root/fs/xfs/xfs_refcount_item.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. CUI_ITEM
  2. xfs_cui_item_free
  3. xfs_cui_release
  4. xfs_cui_item_size
  5. xfs_cui_item_format
  6. xfs_cui_item_unpin
  7. xfs_cui_item_release
  8. xfs_cui_init
  9. CUD_ITEM
  10. xfs_cud_item_size
  11. xfs_cud_item_format
  12. xfs_cud_item_release
  13. xfs_trans_get_cud
  14. xfs_trans_log_finish_refcount_update
  15. xfs_refcount_update_diff_items
  16. xfs_refcount_update_create_intent
  17. xfs_trans_set_refcount_flags
  18. xfs_refcount_update_log_item
  19. xfs_refcount_update_create_done
  20. xfs_refcount_update_finish_item
  21. xfs_refcount_update_finish_cleanup
  22. xfs_refcount_update_abort_intent
  23. xfs_refcount_update_cancel_item
  24. xfs_cui_recover

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
   4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5  */
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_format.h"
   9 #include "xfs_log_format.h"
  10 #include "xfs_trans_resv.h"
  11 #include "xfs_bit.h"
  12 #include "xfs_shared.h"
  13 #include "xfs_mount.h"
  14 #include "xfs_defer.h"
  15 #include "xfs_trans.h"
  16 #include "xfs_trans_priv.h"
  17 #include "xfs_refcount_item.h"
  18 #include "xfs_log.h"
  19 #include "xfs_refcount.h"
  20 
  21 
  22 kmem_zone_t     *xfs_cui_zone;
  23 kmem_zone_t     *xfs_cud_zone;
  24 
  25 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
  26 {
  27         return container_of(lip, struct xfs_cui_log_item, cui_item);
  28 }
  29 
  30 void
  31 xfs_cui_item_free(
  32         struct xfs_cui_log_item *cuip)
  33 {
  34         if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
  35                 kmem_free(cuip);
  36         else
  37                 kmem_zone_free(xfs_cui_zone, cuip);
  38 }
  39 
  40 /*
  41  * Freeing the CUI requires that we remove it from the AIL if it has already
  42  * been placed there. However, the CUI may not yet have been placed in the AIL
  43  * when called by xfs_cui_release() from CUD processing due to the ordering of
  44  * committed vs unpin operations in bulk insert operations. Hence the reference
  45  * count to ensure only the last caller frees the CUI.
  46  */
  47 void
  48 xfs_cui_release(
  49         struct xfs_cui_log_item *cuip)
  50 {
  51         ASSERT(atomic_read(&cuip->cui_refcount) > 0);
  52         if (atomic_dec_and_test(&cuip->cui_refcount)) {
  53                 xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
  54                 xfs_cui_item_free(cuip);
  55         }
  56 }
  57 
  58 
  59 STATIC void
  60 xfs_cui_item_size(
  61         struct xfs_log_item     *lip,
  62         int                     *nvecs,
  63         int                     *nbytes)
  64 {
  65         struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
  66 
  67         *nvecs += 1;
  68         *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
  69 }
  70 
  71 /*
  72  * This is called to fill in the vector of log iovecs for the
  73  * given cui log item. We use only 1 iovec, and we point that
  74  * at the cui_log_format structure embedded in the cui item.
  75  * It is at this point that we assert that all of the extent
  76  * slots in the cui item have been filled.
  77  */
  78 STATIC void
  79 xfs_cui_item_format(
  80         struct xfs_log_item     *lip,
  81         struct xfs_log_vec      *lv)
  82 {
  83         struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
  84         struct xfs_log_iovec    *vecp = NULL;
  85 
  86         ASSERT(atomic_read(&cuip->cui_next_extent) ==
  87                         cuip->cui_format.cui_nextents);
  88 
  89         cuip->cui_format.cui_type = XFS_LI_CUI;
  90         cuip->cui_format.cui_size = 1;
  91 
  92         xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
  93                         xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
  94 }
  95 
  96 /*
  97  * The unpin operation is the last place an CUI is manipulated in the log. It is
  98  * either inserted in the AIL or aborted in the event of a log I/O error. In
  99  * either case, the CUI transaction has been successfully committed to make it
 100  * this far. Therefore, we expect whoever committed the CUI to either construct
 101  * and commit the CUD or drop the CUD's reference in the event of error. Simply
 102  * drop the log's CUI reference now that the log is done with it.
