mft_no) {
1055                         /*
1056                          * Found the extent inode corresponding to this extent
1057                          * mft record.
1058                          */
1059                         eni = extent_nis[i];
1060                         break;
1061                 }
1062         }
1063         /*
1064          * If the extent inode was not attached to the base inode, write this
1065          * extent mft record.
1066          */
1067         if (!eni) {
1068                 mutex_unlock(&ni->extent_lock);
1069                 iput(vi);
1070                 ntfs_debug("Extent inode 0x%lx is not attached to its base "
1071                                 "inode 0x%lx, write the extent record.",
1072                                 mft_no, na.mft_no);
1073                 return true;
1074         }
1075         ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1076                         mft_no, na.mft_no);
1077         /* Take a reference to the extent ntfs inode. */
1078         atomic_inc(&eni->count);
1079         mutex_unlock(&ni->extent_lock);
1080         /*
1081          * Found the extent inode coresponding to this extent mft record.
1082          * Try to take the mft record lock.
1083          */
1084         if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1085                 atomic_dec(&eni->count);
1086                 iput(vi);
1087                 ntfs_debug("Extent mft record 0x%lx is already locked, do "
1088                                 "not write it.", mft_no);
1089                 return false;
1090         }
1091         ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1092                         mft_no);
1093         if (NInoTestClearDirty(eni))
1094                 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1095                                 mft_no);
1096         /*
1097          * The write has to occur while we hold the mft record lock so return
1098          * the locked extent ntfs inode.
1099          */
1100         *locked_ni = eni;
1101         return true;
1102 }
1103 
1104 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1105                 "chkdsk.";
1106 
1107 /**
1108  * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1109  * @vol:        volume on which to search for a free mft record
1110  * @base_ni:    open base inode if allocating an extent mft record or NULL
1111  *
1112  * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1113  * @vol.
1114  *
1115  * If @base_ni is NULL start the search at the default allocator position.
1116  *
1117  * If @base_ni is not NULL start the search at the mft record after the base
1118  * mft record @base_ni.
1119  *
1120  * Return the free mft record on success and -errno on error.  An error code of
1121  * -ENOSPC means that there are no free mft records in the currently
1122  * initialized mft bitmap.
1123  *
1124  * Locking: Caller must hold vol->mftbmp_lock for writing.
1125  */
1126 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1127                 ntfs_inode *base_ni)
1128 {
1129         s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1130         unsigned long flags;
1131         struct address_space *mftbmp_mapping;
1132         u8 *buf, *byte;
1133         struct page *page;
1134         unsigned int page_ofs, size;
1135         u8 pass, b;
1136 
1137         ntfs_debug("Searching for free mft record in the currently "
1138                         "initialized mft bitmap.");
1139         mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1140         /*
1141          * Set the end of the pass making sure we do not overflow the mft
1142          * bitmap.
1143          */
1144         read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1145         pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1146                         vol->mft_record_size_bits;
1147         read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1148         read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1149         ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1150         read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1151         if (pass_end > ll)
1152                 pass_end = ll;
1153         pass = 1;
1154         if (!base_ni)
1155                 data_pos = vol->mft_data_pos;
1156         else
1157                 data_pos = base_ni->mft_no + 1;
1158         if (data_pos < 24)
1159                 data_pos = 24;
1160         if (data_pos >= pass_end) {
1161                 data_pos = 24;
1162                 pass = 2;
1163                 /* This happens on a freshly formatted volume. */
1164                 if (data_pos >= pass_end)
1165                         return -ENOSPC;
1166         }
1167         pass_start = data_pos;
1168         ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1169                         "pass_end 0x%llx, data_pos 0x%llx.", pass,
1170                         (long long)pass_start, (long long)pass_end,
1171                         (long long)data_pos);
1172         /* Loop until a free mft record is found. */
1173         for (; pass <= 2;) {
1174                 /* Cap size to pass_end. */
1175                 ofs = data_pos >> 3;
1176                 page_ofs = ofs & ~PAGE_MASK;
1177                 size = PAGE_SIZE - page_ofs;
1178                 ll = ((pass_end + 7) >> 3) - ofs;
1179                 if (size > ll)
1180                         size = ll;
1181                 size <<= 3;
1182                 /*
1183                  * If we are still within the active pass, search the next page
1184                  * for a zero bit.
1185                  */
1186                 if (size) {
1187                         page = ntfs_map_page(mftbmp_mapping,
1188                                         ofs >> PAGE_SHIFT);
1189                         if (IS_ERR(page)) {
1190                                 ntfs_error(vol->sb, "Failed to read mft "
1191                                                 "bitmap, aborting.");
1192                                 return PTR_ERR(page);
1193                         }
1194                         buf = (u8*)page_address(page) + page_ofs;
1195                         bit = data_pos & 7;
1196                         data_pos &= ~7ull;
1197                         ntfs_debug("Before inner for loop: size 0x%x, "
1198                                         "data_pos 0x%llx, bit 0x%llx", size,
1199                                         (long long)data_pos, (long long)bit);
1200                         for (; bit < size && data_pos + bit < pass_end;
1201                                         bit &= ~7ull, bit += 8) {
1202                                 byte = buf + (bit >> 3);
1203                                 if (*byte == 0xff)
1204                                         continue;
1205                                 b = ffz((unsigned long)*byte);
1206                                 if (b < 8 && b >= (bit & 7)) {
1207                                         ll = data_pos + (bit & ~7ull) + b;
1208                                         if (unlikely(ll > (1ll << 32))) {
1209                                                 ntfs_unmap_page(page);
1210                                                 return -ENOSPC;
1211                                         }
1212                                         *byte |= 1 << b;
1213                                         flush_dcache_page(page);
1214                                         set_page_dirty(page);
1215                                         ntfs_unmap_page(page);
1216                                         ntfs_debug("Done.  (Found and "
1217                                                         "allocated mft record "
1218                                                         "0x%llx.)",
1219                                                         (long long)ll);
1220                                         return ll;
1221                                 }
1222                         }
1223                         ntfs_debug("After inner for loop: size 0x%x, "
1224                                         "data_pos 0x%llx, bit 0x%llx", size,
1225                                         (long long)data_pos, (long long)bit);
1226                         data_pos += size;
1227                         ntfs_unmap_page(page);
1228                         /*
1229                          * If the end of the pass has not been reached yet,
1230                          * continue searching the mft bitmap for a zero bit.
1231                          */
1232                         if (data_pos < pass_end)
1233                                 continue;
1234                 }
1235                 /* Do the next pass. */
1236                 if (++pass == 2) {
1237                         /*
1238                          * Starting the second pass, in which we scan the first
1239                          * part of the zone which we omitted earlier.
1240                          */
1241                         pass_end = pass_start;
1242                         data_pos = pass_start = 24;
1243                         ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1244                                         "0x%llx.", pass, (long long)pass_start,
1245                                         (long long)pass_end);
1246                         if (data_pos >= pass_end)
1247                                 break;
1248                 }
1249         }
1250         /* No free mft records in currently initialized mft bitmap. */
1251         ntfs_debug("Done.  (No free mft records left in currently initialized "
1252                         "mft bitmap.)");
1253         return -ENOSPC;
1254 }
1255 
1256 /**
1257  * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1258  * @vol:        volume on which to extend the mft bitmap attribute
1259  *
1260  * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1261  *
1262  * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1263  * data_size.
1264  *
1265  * Return 0 on success and -errno on error.
1266  *
1267  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1268  *          - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1269  *            writing and releases it before returning.
1270  *          - This function takes vol->lcnbmp_lock for writing and releases it
1271  *            before returning.
1272  */
1273 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1274 {
1275         LCN lcn;
1276         s64 ll;
1277         unsigned long flags;
1278         struct page *page;
1279         ntfs_inode *mft_ni, *mftbmp_ni;
1280         runlist_element *rl, *rl2 = NULL;
1281         ntfs_attr_search_ctx *ctx = NULL;
1282         MFT_RECORD *mrec;
1283         ATTR_RECORD *a = NULL;
1284         int ret, mp_size;
1285         u32 old_alen = 0;
1286         u8 *b, tb;
1287         struct {
1288                 u8 added_cluster:1;
1289                 u8 added_run:1;
1290                 u8 mp_rebuilt:1;
1291         } status = { 0, 0, 0 };
1292 
1293         ntfs_debug("Extending mft bitmap allocation.");
1294         mft_ni = NTFS_I(vol->mft_ino);
1295         mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1296         /*
1297          * Determine the last lcn of the mft bitmap.  The allocated size of the
1298          * mft bitmap cannot be zero so we are ok to do this.
1299          */
1300         down_write(&mftbmp_ni->runlist.lock);
1301         read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1302         ll = mftbmp_ni->allocated_size;
1303         read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1304         rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1305                         (ll - 1) >> vol->cluster_size_bits, NULL);
1306         if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) {
1307                 up_write(&mftbmp_ni->runlist.lock);
1308                 ntfs_error(vol->sb, "Failed to determine last allocated "
1309                                 "cluster of mft bitmap attribute.");
1310                 if (!IS_ERR(rl))
1311                         ret = -EIO;
1312                 else
1313                         ret = PTR_ERR(rl);
1314                 return ret;
1315         }
1316         lcn = rl->lcn + rl->length;
1317         ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1318                         (long long)lcn);
1319         /*
1320          * Attempt to get the cluster following the last allocated cluster by
1321          * hand as it may be in the MFT zone so the allocator would not give it
1322          * to us.
