root/fs/hugetlbfs/inode.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hugetlb_set_vma_policy
  2. hugetlb_drop_vma_policy
  3. hugetlb_set_vma_policy
  4. hugetlb_drop_vma_policy
  5. huge_pagevec_release
  6. hugetlbfs_file_mmap
  7. hugetlb_get_unmapped_area
  8. hugetlbfs_read_actor
  9. hugetlbfs_read_iter
  10. hugetlbfs_write_begin
  11. hugetlbfs_write_end
  12. remove_huge_page
  13. hugetlb_vmdelete_list
  14. remove_inode_hugepages
  15. hugetlbfs_evict_inode
  16. hugetlb_vmtruncate
  17. hugetlbfs_punch_hole
  18. hugetlbfs_fallocate
  19. hugetlbfs_setattr
  20. hugetlbfs_get_root
  21. hugetlbfs_get_inode
  22. hugetlbfs_mknod
  23. hugetlbfs_mkdir
  24. hugetlbfs_create
  25. hugetlbfs_symlink
  26. hugetlbfs_set_page_dirty
  27. hugetlbfs_migrate_page
  28. hugetlbfs_error_remove_page
  29. hugetlbfs_show_options
  30. hugetlbfs_statfs
  31. hugetlbfs_put_super
  32. hugetlbfs_dec_free_inodes
  33. hugetlbfs_inc_free_inodes
  34. hugetlbfs_alloc_inode
  35. hugetlbfs_free_inode
  36. hugetlbfs_destroy_inode
  37. init_once
  38. hugetlbfs_size_to_hpages
  39. hugetlbfs_parse_param
  40. hugetlbfs_validate
  41. hugetlbfs_fill_super
  42. hugetlbfs_get_tree
  43. hugetlbfs_fs_context_free
  44. hugetlbfs_init_fs_context
  45. can_do_hugetlb_shm
  46. get_hstate_idx
  47. hugetlb_file_setup
  48. mount_one_hugetlbfs
  49. init_hugetlbfs_fs

   1 /*
   2  * hugetlbpage-backed filesystem.  Based on ramfs.
   3  *
   4  * Nadia Yvette Chambers, 2002
   5  *
   6  * Copyright (C) 2002 Linus Torvalds.
   7  * License: GPL
   8  */
   9 
  10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11 
  12 #include <linux/thread_info.h>
  13 #include <asm/current.h>
  14 #include <linux/sched/signal.h>         /* remove ASAP */
  15 #include <linux/falloc.h>
  16 #include <linux/fs.h>
  17 #include <linux/mount.h>
  18 #include <linux/file.h>
  19 #include <linux/kernel.h>
  20 #include <linux/writeback.h>
  21 #include <linux/pagemap.h>
  22 #include <linux/highmem.h>
  23 #include <linux/init.h>
  24 #include <linux/string.h>
  25 #include <linux/capability.h>
  26 #include <linux/ctype.h>
  27 #include <linux/backing-dev.h>
  28 #include <linux/hugetlb.h>
  29 #include <linux/pagevec.h>
  30 #include <linux/fs_parser.h>
  31 #include <linux/mman.h>
  32 #include <linux/slab.h>
  33 #include <linux/dnotify.h>
  34 #include <linux/statfs.h>
  35 #include <linux/security.h>
  36 #include <linux/magic.h>
  37 #include <linux/migrate.h>
  38 #include <linux/uio.h>
  39 
  40 #include <linux/uaccess.h>
  41 
  42 static const struct super_operations hugetlbfs_ops;
  43 static const struct address_space_operations hugetlbfs_aops;
  44 const struct file_operations hugetlbfs_file_operations;
  45 static const struct inode_operations hugetlbfs_dir_inode_operations;
  46 static const struct inode_operations hugetlbfs_inode_operations;
  47 
  48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
  49 
  50 struct hugetlbfs_fs_context {
  51         struct hstate           *hstate;
  52         unsigned long long      max_size_opt;
  53         unsigned long long      min_size_opt;
  54         long                    max_hpages;
  55         long                    nr_inodes;
  56         long                    min_hpages;
  57         enum hugetlbfs_size_type max_val_type;
  58         enum hugetlbfs_size_type min_val_type;
  59         kuid_t                  uid;
  60         kgid_t                  gid;
  61         umode_t                 mode;
  62 };
  63 
  64 int sysctl_hugetlb_shm_group;
  65 
  66 enum hugetlb_param {
  67         Opt_gid,
  68         Opt_min_size,
  69         Opt_mode,
  70         Opt_nr_inodes,
  71         Opt_pagesize,
  72         Opt_size,
  73         Opt_uid,
  74 };
  75 
  76 static const struct fs_parameter_spec hugetlb_param_specs[] = {
  77         fsparam_u32   ("gid",           Opt_gid),
  78         fsparam_string("min_size",      Opt_min_size),
  79         fsparam_u32   ("mode",          Opt_mode),
  80         fsparam_string("nr_inodes",     Opt_nr_inodes),
  81         fsparam_string("pagesize",      Opt_pagesize),
  82         fsparam_string("size",          Opt_size),
  83         fsparam_u32   ("uid",           Opt_uid),
  84         {}
  85 };
  86 
  87 static const struct fs_parameter_description hugetlb_fs_parameters = {
  88         .name           = "hugetlbfs",
  89         .specs          = hugetlb_param_specs,
  90 };
  91 
  92 #ifdef CONFIG_NUMA
  93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  94                                         struct inode *inode, pgoff_t index)
  95 {
  96         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
  97                                                         index);
  98 }
  99 
 100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 101 {
 102         mpol_cond_put(vma->vm_policy);
 103 }
 104 #else
 105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 106                                         struct inode *inode, pgoff_t index)
 107 {
 108 }
 109 
 110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 111 {
 112 }
 113 #endif
 114 
 115 static void huge_pagevec_release(struct pagevec *pvec)
 116 {
 117         int i;
 118 
 119         for (i = 0; i < pagevec_count(pvec); ++i)
 120                 put_page(pvec->pages[i]);
 121 
 122         pagevec_reinit(pvec);
 123 }
 124 
 125 /*
 126  * Mask used when checking the page offset value passed in via system
 127  * calls.  This value will be converted to a loff_t which is signed.
 128  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 129  * value.  The extra bit (- 1 in the shift value) is to take the sign
 130  * bit into account.
