root/fs/ext4/indirect.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. add_chain
  2. ext4_block_to_path
  3. ext4_get_branch
  4. ext4_find_near
  5. ext4_find_goal
  6. ext4_blks_to_allocate
  7. ext4_alloc_branch
  8. ext4_splice_branch
  9. ext4_ind_map_blocks
  10. ext4_ind_calc_metadata_amount
  11. ext4_ind_trans_blocks
  12. try_to_extend_transaction
  13. all_zeroes
  14. ext4_find_shared
  15. ext4_clear_blocks
  16. ext4_free_data
  17. ext4_free_branches
  18. ext4_ind_truncate
  19. ext4_ind_remove_space

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *  linux/fs/ext4/indirect.c
   4  *
   5  *  from
   6  *
   7  *  linux/fs/ext4/inode.c
   8  *
   9  * Copyright (C) 1992, 1993, 1994, 1995
  10  * Remy Card (card@masi.ibp.fr)
  11  * Laboratoire MASI - Institut Blaise Pascal
  12  * Universite Pierre et Marie Curie (Paris VI)
  13  *
  14  *  from
  15  *
  16  *  linux/fs/minix/inode.c
  17  *
  18  *  Copyright (C) 1991, 1992  Linus Torvalds
  19  *
  20  *  Goal-directed block allocation by Stephen Tweedie
  21  *      (sct@redhat.com), 1993, 1998
  22  */
  23 
  24 #include "ext4_jbd2.h"
  25 #include "truncate.h"
  26 #include <linux/dax.h>
  27 #include <linux/uio.h>
  28 
  29 #include <trace/events/ext4.h>
  30 
  31 typedef struct {
  32         __le32  *p;
  33         __le32  key;
  34         struct buffer_head *bh;
  35 } Indirect;
  36 
  37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  38 {
  39         p->key = *(p->p = v);
  40         p->bh = bh;
  41 }
  42 
  43 /**
  44  *      ext4_block_to_path - parse the block number into array of offsets
  45  *      @inode: inode in question (we are only interested in its superblock)
  46  *      @i_block: block number to be parsed
  47  *      @offsets: array to store the offsets in
  48  *      @boundary: set this non-zero if the referred-to block is likely to be
  49  *             followed (on disk) by an indirect block.
  50  *
  51  *      To store the locations of file's data ext4 uses a data structure common
  52  *      for UNIX filesystems - tree of pointers anchored in the inode, with
  53  *      data blocks at leaves and indirect blocks in intermediate nodes.
  54  *      This function translates the block number into path in that tree -
  55  *      return value is the path length and @offsets[n] is the offset of
  56  *      pointer to (n+1)th node in the nth one. If @block is out of range
  57  *      (negative or too large) warning is printed and zero returned.
  58  *
  59  *      Note: function doesn't find node addresses, so no IO is needed. All
  60  *      we need to know is the capacity of indirect blocks (taken from the
  61  *      inode->i_sb).
  62  */
  63 
  64 /*
  65  * Portability note: the last comparison (check that we fit into triple
  66  * indirect block) is spelled differently, because otherwise on an
  67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
  68  * if our filesystem had 8Kb blocks. We might use long long, but that would
  69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
  70  * i_block would have to be negative in the very beginning, so we would not
  71  * get there at all.
  72  */
  73 
  74 static int ext4_block_to_path(struct inode *inode,
  75                               ext4_lblk_t i_block,
  76                               ext4_lblk_t offsets[4], int *boundary)
  77 {
  78         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  79         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  80         const long direct_blocks = EXT4_NDIR_BLOCKS,
  81                 indirect_blocks = ptrs,
  82                 double_blocks = (1 << (ptrs_bits * 2));
  83         int n = 0;
  84         int final = 0;
  85 
  86         if (i_block < direct_blocks) {
  87                 offsets[n++] = i_block;
  88                 final = direct_blocks;
  89         } else if ((i_block -= direct_blocks) < indirect_blocks) {
  90                 offsets[n++] = EXT4_IND_BLOCK;
  91                 offsets[n++] = i_block;
  92                 final = ptrs;
  93         } else if ((i_block -= indirect_blocks) < double_blocks) {
  94                 offsets[n++] = EXT4_DIND_BLOCK;
  95                 offsets[n++] = i_block >> ptrs_bits;
  96                 offsets[n++] = i_block & (ptrs - 1);
  97                 final = ptrs;
  98         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  99                 offsets[n++] = EXT4_TIND_BLOCK;
 100                 offsets[n++] = i_block >> (ptrs_bits * 2);
 101                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 102                 offsets[n++] = i_block & (ptrs - 1);
 103                 final = ptrs;
 104         } else {
 105                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 106                              i_block + direct_blocks +
 107                              indirect_blocks + double_blocks, inode->i_ino);
 108         }
 109         if (boundary)
 110                 *boundary = final - 1 - (i_block & (ptrs - 1));
 111         return n;
 112 }
 113 
 114 /**
 115  *      ext4_get_branch - read the chain of indirect blocks leading to data
 116  *      @inode: inode in question
 117  *      @depth: depth of the chain (1 - direct pointer, etc.)
 118  *      @offsets: offsets of pointers in inode/indirect blocks
 119  *      @chain: place to store the result
 120  *      @err: here we store the error value
 121  *
 122  *      Function fills the array of triples <key, p, bh> and returns %NULL
 123  *      if everything went OK or the pointer to the last filled triple
 124  *      (incomplete one) otherwise. Upon the return chain[i].key contains
 125  *      the number of (i+1)-th block in the chain (as it is stored in memory,
 126  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 127  *      number (it points into struct inode for i==0 and into the bh->b_data
 128  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 129  *      block for i>0 and NULL for i==0. In other words, it holds the block
 130  *      numbers of the chain, addresses they were taken from (and where we can
 131  *      verify that chain did not change) and buffer_heads hosting these
 132  *      numbers.
 133  *
 134  *      Function stops when it stumbles upon zero pointer (absent block)
 135  *              (pointer to last triple returned, *@err == 0)
 136  *      or when it gets an IO error reading an indirect block
 137  *              (ditto, *@err == -EIO)
 138  *      or when it reads all @depth-1 indirect blocks successfully and finds
 139  *      the whole chain, all way to the data (returns %NULL, *err == 0).
