root/fs/xfs/xfs_file.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xfs_update_prealloc_flags
  2. xfs_dir_fsync
  3. xfs_file_fsync
  4. xfs_file_dio_aio_read
  5. xfs_file_dax_read
  6. xfs_file_buffered_aio_read
  7. xfs_file_read_iter
  8. xfs_file_aio_write_checks
  9. xfs_dio_write_end_io
  10. xfs_file_dio_aio_write
  11. xfs_file_dax_write
  12. xfs_file_buffered_aio_write
  13. xfs_file_write_iter
  14. xfs_wait_dax_page
  15. xfs_break_dax_layouts
  16. xfs_break_layouts
  17. xfs_file_fallocate
  18. xfs_file_fadvise
  19. xfs_file_remap_range
  20. xfs_file_open
  21. xfs_dir_open
  22. xfs_file_release
  23. xfs_file_readdir
  24. xfs_file_llseek
  25. __xfs_filemap_fault
  26. xfs_filemap_fault
  27. xfs_filemap_huge_fault
  28. xfs_filemap_page_mkwrite
  29. xfs_filemap_pfn_mkwrite
  30. xfs_file_mmap

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4  * All Rights Reserved.
   5  */
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_shared.h"
   9 #include "xfs_format.h"
  10 #include "xfs_log_format.h"
  11 #include "xfs_trans_resv.h"
  12 #include "xfs_mount.h"
  13 #include "xfs_inode.h"
  14 #include "xfs_trans.h"
  15 #include "xfs_inode_item.h"
  16 #include "xfs_bmap.h"
  17 #include "xfs_bmap_util.h"
  18 #include "xfs_dir2.h"
  19 #include "xfs_dir2_priv.h"
  20 #include "xfs_ioctl.h"
  21 #include "xfs_trace.h"
  22 #include "xfs_log.h"
  23 #include "xfs_icache.h"
  24 #include "xfs_pnfs.h"
  25 #include "xfs_iomap.h"
  26 #include "xfs_reflink.h"
  27 
  28 #include <linux/falloc.h>
  29 #include <linux/backing-dev.h>
  30 #include <linux/mman.h>
  31 #include <linux/fadvise.h>
  32 
  33 static const struct vm_operations_struct xfs_file_vm_ops;
  34 
  35 int
  36 xfs_update_prealloc_flags(
  37         struct xfs_inode        *ip,
  38         enum xfs_prealloc_flags flags)
  39 {
  40         struct xfs_trans        *tp;
  41         int                     error;
  42 
  43         error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44                         0, 0, 0, &tp);
  45         if (error)
  46                 return error;
  47 
  48         xfs_ilock(ip, XFS_ILOCK_EXCL);
  49         xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50 
  51         if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52                 VFS_I(ip)->i_mode &= ~S_ISUID;
  53                 if (VFS_I(ip)->i_mode & S_IXGRP)
  54                         VFS_I(ip)->i_mode &= ~S_ISGID;
  55                 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56         }
  57 
  58         if (flags & XFS_PREALLOC_SET)
  59                 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60         if (flags & XFS_PREALLOC_CLEAR)
  61                 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62 
  63         xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64         if (flags & XFS_PREALLOC_SYNC)
  65                 xfs_trans_set_sync(tp);
  66         return xfs_trans_commit(tp);
  67 }
  68 
  69 /*
  70  * Fsync operations on directories are much simpler than on regular files,
  71  * as there is no file data to flush, and thus also no need for explicit
  72  * cache flush operations, and there are no non-transaction metadata updates
  73  * on directories either.
  74  */
  75 STATIC int
  76 xfs_dir_fsync(
  77         struct file             *file,
  78         loff_t                  start,
  79         loff_t                  end,
  80         int                     datasync)
  81 {
  82         struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
  83         struct xfs_mount        *mp = ip->i_mount;
  84         xfs_lsn_t               lsn = 0;
  85 
  86         trace_xfs_dir_fsync(ip);
  87 
  88         xfs_ilock(ip, XFS_ILOCK_SHARED);
  89         if (xfs_ipincount(ip))
  90                 lsn = ip->i_itemp->ili_last_lsn;
  91         xfs_iunlock(ip, XFS_ILOCK_SHARED);
  92 
  93         if (!lsn)
  94                 return 0;
  95         return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  96 }
  97 
  98 STATIC int
  99 xfs_file_fsync(
 100         struct file             *file,
 101         loff_t                  start,
 102         loff_t                  end,
 103         int                     datasync)
 104 {
 105         struct inode            *inode = file->f_mapping->host;
 106         struct xfs_inode        *ip = XFS_I(inode);
 107         struct xfs_mount        *mp = ip->i_mount;
 108         int                     error = 0;
 109         int                     log_flushed = 0;
 110         xfs_lsn_t               lsn = 0;
 111 
 112         trace_xfs_file_fsync(ip);
 113 
 114         error = file_write_and_wait_range(file, start, end);
 115         if (error)
 116                 return error;
 117 
 118         if (XFS_FORCED_SHUTDOWN(mp))
 119                 return -EIO;
 120 
 121         xfs_iflags_clear(ip, XFS_ITRUNCATED);
 122 
 123         /*
 124          * If we have an RT and/or log subvolume we need to make sure to flush
 125          * the write cache the device used for file data first.  This is to
 126          * ensure newly written file data make it to disk before logging the new
 127          * inode size in case of an extending write.
