root/fs/xfs/scrub/repair.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xrep_attempt
  2. xrep_failure
  3. xrep_probe
  4. xrep_roll_ag_trans
  5. xrep_ag_has_space
  6. xrep_calc_ag_resblks
  7. xrep_alloc_ag_block
  8. xrep_init_btblock
  9. xrep_invalidate_blocks
  10. xrep_fix_freelist
  11. xrep_put_freelist
  12. xrep_reap_block
  13. xrep_reap_extents
  14. xrep_findroot_agfl_walk
  15. xrep_findroot_block
  16. xrep_findroot_rmap
  17. xrep_find_ag_btree_roots
  18. xrep_force_quotacheck
  19. xrep_ino_dqattach

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
   4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5  */
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_shared.h"
   9 #include "xfs_format.h"
  10 #include "xfs_trans_resv.h"
  11 #include "xfs_mount.h"
  12 #include "xfs_btree.h"
  13 #include "xfs_log_format.h"
  14 #include "xfs_trans.h"
  15 #include "xfs_sb.h"
  16 #include "xfs_inode.h"
  17 #include "xfs_alloc.h"
  18 #include "xfs_alloc_btree.h"
  19 #include "xfs_ialloc.h"
  20 #include "xfs_ialloc_btree.h"
  21 #include "xfs_rmap.h"
  22 #include "xfs_rmap_btree.h"
  23 #include "xfs_refcount_btree.h"
  24 #include "xfs_extent_busy.h"
  25 #include "xfs_ag_resv.h"
  26 #include "xfs_quota.h"
  27 #include "scrub/scrub.h"
  28 #include "scrub/common.h"
  29 #include "scrub/trace.h"
  30 #include "scrub/repair.h"
  31 #include "scrub/bitmap.h"
  32 
  33 /*
  34  * Attempt to repair some metadata, if the metadata is corrupt and userspace
  35  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
  36  * and will set *fixed to true if it thinks it repaired anything.
  37  */
  38 int
  39 xrep_attempt(
  40         struct xfs_inode        *ip,
  41         struct xfs_scrub        *sc)
  42 {
  43         int                     error = 0;
  44 
  45         trace_xrep_attempt(ip, sc->sm, error);
  46 
  47         xchk_ag_btcur_free(&sc->sa);
  48 
  49         /* Repair whatever's broken. */
  50         ASSERT(sc->ops->repair);
  51         error = sc->ops->repair(sc);
  52         trace_xrep_done(ip, sc->sm, error);
  53         switch (error) {
  54         case 0:
  55                 /*
  56                  * Repair succeeded.  Commit the fixes and perform a second
  57                  * scrub so that we can tell userspace if we fixed the problem.
  58                  */
  59                 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
  60                 sc->flags |= XREP_ALREADY_FIXED;
  61                 return -EAGAIN;
  62         case -EDEADLOCK:
  63         case -EAGAIN:
  64                 /* Tell the caller to try again having grabbed all the locks. */
  65                 if (!(sc->flags & XCHK_TRY_HARDER)) {
  66                         sc->flags |= XCHK_TRY_HARDER;
  67                         return -EAGAIN;
  68                 }
  69                 /*
  70                  * We tried harder but still couldn't grab all the resources
  71                  * we needed to fix it.  The corruption has not been fixed,
  72                  * so report back to userspace.
  73                  */
  74                 return -EFSCORRUPTED;
  75         default:
  76                 return error;
  77         }
  78 }
  79 
  80 /*
  81  * Complain about unfixable problems in the filesystem.  We don't log
  82  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
  83  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
  84  * administrator isn't running xfs_scrub in no-repairs mode.
  85  *
  86  * Use this helper function because _ratelimited silently declares a static
  87  * structure to track rate limiting information.
  88  */
  89 void
  90 xrep_failure(
  91         struct xfs_mount        *mp)
  92 {
  93         xfs_alert_ratelimited(mp,
  94 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
  95 }
  96 
  97 /*
  98  * Repair probe -- userspace uses this to probe if we're willing to repair a
  99  * given mountpoint.
 100  */
 101 int
 102 xrep_probe(
 103         struct xfs_scrub        *sc)
 104 {
 105         int                     error = 0;
 106 
 107         if (xchk_should_terminate(sc, &error))
 108                 return error;
 109 
 110         return 0;
 111 }
 112 
 113 /*
 114  * Roll a transaction, keeping the AG headers locked and reinitializing
 115  * the btree cursors.