 140  *
 141  *      Need to be called with
 142  *      down_read(&EXT4_I(inode)->i_data_sem)
 143  */
 144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
 145                                  ext4_lblk_t  *offsets,
 146                                  Indirect chain[4], int *err)
 147 {
 148         struct super_block *sb = inode->i_sb;
 149         Indirect *p = chain;
 150         struct buffer_head *bh;
 151         int ret = -EIO;
 152 
 153         *err = 0;
 154         /* i_data is not going away, no lock needed */
 155         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 156         if (!p->key)
 157                 goto no_block;
 158         while (--depth) {
 159                 bh = sb_getblk(sb, le32_to_cpu(p->key));
 160                 if (unlikely(!bh)) {
 161                         ret = -ENOMEM;
 162                         goto failure;
 163                 }
 164 
 165                 if (!bh_uptodate_or_lock(bh)) {
 166                         if (bh_submit_read(bh) < 0) {
 167                                 put_bh(bh);
 168                                 goto failure;
 169                         }
 170                         /* validate block references */
 171                         if (ext4_check_indirect_blockref(inode, bh)) {
 172                                 put_bh(bh);
 173                                 goto failure;
 174                         }
 175                 }
 176 
 177                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 178                 /* Reader: end */
 179                 if (!p->key)
 180                         goto no_block;
 181         }
 182         return NULL;
 183 
 184 failure:
 185         *err = ret;
 186 no_block:
 187         return p;
 188 }
 189 
 190 /**
 191  *      ext4_find_near - find a place for allocation with sufficient locality
 192  *      @inode: owner
 193  *      @ind: descriptor of indirect block.
 194  *
 195  *      This function returns the preferred place for block allocation.
 196  *      It is used when heuristic for sequential allocation fails.
 197  *      Rules are:
 198  *        + if there is a block to the left of our position - allocate near it.
 199  *        + if pointer will live in indirect block - allocate near that block.
 200  *        + if pointer will live in inode - allocate in the same
 201  *          cylinder group.
 202  *
 203  * In the latter case we colour the starting block by the callers PID to
 204  * prevent it from clashing with concurrent allocations for a different inode
 205  * in the same block group.   The PID is used here so that functionally related
 206  * files will be close-by on-disk.
 207  *
 208  *      Caller must make sure that @ind is valid and will stay that way.
 209  */
 210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 211 {
 212         struct ext4_inode_info *ei = EXT4_I(inode);
 213         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 214         __le32 *p;
 215 
 216         /* Try to find previous block */
 217         for (p = ind->p - 1; p >= start; p--) {
 218                 if (*p)
 219                         return le32_to_cpu(*p);
 220         }
 221 
 222         /* No such thing, so let's try location of indirect block */
 223         if (ind->bh)
 224                 return ind->bh->b_blocknr;
 225 
 226         /*
 227          * It is going to be referred to from the inode itself? OK, just put it
 228          * into the same cylinder group then.
 229          */
 230         return ext4_inode_to_goal_block(inode);
 231 }
 232 
 233 /**
 234  *      ext4_find_goal - find a preferred place for allocation.
 235  *      @inode: owner
 236  *      @block:  block we want
 237  *      @partial: pointer to the last triple within a chain
 238  *
 239  *      Normally this function find the preferred place for block allocation,
 240  *      returns it.
 241  *      Because this is only used for non-extent files, we limit the block nr
 242  *      to 32 bits.
 243  */
 244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 245                                    Indirect *partial)
 246 {
 247         ext4_fsblk_t goal;
 248 
 249         /*
 250          * XXX need to get goal block from mballoc's data structures
 251          */
 252 
 253         goal = ext4_find_near(inode, partial);
 254         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 255         return goal;
 256 }
 257 
 258 /**
 259  *      ext4_blks_to_allocate - Look up the block map and count the number
 260  *      of direct blocks need to be allocated for the given branch.
 261  *
 262  *      @branch: chain of indirect blocks
 263  *      @k: number of blocks need for indirect blocks
 264  *      @blks: number of data blocks to be mapped.
 265  *      @blocks_to_boundary:  the offset in the indirect block
 266  *
 267  *      return the total number of blocks to be allocate, including the
 268  *      direct and indirect blocks.
 269  */
 270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 271                                  int blocks_to_boundary)
 272 {
 273         unsigned int count = 0;
 274 
 275         /*
 276          * Simple case, [t,d]Indirect block(s) has not allocated yet
 277          * then it's clear blocks on that path have not allocated
 278          */
 279         if (k > 0) {
 280                 /* right now we don't handle cross boundary allocation */
 281                 if (blks < blocks_to_boundary + 1)
 282                         count += blks;
 283                 else
 284                         count += blocks_to_boundary + 1;
 285                 return count;
 286         }
 287 
 288         count++;
 289         while (count < blks && count <= blocks_to_boundary &&
 290                 le32_to_cpu(*(branch[0].p + count)) == 0) {
 291                 count++;
 292         }
 293         return count;
 294 }
 295 
 296 /**
 297  * ext4_alloc_branch() - allocate and set up a chain of blocks
 298  * @handle: handle for this transaction
 299  * @ar: structure describing the allocation request
 300  * @indirect_blks: number of allocated indirect blocks
 301  * @offsets: offsets (in the blocks) to store the pointers to next.
 302  * @branch: place to store the chain in.
 303  *
 304  *      This function allocates blocks, zeroes out all but the last one,
 305  *      links them into chain and (if we are synchronous) writes them to disk.
 306  *      In other words, it prepares a branch that can be spliced onto the
 307  *      inode. It stores the information about that chain in the branch[], in
 308  *      the same format as ext4_get_branch() would do. We are calling it after
 309  *      we had read the existing part of chain and partial points to the last
 310  *      triple of that (one with zero ->key). Upon the exit we have the same
 311  *      picture as after the successful ext4_get_block(), except that in one
 312  *      place chain is disconnected - *branch->p is still zero (we did not
 313  *      set the last link), but branch->key contains the number that should
 314  *      be placed into *branch->p to fill that gap.
 315  *
 316  *      If allocation fails we free all blocks we've allocated (and forget
 317  *      their buffer_heads) and return the error value the from failed
 318  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 319  *      as described above and return 0.
