root/fs/xfs/xfs_log_cil.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xlog_cil_ticket_alloc
  2. xlog_cil_init_post_recovery
  3. xlog_cil_iovec_space
  4. xlog_cil_alloc_shadow_bufs
  5. xfs_cil_prepare_item
  6. xlog_cil_insert_format_items
  7. xlog_cil_insert_items
  8. xlog_cil_free_logvec
  9. xlog_discard_endio_work
  10. xlog_discard_endio
  11. xlog_discard_busy_extents
  12. xlog_cil_committed
  13. xlog_cil_process_committed
  14. xlog_cil_push
  15. xlog_cil_push_work
  16. xlog_cil_push_background
  17. xlog_cil_push_now
  18. xlog_cil_empty
  19. xfs_log_commit_cil
  20. xlog_cil_force_lsn
  21. xfs_log_item_in_current_chkpt
  22. xlog_cil_init
  23. xlog_cil_destroy

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
   4  */
   5 
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_format.h"
   9 #include "xfs_log_format.h"
  10 #include "xfs_shared.h"
  11 #include "xfs_trans_resv.h"
  12 #include "xfs_mount.h"
  13 #include "xfs_extent_busy.h"
  14 #include "xfs_trans.h"
  15 #include "xfs_trans_priv.h"
  16 #include "xfs_log.h"
  17 #include "xfs_log_priv.h"
  18 #include "xfs_trace.h"
  19 
  20 struct workqueue_struct *xfs_discard_wq;
  21 
  22 /*
  23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
  24  * recover, so we don't allow failure here. Also, we allocate in a context that
  25  * we don't want to be issuing transactions from, so we need to tell the
  26  * allocation code this as well.
  27  *
  28  * We don't reserve any space for the ticket - we are going to steal whatever
  29  * space we require from transactions as they commit. To ensure we reserve all
  30  * the space required, we need to set the current reservation of the ticket to
  31  * zero so that we know to steal the initial transaction overhead from the
  32  * first transaction commit.
  33  */
  34 static struct xlog_ticket *
  35 xlog_cil_ticket_alloc(
  36         struct xlog     *log)
  37 {
  38         struct xlog_ticket *tic;
  39 
  40         tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
  41                                 KM_NOFS);
  42 
  43         /*
  44          * set the current reservation to zero so we know to steal the basic
  45          * transaction overhead reservation from the first transaction commit.
  46          */
  47         tic->t_curr_res = 0;
  48         return tic;
  49 }
  50 
  51 /*
  52  * After the first stage of log recovery is done, we know where the head and
  53  * tail of the log are. We need this log initialisation done before we can
  54  * initialise the first CIL checkpoint context.
  55  *
  56  * Here we allocate a log ticket to track space usage during a CIL push.  This
  57  * ticket is passed to xlog_write() directly so that we don't slowly leak log
  58  * space by failing to account for space used by log headers and additional
  59  * region headers for split regions.
  60  */
  61 void
  62 xlog_cil_init_post_recovery(
  63         struct xlog     *log)
  64 {
  65         log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
  66         log->l_cilp->xc_ctx->sequence = 1;
  67 }
  68 
  69 static inline int
  70 xlog_cil_iovec_space(
  71         uint    niovecs)
  72 {
  73         return round_up((sizeof(struct xfs_log_vec) +
  74                                         niovecs * sizeof(struct xfs_log_iovec)),
  75                         sizeof(uint64_t));
  76 }
  77 
  78 /*
  79  * Allocate or pin log vector buffers for CIL insertion.
  80  *
  81  * The CIL currently uses disposable buffers for copying a snapshot of the
  82  * modified items into the log during a push. The biggest problem with this is
  83  * the requirement to allocate the disposable buffer during the commit if:
  84  *      a) does not exist; or
  85  *      b) it is too small
  86  *
  87  * If we do this allocation within xlog_cil_insert_format_items(), it is done
  88  * under the xc_ctx_lock, which means that a CIL push cannot occur during
  89  * the memory allocation. This means that we have a potential deadlock situation
  90  * under low memory conditions when we have lots of dirty metadata pinned in
  91  * the CIL and we need a CIL commit to occur to free memory.
  92  *
  93  * To avoid this, we need to move the memory allocation outside the
  94  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
  95  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
  96  * vector buffers between the check and the formatting of the item into the
  97  * log vector buffer within the xc_ctx_lock.
  98  *
  99  * Because the log vector buffer needs to be unchanged during the CIL push
 100  * process, we cannot share the buffer between the transaction commit (which
 101  * modifies the buffer) and the CIL push context that is writing the changes
 102  * into the log. This means skipping preallocation of buffer space is
 103  * unreliable, but we most definitely do not want to be allocating and freeing
 104  * buffers unnecessarily during commits when overwrites can be done safely.
 105  *
 106  * The simplest solution to this problem is to allocate a shadow buffer when a
 107  * log item is committed for the second time, and then to only use this buffer
 108  * if necessary. The buffer can remain attached to the log item until such time
 109  * it is needed, and this is the buffer that is reallocated to match the size of
 110  * the incoming modification. Then during the formatting of the item we can swap
 111  * the active buffer with the new one if we can't reuse the existing buffer. We
 112  * don't free the old buffer as it may be reused on the next modification if
 113  * it's size is right, otherwise we'll free and reallocate it at that point.
 114  *
 115  * This function builds a vector for the changes in each log item in the
 116  * transaction. It then works out the length of the buffer needed for each log
 117  * item, allocates them and attaches the vector to the log item in preparation
 118  * for the formatting step which occurs under the xc_ctx_lock.
 119  *
 120  * While this means the memory footprint goes up, it avoids the repeated
 121  * alloc/free pattern that repeated modifications of an item would otherwise
 122  * cause, and hence minimises the CPU overhead of such behaviour.