 116  */
 117 int
 118 xrep_roll_ag_trans(
 119         struct xfs_scrub        *sc)
 120 {
 121         int                     error;
 122 
 123         /* Keep the AG header buffers locked so we can keep going. */
 124         if (sc->sa.agi_bp)
 125                 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
 126         if (sc->sa.agf_bp)
 127                 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
 128         if (sc->sa.agfl_bp)
 129                 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
 130 
 131         /*
 132          * Roll the transaction.  We still own the buffer and the buffer lock
 133          * regardless of whether or not the roll succeeds.  If the roll fails,
 134          * the buffers will be released during teardown on our way out of the
 135          * kernel.  If it succeeds, we join them to the new transaction and
 136          * move on.
 137          */
 138         error = xfs_trans_roll(&sc->tp);
 139         if (error)
 140                 return error;
 141 
 142         /* Join AG headers to the new transaction. */
 143         if (sc->sa.agi_bp)
 144                 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
 145         if (sc->sa.agf_bp)
 146                 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
 147         if (sc->sa.agfl_bp)
 148                 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
 149 
 150         return 0;
 151 }
 152 
 153 /*
 154  * Does the given AG have enough space to rebuild a btree?  Neither AG
 155  * reservation can be critical, and we must have enough space (factoring
 156  * in AG reservations) to construct a whole btree.
 157  */
 158 bool
 159 xrep_ag_has_space(
 160         struct xfs_perag        *pag,
 161         xfs_extlen_t            nr_blocks,
 162         enum xfs_ag_resv_type   type)
 163 {
 164         return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
 165                 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
 166                 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
 167 }
 168 
 169 /*
 170  * Figure out how many blocks to reserve for an AG repair.  We calculate the
 171  * worst case estimate for the number of blocks we'd need to rebuild one of
 172  * any type of per-AG btree.
 173  */
 174 xfs_extlen_t
 175 xrep_calc_ag_resblks(
 176         struct xfs_scrub                *sc)
 177 {
 178         struct xfs_mount                *mp = sc->mp;
 179         struct xfs_scrub_metadata       *sm = sc->sm;
 180         struct xfs_perag                *pag;
 181         struct xfs_buf                  *bp;
 182         xfs_agino_t                     icount = NULLAGINO;
 183         xfs_extlen_t                    aglen = NULLAGBLOCK;
 184         xfs_extlen_t                    usedlen;
 185         xfs_extlen_t                    freelen;
 186         xfs_extlen_t                    bnobt_sz;
 187         xfs_extlen_t                    inobt_sz;
 188         xfs_extlen_t                    rmapbt_sz;
 189         xfs_extlen_t                    refcbt_sz;
 190         int                             error;
 191 
 192         if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
 193                 return 0;
 194 
 195         pag = xfs_perag_get(mp, sm->sm_agno);
 196         if (pag->pagi_init) {
 197                 /* Use in-core icount if possible. */
 198                 icount = pag->pagi_count;
 199         } else {
 200                 /* Try to get the actual counters from disk. */
 201                 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
 202                 if (!error) {
 203                         icount = pag->pagi_count;
 204                         xfs_buf_relse(bp);
 205                 }
 206         }
 207 
 208         /* Now grab the block counters from the AGF. */
 209         error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
 210         if (!error) {
 211                 aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
 212                 freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
 213                 usedlen = aglen - freelen;
 214                 xfs_buf_relse(bp);
 215         }
 216         xfs_perag_put(pag);
 217 
 218         /* If the icount is impossible, make some worst-case assumptions. */
 219         if (icount == NULLAGINO ||
 220             !xfs_verify_agino(mp, sm->sm_agno, icount)) {
 221                 xfs_agino_t     first, last;
 222 
 223                 xfs_agino_range(mp, sm->sm_agno, &first, &last);
 224                 icount = last - first + 1;
 225         }
 226 
 227         /* If the block counts are impossible, make worst-case assumptions. */
 228         if (aglen == NULLAGBLOCK ||
 229             aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
 230             freelen >= aglen) {
 231                 aglen = xfs_ag_block_count(mp, sm->sm_agno);
 232                 freelen = aglen;
 233                 usedlen = aglen;
 234         }
 235 
 236         trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
 237                         freelen, usedlen);
 238 
 239         /*
 240          * Figure out how many blocks we'd need worst case to rebuild
 241          * each type of btree.  Note that we can only rebuild the
 242          * bnobt/cntbt or inobt/finobt as pairs.
