root/fs/xfs/libxfs/xfs_inode_fork.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xfs_iformat_fork
  2. xfs_init_local_fork
  3. xfs_iformat_local
  4. xfs_iformat_extents
  5. xfs_iformat_btree
  6. xfs_iroot_realloc
  7. xfs_idata_realloc
  8. xfs_idestroy_fork
  9. xfs_iextents_copy
  10. xfs_iflush_fork
  11. xfs_iext_state_to_fork
  12. xfs_ifork_init_cow
  13. xfs_ifork_verify_data
  14. xfs_ifork_verify_attr

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4  * All Rights Reserved.
   5  */
   6 
   7 #include "xfs.h"
   8 #include "xfs_fs.h"
   9 #include "xfs_shared.h"
  10 #include "xfs_format.h"
  11 #include "xfs_log_format.h"
  12 #include "xfs_trans_resv.h"
  13 #include "xfs_mount.h"
  14 #include "xfs_inode.h"
  15 #include "xfs_trans.h"
  16 #include "xfs_inode_item.h"
  17 #include "xfs_btree.h"
  18 #include "xfs_bmap_btree.h"
  19 #include "xfs_bmap.h"
  20 #include "xfs_error.h"
  21 #include "xfs_trace.h"
  22 #include "xfs_da_format.h"
  23 #include "xfs_da_btree.h"
  24 #include "xfs_dir2_priv.h"
  25 #include "xfs_attr_leaf.h"
  26 
  27 kmem_zone_t *xfs_ifork_zone;
  28 
  29 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  30 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  31 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  32 
  33 /*
  34  * Copy inode type and data and attr format specific information from the
  35  * on-disk inode to the in-core inode and fork structures.  For fifos, devices,
  36  * and sockets this means set i_rdev to the proper value.  For files,
  37  * directories, and symlinks this means to bring in the in-line data or extent
  38  * pointers as well as the attribute fork.  For a fork in B-tree format, only
  39  * the root is immediately brought in-core.  The rest will be read in later when
  40  * first referenced (see xfs_iread_extents()).
  41  */
  42 int
  43 xfs_iformat_fork(
  44         struct xfs_inode        *ip,
  45         struct xfs_dinode       *dip)
  46 {
  47         struct inode            *inode = VFS_I(ip);
  48         struct xfs_attr_shortform *atp;
  49         int                     size;
  50         int                     error = 0;
  51         xfs_fsize_t             di_size;
  52 
  53         switch (inode->i_mode & S_IFMT) {
  54         case S_IFIFO:
  55         case S_IFCHR:
  56         case S_IFBLK:
  57         case S_IFSOCK:
  58                 ip->i_d.di_size = 0;
  59                 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
  60                 break;
  61 
  62         case S_IFREG:
  63         case S_IFLNK:
  64         case S_IFDIR:
  65                 switch (dip->di_format) {
  66                 case XFS_DINODE_FMT_LOCAL:
  67                         di_size = be64_to_cpu(dip->di_size);
  68                         size = (int)di_size;
  69                         error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  70                         break;
  71                 case XFS_DINODE_FMT_EXTENTS:
  72                         error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  73                         break;
  74                 case XFS_DINODE_FMT_BTREE:
  75                         error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  76                         break;
  77                 default:
  78                         return -EFSCORRUPTED;
  79                 }
  80                 break;
  81 
  82         default:
  83                 return -EFSCORRUPTED;
  84         }
  85         if (error)
  86                 return error;
  87 
  88         if (xfs_is_reflink_inode(ip)) {
  89                 ASSERT(ip->i_cowfp == NULL);
  90                 xfs_ifork_init_cow(ip);
  91         }
  92 
  93         if (!XFS_DFORK_Q(dip))
  94                 return 0;
  95 
  96         ASSERT(ip->i_afp == NULL);
  97         ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_NOFS);
  98 
  99         switch (dip->di_aformat) {
 100         case XFS_DINODE_FMT_LOCAL:
 101                 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 102                 size = be16_to_cpu(atp->hdr.totsize);
 103 
 104                 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 105                 break;
 106         case XFS_DINODE_FMT_EXTENTS:
 107                 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 108                 break;
 109         case XFS_DINODE_FMT_BTREE:
 110                 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 111                 break;
 112         default:
 113                 error = -EFSCORRUPTED;
 114                 break;
 115         }
 116         if (error) {
 117                 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 118                 ip->i_afp = NULL;
 119                 if (ip->i_cowfp)
 120                         kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
 121                 ip->i_cowfp = NULL;
 122                 xfs_idestroy_fork(ip, XFS_DATA_FORK);
 123         }
 124         return error;
 125 }
 126 
 127 void
 128 xfs_init_local_fork(
 129         struct xfs_inode        *ip,
 130         int                     whichfork,
 131         const void              *data,
 132         int                     size)
 133 {
 134         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
 135         int                     mem_size = size, real_size = 0;
 136         bool                    zero_terminate;
 137 
 138         /*
 139          * If we are using the local fork to store a symlink body we need to
 140          * zero-terminate it so that we can pass it back to the VFS directly.