 131  */
 132 #define PGOFF_LOFFT_MAX \
 133         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 134 
 135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 136 {
 137         struct inode *inode = file_inode(file);
 138         loff_t len, vma_len;
 139         int ret;
 140         struct hstate *h = hstate_file(file);
 141 
 142         /*
 143          * vma address alignment (but not the pgoff alignment) has
 144          * already been checked by prepare_hugepage_range.  If you add
 145          * any error returns here, do so after setting VM_HUGETLB, so
 146          * is_vm_hugetlb_page tests below unmap_region go the right
 147          * way when do_mmap_pgoff unwinds (may be important on powerpc
 148          * and ia64).
 149          */
 150         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 151         vma->vm_ops = &hugetlb_vm_ops;
 152 
 153         /*
 154          * page based offset in vm_pgoff could be sufficiently large to
 155          * overflow a loff_t when converted to byte offset.  This can
 156          * only happen on architectures where sizeof(loff_t) ==
 157          * sizeof(unsigned long).  So, only check in those instances.
 158          */
 159         if (sizeof(unsigned long) == sizeof(loff_t)) {
 160                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 161                         return -EINVAL;
 162         }
 163 
 164         /* must be huge page aligned */
 165         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 166                 return -EINVAL;
 167 
 168         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 169         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 170         /* check for overflow */
 171         if (len < vma_len)
 172                 return -EINVAL;
 173 
 174         inode_lock(inode);
 175         file_accessed(file);
 176 
 177         ret = -ENOMEM;
 178         if (hugetlb_reserve_pages(inode,
 179                                 vma->vm_pgoff >> huge_page_order(h),
 180                                 len >> huge_page_shift(h), vma,
 181                                 vma->vm_flags))
 182                 goto out;
 183 
 184         ret = 0;
 185         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 186                 i_size_write(inode, len);
 187 out:
 188         inode_unlock(inode);
 189 
 190         return ret;
 191 }
 192 
 193 /*
 194  * Called under down_write(mmap_sem).
 195  */
 196 
 197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 198 static unsigned long
 199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 200                 unsigned long len, unsigned long pgoff, unsigned long flags)
 201 {
 202         struct mm_struct *mm = current->mm;
 203         struct vm_area_struct *vma;
 204         struct hstate *h = hstate_file(file);
 205         struct vm_unmapped_area_info info;
 206 
 207         if (len & ~huge_page_mask(h))
 208                 return -EINVAL;
 209         if (len > TASK_SIZE)
 210                 return -ENOMEM;
 211 
 212         if (flags & MAP_FIXED) {
 213                 if (prepare_hugepage_range(file, addr, len))
 214                         return -EINVAL;
 215                 return addr;
 216         }
 217 
 218         if (addr) {
 219                 addr = ALIGN(addr, huge_page_size(h));
 220                 vma = find_vma(mm, addr);
 221                 if (TASK_SIZE - len >= addr &&
 222                     (!vma || addr + len <= vm_start_gap(vma)))
 223                         return addr;
 224         }
 225 
 226         info.flags = 0;
 227         info.length = len;
 228         info.low_limit = TASK_UNMAPPED_BASE;
 229         info.high_limit = TASK_SIZE;
 230         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 231         info.align_offset = 0;
 232         return vm_unmapped_area(&info);
 233 }
 234 #endif
 235 
 236 static size_t
 237 hugetlbfs_read_actor(struct page *page, unsigned long offset,
 238                         struct iov_iter *to, unsigned long size)
 239 {
 240         size_t copied = 0;
 241         int i, chunksize;
 242 
 243         /* Find which 4k chunk and offset with in that chunk */
 244         i = offset >> PAGE_SHIFT;
 245         offset = offset & ~PAGE_MASK;
 246 
 247         while (size) {
 248                 size_t n;
 249                 chunksize = PAGE_SIZE;
 250                 if (offset)
 251                         chunksize -= offset;
 252                 if (chunksize > size)
 253                         chunksize = size;
 254                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
 255                 copied += n;
 256                 if (n != chunksize)
 257                         return copied;
 258                 offset = 0;
 259                 size -= chunksize;
 260                 i++;
 261         }
 262         return copied;
 263 }
 264 
 265 /*
 266  * Support for read() - Find the page attached to f_mapping and copy out the
 267  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
 268  * since it has PAGE_SIZE assumptions.
 269  */
 270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 271 {
 272         struct file *file = iocb->ki_filp;
 273         struct hstate *h = hstate_file(file);
 274         struct address_space *mapping = file->f_mapping;
 275         struct inode *inode = mapping->host;
 276         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 277         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 278         unsigned long end_index;
 279         loff_t isize;
 280         ssize_t retval = 0;
 281 
 282         while (iov_iter_count(to)) {
 283                 struct page *page;
 284                 size_t nr, copied;
 285 
 286                 /* nr is the maximum number of bytes to copy from this page */
 287                 nr = huge_page_size(h);
 288                 isize = i_size_read(inode);
 289                 if (!isize)
 290                         break;
 291                 end_index = (isize - 1) >> huge_page_shift(h);
 292                 if (index > end_index)
 293                         break;
 294                 if (index == end_index) {
 295                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 296                         if (nr <= offset)
 297                                 break;
 298                 }
 299                 nr = nr - offset;
 300 
 301                 /* Find the page */
 302                 page = find_lock_page(mapping, index);
 303                 if (unlikely(page == NULL)) {
 304                         /*
 305                          * We have a HOLE, zero out the user-buffer for the
 306                          * length of the hole or request.
 307                          */
 308                         copied = iov_iter_zero(nr, to);
 309                 } else {
 310                         unlock_page(page);
 311 
 312                         /*
 313                          * We have the page, copy it to user space buffer.