 243          */
 244         bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
 245         if (xfs_sb_version_hassparseinodes(&mp->m_sb))
 246                 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 247                                 XFS_INODES_PER_HOLEMASK_BIT);
 248         else
 249                 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 250                                 XFS_INODES_PER_CHUNK);
 251         if (xfs_sb_version_hasfinobt(&mp->m_sb))
 252                 inobt_sz *= 2;
 253         if (xfs_sb_version_hasreflink(&mp->m_sb))
 254                 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
 255         else
 256                 refcbt_sz = 0;
 257         if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
 258                 /*
 259                  * Guess how many blocks we need to rebuild the rmapbt.
 260                  * For non-reflink filesystems we can't have more records than
 261                  * used blocks.  However, with reflink it's possible to have
 262                  * more than one rmap record per AG block.  We don't know how
 263                  * many rmaps there could be in the AG, so we start off with
 264                  * what we hope is an generous over-estimation.
 265                  */
 266                 if (xfs_sb_version_hasreflink(&mp->m_sb))
 267                         rmapbt_sz = xfs_rmapbt_calc_size(mp,
 268                                         (unsigned long long)aglen * 2);
 269                 else
 270                         rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
 271         } else {
 272                 rmapbt_sz = 0;
 273         }
 274 
 275         trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
 276                         inobt_sz, rmapbt_sz, refcbt_sz);
 277 
 278         return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
 279 }
 280 
 281 /* Allocate a block in an AG. */
 282 int
 283 xrep_alloc_ag_block(
 284         struct xfs_scrub                *sc,
 285         const struct xfs_owner_info     *oinfo,
 286         xfs_fsblock_t                   *fsbno,
 287         enum xfs_ag_resv_type           resv)
 288 {
 289         struct xfs_alloc_arg            args = {0};
 290         xfs_agblock_t                   bno;
 291         int                             error;
 292 
 293         switch (resv) {
 294         case XFS_AG_RESV_AGFL:
 295         case XFS_AG_RESV_RMAPBT:
 296                 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
 297                 if (error)
 298                         return error;
 299                 if (bno == NULLAGBLOCK)
 300                         return -ENOSPC;
 301                 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
 302                                 1, false);
 303                 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
 304                 if (resv == XFS_AG_RESV_RMAPBT)
 305                         xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
 306                 return 0;
 307         default:
 308                 break;
 309         }
 310 
 311         args.tp = sc->tp;
 312         args.mp = sc->mp;
 313         args.oinfo = *oinfo;
 314         args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
 315         args.minlen = 1;
 316         args.maxlen = 1;
 317         args.prod = 1;
 318         args.type = XFS_ALLOCTYPE_THIS_AG;
 319         args.resv = resv;
 320 
 321         error = xfs_alloc_vextent(&args);
 322         if (error)
 323                 return error;
 324         if (args.fsbno == NULLFSBLOCK)
 325                 return -ENOSPC;
 326         ASSERT(args.len == 1);
 327         *fsbno = args.fsbno;
 328 
 329         return 0;
 330 }
 331 
 332 /* Initialize a new AG btree root block with zero entries. */
 333 int
 334 xrep_init_btblock(
 335         struct xfs_scrub                *sc,
 336         xfs_fsblock_t                   fsb,
 337         struct xfs_buf                  **bpp,
 338         xfs_btnum_t                     btnum,
 339         const struct xfs_buf_ops        *ops)
 340 {
 341         struct xfs_trans                *tp = sc->tp;
 342         struct xfs_mount                *mp = sc->mp;
 343         struct xfs_buf                  *bp;
 344 
 345         trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
 346                         XFS_FSB_TO_AGBNO(mp, fsb), btnum);
 347 
 348         ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
 349         bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
 350                         XFS_FSB_TO_BB(mp, 1), 0);
 351         xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
 352         xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
 353         xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
 354         xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
 355         bp->b_ops = ops;
 356         *bpp = bp;
 357 
 358         return 0;
 359 }
 360 
 361 /*
 362  * Reconstructing per-AG Btrees
 363  *
 364  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 365  * we scan secondary space metadata to derive the records that should be in
 366  * the damaged btree, initialize a fresh btree root, and insert the records.