 128          */
 129         if (XFS_IS_REALTIME_INODE(ip))
 130                 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 131         else if (mp->m_logdev_targp != mp->m_ddev_targp)
 132                 xfs_blkdev_issue_flush(mp->m_ddev_targp);
 133 
 134         /*
 135          * All metadata updates are logged, which means that we just have to
 136          * flush the log up to the latest LSN that touched the inode. If we have
 137          * concurrent fsync/fdatasync() calls, we need them to all block on the
 138          * log force before we clear the ili_fsync_fields field. This ensures
 139          * that we don't get a racing sync operation that does not wait for the
 140          * metadata to hit the journal before returning. If we race with
 141          * clearing the ili_fsync_fields, then all that will happen is the log
 142          * force will do nothing as the lsn will already be on disk. We can't
 143          * race with setting ili_fsync_fields because that is done under
 144          * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 145          * until after the ili_fsync_fields is cleared.
 146          */
 147         xfs_ilock(ip, XFS_ILOCK_SHARED);
 148         if (xfs_ipincount(ip)) {
 149                 if (!datasync ||
 150                     (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 151                         lsn = ip->i_itemp->ili_last_lsn;
 152         }
 153 
 154         if (lsn) {
 155                 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 156                 ip->i_itemp->ili_fsync_fields = 0;
 157         }
 158         xfs_iunlock(ip, XFS_ILOCK_SHARED);
 159 
 160         /*
 161          * If we only have a single device, and the log force about was
 162          * a no-op we might have to flush the data device cache here.
 163          * This can only happen for fdatasync/O_DSYNC if we were overwriting
 164          * an already allocated file and thus do not have any metadata to
 165          * commit.
 166          */
 167         if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 168             mp->m_logdev_targp == mp->m_ddev_targp)
 169                 xfs_blkdev_issue_flush(mp->m_ddev_targp);
 170 
 171         return error;
 172 }
 173 
 174 STATIC ssize_t
 175 xfs_file_dio_aio_read(
 176         struct kiocb            *iocb,
 177         struct iov_iter         *to)
 178 {
 179         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 180         size_t                  count = iov_iter_count(to);
 181         ssize_t                 ret;
 182 
 183         trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 184 
 185         if (!count)
 186                 return 0; /* skip atime */
 187 
 188         file_accessed(iocb->ki_filp);
 189 
 190         xfs_ilock(ip, XFS_IOLOCK_SHARED);
 191         ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 192         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 193 
 194         return ret;
 195 }
 196 
 197 static noinline ssize_t
 198 xfs_file_dax_read(
 199         struct kiocb            *iocb,
 200         struct iov_iter         *to)
 201 {
 202         struct xfs_inode        *ip = XFS_I(iocb->ki_filp->f_mapping->host);
 203         size_t                  count = iov_iter_count(to);
 204         ssize_t                 ret = 0;
 205 
 206         trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 207 
 208         if (!count)
 209                 return 0; /* skip atime */
 210 
 211         if (iocb->ki_flags & IOCB_NOWAIT) {
 212                 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 213                         return -EAGAIN;
 214         } else {
 215                 xfs_ilock(ip, XFS_IOLOCK_SHARED);
 216         }
 217 
 218         ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 219         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 220 
 221         file_accessed(iocb->ki_filp);
 222         return ret;
 223 }
 224 
 225 STATIC ssize_t
 226 xfs_file_buffered_aio_read(
 227         struct kiocb            *iocb,
 228         struct iov_iter         *to)
 229 {
 230         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 231         ssize_t                 ret;
 232 
 233         trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 234 
 235         if (iocb->ki_flags & IOCB_NOWAIT) {
 236                 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 237                         return -EAGAIN;
 238         } else {
 239                 xfs_ilock(ip, XFS_IOLOCK_SHARED);
 240         }
 241         ret = generic_file_read_iter(iocb, to);
 242         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 243 
 244         return ret;
 245 }
 246 
 247 STATIC ssize_t
 248 xfs_file_read_iter(
 249         struct kiocb            *iocb,
 250         struct iov_iter         *to)
 251 {
 252         struct inode            *inode = file_inode(iocb->ki_filp);
 253         struct xfs_mount        *mp = XFS_I(inode)->i_mount;
 254         ssize_t                 ret = 0;
 255 
 256         XFS_STATS_INC(mp, xs_read_calls);
 257 
 258         if (XFS_FORCED_SHUTDOWN(mp))
 259                 return -EIO;
 260 
 261         if (IS_DAX(inode))
 262                 ret = xfs_file_dax_read(iocb, to);
 263         else if (iocb->ki_flags & IOCB_DIRECT)
 264                 ret = xfs_file_dio_aio_read(iocb, to);
 265         else
 266                 ret = xfs_file_buffered_aio_read(iocb, to);
 267 
 268         if (ret > 0)
 269                 XFS_STATS_ADD(mp, xs_read_bytes, ret);
 270         return ret;
 271 }
 272 
 273 /*
 274  * Common pre-write limit and setup checks.
 275  *
 276  * Called with the iolocked held either shared and exclusive according to
 277  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 278  * if called for a direct write beyond i_size.
 279  */
 280 STATIC ssize_t
 281 xfs_file_aio_write_checks(
 282         struct kiocb            *iocb,
 283         struct iov_iter         *from,
 284         int                     *iolock)
 285 {
 286         struct file             *file = iocb->ki_filp;
 287         struct inode            *inode = file->f_mapping->host;
 288         struct xfs_inode        *ip = XFS_I(inode);
 289         ssize_t                 error = 0;
 290         size_t                  count = iov_iter_count(from);
 291         bool                    drained_dio = false;
 292         loff_t                  isize;
 293 
 294 restart:
 295         error = generic_write_checks(iocb, from);
 296         if (error <= 0)
 297                 return error;
 298 
 299         error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 300         if (error)
 301                 return error;
 302 
 303         /*
 304          * For changing security info in file_remove_privs() we need i_rwsem
 305          * exclusively.