 103  */
 104 STATIC void
 105 xfs_cui_item_unpin(
 106         struct xfs_log_item     *lip,
 107         int                     remove)
 108 {
 109         struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
 110 
 111         xfs_cui_release(cuip);
 112 }
 113 
 114 /*
 115  * The CUI has been either committed or aborted if the transaction has been
 116  * cancelled. If the transaction was cancelled, an CUD isn't going to be
 117  * constructed and thus we free the CUI here directly.
 118  */
 119 STATIC void
 120 xfs_cui_item_release(
 121         struct xfs_log_item     *lip)
 122 {
 123         xfs_cui_release(CUI_ITEM(lip));
 124 }
 125 
 126 static const struct xfs_item_ops xfs_cui_item_ops = {
 127         .iop_size       = xfs_cui_item_size,
 128         .iop_format     = xfs_cui_item_format,
 129         .iop_unpin      = xfs_cui_item_unpin,
 130         .iop_release    = xfs_cui_item_release,
 131 };
 132 
 133 /*
 134  * Allocate and initialize an cui item with the given number of extents.
 135  */
 136 struct xfs_cui_log_item *
 137 xfs_cui_init(
 138         struct xfs_mount                *mp,
 139         uint                            nextents)
 140 
 141 {
 142         struct xfs_cui_log_item         *cuip;
 143 
 144         ASSERT(nextents > 0);
 145         if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
 146                 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
 147                                 0);
 148         else
 149                 cuip = kmem_zone_zalloc(xfs_cui_zone, 0);
 150 
 151         xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
 152         cuip->cui_format.cui_nextents = nextents;
 153         cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
 154         atomic_set(&cuip->cui_next_extent, 0);
 155         atomic_set(&cuip->cui_refcount, 2);
 156 
 157         return cuip;
 158 }
 159 
 160 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
 161 {
 162         return container_of(lip, struct xfs_cud_log_item, cud_item);
 163 }
 164 
 165 STATIC void
 166 xfs_cud_item_size(
 167         struct xfs_log_item     *lip,
 168         int                     *nvecs,
 169         int                     *nbytes)
 170 {
 171         *nvecs += 1;
 172         *nbytes += sizeof(struct xfs_cud_log_format);
 173 }
 174 
 175 /*
 176  * This is called to fill in the vector of log iovecs for the
 177  * given cud log item. We use only 1 iovec, and we point that
 178  * at the cud_log_format structure embedded in the cud item.
 179  * It is at this point that we assert that all of the extent
 180  * slots in the cud item have been filled.
 181  */
 182 STATIC void
 183 xfs_cud_item_format(
 184         struct xfs_log_item     *lip,
 185         struct xfs_log_vec      *lv)
 186 {
 187         struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
 188         struct xfs_log_iovec    *vecp = NULL;
 189 
 190         cudp->cud_format.cud_type = XFS_LI_CUD;
 191         cudp->cud_format.cud_size = 1;
 192 
 193         xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
 194                         sizeof(struct xfs_cud_log_format));
 195 }
 196 
 197 /*
 198  * The CUD is either committed or aborted if the transaction is cancelled. If
 199  * the transaction is cancelled, drop our reference to the CUI and free the
 200  * CUD.
 201  */
 202 STATIC void
 203 xfs_cud_item_release(
 204         struct xfs_log_item     *lip)
 205 {
 206         struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
 207 
 208         xfs_cui_release(cudp->cud_cuip);
 209         kmem_zone_free(xfs_cud_zone, cudp);
 210 }
 211 
 212 static const struct xfs_item_ops xfs_cud_item_ops = {
 213         .flags          = XFS_ITEM_RELEASE_WHEN_COMMITTED,
 214         .iop_size       = xfs_cud_item_size,
 215         .iop_format     = xfs_cud_item_format,
 216         .iop_release    = xfs_cud_item_release,
 217 };
 218 
 219 static struct xfs_cud_log_item *
 220 xfs_trans_get_cud(
 221         struct xfs_trans                *tp,
 222         struct xfs_cui_log_item         *cuip)
 223 {
 224         struct xfs_cud_log_item         *cudp;
 225 
 226         cudp = kmem_zone_zalloc(xfs_cud_zone, 0);
 227         xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
 228                           &xfs_cud_item_ops);
 229         cudp->cud_cuip = cuip;
 230         cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
 231 
 232         xfs_trans_add_item(tp, &cudp->cud_item);
 233         return cudp;
 234 }
 235 
 236 /*
 237  * Finish an refcount update and log it to the CUD. Note that the
 238  * transaction is marked dirty regardless of whether the refcount
 239  * update succeeds or fails to support the CUI/CUD lifecycle rules.