 367  * Note that for rebuilding the rmapbt we scan all the primary data to
 368  * generate the new records.
 369  *
 370  * However, that leaves the matter of removing all the metadata describing the
 371  * old broken structure.  For primary metadata we use the rmap data to collect
 372  * every extent with a matching rmap owner (bitmap); we then iterate all other
 373  * metadata structures with the same rmap owner to collect the extents that
 374  * cannot be removed (sublist).  We then subtract sublist from bitmap to
 375  * derive the blocks that were used by the old btree.  These blocks can be
 376  * reaped.
 377  *
 378  * For rmapbt reconstructions we must use different tactics for extent
 379  * collection.  First we iterate all primary metadata (this excludes the old
 380  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 381  * records are collected as bitmap.  The bnobt records are collected as
 382  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
 383  * result (since the rmapbt lives in the free space) are the blocks from the
 384  * old rmapbt.
 385  *
 386  * Disposal of Blocks from Old per-AG Btrees
 387  *
 388  * Now that we've constructed a new btree to replace the damaged one, we want
 389  * to dispose of the blocks that (we think) the old btree was using.
 390  * Previously, we used the rmapbt to collect the extents (bitmap) with the
 391  * rmap owner corresponding to the tree we rebuilt, collected extents for any
 392  * blocks with the same rmap owner that are owned by another data structure
 393  * (sublist), and subtracted sublist from bitmap.  In theory the extents
 394  * remaining in bitmap are the old btree's blocks.
 395  *
 396  * Unfortunately, it's possible that the btree was crosslinked with other
 397  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 398  * if the rmapbt says there is an owner of this block other than @oinfo, then
 399  * the block is crosslinked.  Remove the reverse mapping and continue.
 400  *
 401  * If there is one rmap record, we can free the block, which removes the
 402  * reverse mapping but doesn't add the block to the free space.  Our repair
 403  * strategy is to hope the other metadata objects crosslinked on this block
 404  * will be rebuilt (atop different blocks), thereby removing all the cross
 405  * links.
 406  *
 407  * If there are no rmap records at all, we also free the block.  If the btree
 408  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 409  * supposed to be a rmap record and everything is ok.  For other btrees there
 410  * had to have been an rmap entry for the block to have ended up on @bitmap,
 411  * so if it's gone now there's something wrong and the fs will shut down.
 412  *
 413  * Note: If there are multiple rmap records with only the same rmap owner as
 414  * the btree we're trying to rebuild and the block is indeed owned by another
 415  * data structure with the same rmap owner, then the block will be in sublist
 416  * and therefore doesn't need disposal.  If there are multiple rmap records
 417  * with only the same rmap owner but the block is not owned by something with
 418  * the same rmap owner, the block will be freed.
 419  *
 420  * The caller is responsible for locking the AG headers for the entire rebuild
 421  * operation so that nothing else can sneak in and change the AG state while
 422  * we're not looking.  We also assume that the caller already invalidated any
 423  * buffers associated with @bitmap.
 424  */
 425 
 426 /*
 427  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 428  * is not intended for use with file data repairs; we have bunmapi for that.
 429  */
 430 int
 431 xrep_invalidate_blocks(
 432         struct xfs_scrub        *sc,
 433         struct xfs_bitmap       *bitmap)
 434 {
 435         struct xfs_bitmap_range *bmr;
 436         struct xfs_bitmap_range *n;
 437         struct xfs_buf          *bp;
 438         xfs_fsblock_t           fsbno;
 439 
 440         /*
 441          * For each block in each extent, see if there's an incore buffer for
 442          * exactly that block; if so, invalidate it.  The buffer cache only
 443          * lets us look for one buffer at a time, so we have to look one block
 444          * at a time.  Avoid invalidating AG headers and post-EOFS blocks
 445          * because we never own those; and if we can't TRYLOCK the buffer we
 446          * assume it's owned by someone else.