1323          */
1324         ll = lcn >> 3;
1325         page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1326                         ll >> PAGE_SHIFT);
1327         if (IS_ERR(page)) {
1328                 up_write(&mftbmp_ni->runlist.lock);
1329                 ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1330                 return PTR_ERR(page);
1331         }
1332         b = (u8*)page_address(page) + (ll & ~PAGE_MASK);
1333         tb = 1 << (lcn & 7ull);
1334         down_write(&vol->lcnbmp_lock);
1335         if (*b != 0xff && !(*b & tb)) {
1336                 /* Next cluster is free, allocate it. */
1337                 *b |= tb;
1338                 flush_dcache_page(page);
1339                 set_page_dirty(page);
1340                 up_write(&vol->lcnbmp_lock);
1341                 ntfs_unmap_page(page);
1342                 /* Update the mft bitmap runlist. */
1343                 rl->length++;
1344                 rl[1].vcn++;
1345                 status.added_cluster = 1;
1346                 ntfs_debug("Appending one cluster to mft bitmap.");
1347         } else {
1348                 up_write(&vol->lcnbmp_lock);
1349                 ntfs_unmap_page(page);
1350                 /* Allocate a cluster from the DATA_ZONE. */
1351                 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1352                                 true);
1353                 if (IS_ERR(rl2)) {
1354                         up_write(&mftbmp_ni->runlist.lock);
1355                         ntfs_error(vol->sb, "Failed to allocate a cluster for "
1356                                         "the mft bitmap.");
1357                         return PTR_ERR(rl2);
1358                 }
1359                 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1360                 if (IS_ERR(rl)) {
1361                         up_write(&mftbmp_ni->runlist.lock);
1362                         ntfs_error(vol->sb, "Failed to merge runlists for mft "
1363                                         "bitmap.");
1364                         if (ntfs_cluster_free_from_rl(vol, rl2)) {
1365                                 ntfs_error(vol->sb, "Failed to deallocate "
1366                                                 "allocated cluster.%s", es);
1367                                 NVolSetErrors(vol);
1368                         }
1369                         ntfs_free(rl2);
1370                         return PTR_ERR(rl);
1371                 }
1372                 mftbmp_ni->runlist.rl = rl;
1373                 status.added_run = 1;
1374                 ntfs_debug("Adding one run to mft bitmap.");
1375                 /* Find the last run in the new runlist. */
1376                 for (; rl[1].length; rl++)
1377                         ;
1378         }
1379         /*
1380          * Update the attribute record as well.  Note: @rl is the last
1381          * (non-terminator) runlist element of mft bitmap.
1382          */
1383         mrec = map_mft_record(mft_ni);
1384         if (IS_ERR(mrec)) {
1385                 ntfs_error(vol->sb, "Failed to map mft record.");
1386                 ret = PTR_ERR(mrec);
1387                 goto undo_alloc;
1388         }
1389         ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1390         if (unlikely(!ctx)) {
1391                 ntfs_error(vol->sb, "Failed to get search context.");
1392                 ret = -ENOMEM;
1393                 goto undo_alloc;
1394         }
1395         ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1396                         mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1397                         0, ctx);
1398         if (unlikely(ret)) {
1399                 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1400                                 "mft bitmap attribute.");
1401                 if (ret == -ENOENT)
1402                         ret = -EIO;
1403                 goto undo_alloc;
1404         }
1405         a = ctx->attr;
1406         ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1407         /* Search back for the previous last allocated cluster of mft bitmap. */
1408         for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1409                 if (ll >= rl2->vcn)
1410                         break;
1411         }
1412         BUG_ON(ll < rl2->vcn);
1413         BUG_ON(ll >= rl2->vcn + rl2->length);
1414         /* Get the size for the new mapping pairs array for this extent. */
1415         mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1416         if (unlikely(mp_size <= 0)) {
1417                 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1418                                 "mft bitmap attribute extent.");
1419                 ret = mp_size;
1420                 if (!ret)
1421                         ret = -EIO;
1422                 goto undo_alloc;
1423         }
1424         /* Expand the attribute record if necessary. */
1425         old_alen = le32_to_cpu(a->length);
1426         ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1427                         le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1428         if (unlikely(ret)) {
1429                 if (ret != -ENOSPC) {
1430                         ntfs_error(vol->sb, "Failed to resize attribute "
1431                                         "record for mft bitmap attribute.");
1432                         goto undo_alloc;
1433                 }
1434                 // TODO: Deal with this by moving this extent to a new mft
1435                 // record or by starting a new extent in a new mft record or by
1436                 // moving other attributes out of this mft record.
1437                 // Note: It will need to be a special mft record and if none of
1438                 // those are available it gets rather complicated...
1439                 ntfs_error(vol->sb, "Not enough space in this mft record to "
1440                                 "accommodate extended mft bitmap attribute "
1441                                 "extent.  Cannot handle this yet.");
1442                 ret = -EOPNOTSUPP;
1443                 goto undo_alloc;
1444         }
1445         status.mp_rebuilt = 1;
1446         /* Generate the mapping pairs array directly into the attr record. */
1447         ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1448                         le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1449                         mp_size, rl2, ll, -1, NULL);
1450         if (unlikely(ret)) {
1451                 ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1452                                 "mft bitmap attribute.");
1453                 goto undo_alloc;
1454         }
1455         /* Update the highest_vcn. */
1456         a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1457         /*
1458          * We now have extended the mft bitmap allocated_size by one cluster.
1459          * Reflect this in the ntfs_inode structure and the attribute record.
1460          */
1461         if (a->data.non_resident.lowest_vcn) {
1462                 /*
1463                  * We are not in the first attribute extent, switch to it, but
1464                  * first ensure the changes will make it to disk later.
1465                  */
1466                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1467                 mark_mft_record_dirty(ctx->ntfs_ino);
1468                 ntfs_attr_reinit_search_ctx(ctx);
1469                 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1470                                 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1471                                 0, ctx);
1472                 if (unlikely(ret)) {
1473                         ntfs_error(vol->sb, "Failed to find first attribute "
1474                                         "extent of mft bitmap attribute.");
1475                         goto restore_undo_alloc;
1476                 }
1477                 a = ctx->attr;
1478         }
1479         write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1480         mftbmp_ni->allocated_size += vol->cluster_size;
1481         a->data.non_resident.allocated_size =
1482                         cpu_to_sle64(mftbmp_ni->allocated_size);
1483         write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1484         /* Ensure the changes make it to disk. */
1485         flush_dcache_mft_record_page(ctx->ntfs_ino);
1486         mark_mft_record_dirty(ctx->ntfs_ino);
1487         ntfs_attr_put_search_ctx(ctx);
1488         unmap_mft_record(mft_ni);
1489         up_write(&mftbmp_ni->runlist.lock);
1490         ntfs_debug("Done.");
1491         return 0;
1492 restore_undo_alloc:
1493         ntfs_attr_reinit_search_ctx(ctx);
1494         if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1495                         mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1496                         0, ctx)) {
1497                 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1498                                 "mft bitmap attribute.%s", es);
1499                 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1500                 mftbmp_ni->allocated_size += vol->cluster_size;
1501                 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1502                 ntfs_attr_put_search_ctx(ctx);
1503                 unmap_mft_record(mft_ni);
1504                 up_write(&mftbmp_ni->runlist.lock);
1505                 /*
1506                  * The only thing that is now wrong is ->allocated_size of the
1507                  * base attribute extent which chkdsk should be able to fix.
1508                  */
1509                 NVolSetErrors(vol);
1510                 return ret;
1511         }
1512         a = ctx->attr;
1513         a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1514 undo_alloc:
1515         if (status.added_cluster) {
1516                 /* Truncate the last run in the runlist by one cluster. */
1517                 rl->length--;
1518                 rl[1].vcn--;
1519         } else if (status.added_run) {
1520                 lcn = rl->lcn;
1521                 /* Remove the last run from the runlist. */
1522                 rl->lcn = rl[1].lcn;
1523                 rl->length = 0;
1524         }
1525         /* Deallocate the cluster. */
1526         down_write(&vol->lcnbmp_lock);
1527         if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1528                 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1529                 NVolSetErrors(vol);
1530         }
1531         up_write(&vol->lcnbmp_lock);
1532         if (status.mp_rebuilt) {
1533                 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1534                                 a->data.non_resident.mapping_pairs_offset),
1535                                 old_alen - le16_to_cpu(
1536                                 a->data.non_resident.mapping_pairs_offset),
1537                                 rl2, ll, -1, NULL)) {
1538                         ntfs_error(vol->sb, "Failed to restore mapping pairs "
1539                                         "array.%s", es);
1540                         NVolSetErrors(vol);
1541                 }
1542                 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1543                         ntfs_error(vol->sb, "Failed to restore attribute "
1544                                         "record.%s", es);
1545                         NVolSetErrors(vol);
1546                 }
1547                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1548                 mark_mft_record_dirty(ctx->ntfs_ino);
1549         }
1550         if (ctx)
1551                 ntfs_attr_put_search_ctx(ctx);
1552         if (!IS_ERR(mrec))
1553                 unmap_mft_record(mft_ni);
1554         up_write(&mftbmp_ni->runlist.lock);
1555         return ret;
1556 }
1557 
1558 /**
1559  * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1560  * @vol:        volume on which to extend the mft bitmap attribute
1561  *
1562  * Extend the initialized portion of the mft bitmap attribute on the ntfs
1563  * volume @vol by 8 bytes.