 141          * Overallocate the in-memory fork by one for that and add a zero
 142          * to terminate it below.
 143          */
 144         zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
 145         if (zero_terminate)
 146                 mem_size++;
 147 
 148         if (size) {
 149                 real_size = roundup(mem_size, 4);
 150                 ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS);
 151                 memcpy(ifp->if_u1.if_data, data, size);
 152                 if (zero_terminate)
 153                         ifp->if_u1.if_data[size] = '\0';
 154         } else {
 155                 ifp->if_u1.if_data = NULL;
 156         }
 157 
 158         ifp->if_bytes = size;
 159         ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
 160         ifp->if_flags |= XFS_IFINLINE;
 161 }
 162 
 163 /*
 164  * The file is in-lined in the on-disk inode.
 165  */
 166 STATIC int
 167 xfs_iformat_local(
 168         xfs_inode_t     *ip,
 169         xfs_dinode_t    *dip,
 170         int             whichfork,
 171         int             size)
 172 {
 173         /*
 174          * If the size is unreasonable, then something
 175          * is wrong and we just bail out rather than crash in
 176          * kmem_alloc() or memcpy() below.
 177          */
 178         if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 179                 xfs_warn(ip->i_mount,
 180         "corrupt inode %Lu (bad size %d for local fork, size = %d).",
 181                         (unsigned long long) ip->i_ino, size,
 182                         XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 183                 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 184                                 "xfs_iformat_local", dip, sizeof(*dip),
 185                                 __this_address);
 186                 return -EFSCORRUPTED;
 187         }
 188 
 189         xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
 190         return 0;
 191 }
 192 
 193 /*
 194  * The file consists of a set of extents all of which fit into the on-disk
 195  * inode.
 196  */
 197 STATIC int
 198 xfs_iformat_extents(
 199         struct xfs_inode        *ip,
 200         struct xfs_dinode       *dip,
 201         int                     whichfork)
 202 {
 203         struct xfs_mount        *mp = ip->i_mount;
 204         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
 205         int                     state = xfs_bmap_fork_to_state(whichfork);
 206         int                     nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 207         int                     size = nex * sizeof(xfs_bmbt_rec_t);
 208         struct xfs_iext_cursor  icur;
 209         struct xfs_bmbt_rec     *dp;
 210         struct xfs_bmbt_irec    new;
 211         int                     i;
 212 
 213         /*
 214          * If the number of extents is unreasonable, then something is wrong and
 215          * we just bail out rather than crash in kmem_alloc() or memcpy() below.
 216          */
 217         if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
 218                 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
 219                         (unsigned long long) ip->i_ino, nex);
 220                 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 221                                 "xfs_iformat_extents(1)", dip, sizeof(*dip),
 222                                 __this_address);
 223                 return -EFSCORRUPTED;
 224         }
 225 
 226         ifp->if_bytes = 0;
 227         ifp->if_u1.if_root = NULL;
 228         ifp->if_height = 0;
 229         if (size) {
 230                 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 231 
 232                 xfs_iext_first(ifp, &icur);
 233                 for (i = 0; i < nex; i++, dp++) {
 234                         xfs_failaddr_t  fa;
 235 
 236                         xfs_bmbt_disk_get_all(dp, &new);
 237                         fa = xfs_bmap_validate_extent(ip, whichfork, &new);
 238                         if (fa) {
 239                                 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 240                                                 "xfs_iformat_extents(2)",
 241                                                 dp, sizeof(*dp), fa);
 242                                 return -EFSCORRUPTED;
 243                         }
 244 
 245                         xfs_iext_insert(ip, &icur, &new, state);
 246                         trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
 247                         xfs_iext_next(ifp, &icur);
 248                 }
 249         }
 250         ifp->if_flags |= XFS_IFEXTENTS;
 251         return 0;
 252 }
 253 
 254 /*
 255  * The file has too many extents to fit into
 256  * the inode, so they are in B-tree format.