 306          */
 307         if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 308                 xfs_iunlock(ip, *iolock);
 309                 *iolock = XFS_IOLOCK_EXCL;
 310                 xfs_ilock(ip, *iolock);
 311                 goto restart;
 312         }
 313         /*
 314          * If the offset is beyond the size of the file, we need to zero any
 315          * blocks that fall between the existing EOF and the start of this
 316          * write.  If zeroing is needed and we are currently holding the
 317          * iolock shared, we need to update it to exclusive which implies
 318          * having to redo all checks before.
 319          *
 320          * We need to serialise against EOF updates that occur in IO
 321          * completions here. We want to make sure that nobody is changing the
 322          * size while we do this check until we have placed an IO barrier (i.e.
 323          * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 324          * The spinlock effectively forms a memory barrier once we have the
 325          * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 326          * and hence be able to correctly determine if we need to run zeroing.
 327          */
 328         spin_lock(&ip->i_flags_lock);
 329         isize = i_size_read(inode);
 330         if (iocb->ki_pos > isize) {
 331                 spin_unlock(&ip->i_flags_lock);
 332                 if (!drained_dio) {
 333                         if (*iolock == XFS_IOLOCK_SHARED) {
 334                                 xfs_iunlock(ip, *iolock);
 335                                 *iolock = XFS_IOLOCK_EXCL;
 336                                 xfs_ilock(ip, *iolock);
 337                                 iov_iter_reexpand(from, count);
 338                         }
 339                         /*
 340                          * We now have an IO submission barrier in place, but
 341                          * AIO can do EOF updates during IO completion and hence
 342                          * we now need to wait for all of them to drain. Non-AIO
 343                          * DIO will have drained before we are given the
 344                          * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 345                          * no-op.
 346                          */
 347                         inode_dio_wait(inode);
 348                         drained_dio = true;
 349                         goto restart;
 350                 }
 351         
 352                 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 353                 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 354                                 NULL, &xfs_iomap_ops);
 355                 if (error)
 356                         return error;
 357         } else
 358                 spin_unlock(&ip->i_flags_lock);
 359 
 360         /*
 361          * Updating the timestamps will grab the ilock again from
 362          * xfs_fs_dirty_inode, so we have to call it after dropping the
 363          * lock above.  Eventually we should look into a way to avoid
 364          * the pointless lock roundtrip.
 365          */
 366         return file_modified(file);
 367 }
 368 
 369 static int
 370 xfs_dio_write_end_io(
 371         struct kiocb            *iocb,
 372         ssize_t                 size,
 373         int                     error,
 374         unsigned                flags)
 375 {
 376         struct inode            *inode = file_inode(iocb->ki_filp);
 377         struct xfs_inode        *ip = XFS_I(inode);
 378         loff_t                  offset = iocb->ki_pos;
 379         unsigned int            nofs_flag;
 380 
 381         trace_xfs_end_io_direct_write(ip, offset, size);
 382 
 383         if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 384                 return -EIO;
 385 
 386         if (error)
 387                 return error;
 388         if (!size)
 389                 return 0;
 390 
 391         /*
 392          * Capture amount written on completion as we can't reliably account
 393          * for it on submission.
 394          */
 395         XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 396 
 397         /*
 398          * We can allocate memory here while doing writeback on behalf of
 399          * memory reclaim.  To avoid memory allocation deadlocks set the
 400          * task-wide nofs context for the following operations.
 401          */
 402         nofs_flag = memalloc_nofs_save();
 403 
 404         if (flags & IOMAP_DIO_COW) {
 405                 error = xfs_reflink_end_cow(ip, offset, size);
 406                 if (error)
 407                         goto out;
 408         }
 409 
 410         /*
 411          * Unwritten conversion updates the in-core isize after extent
 412          * conversion but before updating the on-disk size. Updating isize any
 413          * earlier allows a racing dio read to find unwritten extents before
 414          * they are converted.
 415          */
 416         if (flags & IOMAP_DIO_UNWRITTEN) {
 417                 error = xfs_iomap_write_unwritten(ip, offset, size, true);
 418                 goto out;
 419         }
 420 
 421         /*
 422          * We need to update the in-core inode size here so that we don't end up
 423          * with the on-disk inode size being outside the in-core inode size. We
 424          * have no other method of updating EOF for AIO, so always do it here
 425          * if necessary.
 426          *
 427          * We need to lock the test/set EOF update as we can be racing with
 428          * other IO completions here to update the EOF. Failing to serialise
 429          * here can result in EOF moving backwards and Bad Things Happen when
 430          * that occurs.
 431          */
 432         spin_lock(&ip->i_flags_lock);
 433         if (offset + size > i_size_read(inode)) {
 434                 i_size_write(inode, offset + size);
 435                 spin_unlock(&ip->i_flags_lock);
 436                 error = xfs_setfilesize(ip, offset, size);
 437         } else {
 438                 spin_unlock(&ip->i_flags_lock);
 439         }
 440 
 441 out:
 442         memalloc_nofs_restore(nofs_flag);
 443         return error;
 444 }
 445 
 446 static const struct iomap_dio_ops xfs_dio_write_ops = {
 447         .end_io         = xfs_dio_write_end_io,
 448 };
 449 
 450 /*
 451  * xfs_file_dio_aio_write - handle direct IO writes
 452  *
 453  * Lock the inode appropriately to prepare for and issue a direct IO write.