 123  */
 124 static void
 125 xlog_cil_alloc_shadow_bufs(
 126         struct xlog             *log,
 127         struct xfs_trans        *tp)
 128 {
 129         struct xfs_log_item     *lip;
 130 
 131         list_for_each_entry(lip, &tp->t_items, li_trans) {
 132                 struct xfs_log_vec *lv;
 133                 int     niovecs = 0;
 134                 int     nbytes = 0;
 135                 int     buf_size;
 136                 bool    ordered = false;
 137 
 138                 /* Skip items which aren't dirty in this transaction. */
 139                 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 140                         continue;
 141 
 142                 /* get number of vecs and size of data to be stored */
 143                 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
 144 
 145                 /*
 146                  * Ordered items need to be tracked but we do not wish to write
 147                  * them. We need a logvec to track the object, but we do not
 148                  * need an iovec or buffer to be allocated for copying data.
 149                  */
 150                 if (niovecs == XFS_LOG_VEC_ORDERED) {
 151                         ordered = true;
 152                         niovecs = 0;
 153                         nbytes = 0;
 154                 }
 155 
 156                 /*
 157                  * We 64-bit align the length of each iovec so that the start
 158                  * of the next one is naturally aligned.  We'll need to
 159                  * account for that slack space here. Then round nbytes up
 160                  * to 64-bit alignment so that the initial buffer alignment is
 161                  * easy to calculate and verify.
 162                  */
 163                 nbytes += niovecs * sizeof(uint64_t);
 164                 nbytes = round_up(nbytes, sizeof(uint64_t));
 165 
 166                 /*
 167                  * The data buffer needs to start 64-bit aligned, so round up
 168                  * that space to ensure we can align it appropriately and not
 169                  * overrun the buffer.
 170                  */
 171                 buf_size = nbytes + xlog_cil_iovec_space(niovecs);
 172 
 173                 /*
 174                  * if we have no shadow buffer, or it is too small, we need to
 175                  * reallocate it.
 176                  */
 177                 if (!lip->li_lv_shadow ||
 178                     buf_size > lip->li_lv_shadow->lv_size) {
 179 
 180                         /*
 181                          * We free and allocate here as a realloc would copy
 182                          * unecessary data. We don't use kmem_zalloc() for the
 183                          * same reason - we don't need to zero the data area in
 184                          * the buffer, only the log vector header and the iovec
 185                          * storage.
 186                          */
 187                         kmem_free(lip->li_lv_shadow);
 188 
 189                         lv = kmem_alloc_large(buf_size, KM_NOFS);
 190                         memset(lv, 0, xlog_cil_iovec_space(niovecs));
 191 
 192                         lv->lv_item = lip;
 193                         lv->lv_size = buf_size;
 194                         if (ordered)
 195                                 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
 196                         else
 197                                 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
 198                         lip->li_lv_shadow = lv;
 199                 } else {
 200                         /* same or smaller, optimise common overwrite case */
 201                         lv = lip->li_lv_shadow;
 202                         if (ordered)
 203                                 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
 204                         else
 205                                 lv->lv_buf_len = 0;
 206                         lv->lv_bytes = 0;
 207                         lv->lv_next = NULL;
 208                 }
 209 
 210                 /* Ensure the lv is set up according to ->iop_size */
 211                 lv->lv_niovecs = niovecs;
 212 
 213                 /* The allocated data region lies beyond the iovec region */
 214                 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
 215         }
 216 
 217 }
 218 
 219 /*
 220  * Prepare the log item for insertion into the CIL. Calculate the difference in
 221  * log space and vectors it will consume, and if it is a new item pin it as
 222  * well.
 223  */
 224 STATIC void
 225 xfs_cil_prepare_item(
 226         struct xlog             *log,
 227         struct xfs_log_vec      *lv,
 228         struct xfs_log_vec      *old_lv,
 229         int                     *diff_len,
 230         int                     *diff_iovecs)
 231 {
 232         /* Account for the new LV being passed in */
 233         if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
 234                 *diff_len += lv->lv_bytes;
 235                 *diff_iovecs += lv->lv_niovecs;
 236         }
 237 
 238         /*
 239          * If there is no old LV, this is the first time we've seen the item in
 240          * this CIL context and so we need to pin it. If we are replacing the
 241          * old_lv, then remove the space it accounts for and make it the shadow
 242          * buffer for later freeing. In both cases we are now switching to the
 243          * shadow buffer, so update the the pointer to it appropriately.
 244          */
 245         if (!old_lv) {
 246                 if (lv->lv_item->li_ops->iop_pin)
 247                         lv->lv_item->li_ops->iop_pin(lv->lv_item);
 248                 lv->lv_item->li_lv_shadow = NULL;
 249         } else if (old_lv != lv) {
 250                 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
 251 
 252                 *diff_len -= old_lv->lv_bytes;
 253                 *diff_iovecs -= old_lv->lv_niovecs;
 254                 lv->lv_item->li_lv_shadow = old_lv;
 255         }
 256 
 257         /* attach new log vector to log item */
 258         lv->lv_item->li_lv = lv;
 259 
 260         /*
 261          * If this is the first time the item is being committed to the
 262          * CIL, store the sequence number on the log item so we can
 263          * tell in future commits whether this is the first checkpoint
 264          * the item is being committed into.
 265          */
 266         if (!lv->lv_item->li_seq)
 267                 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
 268 }
 269 
 270 /*
 271  * Format log item into a flat buffers
 272  *
 273  * For delayed logging, we need to hold a formatted buffer containing all the
 274  * changes on the log item. This enables us to relog the item in memory and
 275  * write it out asynchronously without needing to relock the object that was
 276  * modified at the time it gets written into the iclog.
 277  *
 278  * This function takes the prepared log vectors attached to each log item, and
 279  * formats the changes into the log vector buffer. The buffer it uses is
 280  * dependent on the current state of the vector in the CIL - the shadow lv is
 281  * guaranteed to be large enough for the current modification, but we will only
 282  * use that if we can't reuse the existing lv. If we can't reuse the existing
 283  * lv, then simple swap it out for the shadow lv. We don't free it - that is
 284  * done lazily either by th enext modification or the freeing of the log item.