 447          */
 448         for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
 449                 /* Skip AG headers and post-EOFS blocks */
 450                 if (!xfs_verify_fsbno(sc->mp, fsbno))
 451                         continue;
 452                 bp = xfs_buf_incore(sc->mp->m_ddev_targp,
 453                                 XFS_FSB_TO_DADDR(sc->mp, fsbno),
 454                                 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
 455                 if (bp) {
 456                         xfs_trans_bjoin(sc->tp, bp);
 457                         xfs_trans_binval(sc->tp, bp);
 458                 }
 459         }
 460 
 461         return 0;
 462 }
 463 
 464 /* Ensure the freelist is the correct size. */
 465 int
 466 xrep_fix_freelist(
 467         struct xfs_scrub        *sc,
 468         bool                    can_shrink)
 469 {
 470         struct xfs_alloc_arg    args = {0};
 471 
 472         args.mp = sc->mp;
 473         args.tp = sc->tp;
 474         args.agno = sc->sa.agno;
 475         args.alignment = 1;
 476         args.pag = sc->sa.pag;
 477 
 478         return xfs_alloc_fix_freelist(&args,
 479                         can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
 480 }
 481 
 482 /*
 483  * Put a block back on the AGFL.
 484  */
 485 STATIC int
 486 xrep_put_freelist(
 487         struct xfs_scrub        *sc,
 488         xfs_agblock_t           agbno)
 489 {
 490         int                     error;
 491 
 492         /* Make sure there's space on the freelist. */
 493         error = xrep_fix_freelist(sc, true);
 494         if (error)
 495                 return error;
 496 
 497         /*
 498          * Since we're "freeing" a lost block onto the AGFL, we have to
 499          * create an rmap for the block prior to merging it or else other
 500          * parts will break.
 501          */
 502         error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
 503                         &XFS_RMAP_OINFO_AG);
 504         if (error)
 505                 return error;
 506 
 507         /* Put the block on the AGFL. */
 508         error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
 509                         agbno, 0);
 510         if (error)
 511                 return error;
 512         xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
 513                         XFS_EXTENT_BUSY_SKIP_DISCARD);
 514 
 515         return 0;
 516 }
 517 
 518 /* Dispose of a single block. */
 519 STATIC int
 520 xrep_reap_block(
 521         struct xfs_scrub                *sc,
 522         xfs_fsblock_t                   fsbno,
 523         const struct xfs_owner_info     *oinfo,
 524         enum xfs_ag_resv_type           resv)
 525 {
 526         struct xfs_btree_cur            *cur;
 527         struct xfs_buf                  *agf_bp = NULL;
 528         xfs_agnumber_t                  agno;
 529         xfs_agblock_t                   agbno;
 530         bool                            has_other_rmap;
 531         int                             error;
 532 
 533         agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
 534         agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
 535 
 536         /*
 537          * If we are repairing per-inode metadata, we need to read in the AGF
 538          * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
 539          * the AGF buffer that the setup functions already grabbed.
 540          */
 541         if (sc->ip) {
 542                 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
 543                 if (error)
 544                         return error;
 545                 if (!agf_bp)
 546                         return -ENOMEM;
 547         } else {
 548                 agf_bp = sc->sa.agf_bp;
 549         }
 550         cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
 551 
 552         /* Can we find any other rmappings? */
 553         error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
 554         xfs_btree_del_cursor(cur, error);
 555         if (error)
 556                 goto out_free;
 557 
 558         /*
 559          * If there are other rmappings, this block is cross linked and must
 560          * not be freed.  Remove the reverse mapping and move on.  Otherwise,
 561          * we were the only owner of the block, so free the extent, which will
 562          * also remove the rmap.
 563          *
 564          * XXX: XFS doesn't support detecting the case where a single block
 565          * metadata structure is crosslinked with a multi-block structure
 566          * because the buffer cache doesn't detect aliasing problems, so we
 567          * can't fix 100% of crosslinking problems (yet).  The verifiers will
 568          * blow on writeout, the filesystem will shut down, and the admin gets
 569          * to run xfs_repair.