 454  * By separating it from the buffered write path we remove all the tricky to
 455  * follow locking changes and looping.
 456  *
 457  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 458  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 459  * pages are flushed out.
 460  *
 461  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 462  * allowing them to be done in parallel with reads and other direct IO writes.
 463  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 464  * needs to do sub-block zeroing and that requires serialisation against other
 465  * direct IOs to the same block. In this case we need to serialise the
 466  * submission of the unaligned IOs so that we don't get racing block zeroing in
 467  * the dio layer.  To avoid the problem with aio, we also need to wait for
 468  * outstanding IOs to complete so that unwritten extent conversion is completed
 469  * before we try to map the overlapping block. This is currently implemented by
 470  * hitting it with a big hammer (i.e. inode_dio_wait()).
 471  *
 472  * Returns with locks held indicated by @iolock and errors indicated by
 473  * negative return values.
 474  */
 475 STATIC ssize_t
 476 xfs_file_dio_aio_write(
 477         struct kiocb            *iocb,
 478         struct iov_iter         *from)
 479 {
 480         struct file             *file = iocb->ki_filp;
 481         struct address_space    *mapping = file->f_mapping;
 482         struct inode            *inode = mapping->host;
 483         struct xfs_inode        *ip = XFS_I(inode);
 484         struct xfs_mount        *mp = ip->i_mount;
 485         ssize_t                 ret = 0;
 486         int                     unaligned_io = 0;
 487         int                     iolock;
 488         size_t                  count = iov_iter_count(from);
 489         struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 490                                         mp->m_rtdev_targp : mp->m_ddev_targp;
 491 
 492         /* DIO must be aligned to device logical sector size */
 493         if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 494                 return -EINVAL;
 495 
 496         /*
 497          * Don't take the exclusive iolock here unless the I/O is unaligned to
 498          * the file system block size.  We don't need to consider the EOF
 499          * extension case here because xfs_file_aio_write_checks() will relock
 500          * the inode as necessary for EOF zeroing cases and fill out the new
 501          * inode size as appropriate.
 502          */
 503         if ((iocb->ki_pos & mp->m_blockmask) ||
 504             ((iocb->ki_pos + count) & mp->m_blockmask)) {
 505                 unaligned_io = 1;
 506 
 507                 /*
 508                  * We can't properly handle unaligned direct I/O to reflink
 509                  * files yet, as we can't unshare a partial block.
 510                  */
 511                 if (xfs_is_cow_inode(ip)) {
 512                         trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 513                         return -EREMCHG;
 514                 }
 515                 iolock = XFS_IOLOCK_EXCL;
 516         } else {
 517                 iolock = XFS_IOLOCK_SHARED;
 518         }
 519 
 520         if (iocb->ki_flags & IOCB_NOWAIT) {
 521                 /* unaligned dio always waits, bail */
 522                 if (unaligned_io)
 523                         return -EAGAIN;
 524                 if (!xfs_ilock_nowait(ip, iolock))
 525                         return -EAGAIN;
 526         } else {
 527                 xfs_ilock(ip, iolock);
 528         }
 529 
 530         ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 531         if (ret)
 532                 goto out;
 533         count = iov_iter_count(from);
 534 
 535         /*
 536          * If we are doing unaligned IO, we can't allow any other overlapping IO
 537          * in-flight at the same time or we risk data corruption. Wait for all
 538          * other IO to drain before we submit. If the IO is aligned, demote the
 539          * iolock if we had to take the exclusive lock in
 540          * xfs_file_aio_write_checks() for other reasons.
 541          */
 542         if (unaligned_io) {
 543                 inode_dio_wait(inode);
 544         } else if (iolock == XFS_IOLOCK_EXCL) {
 545                 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 546                 iolock = XFS_IOLOCK_SHARED;
 547         }
 548 
 549         trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 550         ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
 551 
 552         /*
 553          * If unaligned, this is the only IO in-flight. If it has not yet
 554          * completed, wait on it before we release the iolock to prevent
 555          * subsequent overlapping IO.
 556          */
 557         if (ret == -EIOCBQUEUED && unaligned_io)
 558                 inode_dio_wait(inode);
 559 out:
 560         xfs_iunlock(ip, iolock);
 561 
 562         /*
 563          * No fallback to buffered IO on errors for XFS, direct IO will either
 564          * complete fully or fail.