 285  *
 286  * We don't set up region headers during this process; we simply copy the
 287  * regions into the flat buffer. We can do this because we still have to do a
 288  * formatting step to write the regions into the iclog buffer.  Writing the
 289  * ophdrs during the iclog write means that we can support splitting large
 290  * regions across iclog boundares without needing a change in the format of the
 291  * item/region encapsulation.
 292  *
 293  * Hence what we need to do now is change the rewrite the vector array to point
 294  * to the copied region inside the buffer we just allocated. This allows us to
 295  * format the regions into the iclog as though they are being formatted
 296  * directly out of the objects themselves.
 297  */
 298 static void
 299 xlog_cil_insert_format_items(
 300         struct xlog             *log,
 301         struct xfs_trans        *tp,
 302         int                     *diff_len,
 303         int                     *diff_iovecs)
 304 {
 305         struct xfs_log_item     *lip;
 306 
 307 
 308         /* Bail out if we didn't find a log item.  */
 309         if (list_empty(&tp->t_items)) {
 310                 ASSERT(0);
 311                 return;
 312         }
 313 
 314         list_for_each_entry(lip, &tp->t_items, li_trans) {
 315                 struct xfs_log_vec *lv;
 316                 struct xfs_log_vec *old_lv = NULL;
 317                 struct xfs_log_vec *shadow;
 318                 bool    ordered = false;
 319 
 320                 /* Skip items which aren't dirty in this transaction. */
 321                 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 322                         continue;
 323 
 324                 /*
 325                  * The formatting size information is already attached to
 326                  * the shadow lv on the log item.
 327                  */
 328                 shadow = lip->li_lv_shadow;
 329                 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
 330                         ordered = true;
 331 
 332                 /* Skip items that do not have any vectors for writing */
 333                 if (!shadow->lv_niovecs && !ordered)
 334                         continue;
 335 
 336                 /* compare to existing item size */
 337                 old_lv = lip->li_lv;
 338                 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
 339                         /* same or smaller, optimise common overwrite case */
 340                         lv = lip->li_lv;
 341                         lv->lv_next = NULL;
 342 
 343                         if (ordered)
 344                                 goto insert;
 345 
 346                         /*
 347                          * set the item up as though it is a new insertion so
 348                          * that the space reservation accounting is correct.
 349                          */
 350                         *diff_iovecs -= lv->lv_niovecs;
 351                         *diff_len -= lv->lv_bytes;
 352 
 353                         /* Ensure the lv is set up according to ->iop_size */
 354                         lv->lv_niovecs = shadow->lv_niovecs;
 355 
 356                         /* reset the lv buffer information for new formatting */
 357                         lv->lv_buf_len = 0;
 358                         lv->lv_bytes = 0;
 359                         lv->lv_buf = (char *)lv +
 360                                         xlog_cil_iovec_space(lv->lv_niovecs);
 361                 } else {
 362                         /* switch to shadow buffer! */
 363                         lv = shadow;
 364                         lv->lv_item = lip;
 365                         if (ordered) {
 366                                 /* track as an ordered logvec */
 367                                 ASSERT(lip->li_lv == NULL);
 368                                 goto insert;
 369                         }
 370                 }
 371 
 372                 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
 373                 lip->li_ops->iop_format(lip, lv);
 374 insert:
 375                 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
 376         }
 377 }
 378 
 379 /*
 380  * Insert the log items into the CIL and calculate the difference in space
 381  * consumed by the item. Add the space to the checkpoint ticket and calculate
 382  * if the change requires additional log metadata. If it does, take that space
 383  * as well. Remove the amount of space we added to the checkpoint ticket from
 384  * the current transaction ticket so that the accounting works out correctly.
 385  */
 386 static void
 387 xlog_cil_insert_items(
 388         struct xlog             *log,
 389         struct xfs_trans        *tp)
 390 {
 391         struct xfs_cil          *cil = log->l_cilp;
 392         struct xfs_cil_ctx      *ctx = cil->xc_ctx;
 393         struct xfs_log_item     *lip;
 394         int                     len = 0;
 395         int                     diff_iovecs = 0;
 396         int                     iclog_space;
 397         int                     iovhdr_res = 0, split_res = 0, ctx_res = 0;
 398 
 399         ASSERT(tp);
 400 
 401         /*
 402          * We can do this safely because the context can't checkpoint until we
 403          * are done so it doesn't matter exactly how we update the CIL.
 404          */
 405         xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
 406 
 407         spin_lock(&cil->xc_cil_lock);
 408 
 409         /* account for space used by new iovec headers  */
 410         iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
 411         len += iovhdr_res;
 412         ctx->nvecs += diff_iovecs;
 413 
 414         /* attach the transaction to the CIL if it has any busy extents */
 415         if (!list_empty(&tp->t_busy))
 416                 list_splice_init(&tp->t_busy, &ctx->busy_extents);
 417 
 418         /*
 419          * Now transfer enough transaction reservation to the context ticket
 420          * for the checkpoint. The context ticket is special - the unit
 421          * reservation has to grow as well as the current reservation as we
 422          * steal from tickets so we can correctly determine the space used
 423          * during the transaction commit.
 424          */
 425         if (ctx->ticket->t_curr_res == 0) {
 426                 ctx_res = ctx->ticket->t_unit_res;
 427                 ctx->ticket->t_curr_res = ctx_res;
 428                 tp->t_ticket->t_curr_res -= ctx_res;
 429         }
 430 
 431         /* do we need space for more log record headers? */
 432         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
 433         if (len > 0 && (ctx->space_used / iclog_space !=
 434                                 (ctx->space_used + len) / iclog_space)) {
 435                 split_res = (len + iclog_space - 1) / iclog_space;
 436                 /* need to take into account split region headers, too */
 437                 split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
 438                 ctx->ticket->t_unit_res += split_res;
 439                 ctx->ticket->t_curr_res += split_res;
 440                 tp->t_ticket->t_curr_res -= split_res;
 441                 ASSERT(tp->t_ticket->t_curr_res >= len);
 442         }
 443         tp->t_ticket->t_curr_res -= len;
 444         ctx->space_used += len;
 445 
 446         /*
 447          * If we've overrun the reservation, dump the tx details before we move
 448          * the log items. Shutdown is imminent...