 257  * Allocate a buffer for the root of the B-tree
 258  * and copy the root into it.  The i_extents
 259  * field will remain NULL until all of the
 260  * extents are read in (when they are needed).
 261  */
 262 STATIC int
 263 xfs_iformat_btree(
 264         xfs_inode_t             *ip,
 265         xfs_dinode_t            *dip,
 266         int                     whichfork)
 267 {
 268         struct xfs_mount        *mp = ip->i_mount;
 269         xfs_bmdr_block_t        *dfp;
 270         struct xfs_ifork        *ifp;
 271         /* REFERENCED */
 272         int                     nrecs;
 273         int                     size;
 274         int                     level;
 275 
 276         ifp = XFS_IFORK_PTR(ip, whichfork);
 277         dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 278         size = XFS_BMAP_BROOT_SPACE(mp, dfp);
 279         nrecs = be16_to_cpu(dfp->bb_numrecs);
 280         level = be16_to_cpu(dfp->bb_level);
 281 
 282         /*
 283          * blow out if -- fork has less extents than can fit in
 284          * fork (fork shouldn't be a btree format), root btree
 285          * block has more records than can fit into the fork,
 286          * or the number of extents is greater than the number of
 287          * blocks.
 288          */
 289         if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
 290                                         XFS_IFORK_MAXEXT(ip, whichfork) ||
 291                      nrecs == 0 ||
 292                      XFS_BMDR_SPACE_CALC(nrecs) >
 293                                         XFS_DFORK_SIZE(dip, mp, whichfork) ||
 294                      XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) ||
 295                      level == 0 || level > XFS_BTREE_MAXLEVELS) {
 296                 xfs_warn(mp, "corrupt inode %Lu (btree).",
 297                                         (unsigned long long) ip->i_ino);
 298                 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 299                                 "xfs_iformat_btree", dfp, size,
 300                                 __this_address);
 301                 return -EFSCORRUPTED;
 302         }
 303 
 304         ifp->if_broot_bytes = size;
 305         ifp->if_broot = kmem_alloc(size, KM_NOFS);
 306         ASSERT(ifp->if_broot != NULL);
 307         /*
 308          * Copy and convert from the on-disk structure
 309          * to the in-memory structure.
 310          */
 311         xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 312                          ifp->if_broot, size);
 313         ifp->if_flags &= ~XFS_IFEXTENTS;
 314         ifp->if_flags |= XFS_IFBROOT;
 315 
 316         ifp->if_bytes = 0;
 317         ifp->if_u1.if_root = NULL;
 318         ifp->if_height = 0;
 319         return 0;
 320 }
 321 
 322 /*
 323  * Reallocate the space for if_broot based on the number of records
 324  * being added or deleted as indicated in rec_diff.  Move the records
 325  * and pointers in if_broot to fit the new size.  When shrinking this
 326  * will eliminate holes between the records and pointers created by
 327  * the caller.  When growing this will create holes to be filled in
 328  * by the caller.
 329  *
 330  * The caller must not request to add more records than would fit in
 331  * the on-disk inode root.  If the if_broot is currently NULL, then
 332  * if we are adding records, one will be allocated.  The caller must also
 333  * not request that the number of records go below zero, although
 334  * it can go to zero.
 335  *
 336  * ip -- the inode whose if_broot area is changing
 337  * ext_diff -- the change in the number of records, positive or negative,
 338  *       requested for the if_broot array.
 339  */
 340 void
 341 xfs_iroot_realloc(
 342         xfs_inode_t             *ip,
 343         int                     rec_diff,
 344         int                     whichfork)
 345 {
 346         struct xfs_mount        *mp = ip->i_mount;
 347         int                     cur_max;
 348         struct xfs_ifork        *ifp;
 349         struct xfs_btree_block  *new_broot;
 350         int                     new_max;
 351         size_t                  new_size;
 352         char                    *np;
 353         char                    *op;
 354 
 355         /*
 356          * Handle the degenerate case quietly.