 565          */
 566         ASSERT(ret < 0 || ret == count);
 567         return ret;
 568 }
 569 
 570 static noinline ssize_t
 571 xfs_file_dax_write(
 572         struct kiocb            *iocb,
 573         struct iov_iter         *from)
 574 {
 575         struct inode            *inode = iocb->ki_filp->f_mapping->host;
 576         struct xfs_inode        *ip = XFS_I(inode);
 577         int                     iolock = XFS_IOLOCK_EXCL;
 578         ssize_t                 ret, error = 0;
 579         size_t                  count;
 580         loff_t                  pos;
 581 
 582         if (iocb->ki_flags & IOCB_NOWAIT) {
 583                 if (!xfs_ilock_nowait(ip, iolock))
 584                         return -EAGAIN;
 585         } else {
 586                 xfs_ilock(ip, iolock);
 587         }
 588 
 589         ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 590         if (ret)
 591                 goto out;
 592 
 593         pos = iocb->ki_pos;
 594         count = iov_iter_count(from);
 595 
 596         trace_xfs_file_dax_write(ip, count, pos);
 597         ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 598         if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 599                 i_size_write(inode, iocb->ki_pos);
 600                 error = xfs_setfilesize(ip, pos, ret);
 601         }
 602 out:
 603         xfs_iunlock(ip, iolock);
 604         if (error)
 605                 return error;
 606 
 607         if (ret > 0) {
 608                 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 609 
 610                 /* Handle various SYNC-type writes */
 611                 ret = generic_write_sync(iocb, ret);
 612         }
 613         return ret;
 614 }
 615 
 616 STATIC ssize_t
 617 xfs_file_buffered_aio_write(
 618         struct kiocb            *iocb,
 619         struct iov_iter         *from)
 620 {
 621         struct file             *file = iocb->ki_filp;
 622         struct address_space    *mapping = file->f_mapping;
 623         struct inode            *inode = mapping->host;
 624         struct xfs_inode        *ip = XFS_I(inode);
 625         ssize_t                 ret;
 626         int                     enospc = 0;
 627         int                     iolock;
 628 
 629         if (iocb->ki_flags & IOCB_NOWAIT)
 630                 return -EOPNOTSUPP;
 631 
 632 write_retry:
 633         iolock = XFS_IOLOCK_EXCL;
 634         xfs_ilock(ip, iolock);
 635 
 636         ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 637         if (ret)
 638                 goto out;
 639 
 640         /* We can write back this queue in page reclaim */
 641         current->backing_dev_info = inode_to_bdi(inode);
 642 
 643         trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 644         ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 645         if (likely(ret >= 0))
 646                 iocb->ki_pos += ret;
 647 
 648         /*
 649          * If we hit a space limit, try to free up some lingering preallocated
 650          * space before returning an error. In the case of ENOSPC, first try to
 651          * write back all dirty inodes to free up some of the excess reserved
 652          * metadata space. This reduces the chances that the eofblocks scan
 653          * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 654          * also behaves as a filter to prevent too many eofblocks scans from
 655          * running at the same time.
 656          */
 657         if (ret == -EDQUOT && !enospc) {
 658                 xfs_iunlock(ip, iolock);
 659                 enospc = xfs_inode_free_quota_eofblocks(ip);
 660                 if (enospc)
 661                         goto write_retry;
 662                 enospc = xfs_inode_free_quota_cowblocks(ip);
 663                 if (enospc)
 664                         goto write_retry;
 665                 iolock = 0;
 666         } else if (ret == -ENOSPC && !enospc) {
 667                 struct xfs_eofblocks eofb = {0};
 668 
 669                 enospc = 1;
 670                 xfs_flush_inodes(ip->i_mount);
 671 
 672                 xfs_iunlock(ip, iolock);
 673                 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 674                 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 675                 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 676                 goto write_retry;
 677         }
 678 
 679         current->backing_dev_info = NULL;
 680 out:
 681         if (iolock)
 682                 xfs_iunlock(ip, iolock);
 683 
 684         if (ret > 0) {
 685                 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 686                 /* Handle various SYNC-type writes */
 687                 ret = generic_write_sync(iocb, ret);
 688         }
 689         return ret;
 690 }
 691 
 692 STATIC ssize_t
 693 xfs_file_write_iter(
 694         struct kiocb            *iocb,
 695         struct iov_iter         *from)
 696 {
 697         struct file             *file = iocb->ki_filp;
 698         struct address_space    *mapping = file->f_mapping;
 699         struct inode            *inode = mapping->host;
 700         struct xfs_inode        *ip = XFS_I(inode);
 701         ssize_t                 ret;
 702         size_t                  ocount = iov_iter_count(from);
 703 
 704         XFS_STATS_INC(ip->i_mount, xs_write_calls);
 705 
 706         if (ocount == 0)
 707                 return 0;
 708 
 709         if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 710                 return -EIO;
 711 
 712         if (IS_DAX(inode))
 713                 return xfs_file_dax_write(iocb, from);
 714 
 715         if (iocb->ki_flags & IOCB_DIRECT) {
 716                 /*
 717                  * Allow a directio write to fall back to a buffered
 718                  * write *only* in the case that we're doing a reflink
 719                  * CoW.  In all other directio scenarios we do not
 720                  * allow an operation to fall back to buffered mode.