 314                          */
 315                         copied = hugetlbfs_read_actor(page, offset, to, nr);
 316                         put_page(page);
 317                 }
 318                 offset += copied;
 319                 retval += copied;
 320                 if (copied != nr && iov_iter_count(to)) {
 321                         if (!retval)
 322                                 retval = -EFAULT;
 323                         break;
 324                 }
 325                 index += offset >> huge_page_shift(h);
 326                 offset &= ~huge_page_mask(h);
 327         }
 328         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 329         return retval;
 330 }
 331 
 332 static int hugetlbfs_write_begin(struct file *file,
 333                         struct address_space *mapping,
 334                         loff_t pos, unsigned len, unsigned flags,
 335                         struct page **pagep, void **fsdata)
 336 {
 337         return -EINVAL;
 338 }
 339 
 340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 341                         loff_t pos, unsigned len, unsigned copied,
 342                         struct page *page, void *fsdata)
 343 {
 344         BUG();
 345         return -EINVAL;
 346 }
 347 
 348 static void remove_huge_page(struct page *page)
 349 {
 350         ClearPageDirty(page);
 351         ClearPageUptodate(page);
 352         delete_from_page_cache(page);
 353 }
 354 
 355 static void
 356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
 357 {
 358         struct vm_area_struct *vma;
 359 
 360         /*
 361          * end == 0 indicates that the entire range after
 362          * start should be unmapped.
 363          */
 364         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
 365                 unsigned long v_offset;
 366                 unsigned long v_end;
 367 
 368                 /*
 369                  * Can the expression below overflow on 32-bit arches?
 370                  * No, because the interval tree returns us only those vmas
 371                  * which overlap the truncated area starting at pgoff,
 372                  * and no vma on a 32-bit arch can span beyond the 4GB.
 373                  */
 374                 if (vma->vm_pgoff < start)
 375                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 376                 else
 377                         v_offset = 0;
 378 
 379                 if (!end)
 380                         v_end = vma->vm_end;
 381                 else {
 382                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 383                                                         + vma->vm_start;
 384                         if (v_end > vma->vm_end)
 385                                 v_end = vma->vm_end;
 386                 }
 387 
 388                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 389                                                                         NULL);
 390         }
 391 }
 392 
 393 /*
 394  * remove_inode_hugepages handles two distinct cases: truncation and hole
 395  * punch.  There are subtle differences in operation for each case.
 396  *
 397  * truncation is indicated by end of range being LLONG_MAX
 398  *      In this case, we first scan the range and release found pages.
 399  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
 400  *      maps and global counts.  Page faults can not race with truncation
 401  *      in this routine.  hugetlb_no_page() prevents page faults in the
 402  *      truncated range.  It checks i_size before allocation, and again after
 403  *      with the page table lock for the page held.  The same lock must be
 404  *      acquired to unmap a page.
 405  * hole punch is indicated if end is not LLONG_MAX
 406  *      In the hole punch case we scan the range and release found pages.
 407  *      Only when releasing a page is the associated region/reserv map
 408  *      deleted.  The region/reserv map for ranges without associated
 409  *      pages are not modified.  Page faults can race with hole punch.
 410  *      This is indicated if we find a mapped page.
 411  * Note: If the passed end of range value is beyond the end of file, but
 412  * not LLONG_MAX this routine still performs a hole punch operation.
 413  */
 414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 415                                    loff_t lend)
 416 {
 417         struct hstate *h = hstate_inode(inode);
 418         struct address_space *mapping = &inode->i_data;
 419         const pgoff_t start = lstart >> huge_page_shift(h);
 420         const pgoff_t end = lend >> huge_page_shift(h);
 421         struct vm_area_struct pseudo_vma;
 422         struct pagevec pvec;
 423         pgoff_t next, index;
 424         int i, freed = 0;
 425         bool truncate_op = (lend == LLONG_MAX);
 426 
 427         vma_init(&pseudo_vma, current->mm);
 428         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 429         pagevec_init(&pvec);
 430         next = start;
 431         while (next < end) {
 432                 /*
 433                  * When no more pages are found, we are done.
 434                  */
 435                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
 436                         break;
 437 
 438                 for (i = 0; i < pagevec_count(&pvec); ++i) {
 439                         struct page *page = pvec.pages[i];
 440                         u32 hash;
 441 
 442                         index = page->index;
 443                         hash = hugetlb_fault_mutex_hash(h, mapping, index, 0);
 444                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
 445 
 446                         /*
 447                          * If page is mapped, it was faulted in after being
 448                          * unmapped in caller.  Unmap (again) now after taking
 449                          * the fault mutex.  The mutex will prevent faults
 450                          * until we finish removing the page.
 451                          *
 452                          * This race can only happen in the hole punch case.
 453                          * Getting here in a truncate operation is a bug.
 454                          */
 455                         if (unlikely(page_mapped(page))) {
 456                                 BUG_ON(truncate_op);
 457 
 458                                 i_mmap_lock_write(mapping);
 459                                 hugetlb_vmdelete_list(&mapping->i_mmap,
 460                                         index * pages_per_huge_page(h),
 461                                         (index + 1) * pages_per_huge_page(h));
 462                                 i_mmap_unlock_write(mapping);
 463                         }
 464 
 465                         lock_page(page);
 466                         /*
 467                          * We must free the huge page and remove from page
 468                          * cache (remove_huge_page) BEFORE removing the
 469                          * region/reserve map (hugetlb_unreserve_pages).  In
 470                          * rare out of memory conditions, removal of the
 471                          * region/reserve map could fail. Correspondingly,
 472                          * the subpool and global reserve usage count can need
 473                          * to be adjusted.
 474                          */
 475                         VM_BUG_ON(PagePrivate(page));
 476                         remove_huge_page(page);
 477                         freed++;
 478                         if (!truncate_op) {
 479                                 if (unlikely(hugetlb_unreserve_pages(inode,
 480                                                         index, index + 1, 1)))
 481                                         hugetlb_fix_reserve_counts(inode);
 482                         }
 483 
 484                         unlock_page(page);
 485                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 486                 }
 487                 huge_pagevec_release(&pvec);
 488                 cond_resched();
 489         }
 490 
 491         if (truncate_op)
 492                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 493 }
 494 
 495 static void hugetlbfs_evict_inode(struct inode *inode)
 496 {
 497         struct resv_map *resv_map;
 498 
 499         remove_inode_hugepages(inode, 0, LLONG_MAX);
 500 
 501         /*
 502          * Get the resv_map from the address space embedded in the inode.
 503          * This is the address space which points to any resv_map allocated
 504          * at inode creation time.  If this is a device special inode,
 505          * i_mapping may not point to the original address space.