1564  *
1565  * Note:  Only changes initialized_size and data_size, i.e. requires that
1566  * allocated_size is big enough to fit the new initialized_size.
1567  *
1568  * Return 0 on success and -error on error.
1569  *
1570  * Locking: Caller must hold vol->mftbmp_lock for writing.
1571  */
1572 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1573 {
1574         s64 old_data_size, old_initialized_size;
1575         unsigned long flags;
1576         struct inode *mftbmp_vi;
1577         ntfs_inode *mft_ni, *mftbmp_ni;
1578         ntfs_attr_search_ctx *ctx;
1579         MFT_RECORD *mrec;
1580         ATTR_RECORD *a;
1581         int ret;
1582 
1583         ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1584         mft_ni = NTFS_I(vol->mft_ino);
1585         mftbmp_vi = vol->mftbmp_ino;
1586         mftbmp_ni = NTFS_I(mftbmp_vi);
1587         /* Get the attribute record. */
1588         mrec = map_mft_record(mft_ni);
1589         if (IS_ERR(mrec)) {
1590                 ntfs_error(vol->sb, "Failed to map mft record.");
1591                 return PTR_ERR(mrec);
1592         }
1593         ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1594         if (unlikely(!ctx)) {
1595                 ntfs_error(vol->sb, "Failed to get search context.");
1596                 ret = -ENOMEM;
1597                 goto unm_err_out;
1598         }
1599         ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1600                         mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1601         if (unlikely(ret)) {
1602                 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1603                                 "mft bitmap attribute.");
1604                 if (ret == -ENOENT)
1605                         ret = -EIO;
1606                 goto put_err_out;
1607         }
1608         a = ctx->attr;
1609         write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1610         old_data_size = i_size_read(mftbmp_vi);
1611         old_initialized_size = mftbmp_ni->initialized_size;
1612         /*
1613          * We can simply update the initialized_size before filling the space
1614          * with zeroes because the caller is holding the mft bitmap lock for
1615          * writing which ensures that no one else is trying to access the data.
1616          */
1617         mftbmp_ni->initialized_size += 8;
1618         a->data.non_resident.initialized_size =
1619                         cpu_to_sle64(mftbmp_ni->initialized_size);
1620         if (mftbmp_ni->initialized_size > old_data_size) {
1621                 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1622                 a->data.non_resident.data_size =
1623                                 cpu_to_sle64(mftbmp_ni->initialized_size);
1624         }
1625         write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1626         /* Ensure the changes make it to disk. */
1627         flush_dcache_mft_record_page(ctx->ntfs_ino);
1628         mark_mft_record_dirty(ctx->ntfs_ino);
1629         ntfs_attr_put_search_ctx(ctx);
1630         unmap_mft_record(mft_ni);
1631         /* Initialize the mft bitmap attribute value with zeroes. */
1632         ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1633         if (likely(!ret)) {
1634                 ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1635                                 "bitmap.");
1636                 return 0;
1637         }
1638         ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1639         /* Try to recover from the error. */
1640         mrec = map_mft_record(mft_ni);
1641         if (IS_ERR(mrec)) {
1642                 ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1643                 NVolSetErrors(vol);
1644                 return ret;
1645         }
1646         ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1647         if (unlikely(!ctx)) {
1648                 ntfs_error(vol->sb, "Failed to get search context.%s", es);
1649                 NVolSetErrors(vol);
1650                 goto unm_err_out;
1651         }
1652         if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1653                         mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1654                 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1655                                 "mft bitmap attribute.%s", es);
1656                 NVolSetErrors(vol);
1657 put_err_out:
1658                 ntfs_attr_put_search_ctx(ctx);
1659 unm_err_out:
1660                 unmap_mft_record(mft_ni);
1661                 goto err_out;
1662         }
1663         a = ctx->attr;
1664         write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1665         mftbmp_ni->initialized_size = old_initialized_size;
1666         a->data.non_resident.initialized_size =
1667                         cpu_to_sle64(old_initialized_size);
1668         if (i_size_read(mftbmp_vi) != old_data_size) {
1669                 i_size_write(mftbmp_vi, old_data_size);
1670                 a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1671         }
1672         write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1673         flush_dcache_mft_record_page(ctx->ntfs_ino);
1674         mark_mft_record_dirty(ctx->ntfs_ino);
1675         ntfs_attr_put_search_ctx(ctx);
1676         unmap_mft_record(mft_ni);
1677 #ifdef DEBUG
1678         read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1679         ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1680                         "data_size 0x%llx, initialized_size 0x%llx.",
1681                         (long long)mftbmp_ni->allocated_size,
1682                         (long long)i_size_read(mftbmp_vi),
1683                         (long long)mftbmp_ni->initialized_size);
1684         read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1685 #endif /* DEBUG */
1686 err_out:
1687         return ret;
1688 }
1689 
1690 /**
1691  * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1692  * @vol:        volume on which to extend the mft data attribute
1693  *
1694  * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1695  * worth of clusters or if not enough space for this by one mft record worth
1696  * of clusters.
1697  *
1698  * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1699  * data_size.
1700  *
1701  * Return 0 on success and -errno on error.
1702  *
1703  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1704  *          - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1705  *            writing and releases it before returning.
1706  *          - This function calls functions which take vol->lcnbmp_lock for
1707  *            writing and release it before returning.
1708  */
1709 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1710 {
1711         LCN lcn;
1712         VCN old_last_vcn;
1713         s64 min_nr, nr, ll;
1714         unsigned long flags;
1715         ntfs_inode *mft_ni;
1716         runlist_element *rl, *rl2;
1717         ntfs_attr_search_ctx *ctx = NULL;
1718         MFT_RECORD *mrec;
1719         ATTR_RECORD *a = NULL;
1720         int ret, mp_size;
1721         u32 old_alen = 0;
1722         bool mp_rebuilt = false;
1723 
1724         ntfs_debug("Extending mft data allocation.");
1725         mft_ni = NTFS_I(vol->mft_ino);
1726         /*
1727          * Determine the preferred allocation location, i.e. the last lcn of
1728          * the mft data attribute.  The allocated size of the mft data
1729          * attribute cannot be zero so we are ok to do this.
1730          */
1731         down_write(&mft_ni->runlist.lock);
1732         read_lock_irqsave(&mft_ni->size_lock, flags);
1733         ll = mft_ni->allocated_size;
1734         read_unlock_irqrestore(&mft_ni->size_lock, flags);
1735         rl = ntfs_attr_find_vcn_nolock(mft_ni,
1736                         (ll - 1) >> vol->cluster_size_bits, NULL);
1737         if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) {
1738                 up_write(&mft_ni->runlist.lock);
1739                 ntfs_error(vol->sb, "Failed to determine last allocated "
1740                                 "cluster of mft data attribute.");
1741                 if (!IS_ERR(rl))
1742                         ret = -EIO;
1743                 else
1744                         ret = PTR_ERR(rl);
1745                 return ret;
1746         }
1747         lcn = rl->lcn + rl->length;
1748         ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1749         /* Minimum allocation is one mft record worth of clusters. */
1750         min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1751         if (!min_nr)
1752                 min_nr = 1;
1753         /* Want to allocate 16 mft records worth of clusters. */
1754         nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1755         if (!nr)
1756                 nr = min_nr;
1757         /* Ensure we do not go above 2^32-1 mft records. */
1758         read_lock_irqsave(&mft_ni->size_lock, flags);
1759         ll = mft_ni->allocated_size;
1760         read_unlock_irqrestore(&mft_ni->size_lock, flags);
1761         if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1762                         vol->mft_record_size_bits >= (1ll << 32))) {
1763                 nr = min_nr;
1764                 if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1765                                 vol->mft_record_size_bits >= (1ll << 32))) {
1766                         ntfs_warning(vol->sb, "Cannot allocate mft record "
1767                                         "because the maximum number of inodes "
1768                                         "(2^32) has already been reached.");
1769                         up_write(&mft_ni->runlist.lock);
1770                         return -ENOSPC;
1771                 }
1772         }
1773         ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1774                         nr > min_nr ? "default" : "minimal", (long long)nr);
1775         old_last_vcn = rl[1].vcn;
1776         do {
1777                 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1778                                 true);
1779                 if (!IS_ERR(rl2))
1780                         break;
1781                 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1782                         ntfs_error(vol->sb, "Failed to allocate the minimal "
1783                                         "number of clusters (%lli) for the "
1784                                         "mft data attribute.", (long long)nr);
1785                         up_write(&mft_ni->runlist.lock);
1786                         return PTR_ERR(rl2);
1787                 }
1788                 /*
1789                  * There is not enough space to do the allocation, but there
1790                  * might be enough space to do a minimal allocation so try that
1791                  * before failing.