 721                  */
 722                 ret = xfs_file_dio_aio_write(iocb, from);
 723                 if (ret != -EREMCHG)
 724                         return ret;
 725         }
 726 
 727         return xfs_file_buffered_aio_write(iocb, from);
 728 }
 729 
 730 static void
 731 xfs_wait_dax_page(
 732         struct inode            *inode)
 733 {
 734         struct xfs_inode        *ip = XFS_I(inode);
 735 
 736         xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 737         schedule();
 738         xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 739 }
 740 
 741 static int
 742 xfs_break_dax_layouts(
 743         struct inode            *inode,
 744         bool                    *retry)
 745 {
 746         struct page             *page;
 747 
 748         ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 749 
 750         page = dax_layout_busy_page(inode->i_mapping);
 751         if (!page)
 752                 return 0;
 753 
 754         *retry = true;
 755         return ___wait_var_event(&page->_refcount,
 756                         atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 757                         0, 0, xfs_wait_dax_page(inode));
 758 }
 759 
 760 int
 761 xfs_break_layouts(
 762         struct inode            *inode,
 763         uint                    *iolock,
 764         enum layout_break_reason reason)
 765 {
 766         bool                    retry;
 767         int                     error;
 768 
 769         ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 770 
 771         do {
 772                 retry = false;
 773                 switch (reason) {
 774                 case BREAK_UNMAP:
 775                         error = xfs_break_dax_layouts(inode, &retry);
 776                         if (error || retry)
 777                                 break;
 778                         /* fall through */
 779                 case BREAK_WRITE:
 780                         error = xfs_break_leased_layouts(inode, iolock, &retry);
 781                         break;
 782                 default:
 783                         WARN_ON_ONCE(1);
 784                         error = -EINVAL;
 785                 }
 786         } while (error == 0 && retry);
 787 
 788         return error;
 789 }
 790 
 791 #define XFS_FALLOC_FL_SUPPORTED                                         \
 792                 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |           \
 793                  FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |      \
 794                  FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 795 
 796 STATIC long
 797 xfs_file_fallocate(
 798         struct file             *file,
 799         int                     mode,
 800         loff_t                  offset,
 801         loff_t                  len)
 802 {
 803         struct inode            *inode = file_inode(file);
 804         struct xfs_inode        *ip = XFS_I(inode);
 805         long                    error;
 806         enum xfs_prealloc_flags flags = 0;
 807         uint                    iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 808         loff_t                  new_size = 0;
 809         bool                    do_file_insert = false;
 810 
 811         if (!S_ISREG(inode->i_mode))
 812                 return -EINVAL;
 813         if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 814                 return -EOPNOTSUPP;
 815 
 816         xfs_ilock(ip, iolock);
 817         error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 818         if (error)
 819                 goto out_unlock;
 820 
 821         if (mode & FALLOC_FL_PUNCH_HOLE) {
 822                 error = xfs_free_file_space(ip, offset, len);
 823                 if (error)
 824                         goto out_unlock;
 825         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 826                 unsigned int blksize_mask = i_blocksize(inode) - 1;
 827 
 828                 if (offset & blksize_mask || len & blksize_mask) {
 829                         error = -EINVAL;
 830                         goto out_unlock;
 831                 }
 832 
 833                 /*
 834                  * There is no need to overlap collapse range with EOF,
 835                  * in which case it is effectively a truncate operation
 836                  */
 837                 if (offset + len >= i_size_read(inode)) {
 838                         error = -EINVAL;
 839                         goto out_unlock;
 840                 }
 841 
 842                 new_size = i_size_read(inode) - len;
 843 
 844                 error = xfs_collapse_file_space(ip, offset, len);
 845                 if (error)
 846                         goto out_unlock;
 847         } else if (mode & FALLOC_FL_INSERT_RANGE) {
 848                 unsigned int    blksize_mask = i_blocksize(inode) - 1;
 849                 loff_t          isize = i_size_read(inode);
 850 
 851                 if (offset & blksize_mask || len & blksize_mask) {
 852                         error = -EINVAL;
 853                         goto out_unlock;
 854                 }
 855 
 856                 /*
 857                  * New inode size must not exceed ->s_maxbytes, accounting for
 858                  * possible signed overflow.
 859                  */
 860                 if (inode->i_sb->s_maxbytes - isize < len) {
 861                         error = -EFBIG;
 862                         goto out_unlock;
 863                 }
 864                 new_size = isize + len;
 865 
 866                 /* Offset should be less than i_size */
 867                 if (offset >= isize) {
 868                         error = -EINVAL;
 869                         goto out_unlock;
 870                 }
 871                 do_file_insert = true;
 872         } else {
 873                 flags |= XFS_PREALLOC_SET;
 874 
 875                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 876                     offset + len > i_size_read(inode)) {
 877                         new_size = offset + len;
 878                         error = inode_newsize_ok(inode, new_size);
 879                         if (error)
 880                                 goto out_unlock;
 881                 }
 882 
 883                 if (mode & FALLOC_FL_ZERO_RANGE) {
 884                         error = xfs_zero_file_space(ip, offset, len);
 885                 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 886                         error = xfs_reflink_unshare(ip, offset, len);
 887                         if (error)
 888                                 goto out_unlock;
 889 
 890                         if (!xfs_is_always_cow_inode(ip)) {
 891                                 error = xfs_alloc_file_space(ip, offset, len,
 892                                                 XFS_BMAPI_PREALLOC);
 893                         }
 894                 } else {
 895                         /*
 896                          * If always_cow mode we can't use preallocations and
 897                          * thus should not create them.
 898                          */
 899                         if (xfs_is_always_cow_inode(ip)) {
 900                                 error = -EOPNOTSUPP;
 901                                 goto out_unlock;
 902                         }
 903 
 904                         error = xfs_alloc_file_space(ip, offset, len,
 905                                                      XFS_BMAPI_PREALLOC);
 906                 }
 907                 if (error)
 908                         goto out_unlock;
 909         }
 910 
 911         if (file->f_flags & O_DSYNC)
 912                 flags |= XFS_PREALLOC_SYNC;
 913 
 914         error = xfs_update_prealloc_flags(ip, flags);
 915         if (error)
 916                 goto out_unlock;
 917 
 918         /* Change file size if needed */
 919         if (new_size) {
 920                 struct iattr iattr;
 921 
 922                 iattr.ia_valid = ATTR_SIZE;
 923                 iattr.ia_size = new_size;
 924                 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 925                 if (error)
 926                         goto out_unlock;
 927         }
 928 
 929         /*
 930          * Perform hole insertion now that the file size has been
 931          * updated so that if we crash during the operation we don't
 932          * leave shifted extents past EOF and hence losing access to
 933          * the data that is contained within them.