 506          */
 507         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
 508         /* Only regular and link inodes have associated reserve maps */
 509         if (resv_map)
 510                 resv_map_release(&resv_map->refs);
 511         clear_inode(inode);
 512 }
 513 
 514 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 515 {
 516         pgoff_t pgoff;
 517         struct address_space *mapping = inode->i_mapping;
 518         struct hstate *h = hstate_inode(inode);
 519 
 520         BUG_ON(offset & ~huge_page_mask(h));
 521         pgoff = offset >> PAGE_SHIFT;
 522 
 523         i_size_write(inode, offset);
 524         i_mmap_lock_write(mapping);
 525         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 526                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 527         i_mmap_unlock_write(mapping);
 528         remove_inode_hugepages(inode, offset, LLONG_MAX);
 529         return 0;
 530 }
 531 
 532 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 533 {
 534         struct hstate *h = hstate_inode(inode);
 535         loff_t hpage_size = huge_page_size(h);
 536         loff_t hole_start, hole_end;
 537 
 538         /*
 539          * For hole punch round up the beginning offset of the hole and
 540          * round down the end.
 541          */
 542         hole_start = round_up(offset, hpage_size);
 543         hole_end = round_down(offset + len, hpage_size);
 544 
 545         if (hole_end > hole_start) {
 546                 struct address_space *mapping = inode->i_mapping;
 547                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 548 
 549                 inode_lock(inode);
 550 
 551                 /* protected by i_mutex */
 552                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
 553                         inode_unlock(inode);
 554                         return -EPERM;
 555                 }
 556 
 557                 i_mmap_lock_write(mapping);
 558                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 559                         hugetlb_vmdelete_list(&mapping->i_mmap,
 560                                                 hole_start >> PAGE_SHIFT,
 561                                                 hole_end  >> PAGE_SHIFT);
 562                 i_mmap_unlock_write(mapping);
 563                 remove_inode_hugepages(inode, hole_start, hole_end);
 564                 inode_unlock(inode);
 565         }
 566 
 567         return 0;
 568 }
 569 
 570 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 571                                 loff_t len)
 572 {
 573         struct inode *inode = file_inode(file);
 574         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 575         struct address_space *mapping = inode->i_mapping;
 576         struct hstate *h = hstate_inode(inode);
 577         struct vm_area_struct pseudo_vma;
 578         struct mm_struct *mm = current->mm;
 579         loff_t hpage_size = huge_page_size(h);
 580         unsigned long hpage_shift = huge_page_shift(h);
 581         pgoff_t start, index, end;
 582         int error;
 583         u32 hash;
 584 
 585         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 586                 return -EOPNOTSUPP;
 587 
 588         if (mode & FALLOC_FL_PUNCH_HOLE)
 589                 return hugetlbfs_punch_hole(inode, offset, len);
 590 
 591         /*
 592          * Default preallocate case.
 593          * For this range, start is rounded down and end is rounded up
 594          * as well as being converted to page offsets.
 595          */
 596         start = offset >> hpage_shift;
 597         end = (offset + len + hpage_size - 1) >> hpage_shift;
 598 
 599         inode_lock(inode);
 600 
 601         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 602         error = inode_newsize_ok(inode, offset + len);
 603         if (error)
 604                 goto out;
 605 
 606         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 607                 error = -EPERM;
 608                 goto out;
 609         }
 610 
 611         /*
 612          * Initialize a pseudo vma as this is required by the huge page
 613          * allocation routines.  If NUMA is configured, use page index
 614          * as input to create an allocation policy.
 615          */
 616         vma_init(&pseudo_vma, mm);
 617         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 618         pseudo_vma.vm_file = file;
 619 
 620         for (index = start; index < end; index++) {
 621                 /*
 622                  * This is supposed to be the vaddr where the page is being
 623                  * faulted in, but we have no vaddr here.
 624                  */
 625                 struct page *page;
 626                 unsigned long addr;
 627                 int avoid_reserve = 0;
 628 
 629                 cond_resched();
 630 
 631                 /*
 632                  * fallocate(2) manpage permits EINTR; we may have been
 633                  * interrupted because we are using up too much memory.
 634                  */
 635                 if (signal_pending(current)) {
 636                         error = -EINTR;
 637                         break;
 638                 }
 639 
 640                 /* Set numa allocation policy based on index */
 641                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 642 
 643                 /* addr is the offset within the file (zero based) */
 644                 addr = index * hpage_size;
 645 
 646                 /* mutex taken here, fault path and hole punch */
 647                 hash = hugetlb_fault_mutex_hash(h, mapping, index, addr);
 648                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
 649 
 650                 /* See if already present in mapping to avoid alloc/free */
 651                 page = find_get_page(mapping, index);
 652                 if (page) {
 653                         put_page(page);
 654                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 655                         hugetlb_drop_vma_policy(&pseudo_vma);
 656                         continue;
 657                 }
 658 
 659                 /* Allocate page and add to page cache */
 660                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
 661                 hugetlb_drop_vma_policy(&pseudo_vma);
 662                 if (IS_ERR(page)) {
 663                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 664                         error = PTR_ERR(page);
 665                         goto out;
 666                 }
 667                 clear_huge_page(page, addr, pages_per_huge_page(h));
 668                 __SetPageUptodate(page);
 669                 error = huge_add_to_page_cache(page, mapping, index);
 670                 if (unlikely(error)) {
 671                         put_page(page);
 672                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 673                         goto out;
 674                 }
 675 
 676                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 677 
 678                 /*
 679                  * unlock_page because locked by add_to_page_cache()
 680                  * page_put due to reference from alloc_huge_page()
 681                  */
 682                 unlock_page(page);
 683                 put_page(page);
 684         }
 685 
 686         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 687                 i_size_write(inode, offset + len);
 688         inode->i_ctime = current_time(inode);
 689 out:
 690         inode_unlock(inode);
 691         return error;
 692 }
 693 
 694 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
 695 {
 696         struct inode *inode = d_inode(dentry);
 697         struct hstate *h = hstate_inode(inode);
 698         int error;
 699         unsigned int ia_valid = attr->ia_valid;
 700         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 701 
 702         BUG_ON(!inode);
 703 
 704         error = setattr_prepare(dentry, attr);
 705         if (error)
 706                 return error;
 707 
 708         if (ia_valid & ATTR_SIZE) {
 709                 loff_t oldsize = inode->i_size;
 710                 loff_t newsize = attr->ia_size;
 711 
 712                 if (newsize & ~huge_page_mask(h))
 713                         return -EINVAL;
 714                 /* protected by i_mutex */
 715                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 716                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 717                         return -EPERM;
 718                 error = hugetlb_vmtruncate(inode, newsize);
 719                 if (error)
 720                         return error;
 721         }
 722 
 723         setattr_copy(inode, attr);
 724         mark_inode_dirty(inode);
 725         return 0;
 726 }
 727 
 728 static struct inode *hugetlbfs_get_root(struct super_block *sb,
 729                                         struct hugetlbfs_fs_context *ctx)
 730 {
 731         struct inode *inode;
 732 
 733         inode = new_inode(sb);
 734         if (inode) {
 735                 inode->i_ino = get_next_ino();
 736                 inode->i_mode = S_IFDIR | ctx->mode;
 737                 inode->i_uid = ctx->uid;
 738                 inode->i_gid = ctx->gid;
 739                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 740                 inode->i_op = &hugetlbfs_dir_inode_operations;
 741                 inode->i_fop = &simple_dir_operations;
 742                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
 743                 inc_nlink(inode);
 744                 lockdep_annotate_inode_mutex_key(inode);
 745         }
 746         return inode;
 747 }
 748 
 749 /*
 750  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 751  * be taken from reclaim -- unlike regular filesystems. This needs an
 752  * annotation because huge_pmd_share() does an allocation under hugetlb's
 753  * i_mmap_rwsem.