 320  */
 321 static int ext4_alloc_branch(handle_t *handle,
 322                              struct ext4_allocation_request *ar,
 323                              int indirect_blks, ext4_lblk_t *offsets,
 324                              Indirect *branch)
 325 {
 326         struct buffer_head *            bh;
 327         ext4_fsblk_t                    b, new_blocks[4];
 328         __le32                          *p;
 329         int                             i, j, err, len = 1;
 330 
 331         for (i = 0; i <= indirect_blks; i++) {
 332                 if (i == indirect_blks) {
 333                         new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
 334                 } else
 335                         ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
 336                                         ar->inode, ar->goal,
 337                                         ar->flags & EXT4_MB_DELALLOC_RESERVED,
 338                                         NULL, &err);
 339                 if (err) {
 340                         i--;
 341                         goto failed;
 342                 }
 343                 branch[i].key = cpu_to_le32(new_blocks[i]);
 344                 if (i == 0)
 345                         continue;
 346 
 347                 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
 348                 if (unlikely(!bh)) {
 349                         err = -ENOMEM;
 350                         goto failed;
 351                 }
 352                 lock_buffer(bh);
 353                 BUFFER_TRACE(bh, "call get_create_access");
 354                 err = ext4_journal_get_create_access(handle, bh);
 355                 if (err) {
 356                         unlock_buffer(bh);
 357                         goto failed;
 358                 }
 359 
 360                 memset(bh->b_data, 0, bh->b_size);
 361                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 362                 b = new_blocks[i];
 363 
 364                 if (i == indirect_blks)
 365                         len = ar->len;
 366                 for (j = 0; j < len; j++)
 367                         *p++ = cpu_to_le32(b++);
 368 
 369                 BUFFER_TRACE(bh, "marking uptodate");
 370                 set_buffer_uptodate(bh);
 371                 unlock_buffer(bh);
 372 
 373                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 374                 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
 375                 if (err)
 376                         goto failed;
 377         }
 378         return 0;
 379 failed:
 380         for (; i >= 0; i--) {
 381                 /*
 382                  * We want to ext4_forget() only freshly allocated indirect
 383                  * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
 384                  * buffer at branch[0].bh is indirect block / inode already
 385                  * existing before ext4_alloc_branch() was called.
 386                  */
 387                 if (i > 0 && i != indirect_blks && branch[i].bh)
 388                         ext4_forget(handle, 1, ar->inode, branch[i].bh,
 389                                     branch[i].bh->b_blocknr);
 390                 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
 391                                  (i == indirect_blks) ? ar->len : 1, 0);
 392         }
 393         return err;
 394 }
 395 
 396 /**
 397  * ext4_splice_branch() - splice the allocated branch onto inode.
 398  * @handle: handle for this transaction
 399  * @ar: structure describing the allocation request
 400  * @where: location of missing link
 401  * @num:   number of indirect blocks we are adding
 402  *
 403  * This function fills the missing link and does all housekeeping needed in
 404  * inode (->i_blocks, etc.). In case of success we end up with the full
 405  * chain to new block and return 0.
 406  */
 407 static int ext4_splice_branch(handle_t *handle,
 408                               struct ext4_allocation_request *ar,
 409                               Indirect *where, int num)
 410 {
 411         int i;
 412         int err = 0;
 413         ext4_fsblk_t current_block;
 414 
 415         /*
 416          * If we're splicing into a [td]indirect block (as opposed to the
 417          * inode) then we need to get write access to the [td]indirect block
 418          * before the splice.
 419          */
 420         if (where->bh) {
 421                 BUFFER_TRACE(where->bh, "get_write_access");
 422                 err = ext4_journal_get_write_access(handle, where->bh);
 423                 if (err)
 424                         goto err_out;
 425         }
 426         /* That's it */
 427 
 428         *where->p = where->key;
 429 
 430         /*
 431          * Update the host buffer_head or inode to point to more just allocated
 432          * direct blocks blocks
 433          */
 434         if (num == 0 && ar->len > 1) {
 435                 current_block = le32_to_cpu(where->key) + 1;
 436                 for (i = 1; i < ar->len; i++)
 437                         *(where->p + i) = cpu_to_le32(current_block++);
 438         }
 439 
 440         /* We are done with atomic stuff, now do the rest of housekeeping */
 441         /* had we spliced it onto indirect block? */
 442         if (where->bh) {
 443                 /*
 444                  * If we spliced it onto an indirect block, we haven't
 445                  * altered the inode.  Note however that if it is being spliced
 446                  * onto an indirect block at the very end of the file (the
 447                  * file is growing) then we *will* alter the inode to reflect
 448                  * the new i_size.  But that is not done here - it is done in
 449                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 450                  */
 451                 jbd_debug(5, "splicing indirect only\n");
 452                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 453                 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
 454                 if (err)
 455                         goto err_out;
 456         } else {
 457                 /*
 458                  * OK, we spliced it into the inode itself on a direct block.
 459                  */
 460                 ext4_mark_inode_dirty(handle, ar->inode);
 461                 jbd_debug(5, "splicing direct\n");
 462         }
 463         return err;
 464 
 465 err_out:
 466         for (i = 1; i <= num; i++) {
 467                 /*
 468                  * branch[i].bh is newly allocated, so there is no
 469                  * need to revoke the block, which is why we don't
 470                  * need to set EXT4_FREE_BLOCKS_METADATA.
 471                  */
 472                 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
 473                                  EXT4_FREE_BLOCKS_FORGET);
 474         }
 475         ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
 476                          ar->len, 0);
 477 
 478         return err;
 479 }
 480 
 481 /*
 482  * The ext4_ind_map_blocks() function handles non-extents inodes
 483  * (i.e., using the traditional indirect/double-indirect i_blocks
 484  * scheme) for ext4_map_blocks().
 485  *
 486  * Allocation strategy is simple: if we have to allocate something, we will
 487  * have to go the whole way to leaf. So let's do it before attaching anything
 488  * to tree, set linkage between the newborn blocks, write them if sync is
 489  * required, recheck the path, free and repeat if check fails, otherwise
 490  * set the last missing link (that will protect us from any truncate-generated
 491  * removals - all blocks on the path are immune now) and possibly force the
 492  * write on the parent block.
 493  * That has a nice additional property: no special recovery from the failed
 494  * allocations is needed - we simply release blocks and do not touch anything
 495  * reachable from inode.
 496  *
 497  * `handle' can be NULL if create == 0.
 498  *
 499  * return > 0, # of blocks mapped or allocated.
 500  * return = 0, if plain lookup failed.
 501  * return < 0, error case.
 502  *
 503  * The ext4_ind_get_blocks() function should be called with
 504  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 505  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 506  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 507  * blocks.