 449          */
 450         if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
 451                 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
 452                 xfs_warn(log->l_mp,
 453                          "  log items: %d bytes (iov hdrs: %d bytes)",
 454                          len, iovhdr_res);
 455                 xfs_warn(log->l_mp, "  split region headers: %d bytes",
 456                          split_res);
 457                 xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
 458                 xlog_print_trans(tp);
 459         }
 460 
 461         /*
 462          * Now (re-)position everything modified at the tail of the CIL.
 463          * We do this here so we only need to take the CIL lock once during
 464          * the transaction commit.
 465          */
 466         list_for_each_entry(lip, &tp->t_items, li_trans) {
 467 
 468                 /* Skip items which aren't dirty in this transaction. */
 469                 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 470                         continue;
 471 
 472                 /*
 473                  * Only move the item if it isn't already at the tail. This is
 474                  * to prevent a transient list_empty() state when reinserting
 475                  * an item that is already the only item in the CIL.
 476                  */
 477                 if (!list_is_last(&lip->li_cil, &cil->xc_cil))
 478                         list_move_tail(&lip->li_cil, &cil->xc_cil);
 479         }
 480 
 481         spin_unlock(&cil->xc_cil_lock);
 482 
 483         if (tp->t_ticket->t_curr_res < 0)
 484                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
 485 }
 486 
 487 static void
 488 xlog_cil_free_logvec(
 489         struct xfs_log_vec      *log_vector)
 490 {
 491         struct xfs_log_vec      *lv;
 492 
 493         for (lv = log_vector; lv; ) {
 494                 struct xfs_log_vec *next = lv->lv_next;
 495                 kmem_free(lv);
 496                 lv = next;
 497         }
 498 }
 499 
 500 static void
 501 xlog_discard_endio_work(
 502         struct work_struct      *work)
 503 {
 504         struct xfs_cil_ctx      *ctx =
 505                 container_of(work, struct xfs_cil_ctx, discard_endio_work);
 506         struct xfs_mount        *mp = ctx->cil->xc_log->l_mp;
 507 
 508         xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
 509         kmem_free(ctx);
 510 }
 511 
 512 /*
 513  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
 514  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
 515  * get the execution delayed up to 30 seconds for weird reasons.
 516  */
 517 static void
 518 xlog_discard_endio(
 519         struct bio              *bio)
 520 {
 521         struct xfs_cil_ctx      *ctx = bio->bi_private;
 522 
 523         INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
 524         queue_work(xfs_discard_wq, &ctx->discard_endio_work);
 525         bio_put(bio);
 526 }
 527 
 528 static void
 529 xlog_discard_busy_extents(
 530         struct xfs_mount        *mp,
 531         struct xfs_cil_ctx      *ctx)
 532 {
 533         struct list_head        *list = &ctx->busy_extents;
 534         struct xfs_extent_busy  *busyp;
 535         struct bio              *bio = NULL;
 536         struct blk_plug         plug;
 537         int                     error = 0;
 538 
 539         ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
 540 
 541         blk_start_plug(&plug);
 542         list_for_each_entry(busyp, list, list) {
 543                 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
 544                                          busyp->length);
 545 
 546                 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
 547                                 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
 548                                 XFS_FSB_TO_BB(mp, busyp->length),
 549                                 GFP_NOFS, 0, &bio);
 550                 if (error && error != -EOPNOTSUPP) {
 551                         xfs_info(mp,
 552          "discard failed for extent [0x%llx,%u], error %d",
 553                                  (unsigned long long)busyp->bno,
 554                                  busyp->length,
 555                                  error);
 556                         break;
 557                 }
 558         }
 559 
 560         if (bio) {
 561                 bio->bi_private = ctx;
 562                 bio->bi_end_io = xlog_discard_endio;
 563                 submit_bio(bio);
 564         } else {
 565                 xlog_discard_endio_work(&ctx->discard_endio_work);
 566         }
 567         blk_finish_plug(&plug);
 568 }
 569 
 570 /*
 571  * Mark all items committed and clear busy extents. We free the log vector
 572  * chains in a separate pass so that we unpin the log items as quickly as
 573  * possible.
 574  */
 575 static void
 576 xlog_cil_committed(
 577         struct xfs_cil_ctx      *ctx,
 578         bool                    abort)
 579 {
 580         struct xfs_mount        *mp = ctx->cil->xc_log->l_mp;
 581 
 582         /*
 583          * If the I/O failed, we're aborting the commit and already shutdown.
 584          * Wake any commit waiters before aborting the log items so we don't
 585          * block async log pushers on callbacks. Async log pushers explicitly do
 586          * not wait on log force completion because they may be holding locks
 587          * required to unpin items.