 934          */
 935         if (do_file_insert)
 936                 error = xfs_insert_file_space(ip, offset, len);
 937 
 938 out_unlock:
 939         xfs_iunlock(ip, iolock);
 940         return error;
 941 }
 942 
 943 STATIC int
 944 xfs_file_fadvise(
 945         struct file     *file,
 946         loff_t          start,
 947         loff_t          end,
 948         int             advice)
 949 {
 950         struct xfs_inode *ip = XFS_I(file_inode(file));
 951         int ret;
 952         int lockflags = 0;
 953 
 954         /*
 955          * Operations creating pages in page cache need protection from hole
 956          * punching and similar ops
 957          */
 958         if (advice == POSIX_FADV_WILLNEED) {
 959                 lockflags = XFS_IOLOCK_SHARED;
 960                 xfs_ilock(ip, lockflags);
 961         }
 962         ret = generic_fadvise(file, start, end, advice);
 963         if (lockflags)
 964                 xfs_iunlock(ip, lockflags);
 965         return ret;
 966 }
 967 
 968 STATIC loff_t
 969 xfs_file_remap_range(
 970         struct file             *file_in,
 971         loff_t                  pos_in,
 972         struct file             *file_out,
 973         loff_t                  pos_out,
 974         loff_t                  len,
 975         unsigned int            remap_flags)
 976 {
 977         struct inode            *inode_in = file_inode(file_in);
 978         struct xfs_inode        *src = XFS_I(inode_in);
 979         struct inode            *inode_out = file_inode(file_out);
 980         struct xfs_inode        *dest = XFS_I(inode_out);
 981         struct xfs_mount        *mp = src->i_mount;
 982         loff_t                  remapped = 0;
 983         xfs_extlen_t            cowextsize;
 984         int                     ret;
 985 
 986         if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 987                 return -EINVAL;
 988 
 989         if (!xfs_sb_version_hasreflink(&mp->m_sb))
 990                 return -EOPNOTSUPP;
 991 
 992         if (XFS_FORCED_SHUTDOWN(mp))
 993                 return -EIO;
 994 
 995         /* Prepare and then clone file data. */
 996         ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
 997                         &len, remap_flags);
 998         if (ret < 0 || len == 0)
 999                 return ret;
1000 
1001         trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002 
1003         ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004                         &remapped);
1005         if (ret)
1006                 goto out_unlock;
1007 
1008         /*
1009          * Carry the cowextsize hint from src to dest if we're sharing the
1010          * entire source file to the entire destination file, the source file
1011          * has a cowextsize hint, and the destination file does not.
1012          */
1013         cowextsize = 0;
1014         if (pos_in == 0 && len == i_size_read(inode_in) &&
1015             (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016             pos_out == 0 && len >= i_size_read(inode_out) &&
1017             !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018                 cowextsize = src->i_d.di_cowextsize;
1019 
1020         ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021                         remap_flags);
1022 
1023 out_unlock:
1024         xfs_reflink_remap_unlock(file_in, file_out);
1025         if (ret)
1026                 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027         return remapped > 0 ? remapped : ret;
1028 }
1029 
1030 STATIC int
1031 xfs_file_open(
1032         struct inode    *inode,
1033         struct file     *file)
1034 {
1035         if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1036                 return -EFBIG;
1037         if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038                 return -EIO;
1039         file->f_mode |= FMODE_NOWAIT;
1040         return 0;
1041 }
1042 
1043 STATIC int
1044 xfs_dir_open(
1045         struct inode    *inode,
1046         struct file     *file)
1047 {
1048         struct xfs_inode *ip = XFS_I(inode);
1049         int             mode;
1050         int             error;
1051 
1052         error = xfs_file_open(inode, file);
1053         if (error)
1054                 return error;
1055 
1056         /*
1057          * If there are any blocks, read-ahead block 0 as we're almost
1058          * certain to have the next operation be a read there.
1059          */
1060         mode = xfs_ilock_data_map_shared(ip);
1061         if (ip->i_d.di_nextents > 0)
1062                 error = xfs_dir3_data_readahead(ip, 0, -1);
1063         xfs_iunlock(ip, mode);
1064         return error;
1065 }
1066 
1067 STATIC int
1068 xfs_file_release(
1069         struct inode    *inode,
1070         struct file     *filp)
1071 {
1072         return xfs_release(XFS_I(inode));
1073 }
1074 
1075 STATIC int
1076 xfs_file_readdir(
1077         struct file     *file,
1078         struct dir_context *ctx)
1079 {
1080         struct inode    *inode = file_inode(file);
1081         xfs_inode_t     *ip = XFS_I(inode);
1082         size_t          bufsize;
1083 
1084         /*
1085          * The Linux API doesn't pass down the total size of the buffer
1086          * we read into down to the filesystem.  With the filldir concept
1087          * it's not needed for correct information, but the XFS dir2 leaf
1088          * code wants an estimate of the buffer size to calculate it's
1089          * readahead window and size the buffers used for mapping to
1090          * physical blocks.
1091          *
1092          * Try to give it an estimate that's good enough, maybe at some
1093          * point we can change the ->readdir prototype to include the
1094          * buffer size.  For now we use the current glibc buffer size.