 508  */
 509 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 510                         struct ext4_map_blocks *map,
 511                         int flags)
 512 {
 513         struct ext4_allocation_request ar;
 514         int err = -EIO;
 515         ext4_lblk_t offsets[4];
 516         Indirect chain[4];
 517         Indirect *partial;
 518         int indirect_blks;
 519         int blocks_to_boundary = 0;
 520         int depth;
 521         int count = 0;
 522         ext4_fsblk_t first_block = 0;
 523 
 524         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 525         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 526         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 527         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 528                                    &blocks_to_boundary);
 529 
 530         if (depth == 0)
 531                 goto out;
 532 
 533         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 534 
 535         /* Simplest case - block found, no allocation needed */
 536         if (!partial) {
 537                 first_block = le32_to_cpu(chain[depth - 1].key);
 538                 count++;
 539                 /*map more blocks*/
 540                 while (count < map->m_len && count <= blocks_to_boundary) {
 541                         ext4_fsblk_t blk;
 542 
 543                         blk = le32_to_cpu(*(chain[depth-1].p + count));
 544 
 545                         if (blk == first_block + count)
 546                                 count++;
 547                         else
 548                                 break;
 549                 }
 550                 goto got_it;
 551         }
 552 
 553         /* Next simple case - plain lookup failed */
 554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 555                 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
 556                 int i;
 557 
 558                 /*
 559                  * Count number blocks in a subtree under 'partial'. At each
 560                  * level we count number of complete empty subtrees beyond
 561                  * current offset and then descend into the subtree only
 562                  * partially beyond current offset.
 563                  */
 564                 count = 0;
 565                 for (i = partial - chain + 1; i < depth; i++)
 566                         count = count * epb + (epb - offsets[i] - 1);
 567                 count++;
 568                 /* Fill in size of a hole we found */
 569                 map->m_pblk = 0;
 570                 map->m_len = min_t(unsigned int, map->m_len, count);
 571                 goto cleanup;
 572         }
 573 
 574         /* Failed read of indirect block */
 575         if (err == -EIO)
 576                 goto cleanup;
 577 
 578         /*
 579          * Okay, we need to do block allocation.
 580         */
 581         if (ext4_has_feature_bigalloc(inode->i_sb)) {
 582                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 583                                  "non-extent mapped inodes with bigalloc");
 584                 return -EFSCORRUPTED;
 585         }
 586 
 587         /* Set up for the direct block allocation */
 588         memset(&ar, 0, sizeof(ar));
 589         ar.inode = inode;
 590         ar.logical = map->m_lblk;
 591         if (S_ISREG(inode->i_mode))
 592                 ar.flags = EXT4_MB_HINT_DATA;
 593         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 594                 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
 595         if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
 596                 ar.flags |= EXT4_MB_USE_RESERVED;
 597 
 598         ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
 599 
 600         /* the number of blocks need to allocate for [d,t]indirect blocks */
 601         indirect_blks = (chain + depth) - partial - 1;
 602 
 603         /*
 604          * Next look up the indirect map to count the totoal number of
 605          * direct blocks to allocate for this branch.
 606          */
 607         ar.len = ext4_blks_to_allocate(partial, indirect_blks,
 608                                        map->m_len, blocks_to_boundary);
 609 
 610         /*
 611          * Block out ext4_truncate while we alter the tree
 612          */
 613         err = ext4_alloc_branch(handle, &ar, indirect_blks,
 614                                 offsets + (partial - chain), partial);
 615 
 616         /*
 617          * The ext4_splice_branch call will free and forget any buffers
 618          * on the new chain if there is a failure, but that risks using
 619          * up transaction credits, especially for bitmaps where the
 620          * credits cannot be returned.  Can we handle this somehow?  We
 621          * may need to return -EAGAIN upwards in the worst case.  --sct
 622          */
 623         if (!err)
 624                 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
 625         if (err)
 626                 goto cleanup;
 627 
 628         map->m_flags |= EXT4_MAP_NEW;
 629 
 630         ext4_update_inode_fsync_trans(handle, inode, 1);
 631         count = ar.len;
 632 got_it:
 633         map->m_flags |= EXT4_MAP_MAPPED;
 634         map->m_pblk = le32_to_cpu(chain[depth-1].key);
 635         map->m_len = count;
 636         if (count > blocks_to_boundary)
 637                 map->m_flags |= EXT4_MAP_BOUNDARY;
 638         err = count;
 639         /* Clean up and exit */
 640         partial = chain + depth - 1;    /* the whole chain */
 641 cleanup:
 642         while (partial > chain) {
 643                 BUFFER_TRACE(partial->bh, "call brelse");
 644                 brelse(partial->bh);
 645                 partial--;
 646         }
 647 out:
 648         trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 649         return err;
 650 }
 651 
 652 /*
 653  * Calculate the number of metadata blocks need to reserve
 654  * to allocate a new block at @lblocks for non extent file based file
 655  */
 656 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
 657 {
 658         struct ext4_inode_info *ei = EXT4_I(inode);
 659         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
 660         int blk_bits;
 661 
 662         if (lblock < EXT4_NDIR_BLOCKS)
 663                 return 0;
 664 
 665         lblock -= EXT4_NDIR_BLOCKS;
 666 
 667         if (ei->i_da_metadata_calc_len &&
 668             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
 669                 ei->i_da_metadata_calc_len++;
 670                 return 0;
 671         }
 672         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
 673         ei->i_da_metadata_calc_len = 1;
 674         blk_bits = order_base_2(lblock);
 675         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
 676 }
 677 
 678 /*
 679  * Calculate number of indirect blocks touched by mapping @nrblocks logically
 680  * contiguous blocks
 681  */
 682 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 683 {
 684         /*
 685          * With N contiguous data blocks, we need at most
 686          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 687          * 2 dindirect blocks, and 1 tindirect block
 688          */
 689         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 690 }
 691 
 692 /*
 693  * Truncate transactions can be complex and absolutely huge.  So we need to
 694  * be able to restart the transaction at a conventient checkpoint to make
 695  * sure we don't overflow the journal.
 696  *
 697  * Try to extend this transaction for the purposes of truncation.  If
 698  * extend fails, we need to propagate the failure up and restart the
 699  * transaction in the top-level truncate loop. --sct
 700  *
 701  * Returns 0 if we managed to create more room.  If we can't create more
 702  * room, and the transaction must be restarted we return 1.
 703  */
 704 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 705 {
 706         if (!ext4_handle_valid(handle))
 707                 return 0;
 708         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 709                 return 0;
 710         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
 711                 return 0;
 712         return 1;
 713 }
 714 
 715 /*
 716  * Probably it should be a library function... search for first non-zero word
 717  * or memcmp with zero_page, whatever is better for particular architecture.