1792                  */
1793                 nr = min_nr;
1794                 ntfs_debug("Retrying mft data allocation with minimal cluster "
1795                                 "count %lli.", (long long)nr);
1796         } while (1);
1797         rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1798         if (IS_ERR(rl)) {
1799                 up_write(&mft_ni->runlist.lock);
1800                 ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1801                                 "attribute.");
1802                 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1803                         ntfs_error(vol->sb, "Failed to deallocate clusters "
1804                                         "from the mft data attribute.%s", es);
1805                         NVolSetErrors(vol);
1806                 }
1807                 ntfs_free(rl2);
1808                 return PTR_ERR(rl);
1809         }
1810         mft_ni->runlist.rl = rl;
1811         ntfs_debug("Allocated %lli clusters.", (long long)nr);
1812         /* Find the last run in the new runlist. */
1813         for (; rl[1].length; rl++)
1814                 ;
1815         /* Update the attribute record as well. */
1816         mrec = map_mft_record(mft_ni);
1817         if (IS_ERR(mrec)) {
1818                 ntfs_error(vol->sb, "Failed to map mft record.");
1819                 ret = PTR_ERR(mrec);
1820                 goto undo_alloc;
1821         }
1822         ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1823         if (unlikely(!ctx)) {
1824                 ntfs_error(vol->sb, "Failed to get search context.");
1825                 ret = -ENOMEM;
1826                 goto undo_alloc;
1827         }
1828         ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1829                         CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1830         if (unlikely(ret)) {
1831                 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1832                                 "mft data attribute.");
1833                 if (ret == -ENOENT)
1834                         ret = -EIO;
1835                 goto undo_alloc;
1836         }
1837         a = ctx->attr;
1838         ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1839         /* Search back for the previous last allocated cluster of mft bitmap. */
1840         for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1841                 if (ll >= rl2->vcn)
1842                         break;
1843         }
1844         BUG_ON(ll < rl2->vcn);
1845         BUG_ON(ll >= rl2->vcn + rl2->length);
1846         /* Get the size for the new mapping pairs array for this extent. */
1847         mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1848         if (unlikely(mp_size <= 0)) {
1849                 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1850                                 "mft data attribute extent.");
1851                 ret = mp_size;
1852                 if (!ret)
1853                         ret = -EIO;
1854                 goto undo_alloc;
1855         }
1856         /* Expand the attribute record if necessary. */
1857         old_alen = le32_to_cpu(a->length);
1858         ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1859                         le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1860         if (unlikely(ret)) {
1861                 if (ret != -ENOSPC) {
1862                         ntfs_error(vol->sb, "Failed to resize attribute "
1863                                         "record for mft data attribute.");
1864                         goto undo_alloc;
1865                 }
1866                 // TODO: Deal with this by moving this extent to a new mft
1867                 // record or by starting a new extent in a new mft record or by
1868                 // moving other attributes out of this mft record.
1869                 // Note: Use the special reserved mft records and ensure that
1870                 // this extent is not required to find the mft record in
1871                 // question.  If no free special records left we would need to
1872                 // move an existing record away, insert ours in its place, and
1873                 // then place the moved record into the newly allocated space
1874                 // and we would then need to update all references to this mft
1875                 // record appropriately.  This is rather complicated...
1876                 ntfs_error(vol->sb, "Not enough space in this mft record to "
1877                                 "accommodate extended mft data attribute "
1878                                 "extent.  Cannot handle this yet.");
1879                 ret = -EOPNOTSUPP;
1880                 goto undo_alloc;
1881         }
1882         mp_rebuilt = true;
1883         /* Generate the mapping pairs array directly into the attr record. */
1884         ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1885                         le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1886                         mp_size, rl2, ll, -1, NULL);
1887         if (unlikely(ret)) {
1888                 ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1889                                 "mft data attribute.");
1890                 goto undo_alloc;
1891         }
1892         /* Update the highest_vcn. */
1893         a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1894         /*
1895          * We now have extended the mft data allocated_size by nr clusters.
1896          * Reflect this in the ntfs_inode structure and the attribute record.
1897          * @rl is the last (non-terminator) runlist element of mft data
1898          * attribute.
1899          */
1900         if (a->data.non_resident.lowest_vcn) {
1901                 /*
1902                  * We are not in the first attribute extent, switch to it, but
1903                  * first ensure the changes will make it to disk later.
1904                  */
1905                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1906                 mark_mft_record_dirty(ctx->ntfs_ino);
1907                 ntfs_attr_reinit_search_ctx(ctx);
1908                 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1909                                 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1910                                 ctx);
1911                 if (unlikely(ret)) {
1912                         ntfs_error(vol->sb, "Failed to find first attribute "
1913                                         "extent of mft data attribute.");
1914                         goto restore_undo_alloc;
1915                 }
1916                 a = ctx->attr;
1917         }
1918         write_lock_irqsave(&mft_ni->size_lock, flags);
1919         mft_ni->allocated_size += nr << vol->cluster_size_bits;
1920         a->data.non_resident.allocated_size =
1921                         cpu_to_sle64(mft_ni->allocated_size);
1922         write_unlock_irqrestore(&mft_ni->size_lock, flags);
1923         /* Ensure the changes make it to disk. */
1924         flush_dcache_mft_record_page(ctx->ntfs_ino);
1925         mark_mft_record_dirty(ctx->ntfs_ino);
1926         ntfs_attr_put_search_ctx(ctx);
1927         unmap_mft_record(mft_ni);
1928         up_write(&mft_ni->runlist.lock);
1929         ntfs_debug("Done.");
1930         return 0;
1931 restore_undo_alloc:
1932         ntfs_attr_reinit_search_ctx(ctx);
1933         if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1934                         CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1935                 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1936                                 "mft data attribute.%s", es);
1937                 write_lock_irqsave(&mft_ni->size_lock, flags);
1938                 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1939                 write_unlock_irqrestore(&mft_ni->size_lock, flags);
1940                 ntfs_attr_put_search_ctx(ctx);
1941                 unmap_mft_record(mft_ni);
1942                 up_write(&mft_ni->runlist.lock);
1943                 /*
1944                  * The only thing that is now wrong is ->allocated_size of the
1945                  * base attribute extent which chkdsk should be able to fix.
1946                  */
1947                 NVolSetErrors(vol);
1948                 return ret;
1949         }
1950         ctx->attr->data.non_resident.highest_vcn =
1951                         cpu_to_sle64(old_last_vcn - 1);
1952 undo_alloc:
1953         if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1954                 ntfs_error(vol->sb, "Failed to free clusters from mft data "
1955                                 "attribute.%s", es);
1956                 NVolSetErrors(vol);
1957         }
1958         a = ctx->attr;
1959         if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1960                 ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1961                                 "runlist.%s", es);
1962                 NVolSetErrors(vol);
1963         }
1964         if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1965                 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1966                                 a->data.non_resident.mapping_pairs_offset),
1967                                 old_alen - le16_to_cpu(
1968                                 a->data.non_resident.mapping_pairs_offset),
1969                                 rl2, ll, -1, NULL)) {
1970                         ntfs_error(vol->sb, "Failed to restore mapping pairs "
1971                                         "array.%s", es);
1972                         NVolSetErrors(vol);
1973                 }
1974                 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1975                         ntfs_error(vol->sb, "Failed to restore attribute "
1976                                         "record.%s", es);
1977                         NVolSetErrors(vol);
1978                 }
1979                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1980                 mark_mft_record_dirty(ctx->ntfs_ino);
1981         } else if (IS_ERR(ctx->mrec)) {
1982                 ntfs_error(vol->sb, "Failed to restore attribute search "
1983                                 "context.%s", es);
1984                 NVolSetErrors(vol);
1985         }
1986         if (ctx)
1987                 ntfs_attr_put_search_ctx(ctx);
1988         if (!IS_ERR(mrec))
1989                 unmap_mft_record(mft_ni);
1990         up_write(&mft_ni->runlist.lock);
1991         return ret;
1992 }
1993 
1994 /**
1995  * ntfs_mft_record_layout - layout an mft record into a memory buffer
1996  * @vol:        volume to which the mft record will belong
1997  * @mft_no:     mft reference specifying the mft record number
1998  * @m:          destination buffer of size >= @vol->mft_record_size bytes
1999  *
2000  * Layout an empty, unused mft record with the mft record number @mft_no into
2001  * the buffer @m.  The volume @vol is needed because the mft record structure
2002  * was modified in NTFS 3.1 so we need to know which volume version this mft
2003  * record will be used on.
2004  *
2005  * Return 0 on success and -errno on error.
2006  */
2007 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2008                 MFT_RECORD *m)
2009 {
2010         ATTR_RECORD *a;
2011 
2012         ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2013         if (mft_no >= (1ll << 32)) {
2014                 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2015                                 "maximum of 2^32.", (long long)mft_no);
2016                 return -ERANGE;
2017         }
2018         /* Start by clearing the whole mft record to gives us a clean slate. */
2019         memset(m, 0, vol->mft_record_size);
2020         /* Aligned to 2-byte boundary. */
2021         if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2022                 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2023         else {
2024                 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2025                 /*
2026                  * Set the NTFS 3.1+ specific fields while we know that the
2027                  * volume version is 3.1+.