 240  */
 241 static int
 242 xfs_trans_log_finish_refcount_update(
 243         struct xfs_trans                *tp,
 244         struct xfs_cud_log_item         *cudp,
 245         enum xfs_refcount_intent_type   type,
 246         xfs_fsblock_t                   startblock,
 247         xfs_extlen_t                    blockcount,
 248         xfs_fsblock_t                   *new_fsb,
 249         xfs_extlen_t                    *new_len,
 250         struct xfs_btree_cur            **pcur)
 251 {
 252         int                             error;
 253 
 254         error = xfs_refcount_finish_one(tp, type, startblock,
 255                         blockcount, new_fsb, new_len, pcur);
 256 
 257         /*
 258          * Mark the transaction dirty, even on error. This ensures the
 259          * transaction is aborted, which:
 260          *
 261          * 1.) releases the CUI and frees the CUD
 262          * 2.) shuts down the filesystem
 263          */
 264         tp->t_flags |= XFS_TRANS_DIRTY;
 265         set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
 266 
 267         return error;
 268 }
 269 
 270 /* Sort refcount intents by AG. */
 271 static int
 272 xfs_refcount_update_diff_items(
 273         void                            *priv,
 274         struct list_head                *a,
 275         struct list_head                *b)
 276 {
 277         struct xfs_mount                *mp = priv;
 278         struct xfs_refcount_intent      *ra;
 279         struct xfs_refcount_intent      *rb;
 280 
 281         ra = container_of(a, struct xfs_refcount_intent, ri_list);
 282         rb = container_of(b, struct xfs_refcount_intent, ri_list);
 283         return  XFS_FSB_TO_AGNO(mp, ra->ri_startblock) -
 284                 XFS_FSB_TO_AGNO(mp, rb->ri_startblock);
 285 }
 286 
 287 /* Get an CUI. */
 288 STATIC void *
 289 xfs_refcount_update_create_intent(
 290         struct xfs_trans                *tp,
 291         unsigned int                    count)
 292 {
 293         struct xfs_cui_log_item         *cuip;
 294 
 295         ASSERT(tp != NULL);
 296         ASSERT(count > 0);
 297 
 298         cuip = xfs_cui_init(tp->t_mountp, count);
 299         ASSERT(cuip != NULL);
 300 
 301         /*
 302          * Get a log_item_desc to point at the new item.
 303          */
 304         xfs_trans_add_item(tp, &cuip->cui_item);
 305         return cuip;
 306 }
 307 
 308 /* Set the phys extent flags for this reverse mapping. */
 309 static void
 310 xfs_trans_set_refcount_flags(
 311         struct xfs_phys_extent          *refc,
 312         enum xfs_refcount_intent_type   type)
 313 {
 314         refc->pe_flags = 0;
 315         switch (type) {
 316         case XFS_REFCOUNT_INCREASE:
 317         case XFS_REFCOUNT_DECREASE:
 318         case XFS_REFCOUNT_ALLOC_COW:
 319         case XFS_REFCOUNT_FREE_COW:
 320                 refc->pe_flags |= type;
 321                 break;
 322         default:
 323                 ASSERT(0);
 324         }
 325 }
 326 
 327 /* Log refcount updates in the intent item. */
 328 STATIC void
 329 xfs_refcount_update_log_item(
 330         struct xfs_trans                *tp,
 331         void                            *intent,
 332         struct list_head                *item)
 333 {
 334         struct xfs_cui_log_item         *cuip = intent;
 335         struct xfs_refcount_intent      *refc;
 336         uint                            next_extent;
 337         struct xfs_phys_extent          *ext;
 338 
 339         refc = container_of(item, struct xfs_refcount_intent, ri_list);
 340 
 341         tp->t_flags |= XFS_TRANS_DIRTY;
 342         set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
 343 
 344         /*
 345          * atomic_inc_return gives us the value after the increment;
 346          * we want to use it as an array index so we need to subtract 1 from
 347          * it.