 718  * Linus?
 719  */
 720 static inline int all_zeroes(__le32 *p, __le32 *q)
 721 {
 722         while (p < q)
 723                 if (*p++)
 724                         return 0;
 725         return 1;
 726 }
 727 
 728 /**
 729  *      ext4_find_shared - find the indirect blocks for partial truncation.
 730  *      @inode:   inode in question
 731  *      @depth:   depth of the affected branch
 732  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 733  *      @chain:   place to store the pointers to partial indirect blocks
 734  *      @top:     place to the (detached) top of branch
 735  *
 736  *      This is a helper function used by ext4_truncate().
 737  *
 738  *      When we do truncate() we may have to clean the ends of several
 739  *      indirect blocks but leave the blocks themselves alive. Block is
 740  *      partially truncated if some data below the new i_size is referred
 741  *      from it (and it is on the path to the first completely truncated
 742  *      data block, indeed).  We have to free the top of that path along
 743  *      with everything to the right of the path. Since no allocation
 744  *      past the truncation point is possible until ext4_truncate()
 745  *      finishes, we may safely do the latter, but top of branch may
 746  *      require special attention - pageout below the truncation point
 747  *      might try to populate it.
 748  *
 749  *      We atomically detach the top of branch from the tree, store the
 750  *      block number of its root in *@top, pointers to buffer_heads of
 751  *      partially truncated blocks - in @chain[].bh and pointers to
 752  *      their last elements that should not be removed - in
 753  *      @chain[].p. Return value is the pointer to last filled element
 754  *      of @chain.
 755  *
 756  *      The work left to caller to do the actual freeing of subtrees:
 757  *              a) free the subtree starting from *@top
 758  *              b) free the subtrees whose roots are stored in
 759  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 760  *              c) free the subtrees growing from the inode past the @chain[0].
 761  *                      (no partially truncated stuff there).  */
 762 
 763 static Indirect *ext4_find_shared(struct inode *inode, int depth,
 764                                   ext4_lblk_t offsets[4], Indirect chain[4],
 765                                   __le32 *top)
 766 {
 767         Indirect *partial, *p;
 768         int k, err;
 769 
 770         *top = 0;
 771         /* Make k index the deepest non-null offset + 1 */
 772         for (k = depth; k > 1 && !offsets[k-1]; k--)
 773                 ;
 774         partial = ext4_get_branch(inode, k, offsets, chain, &err);
 775         /* Writer: pointers */
 776         if (!partial)
 777                 partial = chain + k-1;
 778         /*
 779          * If the branch acquired continuation since we've looked at it -
 780          * fine, it should all survive and (new) top doesn't belong to us.
 781          */
 782         if (!partial->key && *partial->p)
 783                 /* Writer: end */
 784                 goto no_top;
 785         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 786                 ;
 787         /*
 788          * OK, we've found the last block that must survive. The rest of our
 789          * branch should be detached before unlocking. However, if that rest
 790          * of branch is all ours and does not grow immediately from the inode
 791          * it's easier to cheat and just decrement partial->p.
 792          */
 793         if (p == chain + k - 1 && p > chain) {
 794                 p->p--;
 795         } else {
 796                 *top = *p->p;
 797                 /* Nope, don't do this in ext4.  Must leave the tree intact */
 798 #if 0
 799                 *p->p = 0;
 800 #endif
 801         }
 802         /* Writer: end */
 803 
 804         while (partial > p) {
 805                 brelse(partial->bh);
 806                 partial--;
 807         }
 808 no_top:
 809         return partial;
 810 }
 811 
 812 /*
 813  * Zero a number of block pointers in either an inode or an indirect block.
 814  * If we restart the transaction we must again get write access to the
 815  * indirect block for further modification.
 816  *
 817  * We release `count' blocks on disk, but (last - first) may be greater
 818  * than `count' because there can be holes in there.
 819  *
 820  * Return 0 on success, 1 on invalid block range
 821  * and < 0 on fatal error.
 822  */
 823 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 824                              struct buffer_head *bh,
 825                              ext4_fsblk_t block_to_free,
 826                              unsigned long count, __le32 *first,
 827                              __le32 *last)
 828 {
 829         __le32 *p;
 830         int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 831         int     err;
 832 
 833         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
 834             ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
 835                 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 836         else if (ext4_should_journal_data(inode))
 837                 flags |= EXT4_FREE_BLOCKS_FORGET;
 838 
 839         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
 840                                    count)) {
 841                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 842                                  "blocks %llu len %lu",
 843                                  (unsigned long long) block_to_free, count);
 844                 return 1;
 845         }
 846 
 847         if (try_to_extend_transaction(handle, inode)) {
 848                 if (bh) {
 849                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 850                         err = ext4_handle_dirty_metadata(handle, inode, bh);
 851                         if (unlikely(err))
 852                                 goto out_err;
 853                 }
 854                 err = ext4_mark_inode_dirty(handle, inode);
 855                 if (unlikely(err))
 856                         goto out_err;
 857                 err = ext4_truncate_restart_trans(handle, inode,
 858                                         ext4_blocks_for_truncate(inode));
 859                 if (unlikely(err))
 860                         goto out_err;
 861                 if (bh) {
 862                         BUFFER_TRACE(bh, "retaking write access");
 863                         err = ext4_journal_get_write_access(handle, bh);
 864                         if (unlikely(err))
 865                                 goto out_err;
 866                 }
 867         }
 868 
 869         for (p = first; p < last; p++)
 870                 *p = 0;
 871 
 872         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
 873         return 0;
 874 out_err:
 875         ext4_std_error(inode->i_sb, err);
 876         return err;
 877 }
 878 
 879 /**
 880  * ext4_free_data - free a list of data blocks
 881  * @handle:     handle for this transaction
 882  * @inode:      inode we are dealing with
 883  * @this_bh:    indirect buffer_head which contains *@first and *@last
 884  * @first:      array of block numbers
 885  * @last:       points immediately past the end of array
 886  *
 887  * We are freeing all blocks referred from that array (numbers are stored as
 888  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 889  *
 890  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 891  * blocks are contiguous then releasing them at one time will only affect one
 892  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 893  * actually use a lot of journal space.
 894  *
 895  * @this_bh will be %NULL if @first and @last point into the inode's direct
 896  * block pointers.