 357          */
 358         if (rec_diff == 0) {
 359                 return;
 360         }
 361 
 362         ifp = XFS_IFORK_PTR(ip, whichfork);
 363         if (rec_diff > 0) {
 364                 /*
 365                  * If there wasn't any memory allocated before, just
 366                  * allocate it now and get out.
 367                  */
 368                 if (ifp->if_broot_bytes == 0) {
 369                         new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
 370                         ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
 371                         ifp->if_broot_bytes = (int)new_size;
 372                         return;
 373                 }
 374 
 375                 /*
 376                  * If there is already an existing if_broot, then we need
 377                  * to realloc() it and shift the pointers to their new
 378                  * location.  The records don't change location because
 379                  * they are kept butted up against the btree block header.
 380                  */
 381                 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
 382                 new_max = cur_max + rec_diff;
 383                 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
 384                 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
 385                                 KM_NOFS);
 386                 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
 387                                                      ifp->if_broot_bytes);
 388                 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
 389                                                      (int)new_size);
 390                 ifp->if_broot_bytes = (int)new_size;
 391                 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
 392                         XFS_IFORK_SIZE(ip, whichfork));
 393                 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
 394                 return;
 395         }
 396 
 397         /*
 398          * rec_diff is less than 0.  In this case, we are shrinking the
 399          * if_broot buffer.  It must already exist.  If we go to zero
 400          * records, just get rid of the root and clear the status bit.
 401          */
 402         ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
 403         cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
 404         new_max = cur_max + rec_diff;
 405         ASSERT(new_max >= 0);
 406         if (new_max > 0)
 407                 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
 408         else
 409                 new_size = 0;
 410         if (new_size > 0) {
 411                 new_broot = kmem_alloc(new_size, KM_NOFS);
 412                 /*
 413                  * First copy over the btree block header.
 414                  */
 415                 memcpy(new_broot, ifp->if_broot,
 416                         XFS_BMBT_BLOCK_LEN(ip->i_mount));
 417         } else {
 418                 new_broot = NULL;
 419                 ifp->if_flags &= ~XFS_IFBROOT;
 420         }
 421 
 422         /*
 423          * Only copy the records and pointers if there are any.
 424          */
 425         if (new_max > 0) {
 426                 /*
 427                  * First copy the records.
 428                  */
 429                 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
 430                 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
 431                 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
 432 
 433                 /*
 434                  * Then copy the pointers.
 435                  */
 436                 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
 437                                                      ifp->if_broot_bytes);
 438                 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
 439                                                      (int)new_size);
 440                 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
 441         }
 442         kmem_free(ifp->if_broot);
 443         ifp->if_broot = new_broot;
 444         ifp->if_broot_bytes = (int)new_size;
 445         if (ifp->if_broot)
 446                 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
 447                         XFS_IFORK_SIZE(ip, whichfork));
 448         return;
 449 }
 450 
 451 
 452 /*
 453  * This is called when the amount of space needed for if_data
 454  * is increased or decreased.  The change in size is indicated by
 455  * the number of bytes that need to be added or deleted in the
 456  * byte_diff parameter.
 457  *
 458  * If the amount of space needed has decreased below the size of the
 459  * inline buffer, then switch to using the inline buffer.  Otherwise,
 460  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
 461  * to what is needed.
 462  *
 463  * ip -- the inode whose if_data area is changing
 464  * byte_diff -- the change in the number of bytes, positive or negative,
 465  *       requested for the if_data array.
 466  */
 467 void
 468 xfs_idata_realloc(
 469         struct xfs_inode        *ip,
 470         int                     byte_diff,
 471         int                     whichfork)
 472 {
 473         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
 474         int                     new_size = (int)ifp->if_bytes + byte_diff;
 475 
 476         ASSERT(new_size >= 0);
 477         ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));
 478 
 479         if (byte_diff == 0)
 480                 return;
 481 
 482         if (new_size == 0) {
 483                 kmem_free(ifp->if_u1.if_data);
 484                 ifp->if_u1.if_data = NULL;
 485                 ifp->if_bytes = 0;
 486                 return;
 487         }
 488 
 489         /*
 490          * For inline data, the underlying buffer must be a multiple of 4 bytes
 491          * in size so that it can be logged and stay on word boundaries.