 588          */
 589         if (abort) {
 590                 spin_lock(&ctx->cil->xc_push_lock);
 591                 wake_up_all(&ctx->cil->xc_commit_wait);
 592                 spin_unlock(&ctx->cil->xc_push_lock);
 593         }
 594 
 595         xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
 596                                         ctx->start_lsn, abort);
 597 
 598         xfs_extent_busy_sort(&ctx->busy_extents);
 599         xfs_extent_busy_clear(mp, &ctx->busy_extents,
 600                              (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
 601 
 602         spin_lock(&ctx->cil->xc_push_lock);
 603         list_del(&ctx->committing);
 604         spin_unlock(&ctx->cil->xc_push_lock);
 605 
 606         xlog_cil_free_logvec(ctx->lv_chain);
 607 
 608         if (!list_empty(&ctx->busy_extents))
 609                 xlog_discard_busy_extents(mp, ctx);
 610         else
 611                 kmem_free(ctx);
 612 }
 613 
 614 void
 615 xlog_cil_process_committed(
 616         struct list_head        *list,
 617         bool                    aborted)
 618 {
 619         struct xfs_cil_ctx      *ctx;
 620 
 621         while ((ctx = list_first_entry_or_null(list,
 622                         struct xfs_cil_ctx, iclog_entry))) {
 623                 list_del(&ctx->iclog_entry);
 624                 xlog_cil_committed(ctx, aborted);
 625         }
 626 }
 627 
 628 /*
 629  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
 630  * is a background flush and so we can chose to ignore it. Otherwise, if the
 631  * current sequence is the same as @push_seq we need to do a flush. If
 632  * @push_seq is less than the current sequence, then it has already been
 633  * flushed and we don't need to do anything - the caller will wait for it to
 634  * complete if necessary.
 635  *
 636  * @push_seq is a value rather than a flag because that allows us to do an
 637  * unlocked check of the sequence number for a match. Hence we can allows log
 638  * forces to run racily and not issue pushes for the same sequence twice. If we
 639  * get a race between multiple pushes for the same sequence they will block on
 640  * the first one and then abort, hence avoiding needless pushes.
 641  */
 642 STATIC int
 643 xlog_cil_push(
 644         struct xlog             *log)
 645 {
 646         struct xfs_cil          *cil = log->l_cilp;
 647         struct xfs_log_vec      *lv;
 648         struct xfs_cil_ctx      *ctx;
 649         struct xfs_cil_ctx      *new_ctx;
 650         struct xlog_in_core     *commit_iclog;
 651         struct xlog_ticket      *tic;
 652         int                     num_iovecs;
 653         int                     error = 0;
 654         struct xfs_trans_header thdr;
 655         struct xfs_log_iovec    lhdr;
 656         struct xfs_log_vec      lvhdr = { NULL };
 657         xfs_lsn_t               commit_lsn;
 658         xfs_lsn_t               push_seq;
 659 
 660         if (!cil)
 661                 return 0;
 662 
 663         new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_NOFS);
 664         new_ctx->ticket = xlog_cil_ticket_alloc(log);
 665 
 666         down_write(&cil->xc_ctx_lock);
 667         ctx = cil->xc_ctx;
 668 
 669         spin_lock(&cil->xc_push_lock);
 670         push_seq = cil->xc_push_seq;
 671         ASSERT(push_seq <= ctx->sequence);
 672 
 673         /*
 674          * Check if we've anything to push. If there is nothing, then we don't
 675          * move on to a new sequence number and so we have to be able to push
 676          * this sequence again later.
 677          */
 678         if (list_empty(&cil->xc_cil)) {
 679                 cil->xc_push_seq = 0;
 680                 spin_unlock(&cil->xc_push_lock);
 681                 goto out_skip;
 682         }
 683 
 684 
 685         /* check for a previously pushed seqeunce */
 686         if (push_seq < cil->xc_ctx->sequence) {
 687                 spin_unlock(&cil->xc_push_lock);
 688                 goto out_skip;
 689         }
 690 
 691         /*
 692          * We are now going to push this context, so add it to the committing
 693          * list before we do anything else. This ensures that anyone waiting on
 694          * this push can easily detect the difference between a "push in
 695          * progress" and "CIL is empty, nothing to do".
 696          *
 697          * IOWs, a wait loop can now check for:
 698          *      the current sequence not being found on the committing list;
 699          *      an empty CIL; and
 700          *      an unchanged sequence number
 701          * to detect a push that had nothing to do and therefore does not need
 702          * waiting on. If the CIL is not empty, we get put on the committing
 703          * list before emptying the CIL and bumping the sequence number. Hence
 704          * an empty CIL and an unchanged sequence number means we jumped out
 705          * above after doing nothing.
 706          *
 707          * Hence the waiter will either find the commit sequence on the
 708          * committing list or the sequence number will be unchanged and the CIL
 709          * still dirty. In that latter case, the push has not yet started, and
 710          * so the waiter will have to continue trying to check the CIL
 711          * committing list until it is found. In extreme cases of delay, the
 712          * sequence may fully commit between the attempts the wait makes to wait
 713          * on the commit sequence.
 714          */
 715         list_add(&ctx->committing, &cil->xc_committing);
 716         spin_unlock(&cil->xc_push_lock);
 717 
 718         /*
 719          * pull all the log vectors off the items in the CIL, and
 720          * remove the items from the CIL. We don't need the CIL lock
 721          * here because it's only needed on the transaction commit
 722          * side which is currently locked out by the flush lock.
 723          */
 724         lv = NULL;
 725         num_iovecs = 0;
 726         while (!list_empty(&cil->xc_cil)) {
 727                 struct xfs_log_item     *item;
 728 
 729                 item = list_first_entry(&cil->xc_cil,
 730                                         struct xfs_log_item, li_cil);
 731                 list_del_init(&item->li_cil);
 732                 if (!ctx->lv_chain)
 733                         ctx->lv_chain = item->li_lv;
 734                 else
 735                         lv->lv_next = item->li_lv;
 736                 lv = item->li_lv;
 737                 item->li_lv = NULL;
 738                 num_iovecs += lv->lv_niovecs;
 739         }
 740 
 741         /*
 742          * initialise the new context and attach it to the CIL. Then attach
 743          * the current context to the CIL committing lsit so it can be found
 744          * during log forces to extract the commit lsn of the sequence that
 745          * needs to be forced.
 746          */
 747         INIT_LIST_HEAD(&new_ctx->committing);
 748         INIT_LIST_HEAD(&new_ctx->busy_extents);
 749         new_ctx->sequence = ctx->sequence + 1;
 750         new_ctx->cil = cil;
 751         cil->xc_ctx = new_ctx;
 752 
 753         /*
 754          * The switch is now done, so we can drop the context lock and move out
 755          * of a shared context. We can't just go straight to the commit record,
 756          * though - we need to synchronise with previous and future commits so
 757          * that the commit records are correctly ordered in the log to ensure
 758          * that we process items during log IO completion in the correct order.