 897  */
 898 static void ext4_free_data(handle_t *handle, struct inode *inode,
 899                            struct buffer_head *this_bh,
 900                            __le32 *first, __le32 *last)
 901 {
 902         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
 903         unsigned long count = 0;            /* Number of blocks in the run */
 904         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
 905                                                corresponding to
 906                                                block_to_free */
 907         ext4_fsblk_t nr;                    /* Current block # */
 908         __le32 *p;                          /* Pointer into inode/ind
 909                                                for current block */
 910         int err = 0;
 911 
 912         if (this_bh) {                          /* For indirect block */
 913                 BUFFER_TRACE(this_bh, "get_write_access");
 914                 err = ext4_journal_get_write_access(handle, this_bh);
 915                 /* Important: if we can't update the indirect pointers
 916                  * to the blocks, we can't free them. */
 917                 if (err)
 918                         return;
 919         }
 920 
 921         for (p = first; p < last; p++) {
 922                 nr = le32_to_cpu(*p);
 923                 if (nr) {
 924                         /* accumulate blocks to free if they're contiguous */
 925                         if (count == 0) {
 926                                 block_to_free = nr;
 927                                 block_to_free_p = p;
 928                                 count = 1;
 929                         } else if (nr == block_to_free + count) {
 930                                 count++;
 931                         } else {
 932                                 err = ext4_clear_blocks(handle, inode, this_bh,
 933                                                         block_to_free, count,
 934                                                         block_to_free_p, p);
 935                                 if (err)
 936                                         break;
 937                                 block_to_free = nr;
 938                                 block_to_free_p = p;
 939                                 count = 1;
 940                         }
 941                 }
 942         }
 943 
 944         if (!err && count > 0)
 945                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
 946                                         count, block_to_free_p, p);
 947         if (err < 0)
 948                 /* fatal error */
 949                 return;
 950 
 951         if (this_bh) {
 952                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
 953 
 954                 /*
 955                  * The buffer head should have an attached journal head at this
 956                  * point. However, if the data is corrupted and an indirect
 957                  * block pointed to itself, it would have been detached when
 958                  * the block was cleared. Check for this instead of OOPSing.
 959                  */
 960                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
 961                         ext4_handle_dirty_metadata(handle, inode, this_bh);
 962                 else
 963                         EXT4_ERROR_INODE(inode,
 964                                          "circular indirect block detected at "
 965                                          "block %llu",
 966                                 (unsigned long long) this_bh->b_blocknr);
 967         }
 968 }
 969 
 970 /**
 971  *      ext4_free_branches - free an array of branches
 972  *      @handle: JBD handle for this transaction
 973  *      @inode: inode we are dealing with
 974  *      @parent_bh: the buffer_head which contains *@first and *@last
 975  *      @first: array of block numbers
 976  *      @last:  pointer immediately past the end of array
 977  *      @depth: depth of the branches to free
 978  *
 979  *      We are freeing all blocks referred from these branches (numbers are
 980  *      stored as little-endian 32-bit) and updating @inode->i_blocks
 981  *      appropriately.
 982  */
 983 static void ext4_free_branches(handle_t *handle, struct inode *inode,
 984                                struct buffer_head *parent_bh,
 985                                __le32 *first, __le32 *last, int depth)
 986 {
 987         ext4_fsblk_t nr;
 988         __le32 *p;
 989 
 990         if (ext4_handle_is_aborted(handle))
 991                 return;
 992 
 993         if (depth--) {
 994                 struct buffer_head *bh;
 995                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
 996                 p = last;
 997                 while (--p >= first) {
 998                         nr = le32_to_cpu(*p);
 999                         if (!nr)
1000                                 continue;               /* A hole */
1001 
1002                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1003                                                    nr, 1)) {
1004                                 EXT4_ERROR_INODE(inode,
1005                                                  "invalid indirect mapped "
1006                                                  "block %lu (level %d)",
1007                                                  (unsigned long) nr, depth);
1008                                 break;
1009                         }
1010 
1011                         /* Go read the buffer for the next level down */
1012                         bh = sb_bread(inode->i_sb, nr);
1013 
1014                         /*
1015                          * A read failure? Report error and clear slot
1016                          * (should be rare).
1017                          */
1018                         if (!bh) {
1019                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1020                                                        "Read failure");
1021                                 continue;
1022                         }
1023 
1024                         /* This zaps the entire block.  Bottom up. */
1025                         BUFFER_TRACE(bh, "free child branches");
1026                         ext4_free_branches(handle, inode, bh,
1027                                         (__le32 *) bh->b_data,
1028                                         (__le32 *) bh->b_data + addr_per_block,
1029                                         depth);
1030                         brelse(bh);
1031 
1032                         /*
1033                          * Everything below this this pointer has been
1034                          * released.  Now let this top-of-subtree go.
1035                          *
1036                          * We want the freeing of this indirect block to be
1037                          * atomic in the journal with the updating of the
1038                          * bitmap block which owns it.  So make some room in
1039                          * the journal.
1040                          *
1041                          * We zero the parent pointer *after* freeing its
1042                          * pointee in the bitmaps, so if extend_transaction()
1043                          * for some reason fails to put the bitmap changes and
1044                          * the release into the same transaction, recovery
1045                          * will merely complain about releasing a free block,
1046                          * rather than leaking blocks.
1047                          */
1048                         if (ext4_handle_is_aborted(handle))
1049                                 return;
1050                         if (try_to_extend_transaction(handle, inode)) {
1051                                 ext4_mark_inode_dirty(handle, inode);
1052                                 ext4_truncate_restart_trans(handle, inode,
1053                                             ext4_blocks_for_truncate(inode));
1054                         }
1055 
1056                         /*
1057                          * The forget flag here is critical because if
1058                          * we are journaling (and not doing data
1059                          * journaling), we have to make sure a revoke
1060                          * record is written to prevent the journal
1061                          * replay from overwriting the (former)
1062                          * indirect block if it gets reallocated as a
1063                          * data block.  This must happen in the same
1064                          * transaction where the data blocks are
1065                          * actually freed.