 754  */
 755 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 756 
 757 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 758                                         struct inode *dir,
 759                                         umode_t mode, dev_t dev)
 760 {
 761         struct inode *inode;
 762         struct resv_map *resv_map = NULL;
 763 
 764         /*
 765          * Reserve maps are only needed for inodes that can have associated
 766          * page allocations.
 767          */
 768         if (S_ISREG(mode) || S_ISLNK(mode)) {
 769                 resv_map = resv_map_alloc();
 770                 if (!resv_map)
 771                         return NULL;
 772         }
 773 
 774         inode = new_inode(sb);
 775         if (inode) {
 776                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 777 
 778                 inode->i_ino = get_next_ino();
 779                 inode_init_owner(inode, dir, mode);
 780                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 781                                 &hugetlbfs_i_mmap_rwsem_key);
 782                 inode->i_mapping->a_ops = &hugetlbfs_aops;
 783                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 784                 inode->i_mapping->private_data = resv_map;
 785                 info->seals = F_SEAL_SEAL;
 786                 switch (mode & S_IFMT) {
 787                 default:
 788                         init_special_inode(inode, mode, dev);
 789                         break;
 790                 case S_IFREG:
 791                         inode->i_op = &hugetlbfs_inode_operations;
 792                         inode->i_fop = &hugetlbfs_file_operations;
 793                         break;
 794                 case S_IFDIR:
 795                         inode->i_op = &hugetlbfs_dir_inode_operations;
 796                         inode->i_fop = &simple_dir_operations;
 797 
 798                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
 799                         inc_nlink(inode);
 800                         break;
 801                 case S_IFLNK:
 802                         inode->i_op = &page_symlink_inode_operations;
 803                         inode_nohighmem(inode);
 804                         break;
 805                 }
 806                 lockdep_annotate_inode_mutex_key(inode);
 807         } else {
 808                 if (resv_map)
 809                         kref_put(&resv_map->refs, resv_map_release);
 810         }
 811 
 812         return inode;
 813 }
 814 
 815 /*
 816  * File creation. Allocate an inode, and we're done..
 817  */
 818 static int hugetlbfs_mknod(struct inode *dir,
 819                         struct dentry *dentry, umode_t mode, dev_t dev)
 820 {
 821         struct inode *inode;
 822         int error = -ENOSPC;
 823 
 824         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 825         if (inode) {
 826                 dir->i_ctime = dir->i_mtime = current_time(dir);
 827                 d_instantiate(dentry, inode);
 828                 dget(dentry);   /* Extra count - pin the dentry in core */
 829                 error = 0;
 830         }
 831         return error;
 832 }
 833 
 834 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 835 {
 836         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
 837         if (!retval)
 838                 inc_nlink(dir);
 839         return retval;
 840 }
 841 
 842 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
 843 {
 844         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
 845 }
 846 
 847 static int hugetlbfs_symlink(struct inode *dir,
 848                         struct dentry *dentry, const char *symname)
 849 {
 850         struct inode *inode;
 851         int error = -ENOSPC;
 852 
 853         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 854         if (inode) {
 855                 int l = strlen(symname)+1;
 856                 error = page_symlink(inode, symname, l);
 857                 if (!error) {
 858                         d_instantiate(dentry, inode);
 859                         dget(dentry);
 860                 } else
 861                         iput(inode);
 862         }
 863         dir->i_ctime = dir->i_mtime = current_time(dir);
 864 
 865         return error;
 866 }
 867 
 868 /*
 869  * mark the head page dirty
 870  */
 871 static int hugetlbfs_set_page_dirty(struct page *page)
 872 {
 873         struct page *head = compound_head(page);
 874 
 875         SetPageDirty(head);
 876         return 0;
 877 }
 878 
 879 static int hugetlbfs_migrate_page(struct address_space *mapping,
 880                                 struct page *newpage, struct page *page,
 881                                 enum migrate_mode mode)
 882 {
 883         int rc;
 884 
 885         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 886         if (rc != MIGRATEPAGE_SUCCESS)
 887                 return rc;
 888 
 889         /*
 890          * page_private is subpool pointer in hugetlb pages.  Transfer to
 891          * new page.  PagePrivate is not associated with page_private for
 892          * hugetlb pages and can not be set here as only page_huge_active
 893          * pages can be migrated.
 894          */
 895         if (page_private(page)) {
 896                 set_page_private(newpage, page_private(page));
 897                 set_page_private(page, 0);
 898         }
 899 
 900         if (mode != MIGRATE_SYNC_NO_COPY)
 901                 migrate_page_copy(newpage, page);
 902         else
 903                 migrate_page_states(newpage, page);
 904 
 905         return MIGRATEPAGE_SUCCESS;
 906 }
 907 
 908 static int hugetlbfs_error_remove_page(struct address_space *mapping,
 909                                 struct page *page)
 910 {
 911         struct inode *inode = mapping->host;
 912         pgoff_t index = page->index;
 913 
 914         remove_huge_page(page);
 915         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 916                 hugetlb_fix_reserve_counts(inode);
 917 
 918         return 0;
 919 }
 920 
 921 /*
 922  * Display the mount options in /proc/mounts.