 759          *
 760          * For example, if we get an EFI in one checkpoint and the EFD in the
 761          * next (e.g. due to log forces), we do not want the checkpoint with
 762          * the EFD to be committed before the checkpoint with the EFI.  Hence
 763          * we must strictly order the commit records of the checkpoints so
 764          * that: a) the checkpoint callbacks are attached to the iclogs in the
 765          * correct order; and b) the checkpoints are replayed in correct order
 766          * in log recovery.
 767          *
 768          * Hence we need to add this context to the committing context list so
 769          * that higher sequences will wait for us to write out a commit record
 770          * before they do.
 771          *
 772          * xfs_log_force_lsn requires us to mirror the new sequence into the cil
 773          * structure atomically with the addition of this sequence to the
 774          * committing list. This also ensures that we can do unlocked checks
 775          * against the current sequence in log forces without risking
 776          * deferencing a freed context pointer.
 777          */
 778         spin_lock(&cil->xc_push_lock);
 779         cil->xc_current_sequence = new_ctx->sequence;
 780         spin_unlock(&cil->xc_push_lock);
 781         up_write(&cil->xc_ctx_lock);
 782 
 783         /*
 784          * Build a checkpoint transaction header and write it to the log to
 785          * begin the transaction. We need to account for the space used by the
 786          * transaction header here as it is not accounted for in xlog_write().
 787          *
 788          * The LSN we need to pass to the log items on transaction commit is
 789          * the LSN reported by the first log vector write. If we use the commit
 790          * record lsn then we can move the tail beyond the grant write head.
 791          */
 792         tic = ctx->ticket;
 793         thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
 794         thdr.th_type = XFS_TRANS_CHECKPOINT;
 795         thdr.th_tid = tic->t_tid;
 796         thdr.th_num_items = num_iovecs;
 797         lhdr.i_addr = &thdr;
 798         lhdr.i_len = sizeof(xfs_trans_header_t);
 799         lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
 800         tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
 801 
 802         lvhdr.lv_niovecs = 1;
 803         lvhdr.lv_iovecp = &lhdr;
 804         lvhdr.lv_next = ctx->lv_chain;
 805 
 806         error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
 807         if (error)
 808                 goto out_abort_free_ticket;
 809 
 810         /*
 811          * now that we've written the checkpoint into the log, strictly
 812          * order the commit records so replay will get them in the right order.
 813          */
 814 restart:
 815         spin_lock(&cil->xc_push_lock);
 816         list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
 817                 /*
 818                  * Avoid getting stuck in this loop because we were woken by the
 819                  * shutdown, but then went back to sleep once already in the
 820                  * shutdown state.
 821                  */
 822                 if (XLOG_FORCED_SHUTDOWN(log)) {
 823                         spin_unlock(&cil->xc_push_lock);
 824                         goto out_abort_free_ticket;
 825                 }
 826 
 827                 /*
 828                  * Higher sequences will wait for this one so skip them.
 829                  * Don't wait for our own sequence, either.
 830                  */
 831                 if (new_ctx->sequence >= ctx->sequence)
 832                         continue;
 833                 if (!new_ctx->commit_lsn) {
 834                         /*
 835                          * It is still being pushed! Wait for the push to
 836                          * complete, then start again from the beginning.
 837                          */
 838                         xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
 839                         goto restart;
 840                 }
 841         }
 842         spin_unlock(&cil->xc_push_lock);
 843 
 844         /* xfs_log_done always frees the ticket on error. */
 845         commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
 846         if (commit_lsn == -1)
 847                 goto out_abort;
 848 
 849         spin_lock(&commit_iclog->ic_callback_lock);
 850         if (commit_iclog->ic_state & XLOG_STATE_IOERROR) {
 851                 spin_unlock(&commit_iclog->ic_callback_lock);
 852                 goto out_abort;
 853         }
 854         ASSERT_ALWAYS(commit_iclog->ic_state == XLOG_STATE_ACTIVE ||
 855                       commit_iclog->ic_state == XLOG_STATE_WANT_SYNC);
 856         list_add_tail(&ctx->iclog_entry, &commit_iclog->ic_callbacks);
 857         spin_unlock(&commit_iclog->ic_callback_lock);
 858 
 859         /*
 860          * now the checkpoint commit is complete and we've attached the
 861          * callbacks to the iclog we can assign the commit LSN to the context
 862          * and wake up anyone who is waiting for the commit to complete.
 863          */
 864         spin_lock(&cil->xc_push_lock);
 865         ctx->commit_lsn = commit_lsn;
 866         wake_up_all(&cil->xc_commit_wait);
 867         spin_unlock(&cil->xc_push_lock);
 868 
 869         /* release the hounds! */
 870         return xfs_log_release_iclog(log->l_mp, commit_iclog);
 871 
 872 out_skip:
 873         up_write(&cil->xc_ctx_lock);
 874         xfs_log_ticket_put(new_ctx->ticket);
 875         kmem_free(new_ctx);
 876         return 0;
 877 
 878 out_abort_free_ticket:
 879         xfs_log_ticket_put(tic);
 880 out_abort:
 881         xlog_cil_committed(ctx, true);
 882         return -EIO;
 883 }
 884 
 885 static void
 886 xlog_cil_push_work(
 887         struct work_struct      *work)
 888 {
 889         struct xfs_cil          *cil = container_of(work, struct xfs_cil,
 890                                                         xc_push_work);
 891         xlog_cil_push(cil->xc_log);
 892 }
 893 
 894 /*
 895  * We need to push CIL every so often so we don't cache more than we can fit in
 896  * the log. The limit really is that a checkpoint can't be more than half the
 897  * log (the current checkpoint is not allowed to overwrite the previous
 898  * checkpoint), but commit latency and memory usage limit this to a smaller
 899  * size.