 570          */
 571         if (has_other_rmap)
 572                 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
 573         else if (resv == XFS_AG_RESV_AGFL)
 574                 error = xrep_put_freelist(sc, agbno);
 575         else
 576                 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
 577         if (agf_bp != sc->sa.agf_bp)
 578                 xfs_trans_brelse(sc->tp, agf_bp);
 579         if (error)
 580                 return error;
 581 
 582         if (sc->ip)
 583                 return xfs_trans_roll_inode(&sc->tp, sc->ip);
 584         return xrep_roll_ag_trans(sc);
 585 
 586 out_free:
 587         if (agf_bp != sc->sa.agf_bp)
 588                 xfs_trans_brelse(sc->tp, agf_bp);
 589         return error;
 590 }
 591 
 592 /* Dispose of every block of every extent in the bitmap. */
 593 int
 594 xrep_reap_extents(
 595         struct xfs_scrub                *sc,
 596         struct xfs_bitmap               *bitmap,
 597         const struct xfs_owner_info     *oinfo,
 598         enum xfs_ag_resv_type           type)
 599 {
 600         struct xfs_bitmap_range         *bmr;
 601         struct xfs_bitmap_range         *n;
 602         xfs_fsblock_t                   fsbno;
 603         int                             error = 0;
 604 
 605         ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
 606 
 607         for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
 608                 ASSERT(sc->ip != NULL ||
 609                        XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
 610                 trace_xrep_dispose_btree_extent(sc->mp,
 611                                 XFS_FSB_TO_AGNO(sc->mp, fsbno),
 612                                 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
 613 
 614                 error = xrep_reap_block(sc, fsbno, oinfo, type);
 615                 if (error)
 616                         goto out;
 617         }
 618 
 619 out:
 620         xfs_bitmap_destroy(bitmap);
 621         return error;
 622 }
 623 
 624 /*
 625  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 626  *
 627  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 628  * the AG headers by using the rmap data to rummage through the AG looking for
 629  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 630  * or the rmap data are corrupt.
 631  *
 632  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
 633  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 634  * AGI is being rebuilt.  It must maintain these locks until it's safe for
 635  * other threads to change the btrees' shapes.  The caller provides
 636  * information about the btrees to look for by passing in an array of
 637  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
 638  * The (root, height) fields will be set on return if anything is found.  The
 639  * last element of the array should have a NULL buf_ops to mark the end of the
 640  * array.
 641  *
 642  * For every rmapbt record matching any of the rmap owners in btree_info,
 643  * read each block referenced by the rmap record.  If the block is a btree
 644  * block from this filesystem matching any of the magic numbers and has a
 645  * level higher than what we've already seen, remember the block and the
 646  * height of the tree required to have such a block.  When the call completes,
 647  * we return the highest block we've found for each btree description; those
 648  * should be the roots.
 649  */
 650 
 651 struct xrep_findroot {
 652         struct xfs_scrub                *sc;
 653         struct xfs_buf                  *agfl_bp;
 654         struct xfs_agf                  *agf;
 655         struct xrep_find_ag_btree       *btree_info;
 656 };
 657 
 658 /* See if our block is in the AGFL. */
 659 STATIC int
 660 xrep_findroot_agfl_walk(
 661         struct xfs_mount        *mp,
 662         xfs_agblock_t           bno,
 663         void                    *priv)
 664 {
 665         xfs_agblock_t           *agbno = priv;
 666 
 667         return (*agbno == bno) ? -ECANCELED : 0;
 668 }
 669 
 670 /* Does this block match the btree information passed in? */
 671 STATIC int
 672 xrep_findroot_block(
 673         struct xrep_findroot            *ri,
 674         struct xrep_find_ag_btree       *fab,
 675         uint64_t                        owner,
 676         xfs_agblock_t                   agbno,
 677         bool                            *done_with_block)
 678 {
 679         struct xfs_mount                *mp = ri->sc->mp;
 680         struct xfs_buf                  *bp;
 681         struct xfs_btree_block          *btblock;
 682         xfs_daddr_t                     daddr;
 683         int                             block_level;
 684         int                             error = 0;
 685 
 686         daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
 687 
 688         /*
 689          * Blocks in the AGFL have stale contents that might just happen to
 690          * have a matching magic and uuid.  We don't want to pull these blocks
 691          * in as part of a tree root, so we have to filter out the AGFL stuff
 692          * here.  If the AGFL looks insane we'll just refuse to repair.
 693          */
 694         if (owner == XFS_RMAP_OWN_AG) {
 695                 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
 696                                 xrep_findroot_agfl_walk, &agbno);
 697                 if (error == -ECANCELED)
 698                         return 0;
 699                 if (error)
 700                         return error;
 701         }
 702 
 703         /*
 704          * Read the buffer into memory so that we can see if it's a match for
 705          * our btree type.  We have no clue if it is beforehand, and we want to
 706          * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
 707          * will cause needless disk reads in subsequent calls to this function)
 708          * and logging metadata verifier failures.
 709          *
 710          * Therefore, pass in NULL buffer ops.  If the buffer was already in
 711          * memory from some other caller it will already have b_ops assigned.