1066                          */
1067                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1068                                          EXT4_FREE_BLOCKS_METADATA|
1069                                          EXT4_FREE_BLOCKS_FORGET);
1070 
1071                         if (parent_bh) {
1072                                 /*
1073                                  * The block which we have just freed is
1074                                  * pointed to by an indirect block: journal it
1075                                  */
1076                                 BUFFER_TRACE(parent_bh, "get_write_access");
1077                                 if (!ext4_journal_get_write_access(handle,
1078                                                                    parent_bh)){
1079                                         *p = 0;
1080                                         BUFFER_TRACE(parent_bh,
1081                                         "call ext4_handle_dirty_metadata");
1082                                         ext4_handle_dirty_metadata(handle,
1083                                                                    inode,
1084                                                                    parent_bh);
1085                                 }
1086                         }
1087                 }
1088         } else {
1089                 /* We have reached the bottom of the tree. */
1090                 BUFFER_TRACE(parent_bh, "free data blocks");
1091                 ext4_free_data(handle, inode, parent_bh, first, last);
1092         }
1093 }
1094 
1095 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1096 {
1097         struct ext4_inode_info *ei = EXT4_I(inode);
1098         __le32 *i_data = ei->i_data;
1099         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1100         ext4_lblk_t offsets[4];
1101         Indirect chain[4];
1102         Indirect *partial;
1103         __le32 nr = 0;
1104         int n = 0;
1105         ext4_lblk_t last_block, max_block;
1106         unsigned blocksize = inode->i_sb->s_blocksize;
1107 
1108         last_block = (inode->i_size + blocksize-1)
1109                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1110         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1111                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1112 
1113         if (last_block != max_block) {
1114                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1115                 if (n == 0)
1116                         return;
1117         }
1118 
1119         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1120 
1121         /*
1122          * The orphan list entry will now protect us from any crash which
1123          * occurs before the truncate completes, so it is now safe to propagate
1124          * the new, shorter inode size (held for now in i_size) into the
1125          * on-disk inode. We do this via i_disksize, which is the value which
1126          * ext4 *really* writes onto the disk inode.
1127          */
1128         ei->i_disksize = inode->i_size;
1129 
1130         if (last_block == max_block) {
1131                 /*
1132                  * It is unnecessary to free any data blocks if last_block is
1133                  * equal to the indirect block limit.
1134                  */
1135                 return;
1136         } else if (n == 1) {            /* direct blocks */
1137                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1138                                i_data + EXT4_NDIR_BLOCKS);
1139                 goto do_indirects;
1140         }
1141 
1142         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1143         /* Kill the top of shared branch (not detached) */
1144         if (nr) {
1145                 if (partial == chain) {
1146                         /* Shared branch grows from the inode */
1147                         ext4_free_branches(handle, inode, NULL,
1148                                            &nr, &nr+1, (chain+n-1) - partial);
1149                         *partial->p = 0;
1150                         /*
1151                          * We mark the inode dirty prior to restart,
1152                          * and prior to stop.  No need for it here.
1153                          */
1154                 } else {
1155                         /* Shared branch grows from an indirect block */
1156                         BUFFER_TRACE(partial->bh, "get_write_access");
1157                         ext4_free_branches(handle, inode, partial->bh,
1158                                         partial->p,
1159                                         partial->p+1, (chain+n-1) - partial);
1160                 }
1161         }
1162         /* Clear the ends of indirect blocks on the shared branch */
1163         while (partial > chain) {
1164                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1165                                    (__le32*)partial->bh->b_data+addr_per_block,
1166                                    (chain+n-1) - partial);
1167                 BUFFER_TRACE(partial->bh, "call brelse");
1168                 brelse(partial->bh);
1169                 partial--;
1170         }
1171 do_indirects:
1172         /* Kill the remaining (whole) subtrees */
1173         switch (offsets[0]) {
1174         default:
1175                 nr = i_data[EXT4_IND_BLOCK];
1176                 if (nr) {
1177                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1178                         i_data[EXT4_IND_BLOCK] = 0;
1179                 }
1180                 /* fall through */
1181         case EXT4_IND_BLOCK:
1182                 nr = i_data[EXT4_DIND_BLOCK];
1183                 if (nr) {
1184                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1185                         i_data[EXT4_DIND_BLOCK] = 0;
1186                 }
1187                 /* fall through */
1188         case EXT4_DIND_BLOCK:
1189                 nr = i_data[EXT4_TIND_BLOCK];
1190                 if (nr) {
1191                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1192                         i_data[EXT4_TIND_BLOCK] = 0;
1193                 }
1194                 /* fall through */
1195         case EXT4_TIND_BLOCK:
1196                 ;
1197         }
1198 }
1199 
1200 /**
1201  *      ext4_ind_remove_space - remove space from the range
1202  *      @handle: JBD handle for this transaction
1203  *      @inode: inode we are dealing with
1204  *      @start: First block to remove
1205  *      @end:   One block after the last block to remove (exclusive)
1206  *
1207  *      Free the blocks in the defined range (end is exclusive endpoint of
1208  *      range). This is used by ext4_punch_hole().
1209  */
1210 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1211                           ext4_lblk_t start, ext4_lblk_t end)
1212 {
1213         struct ext4_inode_info *ei = EXT4_I(inode);
1214         __le32 *i_data = ei->i_data;
1215         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1216         ext4_lblk_t offsets[4], offsets2[4];
1217         Indirect chain[4], chain2[4];
1218         Indirect *partial, *partial2;
1219         Indirect *p = NULL, *p2 = NULL;
1220         ext4_lblk_t max_block;
1221         __le32 nr = 0, nr2 = 0;
1222         int n = 0, n2 = 0;
1223         unsigned blocksize = inode->i_sb->s_blocksize;
1224 
1225         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1226                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1227         if (end >= max_block)
1228                 end = max_block;
1229         if ((start >= end) || (start > max_block))
1230                 return 0;
1231 
1232         n = ext4_block_to_path(inode, start, offsets, NULL);
1233         n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1234 
1235         BUG_ON(n > n2);
1236 
1237         if ((n == 1) && (n == n2)) {
1238                 /* We're punching only within direct block range */
1239                 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1240                                i_data + offsets2[0]);
1241                 return 0;
1242         } else if (n2 > n) {
1243                 /*
1244                  * Start and end are on a different levels so we're going to
1245                  * free partial block at start, and partial block at end of
1246                  * the range. If there are some levels in between then
1247                  * do_indirects label will take care of that.
1248                  */
1249 
1250                 if (n == 1) {
1251                         /*
1252                          * Start is at the direct block level, free
1253                          * everything to the end of the level.