 923  */
 924 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 925 {
 926         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 927         struct hugepage_subpool *spool = sbinfo->spool;
 928         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 929         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 930         char mod;
 931 
 932         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 933                 seq_printf(m, ",uid=%u",
 934                            from_kuid_munged(&init_user_ns, sbinfo->uid));
 935         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 936                 seq_printf(m, ",gid=%u",
 937                            from_kgid_munged(&init_user_ns, sbinfo->gid));
 938         if (sbinfo->mode != 0755)
 939                 seq_printf(m, ",mode=%o", sbinfo->mode);
 940         if (sbinfo->max_inodes != -1)
 941                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 942 
 943         hpage_size /= 1024;
 944         mod = 'K';
 945         if (hpage_size >= 1024) {
 946                 hpage_size /= 1024;
 947                 mod = 'M';
 948         }
 949         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 950         if (spool) {
 951                 if (spool->max_hpages != -1)
 952                         seq_printf(m, ",size=%llu",
 953                                    (unsigned long long)spool->max_hpages << hpage_shift);
 954                 if (spool->min_hpages != -1)
 955                         seq_printf(m, ",min_size=%llu",
 956                                    (unsigned long long)spool->min_hpages << hpage_shift);
 957         }
 958         return 0;
 959 }
 960 
 961 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 962 {
 963         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 964         struct hstate *h = hstate_inode(d_inode(dentry));
 965 
 966         buf->f_type = HUGETLBFS_MAGIC;
 967         buf->f_bsize = huge_page_size(h);
 968         if (sbinfo) {
 969                 spin_lock(&sbinfo->stat_lock);
 970                 /* If no limits set, just report 0 for max/free/used
 971                  * blocks, like simple_statfs() */
 972                 if (sbinfo->spool) {
 973                         long free_pages;
 974 
 975                         spin_lock(&sbinfo->spool->lock);
 976                         buf->f_blocks = sbinfo->spool->max_hpages;
 977                         free_pages = sbinfo->spool->max_hpages
 978                                 - sbinfo->spool->used_hpages;
 979                         buf->f_bavail = buf->f_bfree = free_pages;
 980                         spin_unlock(&sbinfo->spool->lock);
 981                         buf->f_files = sbinfo->max_inodes;
 982                         buf->f_ffree = sbinfo->free_inodes;
 983                 }
 984                 spin_unlock(&sbinfo->stat_lock);
 985         }
 986         buf->f_namelen = NAME_MAX;
 987         return 0;
 988 }
 989 
 990 static void hugetlbfs_put_super(struct super_block *sb)
 991 {
 992         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 993 
 994         if (sbi) {
 995                 sb->s_fs_info = NULL;
 996 
 997                 if (sbi->spool)
 998                         hugepage_put_subpool(sbi->spool);
 999 
1000                 kfree(sbi);
1001         }
1002 }
1003 
1004 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1005 {
1006         if (sbinfo->free_inodes >= 0) {
1007                 spin_lock(&sbinfo->stat_lock);
1008                 if (unlikely(!sbinfo->free_inodes)) {
1009                         spin_unlock(&sbinfo->stat_lock);
1010                         return 0;
1011                 }
1012                 sbinfo->free_inodes--;
1013                 spin_unlock(&sbinfo->stat_lock);
1014         }
1015 
1016         return 1;
1017 }
1018 
1019 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1020 {
1021         if (sbinfo->free_inodes >= 0) {
1022                 spin_lock(&sbinfo->stat_lock);
1023                 sbinfo->free_inodes++;
1024                 spin_unlock(&sbinfo->stat_lock);
1025         }
1026 }
1027 
1028 
1029 static struct kmem_cache *hugetlbfs_inode_cachep;
1030 
1031 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1032 {
1033         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1034         struct hugetlbfs_inode_info *p;
1035 
1036         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1037                 return NULL;
1038         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1039         if (unlikely(!p)) {
1040                 hugetlbfs_inc_free_inodes(sbinfo);
1041                 return NULL;
1042         }
1043 
1044         /*
1045          * Any time after allocation, hugetlbfs_destroy_inode can be called
1046          * for the inode.  mpol_free_shared_policy is unconditionally called
1047          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1048          * in case of a quick call to destroy.
1049          *
1050          * Note that the policy is initialized even if we are creating a
1051          * private inode.  This simplifies hugetlbfs_destroy_inode.
1052          */
1053         mpol_shared_policy_init(&p->policy, NULL);
1054 
1055         return &p->vfs_inode;
1056 }
1057 
1058 static void hugetlbfs_free_inode(struct inode *inode)
1059 {
1060         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1061 }
1062 
1063 static void hugetlbfs_destroy_inode(struct inode *inode)
1064 {
1065         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1066         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1067 }
1068 
1069 static const struct address_space_operations hugetlbfs_aops = {
1070         .write_begin    = hugetlbfs_write_begin,
1071         .write_end      = hugetlbfs_write_end,
1072         .set_page_dirty = hugetlbfs_set_page_dirty,
1073         .migratepage    = hugetlbfs_migrate_page,
1074         .error_remove_page      = hugetlbfs_error_remove_page,
1075 };
1076 
1077 
1078 static void init_once(void *foo)
1079 {
1080         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1081 
1082         inode_init_once(&ei->vfs_inode);
1083 }
1084 
1085 const struct file_operations hugetlbfs_file_operations = {
1086         .read_iter              = hugetlbfs_read_iter,
1087         .mmap                   = hugetlbfs_file_mmap,
1088         .fsync                  = noop_fsync,
1089         .get_unmapped_area      = hugetlb_get_unmapped_area,
1090         .llseek                 = default_llseek,
1091         .fallocate              = hugetlbfs_fallocate,
1092 };
1093 
1094 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1095         .create         = hugetlbfs_create,
1096         .lookup         = simple_lookup,
1097         .link           = simple_link,
1098         .unlink         = simple_unlink,
1099         .symlink        = hugetlbfs_symlink,
1100         .mkdir          = hugetlbfs_mkdir,
1101         .rmdir          = simple_rmdir,
1102         .mknod          = hugetlbfs_mknod,
1103         .rename         = simple_rename,
1104         .setattr        = hugetlbfs_setattr,
1105 };
1106 
1107 static const struct inode_operations hugetlbfs_inode_operations = {
1108         .setattr        = hugetlbfs_setattr,
1109 };
1110 
1111 static const struct super_operations hugetlbfs_ops = {
1112         .alloc_inode    = hugetlbfs_alloc_inode,
1113         .free_inode     = hugetlbfs_free_inode,
1114         .destroy_inode  = hugetlbfs_destroy_inode,
1115         .evict_inode    = hugetlbfs_evict_inode,
1116         .statfs         = hugetlbfs_statfs,
1117         .put_super      = hugetlbfs_put_super,
1118         .show_options   = hugetlbfs_show_options,
1119 };
1120 
1121 /*
1122  * Convert size option passed from command line to number of huge pages
1123  * in the pool specified by hstate.  Size option could be in bytes
1124  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1125  */
1126 static long
1127 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1128                          enum hugetlbfs_size_type val_type)
1129 {
1130         if (val_type == NO_SIZE)
1131                 return -1;
1132 
1133         if (val_type == SIZE_PERCENT) {
1134                 size_opt <<= huge_page_shift(h);
1135                 size_opt *= h->max_huge_pages;
1136                 do_div(size_opt, 100);
1137         }
1138 
1139         size_opt >>= huge_page_shift(h);
1140         return size_opt;
1141 }
1142 
1143 /*
1144  * Parse one mount parameter.