 712          * If it was in memory from a previous unsuccessful findroot_block
 713          * call, the buffer won't have b_ops but it should be clean and ready
 714          * for us to try to verify if the read call succeeds.  The same applies
 715          * if the buffer wasn't in memory at all.
 716          *
 717          * Note: If we never match a btree type with this buffer, it will be
 718          * left in memory with NULL b_ops.  This shouldn't be a problem unless
 719          * the buffer gets written.
 720          */
 721         error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
 722                         mp->m_bsize, 0, &bp, NULL);
 723         if (error)
 724                 return error;
 725 
 726         /* Ensure the block magic matches the btree type we're looking for. */
 727         btblock = XFS_BUF_TO_BLOCK(bp);
 728         ASSERT(fab->buf_ops->magic[1] != 0);
 729         if (btblock->bb_magic != fab->buf_ops->magic[1])
 730                 goto out;
 731 
 732         /*
 733          * If the buffer already has ops applied and they're not the ones for
 734          * this btree type, we know this block doesn't match the btree and we
 735          * can bail out.
 736          *
 737          * If the buffer ops match ours, someone else has already validated
 738          * the block for us, so we can move on to checking if this is a root
 739          * block candidate.
 740          *
 741          * If the buffer does not have ops, nobody has successfully validated
 742          * the contents and the buffer cannot be dirty.  If the magic, uuid,
 743          * and structure match this btree type then we'll move on to checking
 744          * if it's a root block candidate.  If there is no match, bail out.
 745          */
 746         if (bp->b_ops) {
 747                 if (bp->b_ops != fab->buf_ops)
 748                         goto out;
 749         } else {
 750                 ASSERT(!xfs_trans_buf_is_dirty(bp));
 751                 if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
 752                                 &mp->m_sb.sb_meta_uuid))
 753                         goto out;
 754                 /*
 755                  * Read verifiers can reference b_ops, so we set the pointer
 756                  * here.  If the verifier fails we'll reset the buffer state
 757                  * to what it was before we touched the buffer.
 758                  */
 759                 bp->b_ops = fab->buf_ops;
 760                 fab->buf_ops->verify_read(bp);
 761                 if (bp->b_error) {
 762                         bp->b_ops = NULL;
 763                         bp->b_error = 0;
 764                         goto out;
 765                 }
 766 
 767                 /*
 768                  * Some read verifiers will (re)set b_ops, so we must be
 769                  * careful not to change b_ops after running the verifier.
 770                  */
 771         }
 772 
 773         /*
 774          * This block passes the magic/uuid and verifier tests for this btree
 775          * type.  We don't need the caller to try the other tree types.
 776          */
 777         *done_with_block = true;
 778 
 779         /*
 780          * Compare this btree block's level to the height of the current
 781          * candidate root block.
 782          *
 783          * If the level matches the root we found previously, throw away both
 784          * blocks because there can't be two candidate roots.
 785          *
 786          * If level is lower in the tree than the root we found previously,
 787          * ignore this block.
 788          */
 789         block_level = xfs_btree_get_level(btblock);
 790         if (block_level + 1 == fab->height) {
 791                 fab->root = NULLAGBLOCK;
 792                 goto out;
 793         } else if (block_level < fab->height) {
 794                 goto out;
 795         }
 796 
 797         /*
 798          * This is the highest block in the tree that we've found so far.
 799          * Update the btree height to reflect what we've learned from this
 800          * block.
 801          */
 802         fab->height = block_level + 1;
 803 
 804         /*
 805          * If this block doesn't have sibling pointers, then it's the new root
 806          * block candidate.  Otherwise, the root will be found farther up the
 807          * tree.
 808          */
 809         if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
 810             btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
 811                 fab->root = agbno;
 812         else
 813                 fab->root = NULLAGBLOCK;
 814 
 815         trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
 816                         be32_to_cpu(btblock->bb_magic), fab->height - 1);
 817 out:
 818         xfs_trans_brelse(ri->sc->tp, bp);
 819         return error;
 820 }
 821 
 822 /*
 823  * Do any of the blocks in this rmap record match one of the btrees we're
 824  * looking for?