1254                          */
1255                         ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1256                                        i_data + EXT4_NDIR_BLOCKS);
1257                         goto end_range;
1258                 }
1259 
1260 
1261                 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1262                 if (nr) {
1263                         if (partial == chain) {
1264                                 /* Shared branch grows from the inode */
1265                                 ext4_free_branches(handle, inode, NULL,
1266                                            &nr, &nr+1, (chain+n-1) - partial);
1267                                 *partial->p = 0;
1268                         } else {
1269                                 /* Shared branch grows from an indirect block */
1270                                 BUFFER_TRACE(partial->bh, "get_write_access");
1271                                 ext4_free_branches(handle, inode, partial->bh,
1272                                         partial->p,
1273                                         partial->p+1, (chain+n-1) - partial);
1274                         }
1275                 }
1276 
1277                 /*
1278                  * Clear the ends of indirect blocks on the shared branch
1279                  * at the start of the range
1280                  */
1281                 while (partial > chain) {
1282                         ext4_free_branches(handle, inode, partial->bh,
1283                                 partial->p + 1,
1284                                 (__le32 *)partial->bh->b_data+addr_per_block,
1285                                 (chain+n-1) - partial);
1286                         partial--;
1287                 }
1288 
1289 end_range:
1290                 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1291                 if (nr2) {
1292                         if (partial2 == chain2) {
1293                                 /*
1294                                  * Remember, end is exclusive so here we're at
1295                                  * the start of the next level we're not going
1296                                  * to free. Everything was covered by the start
1297                                  * of the range.
1298                                  */
1299                                 goto do_indirects;
1300                         }
1301                 } else {
1302                         /*
1303                          * ext4_find_shared returns Indirect structure which
1304                          * points to the last element which should not be
1305                          * removed by truncate. But this is end of the range
1306                          * in punch_hole so we need to point to the next element
1307                          */
1308                         partial2->p++;
1309                 }
1310 
1311                 /*
1312                  * Clear the ends of indirect blocks on the shared branch
1313                  * at the end of the range
1314                  */
1315                 while (partial2 > chain2) {
1316                         ext4_free_branches(handle, inode, partial2->bh,
1317                                            (__le32 *)partial2->bh->b_data,
1318                                            partial2->p,
1319                                            (chain2+n2-1) - partial2);
1320                         partial2--;
1321                 }
1322                 goto do_indirects;
1323         }
1324 
1325         /* Punch happened within the same level (n == n2) */
1326         partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1327         partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1328 
1329         /* Free top, but only if partial2 isn't its subtree. */
1330         if (nr) {
1331                 int level = min(partial - chain, partial2 - chain2);
1332                 int i;
1333                 int subtree = 1;
1334 
1335                 for (i = 0; i <= level; i++) {
1336                         if (offsets[i] != offsets2[i]) {
1337                                 subtree = 0;
1338                                 break;
1339                         }
1340                 }
1341 
1342                 if (!subtree) {
1343                         if (partial == chain) {
1344                                 /* Shared branch grows from the inode */
1345                                 ext4_free_branches(handle, inode, NULL,
1346                                                    &nr, &nr+1,
1347                                                    (chain+n-1) - partial);
1348                                 *partial->p = 0;
1349                         } else {
1350                                 /* Shared branch grows from an indirect block */
1351                                 BUFFER_TRACE(partial->bh, "get_write_access");
1352                                 ext4_free_branches(handle, inode, partial->bh,
1353                                                    partial->p,
1354                                                    partial->p+1,
1355                                                    (chain+n-1) - partial);
1356                         }
1357                 }
1358         }
1359 
1360         if (!nr2) {
1361                 /*
1362                  * ext4_find_shared returns Indirect structure which
1363                  * points to the last element which should not be
1364                  * removed by truncate. But this is end of the range
1365                  * in punch_hole so we need to point to the next element
1366                  */
1367                 partial2->p++;
1368         }
1369 
1370         while (partial > chain || partial2 > chain2) {
1371                 int depth = (chain+n-1) - partial;
1372                 int depth2 = (chain2+n2-1) - partial2;
1373 
1374                 if (partial > chain && partial2 > chain2 &&
1375                     partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1376                         /*
1377                          * We've converged on the same block. Clear the range,
1378                          * then we're done.
1379                          */
1380                         ext4_free_branches(handle, inode, partial->bh,
1381                                            partial->p + 1,
1382                                            partial2->p,
1383                                            (chain+n-1) - partial);
1384                         goto cleanup;
1385                 }
1386 
1387                 /*
1388                  * The start and end partial branches may not be at the same
1389                  * level even though the punch happened within one level. So, we
1390                  * give them a chance to arrive at the same level, then walk
1391                  * them in step with each other until we converge on the same
1392                  * block.
1393                  */
1394                 if (partial > chain && depth <= depth2) {
1395                         ext4_free_branches(handle, inode, partial->bh,
1396                                            partial->p + 1,
1397                                            (__le32 *)partial->bh->b_data+addr_per_block,
1398                                            (chain+n-1) - partial);
1399                         partial--;
1400                 }
1401                 if (partial2 > chain2 && depth2 <= depth) {
1402                         ext4_free_branches(handle, inode, partial2->bh,
1403                                            (__le32 *)partial2->bh->b_data,
1404                                            partial2->p,
1405                                            (chain2+n2-1) - partial2);
1406                         partial2--;
1407                 }
1408         }
1409 
1410 cleanup:
1411         while (p && p > chain) {
1412                 BUFFER_TRACE(p->bh, "call brelse");
1413                 brelse(p->bh);
1414                 p--;
1415         }
1416         while (p2 && p2 > chain2) {
1417                 BUFFER_TRACE(p2->bh, "call brelse");
1418                 brelse(p2->bh);
1419                 p2--;
1420         }
1421         return 0;
1422 
1423 do_indirects:
1424         /* Kill the remaining (whole) subtrees */
1425         switch (offsets[0]) {
1426         default:
1427                 if (++n >= n2)
1428                         break;
1429                 nr = i_data[EXT4_IND_BLOCK];
1430                 if (nr) {
1431                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1432                         i_data[EXT4_IND_BLOCK] = 0;
1433                 }
1434                 /* fall through */
1435         case EXT4_IND_BLOCK:
1436                 if (++n >= n2)
1437                         break;
1438                 nr = i_data[EXT4_DIND_BLOCK];
1439                 if (nr) {
1440                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1441                         i_data[EXT4_DIND_BLOCK] = 0;
1442                 }
1443                 /* fall through */
1444         case EXT4_DIND_BLOCK:
1445                 if (++n >= n2)
1446                         break;
1447                 nr = i_data[EXT4_TIND_BLOCK];
1448                 if (nr) {
1449                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1450                         i_data[EXT4_TIND_BLOCK] = 0;
1451                 }
1452                 /* fall through */
1453         case EXT4_TIND_BLOCK:
1454                 ;
1455         }
1456         goto cleanup;
1457 }

/* [<][>][^][v][top][bottom][index][help] */