 900  */
 901 static void
 902 xlog_cil_push_background(
 903         struct xlog     *log)
 904 {
 905         struct xfs_cil  *cil = log->l_cilp;
 906 
 907         /*
 908          * The cil won't be empty because we are called while holding the
 909          * context lock so whatever we added to the CIL will still be there
 910          */
 911         ASSERT(!list_empty(&cil->xc_cil));
 912 
 913         /*
 914          * don't do a background push if we haven't used up all the
 915          * space available yet.
 916          */
 917         if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
 918                 return;
 919 
 920         spin_lock(&cil->xc_push_lock);
 921         if (cil->xc_push_seq < cil->xc_current_sequence) {
 922                 cil->xc_push_seq = cil->xc_current_sequence;
 923                 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
 924         }
 925         spin_unlock(&cil->xc_push_lock);
 926 
 927 }
 928 
 929 /*
 930  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
 931  * number that is passed. When it returns, the work will be queued for
 932  * @push_seq, but it won't be completed. The caller is expected to do any
 933  * waiting for push_seq to complete if it is required.
 934  */
 935 static void
 936 xlog_cil_push_now(
 937         struct xlog     *log,
 938         xfs_lsn_t       push_seq)
 939 {
 940         struct xfs_cil  *cil = log->l_cilp;
 941 
 942         if (!cil)
 943                 return;
 944 
 945         ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
 946 
 947         /* start on any pending background push to minimise wait time on it */
 948         flush_work(&cil->xc_push_work);
 949 
 950         /*
 951          * If the CIL is empty or we've already pushed the sequence then
 952          * there's no work we need to do.
 953          */
 954         spin_lock(&cil->xc_push_lock);
 955         if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
 956                 spin_unlock(&cil->xc_push_lock);
 957                 return;
 958         }
 959 
 960         cil->xc_push_seq = push_seq;
 961         queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
 962         spin_unlock(&cil->xc_push_lock);
 963 }
 964 
 965 bool
 966 xlog_cil_empty(
 967         struct xlog     *log)
 968 {
 969         struct xfs_cil  *cil = log->l_cilp;
 970         bool            empty = false;
 971 
 972         spin_lock(&cil->xc_push_lock);
 973         if (list_empty(&cil->xc_cil))
 974                 empty = true;
 975         spin_unlock(&cil->xc_push_lock);
 976         return empty;
 977 }
 978 
 979 /*
 980  * Commit a transaction with the given vector to the Committed Item List.
 981  *
 982  * To do this, we need to format the item, pin it in memory if required and
 983  * account for the space used by the transaction. Once we have done that we
 984  * need to release the unused reservation for the transaction, attach the
 985  * transaction to the checkpoint context so we carry the busy extents through
 986  * to checkpoint completion, and then unlock all the items in the transaction.
 987  *
 988  * Called with the context lock already held in read mode to lock out
 989  * background commit, returns without it held once background commits are
 990  * allowed again.
 991  */
 992 void
 993 xfs_log_commit_cil(
 994         struct xfs_mount        *mp,
 995         struct xfs_trans        *tp,
 996         xfs_lsn_t               *commit_lsn,
 997         bool                    regrant)
 998 {
 999         struct xlog             *log = mp->m_log;
1000         struct xfs_cil          *cil = log->l_cilp;
1001         struct xfs_log_item     *lip, *next;
1002         xfs_lsn_t               xc_commit_lsn;
1003 
1004         /*
1005          * Do all necessary memory allocation before we lock the CIL.
1006          * This ensures the allocation does not deadlock with a CIL
1007          * push in memory reclaim (e.g. from kswapd).
1008          */
1009         xlog_cil_alloc_shadow_bufs(log, tp);
1010 
1011         /* lock out background commit */
1012         down_read(&cil->xc_ctx_lock);
1013 
1014         xlog_cil_insert_items(log, tp);
1015 
1016         xc_commit_lsn = cil->xc_ctx->sequence;
1017         if (commit_lsn)
1018                 *commit_lsn = xc_commit_lsn;
1019 
1020         xfs_log_done(mp, tp->t_ticket, NULL, regrant);
1021         tp->t_ticket = NULL;
1022         xfs_trans_unreserve_and_mod_sb(tp);
1023 
1024         /*
1025          * Once all the items of the transaction have been copied to the CIL,
1026          * the items can be unlocked and possibly freed.
1027          *
1028          * This needs to be done before we drop the CIL context lock because we
1029          * have to update state in the log items and unlock them before they go
1030          * to disk. If we don't, then the CIL checkpoint can race with us and
1031          * we can run checkpoint completion before we've updated and unlocked
1032          * the log items. This affects (at least) processing of stale buffers,
1033          * inodes and EFIs.
1034          */
1035         trace_xfs_trans_commit_items(tp, _RET_IP_);
1036         list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1037                 xfs_trans_del_item(lip);
1038                 if (lip->li_ops->iop_committing)
1039                         lip->li_ops->iop_committing(lip, xc_commit_lsn);
1040         }
1041         xlog_cil_push_background(log);
1042 
1043         up_read(&cil->xc_ctx_lock);
1044 }
1045 
1046 /*
1047  * Conditionally push the CIL based on the sequence passed in.
1048  *
1049  * We only need to push if we haven't already pushed the sequence
1050  * number given. Hence the only time we will trigger a push here is
1051  * if the push sequence is the same as the current context.
1052  *
1053  * We return the current commit lsn to allow the callers to determine if a
1054  * iclog flush is necessary following this call.
1055  */
1056 xfs_lsn_t
1057 xlog_cil_force_lsn(
1058         struct xlog     *log,
1059         xfs_lsn_t       sequence)
1060 {
1061         struct xfs_cil          *cil = log->l_cilp;
1062         struct xfs_cil_ctx      *ctx;
1063         xfs_lsn_t               commit_lsn = NULLCOMMITLSN;
1064 
1065         ASSERT(sequence <= cil->xc_current_sequence);
1066 
1067         /*
1068          * check to see if we need to force out the current context.