 825  */
 826 STATIC int
 827 xrep_findroot_rmap(
 828         struct xfs_btree_cur            *cur,
 829         struct xfs_rmap_irec            *rec,
 830         void                            *priv)
 831 {
 832         struct xrep_findroot            *ri = priv;
 833         struct xrep_find_ag_btree       *fab;
 834         xfs_agblock_t                   b;
 835         bool                            done;
 836         int                             error = 0;
 837 
 838         /* Ignore anything that isn't AG metadata. */
 839         if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
 840                 return 0;
 841 
 842         /* Otherwise scan each block + btree type. */
 843         for (b = 0; b < rec->rm_blockcount; b++) {
 844                 done = false;
 845                 for (fab = ri->btree_info; fab->buf_ops; fab++) {
 846                         if (rec->rm_owner != fab->rmap_owner)
 847                                 continue;
 848                         error = xrep_findroot_block(ri, fab,
 849                                         rec->rm_owner, rec->rm_startblock + b,
 850                                         &done);
 851                         if (error)
 852                                 return error;
 853                         if (done)
 854                                 break;
 855                 }
 856         }
 857 
 858         return 0;
 859 }
 860 
 861 /* Find the roots of the per-AG btrees described in btree_info. */
 862 int
 863 xrep_find_ag_btree_roots(
 864         struct xfs_scrub                *sc,
 865         struct xfs_buf                  *agf_bp,
 866         struct xrep_find_ag_btree       *btree_info,
 867         struct xfs_buf                  *agfl_bp)
 868 {
 869         struct xfs_mount                *mp = sc->mp;
 870         struct xrep_findroot            ri;
 871         struct xrep_find_ag_btree       *fab;
 872         struct xfs_btree_cur            *cur;
 873         int                             error;
 874 
 875         ASSERT(xfs_buf_islocked(agf_bp));
 876         ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
 877 
 878         ri.sc = sc;
 879         ri.btree_info = btree_info;
 880         ri.agf = XFS_BUF_TO_AGF(agf_bp);
 881         ri.agfl_bp = agfl_bp;
 882         for (fab = btree_info; fab->buf_ops; fab++) {
 883                 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
 884                 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
 885                 fab->root = NULLAGBLOCK;
 886                 fab->height = 0;
 887         }
 888 
 889         cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
 890         error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
 891         xfs_btree_del_cursor(cur, error);
 892 
 893         return error;
 894 }
 895 
 896 /* Force a quotacheck the next time we mount. */
 897 void
 898 xrep_force_quotacheck(
 899         struct xfs_scrub        *sc,
 900         uint                    dqtype)
 901 {
 902         uint                    flag;
 903 
 904         flag = xfs_quota_chkd_flag(dqtype);
 905         if (!(flag & sc->mp->m_qflags))
 906                 return;
 907 
 908         sc->mp->m_qflags &= ~flag;
 909         spin_lock(&sc->mp->m_sb_lock);
 910         sc->mp->m_sb.sb_qflags &= ~flag;
 911         spin_unlock(&sc->mp->m_sb_lock);
 912         xfs_log_sb(sc->tp);
 913 }
 914 
 915 /*
 916  * Attach dquots to this inode, or schedule quotacheck to fix them.
 917  *
 918  * This function ensures that the appropriate dquots are attached to an inode.
 919  * We cannot allow the dquot code to allocate an on-disk dquot block here
 920  * because we're already in transaction context with the inode locked.  The
 921  * on-disk dquot should already exist anyway.  If the quota code signals
 922  * corruption or missing quota information, schedule quotacheck, which will
 923  * repair corruptions in the quota metadata.
 924  */
 925 int
 926 xrep_ino_dqattach(
 927         struct xfs_scrub        *sc)
 928 {
 929         int                     error;
 930 
 931         error = xfs_qm_dqattach_locked(sc->ip, false);
 932         switch (error) {
 933         case -EFSBADCRC:
 934         case -EFSCORRUPTED:
 935         case -ENOENT:
 936                 xfs_err_ratelimited(sc->mp,
 937 "inode %llu repair encountered quota error %d, quotacheck forced.",
 938                                 (unsigned long long)sc->ip->i_ino, error);
 939                 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
 940                         xrep_force_quotacheck(sc, XFS_DQ_USER);
 941                 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
 942                         xrep_force_quotacheck(sc, XFS_DQ_GROUP);
 943                 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
 944                         xrep_force_quotacheck(sc, XFS_DQ_PROJ);
 945                 /* fall through */
 946         case -ESRCH:
 947                 error = 0;
 948                 break;
 949         default:
 950                 break;
 951         }
 952 
 953         return error;
 954 }

/* [<][>][^][v][top][bottom][index][help] */