1095          */
1096         bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1097 
1098         return xfs_readdir(NULL, ip, ctx, bufsize);
1099 }
1100 
1101 STATIC loff_t
1102 xfs_file_llseek(
1103         struct file     *file,
1104         loff_t          offset,
1105         int             whence)
1106 {
1107         struct inode            *inode = file->f_mapping->host;
1108 
1109         if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110                 return -EIO;
1111 
1112         switch (whence) {
1113         default:
1114                 return generic_file_llseek(file, offset, whence);
1115         case SEEK_HOLE:
1116                 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1117                 break;
1118         case SEEK_DATA:
1119                 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1120                 break;
1121         }
1122 
1123         if (offset < 0)
1124                 return offset;
1125         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1126 }
1127 
1128 /*
1129  * Locking for serialisation of IO during page faults. This results in a lock
1130  * ordering of:
1131  *
1132  * mmap_sem (MM)
1133  *   sb_start_pagefault(vfs, freeze)
1134  *     i_mmaplock (XFS - truncate serialisation)
1135  *       page_lock (MM)
1136  *         i_lock (XFS - extent map serialisation)
1137  */
1138 static vm_fault_t
1139 __xfs_filemap_fault(
1140         struct vm_fault         *vmf,
1141         enum page_entry_size    pe_size,
1142         bool                    write_fault)
1143 {
1144         struct inode            *inode = file_inode(vmf->vma->vm_file);
1145         struct xfs_inode        *ip = XFS_I(inode);
1146         vm_fault_t              ret;
1147 
1148         trace_xfs_filemap_fault(ip, pe_size, write_fault);
1149 
1150         if (write_fault) {
1151                 sb_start_pagefault(inode->i_sb);
1152                 file_update_time(vmf->vma->vm_file);
1153         }
1154 
1155         xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1156         if (IS_DAX(inode)) {
1157                 pfn_t pfn;
1158 
1159                 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1160                 if (ret & VM_FAULT_NEEDDSYNC)
1161                         ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1162         } else {
1163                 if (write_fault)
1164                         ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1165                 else
1166                         ret = filemap_fault(vmf);
1167         }
1168         xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1169 
1170         if (write_fault)
1171                 sb_end_pagefault(inode->i_sb);
1172         return ret;
1173 }
1174 
1175 static vm_fault_t
1176 xfs_filemap_fault(
1177         struct vm_fault         *vmf)
1178 {
1179         /* DAX can shortcut the normal fault path on write faults! */
1180         return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181                         IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182                         (vmf->flags & FAULT_FLAG_WRITE));
1183 }
1184 
1185 static vm_fault_t
1186 xfs_filemap_huge_fault(
1187         struct vm_fault         *vmf,
1188         enum page_entry_size    pe_size)
1189 {
1190         if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1191                 return VM_FAULT_FALLBACK;
1192 
1193         /* DAX can shortcut the normal fault path on write faults! */
1194         return __xfs_filemap_fault(vmf, pe_size,
1195                         (vmf->flags & FAULT_FLAG_WRITE));
1196 }
1197 
1198 static vm_fault_t
1199 xfs_filemap_page_mkwrite(
1200         struct vm_fault         *vmf)
1201 {
1202         return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1203 }
1204 
1205 /*
1206  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207  * on write faults. In reality, it needs to serialise against truncate and
1208  * prepare memory for writing so handle is as standard write fault.
1209  */
1210 static vm_fault_t
1211 xfs_filemap_pfn_mkwrite(
1212         struct vm_fault         *vmf)
1213 {
1214 
1215         return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1216 }
1217 
1218 static const struct vm_operations_struct xfs_file_vm_ops = {
1219         .fault          = xfs_filemap_fault,
1220         .huge_fault     = xfs_filemap_huge_fault,
1221         .map_pages      = filemap_map_pages,
1222         .page_mkwrite   = xfs_filemap_page_mkwrite,
1223         .pfn_mkwrite    = xfs_filemap_pfn_mkwrite,
1224 };
1225 
1226 STATIC int
1227 xfs_file_mmap(
1228         struct file     *filp,
1229         struct vm_area_struct *vma)
1230 {
1231         struct dax_device       *dax_dev;
1232 
1233         dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1234         /*
1235          * We don't support synchronous mappings for non-DAX files and
1236          * for DAX files if underneath dax_device is not synchronous.
1237          */
1238         if (!daxdev_mapping_supported(vma, dax_dev))
1239                 return -EOPNOTSUPP;
1240 
1241         file_accessed(filp);
1242         vma->vm_ops = &xfs_file_vm_ops;
1243         if (IS_DAX(file_inode(filp)))
1244                 vma->vm_flags |= VM_HUGEPAGE;
1245         return 0;
1246 }
1247 
1248 const struct file_operations xfs_file_operations = {
1249         .llseek         = xfs_file_llseek,
1250         .read_iter      = xfs_file_read_iter,
1251         .write_iter     = xfs_file_write_iter,
1252         .splice_read    = generic_file_splice_read,
1253         .splice_write   = iter_file_splice_write,
1254         .iopoll         = iomap_dio_iopoll,
1255         .unlocked_ioctl = xfs_file_ioctl,
1256 #ifdef CONFIG_COMPAT
1257         .compat_ioctl   = xfs_file_compat_ioctl,
1258 #endif
1259         .mmap           = xfs_file_mmap,
1260         .mmap_supported_flags = MAP_SYNC,
1261         .open           = xfs_file_open,
1262         .release        = xfs_file_release,
1263         .fsync          = xfs_file_fsync,
1264         .get_unmapped_area = thp_get_unmapped_area,
1265         .fallocate      = xfs_file_fallocate,
1266         .fadvise        = xfs_file_fadvise,
1267         .remap_file_range = xfs_file_remap_range,
1268 };
1269 
1270 const struct file_operations xfs_dir_file_operations = {
1271         .open           = xfs_dir_open,
1272         .read           = generic_read_dir,
1273         .iterate_shared = xfs_file_readdir,
1274         .llseek         = generic_file_llseek,
1275         .unlocked_ioctl = xfs_file_ioctl,
1276 #ifdef CONFIG_COMPAT
1277         .compat_ioctl   = xfs_file_compat_ioctl,
1278 #endif
1279         .fsync          = xfs_dir_fsync,
1280 };

/* [<][>][^][v][top][bottom][index][help] */