 348          */
 349         next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
 350         ASSERT(next_extent < cuip->cui_format.cui_nextents);
 351         ext = &cuip->cui_format.cui_extents[next_extent];
 352         ext->pe_startblock = refc->ri_startblock;
 353         ext->pe_len = refc->ri_blockcount;
 354         xfs_trans_set_refcount_flags(ext, refc->ri_type);
 355 }
 356 
 357 /* Get an CUD so we can process all the deferred refcount updates. */
 358 STATIC void *
 359 xfs_refcount_update_create_done(
 360         struct xfs_trans                *tp,
 361         void                            *intent,
 362         unsigned int                    count)
 363 {
 364         return xfs_trans_get_cud(tp, intent);
 365 }
 366 
 367 /* Process a deferred refcount update. */
 368 STATIC int
 369 xfs_refcount_update_finish_item(
 370         struct xfs_trans                *tp,
 371         struct list_head                *item,
 372         void                            *done_item,
 373         void                            **state)
 374 {
 375         struct xfs_refcount_intent      *refc;
 376         xfs_fsblock_t                   new_fsb;
 377         xfs_extlen_t                    new_aglen;
 378         int                             error;
 379 
 380         refc = container_of(item, struct xfs_refcount_intent, ri_list);
 381         error = xfs_trans_log_finish_refcount_update(tp, done_item,
 382                         refc->ri_type,
 383                         refc->ri_startblock,
 384                         refc->ri_blockcount,
 385                         &new_fsb, &new_aglen,
 386                         (struct xfs_btree_cur **)state);
 387         /* Did we run out of reservation?  Requeue what we didn't finish. */
 388         if (!error && new_aglen > 0) {
 389                 ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE ||
 390                        refc->ri_type == XFS_REFCOUNT_DECREASE);
 391                 refc->ri_startblock = new_fsb;
 392                 refc->ri_blockcount = new_aglen;
 393                 return -EAGAIN;
 394         }
 395         kmem_free(refc);
 396         return error;
 397 }
 398 
 399 /* Clean up after processing deferred refcounts. */
 400 STATIC void
 401 xfs_refcount_update_finish_cleanup(
 402         struct xfs_trans        *tp,
 403         void                    *state,
 404         int                     error)
 405 {
 406         struct xfs_btree_cur    *rcur = state;
 407 
 408         xfs_refcount_finish_one_cleanup(tp, rcur, error);
 409 }
 410 
 411 /* Abort all pending CUIs. */
 412 STATIC void
 413 xfs_refcount_update_abort_intent(
 414         void                            *intent)
 415 {
 416         xfs_cui_release(intent);
 417 }
 418 
 419 /* Cancel a deferred refcount update. */
 420 STATIC void
 421 xfs_refcount_update_cancel_item(
 422         struct list_head                *item)
 423 {
 424         struct xfs_refcount_intent      *refc;
 425 
 426         refc = container_of(item, struct xfs_refcount_intent, ri_list);
 427         kmem_free(refc);
 428 }
 429 
 430 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
 431         .max_items      = XFS_CUI_MAX_FAST_EXTENTS,
 432         .diff_items     = xfs_refcount_update_diff_items,
 433         .create_intent  = xfs_refcount_update_create_intent,
 434         .abort_intent   = xfs_refcount_update_abort_intent,
 435         .log_item       = xfs_refcount_update_log_item,
 436         .create_done    = xfs_refcount_update_create_done,
 437         .finish_item    = xfs_refcount_update_finish_item,
 438         .finish_cleanup = xfs_refcount_update_finish_cleanup,
 439         .cancel_item    = xfs_refcount_update_cancel_item,
 440 };
 441 
 442 /*
 443  * Process a refcount update intent item that was recovered from the log.
 444  * We need to update the refcountbt.
 445  */
 446 int
 447 xfs_cui_recover(
 448         struct xfs_trans                *parent_tp,
 449         struct xfs_cui_log_item         *cuip)
 450 {
 451         int                             i;
 452         int                             error = 0;
 453         unsigned int                    refc_type;
 454         struct xfs_phys_extent          *refc;
 455         xfs_fsblock_t                   startblock_fsb;
 456         bool                            op_ok;
 457         struct xfs_cud_log_item         *cudp;
 458         struct xfs_trans                *tp;
 459         struct xfs_btree_cur            *rcur = NULL;
 460         enum xfs_refcount_intent_type   type;
 461         xfs_fsblock_t                   new_fsb;
 462         xfs_extlen_t                    new_len;
 463         struct xfs_bmbt_irec            irec;
 464         bool                            requeue_only = false;
 465         struct xfs_mount                *mp = parent_tp->t_mountp;
 466 
 467         ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags));
 468 
 469         /*
 470          * First check the validity of the extents described by the
 471          * CUI.  If any are bad, then assume that all are bad and
 472          * just toss the CUI.