2028                  */
2029                 m->reserved = 0;
2030                 m->mft_record_number = cpu_to_le32((u32)mft_no);
2031         }
2032         m->magic = magic_FILE;
2033         if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2034                 m->usa_count = cpu_to_le16(vol->mft_record_size /
2035                                 NTFS_BLOCK_SIZE + 1);
2036         else {
2037                 m->usa_count = cpu_to_le16(1);
2038                 ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2039                                 "size.  Setting usa_count to 1.  If chkdsk "
2040                                 "reports this as corruption, please email "
2041                                 "linux-ntfs-dev@lists.sourceforge.net stating "
2042                                 "that you saw this message and that the "
2043                                 "modified filesystem created was corrupt.  "
2044                                 "Thank you.");
2045         }
2046         /* Set the update sequence number to 1. */
2047         *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2048         m->lsn = 0;
2049         m->sequence_number = cpu_to_le16(1);
2050         m->link_count = 0;
2051         /*
2052          * Place the attributes straight after the update sequence array,
2053          * aligned to 8-byte boundary.
2054          */
2055         m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2056                         (le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2057         m->flags = 0;
2058         /*
2059          * Using attrs_offset plus eight bytes (for the termination attribute).
2060          * attrs_offset is already aligned to 8-byte boundary, so no need to
2061          * align again.
2062          */
2063         m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2064         m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2065         m->base_mft_record = 0;
2066         m->next_attr_instance = 0;
2067         /* Add the termination attribute. */
2068         a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2069         a->type = AT_END;
2070         a->length = 0;
2071         ntfs_debug("Done.");
2072         return 0;
2073 }
2074 
2075 /**
2076  * ntfs_mft_record_format - format an mft record on an ntfs volume
2077  * @vol:        volume on which to format the mft record
2078  * @mft_no:     mft record number to format
2079  *
2080  * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2081  * mft record into the appropriate place of the mft data attribute.  This is
2082  * used when extending the mft data attribute.
2083  *
2084  * Return 0 on success and -errno on error.
2085  */
2086 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2087 {
2088         loff_t i_size;
2089         struct inode *mft_vi = vol->mft_ino;
2090         struct page *page;
2091         MFT_RECORD *m;
2092         pgoff_t index, end_index;
2093         unsigned int ofs;
2094         int err;
2095 
2096         ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2097         /*
2098          * The index into the page cache and the offset within the page cache
2099          * page of the wanted mft record.
2100          */
2101         index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT;
2102         ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
2103         /* The maximum valid index into the page cache for $MFT's data. */
2104         i_size = i_size_read(mft_vi);
2105         end_index = i_size >> PAGE_SHIFT;
2106         if (unlikely(index >= end_index)) {
2107                 if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2108                                 (i_size & ~PAGE_MASK))) {
2109                         ntfs_error(vol->sb, "Tried to format non-existing mft "
2110                                         "record 0x%llx.", (long long)mft_no);
2111                         return -ENOENT;
2112                 }
2113         }
2114         /* Read, map, and pin the page containing the mft record. */
2115         page = ntfs_map_page(mft_vi->i_mapping, index);
2116         if (IS_ERR(page)) {
2117                 ntfs_error(vol->sb, "Failed to map page containing mft record "
2118                                 "to format 0x%llx.", (long long)mft_no);
2119                 return PTR_ERR(page);
2120         }
2121         lock_page(page);
2122         BUG_ON(!PageUptodate(page));
2123         ClearPageUptodate(page);
2124         m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2125         err = ntfs_mft_record_layout(vol, mft_no, m);
2126         if (unlikely(err)) {
2127                 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2128                                 (long long)mft_no);
2129                 SetPageUptodate(page);
2130                 unlock_page(page);
2131                 ntfs_unmap_page(page);
2132                 return err;
2133         }
2134         flush_dcache_page(page);
2135         SetPageUptodate(page);
2136         unlock_page(page);
2137         /*
2138          * Make sure the mft record is written out to disk.  We could use
2139          * ilookup5() to check if an inode is in icache and so on but this is
2140          * unnecessary as ntfs_writepage() will write the dirty record anyway.
2141          */
2142         mark_ntfs_record_dirty(page, ofs);
2143         ntfs_unmap_page(page);
2144         ntfs_debug("Done.");
2145         return 0;
2146 }
2147 
2148 /**
2149  * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2150  * @vol:        [IN]  volume on which to allocate the mft record
2151  * @mode:       [IN]  mode if want a file or directory, i.e. base inode or 0
2152  * @base_ni:    [IN]  open base inode if allocating an extent mft record or NULL
2153  * @mrec:       [OUT] on successful return this is the mapped mft record
2154  *
2155  * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2156  *
2157  * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2158  * direvctory inode, and allocate it at the default allocator position.  In
2159  * this case @mode is the file mode as given to us by the caller.  We in
2160  * particular use @mode to distinguish whether a file or a directory is being
2161  * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2162  *
2163  * If @base_ni is not NULL make the allocated mft record an extent record,
2164  * allocate it starting at the mft record after the base mft record and attach
2165  * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2166  * case @mode must be 0 as it is meaningless for extent inodes.
2167  *
2168  * You need to check the return value with IS_ERR().  If false, the function
2169  * was successful and the return value is the now opened ntfs inode of the
2170  * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2171  * and locked mft record.  If IS_ERR() is true, the function failed and the
2172  * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2173  * this case.
2174  *
2175  * Allocation strategy:
2176  *
2177  * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2178  * optimize this we start scanning at the place specified by @base_ni or if
2179  * @base_ni is NULL we start where we last stopped and we perform wrap around
2180  * when we reach the end.  Note, we do not try to allocate mft records below
2181  * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2182  * to 24 are special in that they are used for storing extension mft records
2183  * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2184  * of creating a runlist with a circular dependency which once written to disk
2185  * can never be read in again.  Windows will only use records 16 to 24 for
2186  * normal files if the volume is completely out of space.  We never use them
2187  * which means that when the volume is really out of space we cannot create any
2188  * more files while Windows can still create up to 8 small files.  We can start
2189  * doing this at some later time, it does not matter much for now.
2190  *
2191  * When scanning the mft bitmap, we only search up to the last allocated mft
2192  * record.  If there are no free records left in the range 24 to number of
2193  * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2194  * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2195  * records at a time or one cluster, if cluster size is above 16kiB.  If there
2196  * is not sufficient space to do this, we try to extend by a single mft record
2197  * or one cluster, if cluster size is above the mft record size.
2198  *
2199  * No matter how many mft records we allocate, we initialize only the first
2200  * allocated mft record, incrementing mft data size and initialized size
2201  * accordingly, open an ntfs_inode for it and return it to the caller, unless
2202  * there are less than 24 mft records, in which case we allocate and initialize
2203  * mft records until we reach record 24 which we consider as the first free mft
2204  * record for use by normal files.
2205  *
2206  * If during any stage we overflow the initialized data in the mft bitmap, we
2207  * extend the initialized size (and data size) by 8 bytes, allocating another
2208  * cluster if required.  The bitmap data size has to be at least equal to the
2209  * number of mft records in the mft, but it can be bigger, in which case the
2210  * superflous bits are padded with zeroes.
2211  *
2212  * Thus, when we return successfully (IS_ERR() is false), we will have:
2213  *      - initialized / extended the mft bitmap if necessary,
2214  *      - initialized / extended the mft data if necessary,
2215  *      - set the bit corresponding to the mft record being allocated in the
2216  *        mft bitmap,
2217  *      - opened an ntfs_inode for the allocated mft record, and we will have
2218  *      - returned the ntfs_inode as well as the allocated mapped, pinned, and
2219  *        locked mft record.
2220  *
2221  * On error, the volume will be left in a consistent state and no record will
2222  * be allocated.  If rolling back a partial operation fails, we may leave some
2223  * inconsistent metadata in which case we set NVolErrors() so the volume is
2224  * left dirty when unmounted.
2225  *
2226  * Note, this function cannot make use of most of the normal functions, like
2227  * for example for attribute resizing, etc, because when the run list overflows
2228  * the base mft record and an attribute list is used, it is very important that
2229  * the extension mft records used to store the $DATA attribute of $MFT can be
2230  * reached without having to read the information contained inside them, as
2231  * this would make it impossible to find them in the first place after the
2232  * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2233  * rule because the bitmap is not essential for finding the mft records, but on
2234  * the other hand, handling the bitmap in this special way would make life
2235  * easier because otherwise there might be circular invocations of functions
2236  * when reading the bitmap.