 492          * We enforce that here.
 493          */
 494         ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data,
 495                         roundup(new_size, 4), KM_NOFS);
 496         ifp->if_bytes = new_size;
 497 }
 498 
 499 void
 500 xfs_idestroy_fork(
 501         xfs_inode_t     *ip,
 502         int             whichfork)
 503 {
 504         struct xfs_ifork        *ifp;
 505 
 506         ifp = XFS_IFORK_PTR(ip, whichfork);
 507         if (ifp->if_broot != NULL) {
 508                 kmem_free(ifp->if_broot);
 509                 ifp->if_broot = NULL;
 510         }
 511 
 512         /*
 513          * If the format is local, then we can't have an extents
 514          * array so just look for an inline data array.  If we're
 515          * not local then we may or may not have an extents list,
 516          * so check and free it up if we do.
 517          */
 518         if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
 519                 if (ifp->if_u1.if_data != NULL) {
 520                         kmem_free(ifp->if_u1.if_data);
 521                         ifp->if_u1.if_data = NULL;
 522                 }
 523         } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) {
 524                 xfs_iext_destroy(ifp);
 525         }
 526 
 527         if (whichfork == XFS_ATTR_FORK) {
 528                 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 529                 ip->i_afp = NULL;
 530         } else if (whichfork == XFS_COW_FORK) {
 531                 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
 532                 ip->i_cowfp = NULL;
 533         }
 534 }
 535 
 536 /*
 537  * Convert in-core extents to on-disk form
 538  *
 539  * In the case of the data fork, the in-core and on-disk fork sizes can be
 540  * different due to delayed allocation extents. We only copy on-disk extents
 541  * here, so callers must always use the physical fork size to determine the
 542  * size of the buffer passed to this routine.  We will return the size actually
 543  * used.
 544  */
 545 int
 546 xfs_iextents_copy(
 547         struct xfs_inode        *ip,
 548         struct xfs_bmbt_rec     *dp,
 549         int                     whichfork)
 550 {
 551         int                     state = xfs_bmap_fork_to_state(whichfork);
 552         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
 553         struct xfs_iext_cursor  icur;
 554         struct xfs_bmbt_irec    rec;
 555         int                     copied = 0;
 556 
 557         ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
 558         ASSERT(ifp->if_bytes > 0);
 559 
 560         for_each_xfs_iext(ifp, &icur, &rec) {
 561                 if (isnullstartblock(rec.br_startblock))
 562                         continue;
 563                 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
 564                 xfs_bmbt_disk_set_all(dp, &rec);
 565                 trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
 566                 copied += sizeof(struct xfs_bmbt_rec);
 567                 dp++;
 568         }
 569 
 570         ASSERT(copied > 0);
 571         ASSERT(copied <= ifp->if_bytes);
 572         return copied;
 573 }
 574 
 575 /*
 576  * Each of the following cases stores data into the same region
 577  * of the on-disk inode, so only one of them can be valid at
 578  * any given time. While it is possible to have conflicting formats
 579  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
 580  * in EXTENTS format, this can only happen when the fork has
 581  * changed formats after being modified but before being flushed.
 582  * In these cases, the format always takes precedence, because the
 583  * format indicates the current state of the fork.
 584  */
 585 void
 586 xfs_iflush_fork(
 587         xfs_inode_t             *ip,
 588         xfs_dinode_t            *dip,
 589         xfs_inode_log_item_t    *iip,
 590         int                     whichfork)
 591 {
 592         char                    *cp;
 593         struct xfs_ifork        *ifp;
 594         xfs_mount_t             *mp;
 595         static const short      brootflag[2] =
 596                 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
 597         static const short      dataflag[2] =
 598                 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
 599         static const short      extflag[2] =
 600                 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
 601 
 602         if (!iip)
 603                 return;
 604         ifp = XFS_IFORK_PTR(ip, whichfork);
 605         /*
 606          * This can happen if we gave up in iformat in an error path,
 607          * for the attribute fork.