1069          * xlog_cil_push() handles racing pushes for the same sequence,
1070          * so no need to deal with it here.
1071          */
1072 restart:
1073         xlog_cil_push_now(log, sequence);
1074 
1075         /*
1076          * See if we can find a previous sequence still committing.
1077          * We need to wait for all previous sequence commits to complete
1078          * before allowing the force of push_seq to go ahead. Hence block
1079          * on commits for those as well.
1080          */
1081         spin_lock(&cil->xc_push_lock);
1082         list_for_each_entry(ctx, &cil->xc_committing, committing) {
1083                 /*
1084                  * Avoid getting stuck in this loop because we were woken by the
1085                  * shutdown, but then went back to sleep once already in the
1086                  * shutdown state.
1087                  */
1088                 if (XLOG_FORCED_SHUTDOWN(log))
1089                         goto out_shutdown;
1090                 if (ctx->sequence > sequence)
1091                         continue;
1092                 if (!ctx->commit_lsn) {
1093                         /*
1094                          * It is still being pushed! Wait for the push to
1095                          * complete, then start again from the beginning.
1096                          */
1097                         xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1098                         goto restart;
1099                 }
1100                 if (ctx->sequence != sequence)
1101                         continue;
1102                 /* found it! */
1103                 commit_lsn = ctx->commit_lsn;
1104         }
1105 
1106         /*
1107          * The call to xlog_cil_push_now() executes the push in the background.
1108          * Hence by the time we have got here it our sequence may not have been
1109          * pushed yet. This is true if the current sequence still matches the
1110          * push sequence after the above wait loop and the CIL still contains
1111          * dirty objects. This is guaranteed by the push code first adding the
1112          * context to the committing list before emptying the CIL.
1113          *
1114          * Hence if we don't find the context in the committing list and the
1115          * current sequence number is unchanged then the CIL contents are
1116          * significant.  If the CIL is empty, if means there was nothing to push
1117          * and that means there is nothing to wait for. If the CIL is not empty,
1118          * it means we haven't yet started the push, because if it had started
1119          * we would have found the context on the committing list.
1120          */
1121         if (sequence == cil->xc_current_sequence &&
1122             !list_empty(&cil->xc_cil)) {
1123                 spin_unlock(&cil->xc_push_lock);
1124                 goto restart;
1125         }
1126 
1127         spin_unlock(&cil->xc_push_lock);
1128         return commit_lsn;
1129 
1130         /*
1131          * We detected a shutdown in progress. We need to trigger the log force
1132          * to pass through it's iclog state machine error handling, even though
1133          * we are already in a shutdown state. Hence we can't return
1134          * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1135          * LSN is already stable), so we return a zero LSN instead.
1136          */
1137 out_shutdown:
1138         spin_unlock(&cil->xc_push_lock);
1139         return 0;
1140 }
1141 
1142 /*
1143  * Check if the current log item was first committed in this sequence.
1144  * We can't rely on just the log item being in the CIL, we have to check
1145  * the recorded commit sequence number.
1146  *
1147  * Note: for this to be used in a non-racy manner, it has to be called with
1148  * CIL flushing locked out. As a result, it should only be used during the
1149  * transaction commit process when deciding what to format into the item.
1150  */
1151 bool
1152 xfs_log_item_in_current_chkpt(
1153         struct xfs_log_item *lip)
1154 {
1155         struct xfs_cil_ctx *ctx;
1156 
1157         if (list_empty(&lip->li_cil))
1158                 return false;
1159 
1160         ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1161 
1162         /*
1163          * li_seq is written on the first commit of a log item to record the
1164          * first checkpoint it is written to. Hence if it is different to the
1165          * current sequence, we're in a new checkpoint.
1166          */
1167         if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1168                 return false;
1169         return true;
1170 }
1171 
1172 /*
1173  * Perform initial CIL structure initialisation.
1174  */
1175 int
1176 xlog_cil_init(
1177         struct xlog     *log)
1178 {
1179         struct xfs_cil  *cil;
1180         struct xfs_cil_ctx *ctx;
1181 
1182         cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1183         if (!cil)
1184                 return -ENOMEM;
1185 
1186         ctx = kmem_zalloc(sizeof(*ctx), KM_MAYFAIL);
1187         if (!ctx) {
1188                 kmem_free(cil);
1189                 return -ENOMEM;
1190         }
1191 
1192         INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1193         INIT_LIST_HEAD(&cil->xc_cil);
1194         INIT_LIST_HEAD(&cil->xc_committing);
1195         spin_lock_init(&cil->xc_cil_lock);
1196         spin_lock_init(&cil->xc_push_lock);
1197         init_rwsem(&cil->xc_ctx_lock);
1198         init_waitqueue_head(&cil->xc_commit_wait);
1199 
1200         INIT_LIST_HEAD(&ctx->committing);
1201         INIT_LIST_HEAD(&ctx->busy_extents);
1202         ctx->sequence = 1;
1203         ctx->cil = cil;
1204         cil->xc_ctx = ctx;
1205         cil->xc_current_sequence = ctx->sequence;
1206 
1207         cil->xc_log = log;
1208         log->l_cilp = cil;
1209         return 0;
1210 }
1211 
1212 void
1213 xlog_cil_destroy(
1214         struct xlog     *log)
1215 {
1216         if (log->l_cilp->xc_ctx) {
1217                 if (log->l_cilp->xc_ctx->ticket)
1218                         xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1219                 kmem_free(log->l_cilp->xc_ctx);
1220         }
1221 
1222         ASSERT(list_empty(&log->l_cilp->xc_cil));
1223         kmem_free(log->l_cilp);
1224 }
1225 

/* [<][>][^][v][top][bottom][index][help] */