2237  */
2238 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2239                 ntfs_inode *base_ni, MFT_RECORD **mrec)
2240 {
2241         s64 ll, bit, old_data_initialized, old_data_size;
2242         unsigned long flags;
2243         struct inode *vi;
2244         struct page *page;
2245         ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2246         ntfs_attr_search_ctx *ctx;
2247         MFT_RECORD *m;
2248         ATTR_RECORD *a;
2249         pgoff_t index;
2250         unsigned int ofs;
2251         int err;
2252         le16 seq_no, usn;
2253         bool record_formatted = false;
2254 
2255         if (base_ni) {
2256                 ntfs_debug("Entering (allocating an extent mft record for "
2257                                 "base mft record 0x%llx).",
2258                                 (long long)base_ni->mft_no);
2259                 /* @mode and @base_ni are mutually exclusive. */
2260                 BUG_ON(mode);
2261         } else
2262                 ntfs_debug("Entering (allocating a base mft record).");
2263         if (mode) {
2264                 /* @mode and @base_ni are mutually exclusive. */
2265                 BUG_ON(base_ni);
2266                 /* We only support creation of normal files and directories. */
2267                 if (!S_ISREG(mode) && !S_ISDIR(mode))
2268                         return ERR_PTR(-EOPNOTSUPP);
2269         }
2270         BUG_ON(!mrec);
2271         mft_ni = NTFS_I(vol->mft_ino);
2272         mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2273         down_write(&vol->mftbmp_lock);
2274         bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2275         if (bit >= 0) {
2276                 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2277                                 (long long)bit);
2278                 goto have_alloc_rec;
2279         }
2280         if (bit != -ENOSPC) {
2281                 up_write(&vol->mftbmp_lock);
2282                 return ERR_PTR(bit);
2283         }
2284         /*
2285          * No free mft records left.  If the mft bitmap already covers more
2286          * than the currently used mft records, the next records are all free,
2287          * so we can simply allocate the first unused mft record.
2288          * Note: We also have to make sure that the mft bitmap at least covers
2289          * the first 24 mft records as they are special and whilst they may not
2290          * be in use, we do not allocate from them.
2291          */
2292         read_lock_irqsave(&mft_ni->size_lock, flags);
2293         ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2294         read_unlock_irqrestore(&mft_ni->size_lock, flags);
2295         read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2296         old_data_initialized = mftbmp_ni->initialized_size;
2297         read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2298         if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2299                 bit = ll;
2300                 if (bit < 24)
2301                         bit = 24;
2302                 if (unlikely(bit >= (1ll << 32)))
2303                         goto max_err_out;
2304                 ntfs_debug("Found free record (#2), bit 0x%llx.",
2305                                 (long long)bit);
2306                 goto found_free_rec;
2307         }
2308         /*
2309          * The mft bitmap needs to be expanded until it covers the first unused
2310          * mft record that we can allocate.
2311          * Note: The smallest mft record we allocate is mft record 24.
2312          */
2313         bit = old_data_initialized << 3;
2314         if (unlikely(bit >= (1ll << 32)))
2315                 goto max_err_out;
2316         read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2317         old_data_size = mftbmp_ni->allocated_size;
2318         ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2319                         "data_size 0x%llx, initialized_size 0x%llx.",
2320                         (long long)old_data_size,
2321                         (long long)i_size_read(vol->mftbmp_ino),
2322                         (long long)old_data_initialized);
2323         read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2324         if (old_data_initialized + 8 > old_data_size) {
2325                 /* Need to extend bitmap by one more cluster. */
2326                 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2327                 err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2328                 if (unlikely(err)) {
2329                         up_write(&vol->mftbmp_lock);
2330                         goto err_out;
2331                 }
2332 #ifdef DEBUG
2333                 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2334                 ntfs_debug("Status of mftbmp after allocation extension: "
2335                                 "allocated_size 0x%llx, data_size 0x%llx, "
2336                                 "initialized_size 0x%llx.",
2337                                 (long long)mftbmp_ni->allocated_size,
2338                                 (long long)i_size_read(vol->mftbmp_ino),
2339                                 (long long)mftbmp_ni->initialized_size);
2340                 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2341 #endif /* DEBUG */
2342         }
2343         /*
2344          * We now have sufficient allocated space, extend the initialized_size
2345          * as well as the data_size if necessary and fill the new space with
2346          * zeroes.
2347          */
2348         err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2349         if (unlikely(err)) {
2350                 up_write(&vol->mftbmp_lock);
2351                 goto err_out;
2352         }
2353 #ifdef DEBUG
2354         read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2355         ntfs_debug("Status of mftbmp after initialized extension: "
2356                         "allocated_size 0x%llx, data_size 0x%llx, "
2357                         "initialized_size 0x%llx.",
2358                         (long long)mftbmp_ni->allocated_size,
2359                         (long long)i_size_read(vol->mftbmp_ino),
2360                         (long long)mftbmp_ni->initialized_size);
2361         read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2362 #endif /* DEBUG */
2363         ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2364 found_free_rec:
2365         /* @bit is the found free mft record, allocate it in the mft bitmap. */
2366         ntfs_debug("At found_free_rec.");
2367         err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2368         if (unlikely(err)) {
2369                 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2370                 up_write(&vol->mftbmp_lock);
2371                 goto err_out;
2372         }
2373         ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2374 have_alloc_rec:
2375         /*
2376          * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2377          * Note, we keep hold of the mft bitmap lock for writing until all
2378          * modifications to the mft data attribute are complete, too, as they
2379          * will impact decisions for mft bitmap and mft record allocation done
2380          * by a parallel allocation and if the lock is not maintained a
2381          * parallel allocation could allocate the same mft record as this one.
2382          */
2383         ll = (bit + 1) << vol->mft_record_size_bits;
2384         read_lock_irqsave(&mft_ni->size_lock, flags);
2385         old_data_initialized = mft_ni->initialized_size;
2386         read_unlock_irqrestore(&mft_ni->size_lock, flags);
2387         if (ll <= old_data_initialized) {
2388                 ntfs_debug("Allocated mft record already initialized.");
2389                 goto mft_rec_already_initialized;
2390         }
2391         ntfs_debug("Initializing allocated mft record.");
2392         /*
2393          * The mft record is outside the initialized data.  Extend the mft data
2394          * attribute until it covers the allocated record.  The loop is only
2395          * actually traversed more than once when a freshly formatted volume is
2396          * first written to so it optimizes away nicely in the common case.
2397          */
2398         read_lock_irqsave(&mft_ni->size_lock, flags);
2399         ntfs_debug("Status of mft data before extension: "
2400                         "allocated_size 0x%llx, data_size 0x%llx, "
2401                         "initialized_size 0x%llx.",
2402                         (long long)mft_ni->allocated_size,
2403                         (long long)i_size_read(vol->mft_ino),
2404                         (long long)mft_ni->initialized_size);
2405         while (ll > mft_ni->allocated_size) {
2406                 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2407                 err = ntfs_mft_data_extend_allocation_nolock(vol);
2408                 if (unlikely(err)) {
2409                         ntfs_error(vol->sb, "Failed to extend mft data "
2410                                         "allocation.");
2411                         goto undo_mftbmp_alloc_nolock;
2412                 }
2413                 read_lock_irqsave(&mft_ni->size_lock, flags);
2414                 ntfs_debug("Status of mft data after allocation extension: "
2415                                 "allocated_size 0x%llx, data_size 0x%llx, "
2416                                 "initialized_size 0x%llx.",
2417                                 (long long)mft_ni->allocated_size,
2418                                 (long long)i_size_read(vol->mft_ino),
2419                                 (long long)mft_ni->initialized_size);
2420         }
2421         read_unlock_irqrestore(&mft_ni->size_lock, flags);
2422         /*
2423          * Extend mft data initialized size (and data size of course) to reach
2424          * the allocated mft record, formatting the mft records allong the way.
2425          * Note: We only modify the ntfs_inode structure as that is all that is
2426          * needed by ntfs_mft_record_format().  We will update the attribute
2427          * record itself in one fell swoop later on.