1145  */
1146 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1147 {
1148         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1149         struct fs_parse_result result;
1150         char *rest;
1151         unsigned long ps;
1152         int opt;
1153 
1154         opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1155         if (opt < 0)
1156                 return opt;
1157 
1158         switch (opt) {
1159         case Opt_uid:
1160                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1161                 if (!uid_valid(ctx->uid))
1162                         goto bad_val;
1163                 return 0;
1164 
1165         case Opt_gid:
1166                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1167                 if (!gid_valid(ctx->gid))
1168                         goto bad_val;
1169                 return 0;
1170 
1171         case Opt_mode:
1172                 ctx->mode = result.uint_32 & 01777U;
1173                 return 0;
1174 
1175         case Opt_size:
1176                 /* memparse() will accept a K/M/G without a digit */
1177                 if (!isdigit(param->string[0]))
1178                         goto bad_val;
1179                 ctx->max_size_opt = memparse(param->string, &rest);
1180                 ctx->max_val_type = SIZE_STD;
1181                 if (*rest == '%')
1182                         ctx->max_val_type = SIZE_PERCENT;
1183                 return 0;
1184 
1185         case Opt_nr_inodes:
1186                 /* memparse() will accept a K/M/G without a digit */
1187                 if (!isdigit(param->string[0]))
1188                         goto bad_val;
1189                 ctx->nr_inodes = memparse(param->string, &rest);
1190                 return 0;
1191 
1192         case Opt_pagesize:
1193                 ps = memparse(param->string, &rest);
1194                 ctx->hstate = size_to_hstate(ps);
1195                 if (!ctx->hstate) {
1196                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1197                         return -EINVAL;
1198                 }
1199                 return 0;
1200 
1201         case Opt_min_size:
1202                 /* memparse() will accept a K/M/G without a digit */
1203                 if (!isdigit(param->string[0]))
1204                         goto bad_val;
1205                 ctx->min_size_opt = memparse(param->string, &rest);
1206                 ctx->min_val_type = SIZE_STD;
1207                 if (*rest == '%')
1208                         ctx->min_val_type = SIZE_PERCENT;
1209                 return 0;
1210 
1211         default:
1212                 return -EINVAL;
1213         }
1214 
1215 bad_val:
1216         return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1217                       param->string, param->key);
1218 }
1219 
1220 /*
1221  * Validate the parsed options.
1222  */
1223 static int hugetlbfs_validate(struct fs_context *fc)
1224 {
1225         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1226 
1227         /*
1228          * Use huge page pool size (in hstate) to convert the size
1229          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1230          */
1231         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1232                                                    ctx->max_size_opt,
1233                                                    ctx->max_val_type);
1234         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1235                                                    ctx->min_size_opt,
1236                                                    ctx->min_val_type);
1237 
1238         /*
1239          * If max_size was specified, then min_size must be smaller
1240          */
1241         if (ctx->max_val_type > NO_SIZE &&
1242             ctx->min_hpages > ctx->max_hpages) {
1243                 pr_err("Minimum size can not be greater than maximum size\n");
1244                 return -EINVAL;
1245         }
1246 
1247         return 0;
1248 }
1249 
1250 static int
1251 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1252 {
1253         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1254         struct hugetlbfs_sb_info *sbinfo;
1255 
1256         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1257         if (!sbinfo)
1258                 return -ENOMEM;
1259         sb->s_fs_info = sbinfo;
1260         spin_lock_init(&sbinfo->stat_lock);
1261         sbinfo->hstate          = ctx->hstate;
1262         sbinfo->max_inodes      = ctx->nr_inodes;
1263         sbinfo->free_inodes     = ctx->nr_inodes;
1264         sbinfo->spool           = NULL;
1265         sbinfo->uid             = ctx->uid;
1266         sbinfo->gid             = ctx->gid;
1267         sbinfo->mode            = ctx->mode;
1268 
1269         /*
1270          * Allocate and initialize subpool if maximum or minimum size is
1271          * specified.  Any needed reservations (for minimim size) are taken
1272          * taken when the subpool is created.