 608          */
 609         if (!ifp) {
 610                 ASSERT(whichfork == XFS_ATTR_FORK);
 611                 return;
 612         }
 613         cp = XFS_DFORK_PTR(dip, whichfork);
 614         mp = ip->i_mount;
 615         switch (XFS_IFORK_FORMAT(ip, whichfork)) {
 616         case XFS_DINODE_FMT_LOCAL:
 617                 if ((iip->ili_fields & dataflag[whichfork]) &&
 618                     (ifp->if_bytes > 0)) {
 619                         ASSERT(ifp->if_u1.if_data != NULL);
 620                         ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
 621                         memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
 622                 }
 623                 break;
 624 
 625         case XFS_DINODE_FMT_EXTENTS:
 626                 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
 627                        !(iip->ili_fields & extflag[whichfork]));
 628                 if ((iip->ili_fields & extflag[whichfork]) &&
 629                     (ifp->if_bytes > 0)) {
 630                         ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
 631                         (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
 632                                 whichfork);
 633                 }
 634                 break;
 635 
 636         case XFS_DINODE_FMT_BTREE:
 637                 if ((iip->ili_fields & brootflag[whichfork]) &&
 638                     (ifp->if_broot_bytes > 0)) {
 639                         ASSERT(ifp->if_broot != NULL);
 640                         ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
 641                                 XFS_IFORK_SIZE(ip, whichfork));
 642                         xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
 643                                 (xfs_bmdr_block_t *)cp,
 644                                 XFS_DFORK_SIZE(dip, mp, whichfork));
 645                 }
 646                 break;
 647 
 648         case XFS_DINODE_FMT_DEV:
 649                 if (iip->ili_fields & XFS_ILOG_DEV) {
 650                         ASSERT(whichfork == XFS_DATA_FORK);
 651                         xfs_dinode_put_rdev(dip,
 652                                         linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
 653                 }
 654                 break;
 655 
 656         default:
 657                 ASSERT(0);
 658                 break;
 659         }
 660 }
 661 
 662 /* Convert bmap state flags to an inode fork. */
 663 struct xfs_ifork *
 664 xfs_iext_state_to_fork(
 665         struct xfs_inode        *ip,
 666         int                     state)
 667 {
 668         if (state & BMAP_COWFORK)
 669                 return ip->i_cowfp;
 670         else if (state & BMAP_ATTRFORK)
 671                 return ip->i_afp;
 672         return &ip->i_df;
 673 }
 674 
 675 /*
 676  * Initialize an inode's copy-on-write fork.
 677  */
 678 void
 679 xfs_ifork_init_cow(
 680         struct xfs_inode        *ip)
 681 {
 682         if (ip->i_cowfp)
 683                 return;
 684 
 685         ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone,
 686                                        KM_NOFS);
 687         ip->i_cowfp->if_flags = XFS_IFEXTENTS;
 688         ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
 689         ip->i_cnextents = 0;
 690 }
 691 
 692 /* Default fork content verifiers. */
 693 struct xfs_ifork_ops xfs_default_ifork_ops = {
 694         .verify_attr    = xfs_attr_shortform_verify,
 695         .verify_dir     = xfs_dir2_sf_verify,
 696         .verify_symlink = xfs_symlink_shortform_verify,
 697 };
 698 
 699 /* Verify the inline contents of the data fork of an inode. */
 700 xfs_failaddr_t
 701 xfs_ifork_verify_data(
 702         struct xfs_inode        *ip,
 703         struct xfs_ifork_ops    *ops)
 704 {
 705         /* Non-local data fork, we're done. */
 706         if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
 707                 return NULL;
 708 
 709         /* Check the inline data fork if there is one. */
 710         switch (VFS_I(ip)->i_mode & S_IFMT) {
 711         case S_IFDIR:
 712                 return ops->verify_dir(ip);
 713         case S_IFLNK:
 714                 return ops->verify_symlink(ip);
 715         default:
 716                 return NULL;
 717         }
 718 }
 719 
 720 /* Verify the inline contents of the attr fork of an inode. */
 721 xfs_failaddr_t
 722 xfs_ifork_verify_attr(
 723         struct xfs_inode        *ip,
 724         struct xfs_ifork_ops    *ops)
 725 {
 726         /* There has to be an attr fork allocated if aformat is local. */
 727         if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
 728                 return NULL;
 729         if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK))
 730                 return __this_address;
 731         return ops->verify_attr(ip);
 732 }

/* [<][>][^][v][top][bottom][index][help] */