2428          */
2429         write_lock_irqsave(&mft_ni->size_lock, flags);
2430         old_data_initialized = mft_ni->initialized_size;
2431         old_data_size = vol->mft_ino->i_size;
2432         while (ll > mft_ni->initialized_size) {
2433                 s64 new_initialized_size, mft_no;
2434                 
2435                 new_initialized_size = mft_ni->initialized_size +
2436                                 vol->mft_record_size;
2437                 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2438                 if (new_initialized_size > i_size_read(vol->mft_ino))
2439                         i_size_write(vol->mft_ino, new_initialized_size);
2440                 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2441                 ntfs_debug("Initializing mft record 0x%llx.",
2442                                 (long long)mft_no);
2443                 err = ntfs_mft_record_format(vol, mft_no);
2444                 if (unlikely(err)) {
2445                         ntfs_error(vol->sb, "Failed to format mft record.");
2446                         goto undo_data_init;
2447                 }
2448                 write_lock_irqsave(&mft_ni->size_lock, flags);
2449                 mft_ni->initialized_size = new_initialized_size;
2450         }
2451         write_unlock_irqrestore(&mft_ni->size_lock, flags);
2452         record_formatted = true;
2453         /* Update the mft data attribute record to reflect the new sizes. */
2454         m = map_mft_record(mft_ni);
2455         if (IS_ERR(m)) {
2456                 ntfs_error(vol->sb, "Failed to map mft record.");
2457                 err = PTR_ERR(m);
2458                 goto undo_data_init;
2459         }
2460         ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2461         if (unlikely(!ctx)) {
2462                 ntfs_error(vol->sb, "Failed to get search context.");
2463                 err = -ENOMEM;
2464                 unmap_mft_record(mft_ni);
2465                 goto undo_data_init;
2466         }
2467         err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2468                         CASE_SENSITIVE, 0, NULL, 0, ctx);
2469         if (unlikely(err)) {
2470                 ntfs_error(vol->sb, "Failed to find first attribute extent of "
2471                                 "mft data attribute.");
2472                 ntfs_attr_put_search_ctx(ctx);
2473                 unmap_mft_record(mft_ni);
2474                 goto undo_data_init;
2475         }
2476         a = ctx->attr;
2477         read_lock_irqsave(&mft_ni->size_lock, flags);
2478         a->data.non_resident.initialized_size =
2479                         cpu_to_sle64(mft_ni->initialized_size);
2480         a->data.non_resident.data_size =
2481                         cpu_to_sle64(i_size_read(vol->mft_ino));
2482         read_unlock_irqrestore(&mft_ni->size_lock, flags);
2483         /* Ensure the changes make it to disk. */
2484         flush_dcache_mft_record_page(ctx->ntfs_ino);
2485         mark_mft_record_dirty(ctx->ntfs_ino);
2486         ntfs_attr_put_search_ctx(ctx);
2487         unmap_mft_record(mft_ni);
2488         read_lock_irqsave(&mft_ni->size_lock, flags);
2489         ntfs_debug("Status of mft data after mft record initialization: "
2490                         "allocated_size 0x%llx, data_size 0x%llx, "
2491                         "initialized_size 0x%llx.",
2492                         (long long)mft_ni->allocated_size,
2493                         (long long)i_size_read(vol->mft_ino),
2494                         (long long)mft_ni->initialized_size);
2495         BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2496         BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2497         read_unlock_irqrestore(&mft_ni->size_lock, flags);
2498 mft_rec_already_initialized:
2499         /*
2500          * We can finally drop the mft bitmap lock as the mft data attribute
2501          * has been fully updated.  The only disparity left is that the
2502          * allocated mft record still needs to be marked as in use to match the
2503          * set bit in the mft bitmap but this is actually not a problem since
2504          * this mft record is not referenced from anywhere yet and the fact
2505          * that it is allocated in the mft bitmap means that no-one will try to
2506          * allocate it either.
2507          */
2508         up_write(&vol->mftbmp_lock);
2509         /*
2510          * We now have allocated and initialized the mft record.  Calculate the
2511          * index of and the offset within the page cache page the record is in.
2512          */
2513         index = bit << vol->mft_record_size_bits >> PAGE_SHIFT;
2514         ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK;
2515         /* Read, map, and pin the page containing the mft record. */
2516         page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2517         if (IS_ERR(page)) {
2518                 ntfs_error(vol->sb, "Failed to map page containing allocated "
2519                                 "mft record 0x%llx.", (long long)bit);
2520                 err = PTR_ERR(page);
2521                 goto undo_mftbmp_alloc;
2522         }
2523         lock_page(page);
2524         BUG_ON(!PageUptodate(page));
2525         ClearPageUptodate(page);
2526         m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2527         /* If we just formatted the mft record no need to do it again. */
2528         if (!record_formatted) {
2529                 /* Sanity check that the mft record is really not in use. */
2530                 if (ntfs_is_file_record(m->magic) &&
2531                                 (m->flags & MFT_RECORD_IN_USE)) {
2532                         ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2533                                         "free in mft bitmap but is marked "
2534                                         "used itself.  Corrupt filesystem.  "
2535                                         "Unmount and run chkdsk.",
2536                                         (long long)bit);
2537                         err = -EIO;
2538                         SetPageUptodate(page);
2539                         unlock_page(page);
2540                         ntfs_unmap_page(page);
2541                         NVolSetErrors(vol);
2542                         goto undo_mftbmp_alloc;
2543                 }
2544                 /*
2545                  * We need to (re-)format the mft record, preserving the
2546                  * sequence number if it is not zero as well as the update
2547                  * sequence number if it is not zero or -1 (0xffff).  This
2548                  * means we do not need to care whether or not something went
2549                  * wrong with the previous mft record.
2550                  */
2551                 seq_no = m->sequence_number;
2552                 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2553                 err = ntfs_mft_record_layout(vol, bit, m);
2554                 if (unlikely(err)) {
2555                         ntfs_error(vol->sb, "Failed to layout allocated mft "
2556                                         "record 0x%llx.", (long long)bit);
2557                         SetPageUptodate(page);
2558                         unlock_page(page);
2559                         ntfs_unmap_page(page);
2560                         goto undo_mftbmp_alloc;
2561                 }
2562                 if (seq_no)
2563                         m->sequence_number = seq_no;
2564                 if (usn && le16_to_cpu(usn) != 0xffff)
2565                         *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2566         }
2567         /* Set the mft record itself in use. */
2568         m->flags |= MFT_RECORD_IN_USE;
2569         if (S_ISDIR(mode))
2570                 m->flags |= MFT_RECORD_IS_DIRECTORY;
2571         flush_dcache_page(page);
2572         SetPageUptodate(page);
2573         if (base_ni) {
2574                 MFT_RECORD *m_tmp;
2575 
2576                 /*
2577                  * Setup the base mft record in the extent mft record.  This
2578                  * completes initialization of the allocated extent mft record
2579                  * and we can simply use it with map_extent_mft_record().
2580                  */
2581                 m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2582                                 base_ni->seq_no);
2583                 /*
2584                  * Allocate an extent inode structure for the new mft record,
2585                  * attach it to the base inode @base_ni and map, pin, and lock
2586                  * its, i.e. the allocated, mft record.
2587                  */
2588                 m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2589                 if (IS_ERR(m_tmp)) {
2590                         ntfs_error(vol->sb, "Failed to map allocated extent "
2591                                         "mft record 0x%llx.", (long long)bit);
2592                         err = PTR_ERR(m_tmp);
2593                         /* Set the mft record itself not in use. */
2594                         m->flags &= cpu_to_le16(
2595                                         ~le16_to_cpu(MFT_RECORD_IN_USE));
2596                         flush_dcache_page(page);
2597                         /* Make sure the mft record is written out to disk. */
2598                         mark_ntfs_record_dirty(page, ofs);
2599                         unlock_page(page);
2600                         ntfs_unmap_page(page);
2601                         goto undo_mftbmp_alloc;
2602                 }
2603                 BUG_ON(m != m_tmp);
2604                 /*
2605                  * Make sure the allocated mft record is written out to disk.
2606                  * No need to set the inode dirty because the caller is going
2607                  * to do that anyway after finishing with the new extent mft
2608                  * record (e.g. at a minimum a new attribute will be added to
2609                  * the mft record.
2610                  */
2611                 mark_ntfs_record_dirty(page, ofs);
2612                 unlock_page(page);
2613                 /*
2614                  * Need to unmap the page since map_extent_mft_record() mapped
2615                  * it as well so we have it mapped twice at the moment.
2616                  */
2617                 ntfs_unmap_page(page);
2618         } else {
2619                 /*
2620                  * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2621                  * is set to 1 but the mft record->link_count is 0.  The caller
2622                  * needs to bear this in mind.
2623                  */
2624                 vi = new_inode(vol->sb);
2625                 if (unlikely(!vi)) {
2626                         err = -ENOMEM;
2627                         /* Set the mft record itself not in use. */
2628                         m->flags &= cpu_to_le16(
2629                                         ~le16_to_cpu(MFT_RECORD_IN_USE));
2630                         flush_dcache_page(page);
2631                         /* Make sure the mft record is written out to disk. */
2632                         mark_ntfs_record_dirty(page, ofs);
2633                         unlock_page(page);
2634                         ntfs_unmap_page(page);
2635                         goto undo_mftbmp_alloc;
2636                 }
2637                 vi->i_ino = bit;
2638 
2639                 /* The owner and group come from the ntfs volume. */
2640                 vi->i_uid = vol->uid;
2641                 vi->i_gid = vol->gid;
2642 
2643                 /* Initialize the ntfs specific part of @vi. */
2644                 ntfs_init_big_inode(vi);
2645                 ni = NTFS_I(vi);
2646                 /*
2647                  * Set the appropriate mode, attribute type, and name.  For
2648                  * directories, also setup the index values to the defaults.
2649                  */
2650                 if (S_ISDIR(mode)) {
2651                         vi->i_mode = S_IFDIR | S_IRWXUGO;
2652                         vi->i_mode &= ~vol->dmask;
2653 
2654                         NInoSetMstProtected(ni);
2655                         ni->type = AT_INDEX_ALLOCATION;
2656                         ni->name = I30;
2657                         ni->name_len = 4;
2658 
2659                         ni->itype.index.block_size = 4096;
2660                         ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2661                         ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2662                         if (vol->cluster_size <= ni->itype.index.block_size) {
2663                                 ni->itype.index.vcn_size = vol->cluster_size;
2664                                 ni->itype.index.vcn_size_bits =
2665                                                 vol->cluster_size_bits;
2666                         } else {
2667                                 ni->itype.index.vcn_size = vol->sector_size;
2668                                 ni->itype.index.vcn_size_bits =
2669                                                 vol->sector_size_bits;
2670                         }
2671                 } else {
2672                         vi->i_mode = S_IFREG | S_IRWXUGO;
2673                         vi->i_mode &= ~vol->fmask;
2674 
2675                         ni->type = AT_DATA;
2676                         ni->name = NULL;
2677                         ni->name_len = 0;
2678                 }
2679                 if (IS_RDONLY(vi))
2680                         vi->i_mode &= ~S_IWUGO;
2681 
2682                 /* Set the inode times to the current time. */
2683                 vi->i_atime = vi->i_mtime = vi->i_ctime =
2684                         current_time(vi);
2685                 /*
2686                  * Set the file size to 0, the ntfs inode sizes are set to 0 by
2687                  * the call to ntfs_init_big_inode() below.