1273          */
1274         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1275                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1276                                                      ctx->max_hpages,
1277                                                      ctx->min_hpages);
1278                 if (!sbinfo->spool)
1279                         goto out_free;
1280         }
1281         sb->s_maxbytes = MAX_LFS_FILESIZE;
1282         sb->s_blocksize = huge_page_size(ctx->hstate);
1283         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1284         sb->s_magic = HUGETLBFS_MAGIC;
1285         sb->s_op = &hugetlbfs_ops;
1286         sb->s_time_gran = 1;
1287         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1288         if (!sb->s_root)
1289                 goto out_free;
1290         return 0;
1291 out_free:
1292         kfree(sbinfo->spool);
1293         kfree(sbinfo);
1294         return -ENOMEM;
1295 }
1296 
1297 static int hugetlbfs_get_tree(struct fs_context *fc)
1298 {
1299         int err = hugetlbfs_validate(fc);
1300         if (err)
1301                 return err;
1302         return get_tree_nodev(fc, hugetlbfs_fill_super);
1303 }
1304 
1305 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1306 {
1307         kfree(fc->fs_private);
1308 }
1309 
1310 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1311         .free           = hugetlbfs_fs_context_free,
1312         .parse_param    = hugetlbfs_parse_param,
1313         .get_tree       = hugetlbfs_get_tree,
1314 };
1315 
1316 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1317 {
1318         struct hugetlbfs_fs_context *ctx;
1319 
1320         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1321         if (!ctx)
1322                 return -ENOMEM;
1323 
1324         ctx->max_hpages = -1; /* No limit on size by default */
1325         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1326         ctx->uid        = current_fsuid();
1327         ctx->gid        = current_fsgid();
1328         ctx->mode       = 0755;
1329         ctx->hstate     = &default_hstate;
1330         ctx->min_hpages = -1; /* No default minimum size */
1331         ctx->max_val_type = NO_SIZE;
1332         ctx->min_val_type = NO_SIZE;
1333         fc->fs_private = ctx;
1334         fc->ops = &hugetlbfs_fs_context_ops;
1335         return 0;
1336 }
1337 
1338 static struct file_system_type hugetlbfs_fs_type = {
1339         .name                   = "hugetlbfs",
1340         .init_fs_context        = hugetlbfs_init_fs_context,
1341         .parameters             = &hugetlb_fs_parameters,
1342         .kill_sb                = kill_litter_super,
1343 };
1344 
1345 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1346 
1347 static int can_do_hugetlb_shm(void)
1348 {
1349         kgid_t shm_group;
1350         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1351         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1352 }
1353 
1354 static int get_hstate_idx(int page_size_log)
1355 {
1356         struct hstate *h = hstate_sizelog(page_size_log);
1357 
1358         if (!h)
1359                 return -1;
1360         return h - hstates;
1361 }
1362 
1363 /*
1364  * Note that size should be aligned to proper hugepage size in caller side,
1365  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1366  */
1367 struct file *hugetlb_file_setup(const char *name, size_t size,
1368                                 vm_flags_t acctflag, struct user_struct **user,
1369                                 int creat_flags, int page_size_log)
1370 {
1371         struct inode *inode;
1372         struct vfsmount *mnt;
1373         int hstate_idx;
1374         struct file *file;
1375 
1376         hstate_idx = get_hstate_idx(page_size_log);
1377         if (hstate_idx < 0)
1378                 return ERR_PTR(-ENODEV);
1379 
1380         *user = NULL;
1381         mnt = hugetlbfs_vfsmount[hstate_idx];
1382         if (!mnt)
1383                 return ERR_PTR(-ENOENT);
1384 
1385         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1386                 *user = current_user();
1387                 if (user_shm_lock(size, *user)) {
1388                         task_lock(current);
1389                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1390                                 current->comm, current->pid);
1391                         task_unlock(current);
1392                 } else {
1393                         *user = NULL;
1394                         return ERR_PTR(-EPERM);
1395                 }
1396         }
1397 
1398         file = ERR_PTR(-ENOSPC);
1399         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1400         if (!inode)
1401                 goto out;
1402         if (creat_flags == HUGETLB_SHMFS_INODE)
1403                 inode->i_flags |= S_PRIVATE;
1404 
1405         inode->i_size = size;
1406         clear_nlink(inode);
1407 
1408         if (hugetlb_reserve_pages(inode, 0,
1409                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1410                         acctflag))
1411                 file = ERR_PTR(-ENOMEM);
1412         else
1413                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1414                                         &hugetlbfs_file_operations);
1415         if (!IS_ERR(file))
1416                 return file;
1417 
1418         iput(inode);
1419 out:
1420         if (*user) {
1421                 user_shm_unlock(size, *user);
1422                 *user = NULL;
1423         }
1424         return file;
1425 }
1426 
1427 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1428 {
1429         struct fs_context *fc;
1430         struct vfsmount *mnt;
1431 
1432         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1433         if (IS_ERR(fc)) {
1434                 mnt = ERR_CAST(fc);
1435         } else {
1436                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1437                 ctx->hstate = h;
1438                 mnt = fc_mount(fc);
1439                 put_fs_context(fc);
1440         }
1441         if (IS_ERR(mnt))
1442                 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1443                        1U << (h->order + PAGE_SHIFT - 10));
1444         return mnt;
1445 }
1446 
1447 static int __init init_hugetlbfs_fs(void)
1448 {
1449         struct vfsmount *mnt;
1450         struct hstate *h;
1451         int error;
1452         int i;
1453 
1454         if (!hugepages_supported()) {
1455                 pr_info("disabling because there are no supported hugepage sizes\n");
1456                 return -ENOTSUPP;
1457         }
1458 
1459         error = -ENOMEM;
1460         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1461                                         sizeof(struct hugetlbfs_inode_info),
1462                                         0, SLAB_ACCOUNT, init_once);
1463         if (hugetlbfs_inode_cachep == NULL)
1464                 goto out;
1465 
1466         error = register_filesystem(&hugetlbfs_fs_type);
1467         if (error)
1468                 goto out_free;
1469 
1470         /* default hstate mount is required */
1471         mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1472         if (IS_ERR(mnt)) {
1473                 error = PTR_ERR(mnt);
1474                 goto out_unreg;
1475         }
1476         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1477 
1478         /* other hstates are optional */
1479         i = 0;
1480         for_each_hstate(h) {
1481                 if (i == default_hstate_idx) {
1482                         i++;
1483                         continue;
1484                 }
1485 
1486                 mnt = mount_one_hugetlbfs(h);
1487                 if (IS_ERR(mnt))
1488                         hugetlbfs_vfsmount[i] = NULL;
1489                 else
1490                         hugetlbfs_vfsmount[i] = mnt;
1491                 i++;
1492         }
1493 
1494         return 0;
1495 
1496  out_unreg:
1497         (void)unregister_filesystem(&hugetlbfs_fs_type);
1498  out_free:
1499         kmem_cache_destroy(hugetlbfs_inode_cachep);
1500  out:
1501         return error;
1502 }
1503 fs_initcall(init_hugetlbfs_fs)

/* [<][>][^][v][top][bottom][index][help] */