 473          */
 474         for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
 475                 refc = &cuip->cui_format.cui_extents[i];
 476                 startblock_fsb = XFS_BB_TO_FSB(mp,
 477                                    XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
 478                 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
 479                 case XFS_REFCOUNT_INCREASE:
 480                 case XFS_REFCOUNT_DECREASE:
 481                 case XFS_REFCOUNT_ALLOC_COW:
 482                 case XFS_REFCOUNT_FREE_COW:
 483                         op_ok = true;
 484                         break;
 485                 default:
 486                         op_ok = false;
 487                         break;
 488                 }
 489                 if (!op_ok || startblock_fsb == 0 ||
 490                     refc->pe_len == 0 ||
 491                     startblock_fsb >= mp->m_sb.sb_dblocks ||
 492                     refc->pe_len >= mp->m_sb.sb_agblocks ||
 493                     (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
 494                         /*
 495                          * This will pull the CUI from the AIL and
 496                          * free the memory associated with it.
 497                          */
 498                         set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
 499                         xfs_cui_release(cuip);
 500                         return -EIO;
 501                 }
 502         }
 503 
 504         /*
 505          * Under normal operation, refcount updates are deferred, so we
 506          * wouldn't be adding them directly to a transaction.  All
 507          * refcount updates manage reservation usage internally and
 508          * dynamically by deferring work that won't fit in the
 509          * transaction.  Normally, any work that needs to be deferred
 510          * gets attached to the same defer_ops that scheduled the
 511          * refcount update.  However, we're in log recovery here, so we
 512          * we use the passed in defer_ops and to finish up any work that
 513          * doesn't fit.  We need to reserve enough blocks to handle a
 514          * full btree split on either end of the refcount range.
 515          */
 516         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
 517                         mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
 518         if (error)
 519                 return error;
 520         /*
 521          * Recovery stashes all deferred ops during intent processing and
 522          * finishes them on completion. Transfer current dfops state to this
 523          * transaction and transfer the result back before we return.
 524          */
 525         xfs_defer_move(tp, parent_tp);
 526         cudp = xfs_trans_get_cud(tp, cuip);
 527 
 528         for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
 529                 refc = &cuip->cui_format.cui_extents[i];
 530                 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
 531                 switch (refc_type) {
 532                 case XFS_REFCOUNT_INCREASE:
 533                 case XFS_REFCOUNT_DECREASE:
 534                 case XFS_REFCOUNT_ALLOC_COW:
 535                 case XFS_REFCOUNT_FREE_COW:
 536                         type = refc_type;
 537                         break;
 538                 default:
 539                         error = -EFSCORRUPTED;
 540                         goto abort_error;
 541                 }
 542                 if (requeue_only) {
 543                         new_fsb = refc->pe_startblock;
 544                         new_len = refc->pe_len;
 545                 } else
 546                         error = xfs_trans_log_finish_refcount_update(tp, cudp,
 547                                 type, refc->pe_startblock, refc->pe_len,
 548                                 &new_fsb, &new_len, &rcur);
 549                 if (error)
 550                         goto abort_error;
 551 
 552                 /* Requeue what we didn't finish. */
 553                 if (new_len > 0) {
 554                         irec.br_startblock = new_fsb;
 555                         irec.br_blockcount = new_len;
 556                         switch (type) {
 557                         case XFS_REFCOUNT_INCREASE:
 558                                 xfs_refcount_increase_extent(tp, &irec);
 559                                 break;
 560                         case XFS_REFCOUNT_DECREASE:
 561                                 xfs_refcount_decrease_extent(tp, &irec);
 562                                 break;
 563                         case XFS_REFCOUNT_ALLOC_COW:
 564                                 xfs_refcount_alloc_cow_extent(tp,
 565                                                 irec.br_startblock,
 566                                                 irec.br_blockcount);
 567                                 break;
 568                         case XFS_REFCOUNT_FREE_COW:
 569                                 xfs_refcount_free_cow_extent(tp,
 570                                                 irec.br_startblock,
 571                                                 irec.br_blockcount);
 572                                 break;
 573                         default:
 574                                 ASSERT(0);
 575                         }
 576                         requeue_only = true;
 577                 }
 578         }
 579 
 580         xfs_refcount_finish_one_cleanup(tp, rcur, error);
 581         set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
 582         xfs_defer_move(parent_tp, tp);
 583         error = xfs_trans_commit(tp);
 584         return error;
 585 
 586 abort_error:
 587         xfs_refcount_finish_one_cleanup(tp, rcur, error);
 588         xfs_defer_move(parent_tp, tp);
 589         xfs_trans_cancel(tp);
 590         return error;
 591 }

/* [<][>][^][v][top][bottom][index][help] */