2688                  */
2689                 vi->i_size = 0;
2690                 vi->i_blocks = 0;
2691 
2692                 /* Set the sequence number. */
2693                 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2694                 /*
2695                  * Manually map, pin, and lock the mft record as we already
2696                  * have its page mapped and it is very easy to do.
2697                  */
2698                 atomic_inc(&ni->count);
2699                 mutex_lock(&ni->mrec_lock);
2700                 ni->page = page;
2701                 ni->page_ofs = ofs;
2702                 /*
2703                  * Make sure the allocated mft record is written out to disk.
2704                  * NOTE: We do not set the ntfs inode dirty because this would
2705                  * fail in ntfs_write_inode() because the inode does not have a
2706                  * standard information attribute yet.  Also, there is no need
2707                  * to set the inode dirty because the caller is going to do
2708                  * that anyway after finishing with the new mft record (e.g. at
2709                  * a minimum some new attributes will be added to the mft
2710                  * record.
2711                  */
2712                 mark_ntfs_record_dirty(page, ofs);
2713                 unlock_page(page);
2714 
2715                 /* Add the inode to the inode hash for the superblock. */
2716                 insert_inode_hash(vi);
2717 
2718                 /* Update the default mft allocation position. */
2719                 vol->mft_data_pos = bit + 1;
2720         }
2721         /*
2722          * Return the opened, allocated inode of the allocated mft record as
2723          * well as the mapped, pinned, and locked mft record.
2724          */
2725         ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2726                         base_ni ? "extent " : "", (long long)bit);
2727         *mrec = m;
2728         return ni;
2729 undo_data_init:
2730         write_lock_irqsave(&mft_ni->size_lock, flags);
2731         mft_ni->initialized_size = old_data_initialized;
2732         i_size_write(vol->mft_ino, old_data_size);
2733         write_unlock_irqrestore(&mft_ni->size_lock, flags);
2734         goto undo_mftbmp_alloc_nolock;
2735 undo_mftbmp_alloc:
2736         down_write(&vol->mftbmp_lock);
2737 undo_mftbmp_alloc_nolock:
2738         if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2739                 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2740                 NVolSetErrors(vol);
2741         }
2742         up_write(&vol->mftbmp_lock);
2743 err_out:
2744         return ERR_PTR(err);
2745 max_err_out:
2746         ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2747                         "number of inodes (2^32) has already been reached.");
2748         up_write(&vol->mftbmp_lock);
2749         return ERR_PTR(-ENOSPC);
2750 }
2751 
2752 /**
2753  * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2754  * @ni:         ntfs inode of the mapped extent mft record to free
2755  * @m:          mapped extent mft record of the ntfs inode @ni
2756  *
2757  * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2758  *
2759  * Note that this function unmaps the mft record and closes and destroys @ni
2760  * internally and hence you cannot use either @ni nor @m any more after this
2761  * function returns success.
2762  *
2763  * On success return 0 and on error return -errno.  @ni and @m are still valid
2764  * in this case and have not been freed.
2765  *
2766  * For some errors an error message is displayed and the success code 0 is
2767  * returned and the volume is then left dirty on umount.  This makes sense in
2768  * case we could not rollback the changes that were already done since the
2769  * caller no longer wants to reference this mft record so it does not matter to
2770  * the caller if something is wrong with it as long as it is properly detached
2771  * from the base inode.
2772  */
2773 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2774 {
2775         unsigned long mft_no = ni->mft_no;
2776         ntfs_volume *vol = ni->vol;
2777         ntfs_inode *base_ni;
2778         ntfs_inode **extent_nis;
2779         int i, err;
2780         le16 old_seq_no;
2781         u16 seq_no;
2782         
2783         BUG_ON(NInoAttr(ni));
2784         BUG_ON(ni->nr_extents != -1);
2785 
2786         mutex_lock(&ni->extent_lock);
2787         base_ni = ni->ext.base_ntfs_ino;
2788         mutex_unlock(&ni->extent_lock);
2789 
2790         BUG_ON(base_ni->nr_extents <= 0);
2791 
2792         ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2793                         mft_no, base_ni->mft_no);
2794 
2795         mutex_lock(&base_ni->extent_lock);
2796 
2797         /* Make sure we are holding the only reference to the extent inode. */
2798         if (atomic_read(&ni->count) > 2) {
2799                 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2800                                 "not freeing.", base_ni->mft_no);
2801                 mutex_unlock(&base_ni->extent_lock);
2802                 return -EBUSY;
2803         }
2804 
2805         /* Dissociate the ntfs inode from the base inode. */
2806         extent_nis = base_ni->ext.extent_ntfs_inos;
2807         err = -ENOENT;
2808         for (i = 0; i < base_ni->nr_extents; i++) {
2809                 if (ni != extent_nis[i])
2810                         continue;
2811                 extent_nis += i;
2812                 base_ni->nr_extents--;
2813                 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2814                                 sizeof(ntfs_inode*));
2815                 err = 0;
2816                 break;
2817         }
2818 
2819         mutex_unlock(&base_ni->extent_lock);
2820 
2821         if (unlikely(err)) {
2822                 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2823                                 "its base inode 0x%lx.", mft_no,
2824                                 base_ni->mft_no);
2825                 BUG();
2826         }
2827 
2828         /*
2829          * The extent inode is no longer attached to the base inode so no one
2830          * can get a reference to it any more.
2831          */
2832 
2833         /* Mark the mft record as not in use. */
2834         m->flags &= ~MFT_RECORD_IN_USE;
2835 
2836         /* Increment the sequence number, skipping zero, if it is not zero. */
2837         old_seq_no = m->sequence_number;
2838         seq_no = le16_to_cpu(old_seq_no);
2839         if (seq_no == 0xffff)
2840                 seq_no = 1;
2841         else if (seq_no)
2842                 seq_no++;
2843         m->sequence_number = cpu_to_le16(seq_no);
2844 
2845         /*
2846          * Set the ntfs inode dirty and write it out.  We do not need to worry
2847          * about the base inode here since whatever caused the extent mft
2848          * record to be freed is guaranteed to do it already.
2849          */
2850         NInoSetDirty(ni);
2851         err = write_mft_record(ni, m, 0);
2852         if (unlikely(err)) {
2853                 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2854                                 "freeing.", mft_no);
2855                 goto rollback;
2856         }
2857 rollback_error:
2858         /* Unmap and throw away the now freed extent inode. */
2859         unmap_extent_mft_record(ni);
2860         ntfs_clear_extent_inode(ni);
2861 
2862         /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2863         down_write(&vol->mftbmp_lock);
2864         err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2865         up_write(&vol->mftbmp_lock);
2866         if (unlikely(err)) {
2867                 /*
2868                  * The extent inode is gone but we failed to deallocate it in
2869                  * the mft bitmap.  Just emit a warning and leave the volume
2870                  * dirty on umount.
2871                  */
2872                 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2873                 NVolSetErrors(vol);
2874         }
2875         return 0;
2876 rollback:
2877         /* Rollback what we did... */
2878         mutex_lock(&base_ni->extent_lock);
2879         extent_nis = base_ni->ext.extent_ntfs_inos;
2880         if (!(base_ni->nr_extents & 3)) {
2881                 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2882 
2883                 extent_nis = kmalloc(new_size, GFP_NOFS);
2884                 if (unlikely(!extent_nis)) {
2885                         ntfs_error(vol->sb, "Failed to allocate internal "
2886                                         "buffer during rollback.%s", es);
2887                         mutex_unlock(&base_ni->extent_lock);
2888                         NVolSetErrors(vol);
2889                         goto rollback_error;
2890                 }
2891                 if (base_ni->nr_extents) {
2892                         BUG_ON(!base_ni->ext.extent_ntfs_inos);
2893                         memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2894                                         new_size - 4 * sizeof(ntfs_inode*));
2895                         kfree(base_ni->ext.extent_ntfs_inos);
2896                 }
2897                 base_ni->ext.extent_ntfs_inos = extent_nis;
2898         }
2899         m->flags |= MFT_RECORD_IN_USE;
2900         m->sequence_number = old_seq_no;
2901         extent_nis[base_ni->nr_extents++] = ni;
2902         mutex_unlock(&base_ni->extent_lock);
2903         mark_mft_record_dirty(ni);
2904         return err;
2905 }
2906 #endif /* NTFS_RW */

/* [<][>][^][v][top][bottom][index][help] */