root/fs/xfs/xfs_log.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xlog_grant_sub_space
  2. xlog_grant_add_space
  3. xlog_grant_head_init
  4. xlog_grant_head_wake_all
  5. xlog_ticket_reservation
  6. xlog_grant_head_wake
  7. xlog_grant_head_wait
  8. xlog_grant_head_check
  9. xlog_tic_reset_res
  10. xlog_tic_add_region
  11. xfs_log_regrant
  12. xfs_log_reserve
  13. xfs_log_done
  14. xfs_log_release_iclog
  15. xfs_log_mount
  16. xfs_log_mount_finish
  17. xfs_log_mount_cancel
  18. xfs_log_write_unmount_record
  19. xfs_log_unmount_write
  20. xfs_log_quiesce
  21. xfs_log_unmount
  22. xfs_log_item_init
  23. xfs_log_space_wake
  24. xfs_log_need_covered
  25. xlog_assign_tail_lsn_locked
  26. xlog_assign_tail_lsn
  27. xlog_space_left
  28. xlog_ioend_work
  29. xlog_get_iclog_buffer_size
  30. xfs_log_work_queue
  31. xfs_log_worker
  32. xlog_alloc_log
  33. xlog_commit_record
  34. xlog_grant_push_ail
  35. xlog_pack_data
  36. xlog_cksum
  37. xlog_bio_end_io
  38. xlog_map_iclog_data
  39. xlog_write_iclog
  40. xlog_split_iclog
  41. xlog_calc_iclog_size
  42. xlog_sync
  43. xlog_dealloc_log
  44. xlog_state_finish_copy
  45. xlog_print_tic_res
  46. xlog_print_trans
  47. xlog_write_calc_vec_length
  48. xlog_write_start_rec
  49. xlog_write_setup_ophdr
  50. xlog_write_setup_copy
  51. xlog_write_copy_finish
  52. xlog_write
  53. xlog_state_clean_iclog
  54. xlog_get_lowest_lsn
  55. xlog_state_set_callback
  56. xlog_state_iodone_process_iclog
  57. xlog_state_do_iclog_callbacks
  58. xlog_state_callback_check_state
  59. xlog_state_do_callback
  60. xlog_state_done_syncing
  61. xlog_state_get_iclog_space
  62. xlog_regrant_reserve_log_space
  63. xlog_ungrant_log_space
  64. xlog_state_release_iclog
  65. xlog_state_switch_iclogs
  66. xfs_log_force
  67. __xfs_log_force_lsn
  68. xfs_log_force_lsn
  69. xlog_state_want_sync
  70. xfs_log_ticket_put
  71. xfs_log_ticket_get
  72. xfs_log_calc_unit_res
  73. xlog_ticket_alloc
  74. xlog_verify_dest_ptr
  75. xlog_verify_grant_tail
  76. xlog_verify_tail_lsn
  77. xlog_verify_iclog
  78. xlog_state_ioerror
  79. xfs_log_force_umount
  80. xlog_iclogs_empty
  81. xfs_log_check_lsn
  82. xfs_log_in_recovery

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4  * All Rights Reserved.
   5  */
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_shared.h"
   9 #include "xfs_format.h"
  10 #include "xfs_log_format.h"
  11 #include "xfs_trans_resv.h"
  12 #include "xfs_mount.h"
  13 #include "xfs_errortag.h"
  14 #include "xfs_error.h"
  15 #include "xfs_trans.h"
  16 #include "xfs_trans_priv.h"
  17 #include "xfs_log.h"
  18 #include "xfs_log_priv.h"
  19 #include "xfs_trace.h"
  20 #include "xfs_sysfs.h"
  21 #include "xfs_sb.h"
  22 #include "xfs_health.h"
  23 
  24 kmem_zone_t     *xfs_log_ticket_zone;
  25 
  26 /* Local miscellaneous function prototypes */
  27 STATIC int
  28 xlog_commit_record(
  29         struct xlog             *log,
  30         struct xlog_ticket      *ticket,
  31         struct xlog_in_core     **iclog,
  32         xfs_lsn_t               *commitlsnp);
  33 
  34 STATIC struct xlog *
  35 xlog_alloc_log(
  36         struct xfs_mount        *mp,
  37         struct xfs_buftarg      *log_target,
  38         xfs_daddr_t             blk_offset,
  39         int                     num_bblks);
  40 STATIC int
  41 xlog_space_left(
  42         struct xlog             *log,
  43         atomic64_t              *head);
  44 STATIC void
  45 xlog_dealloc_log(
  46         struct xlog             *log);
  47 
  48 /* local state machine functions */
  49 STATIC void xlog_state_done_syncing(
  50         struct xlog_in_core     *iclog,
  51         bool                    aborted);
  52 STATIC int
  53 xlog_state_get_iclog_space(
  54         struct xlog             *log,
  55         int                     len,
  56         struct xlog_in_core     **iclog,
  57         struct xlog_ticket      *ticket,
  58         int                     *continued_write,
  59         int                     *logoffsetp);
  60 STATIC int
  61 xlog_state_release_iclog(
  62         struct xlog             *log,
  63         struct xlog_in_core     *iclog);
  64 STATIC void
  65 xlog_state_switch_iclogs(
  66         struct xlog             *log,
  67         struct xlog_in_core     *iclog,
  68         int                     eventual_size);
  69 STATIC void
  70 xlog_state_want_sync(
  71         struct xlog             *log,
  72         struct xlog_in_core     *iclog);
  73 
  74 STATIC void
  75 xlog_grant_push_ail(
  76         struct xlog             *log,
  77         int                     need_bytes);
  78 STATIC void
  79 xlog_regrant_reserve_log_space(
  80         struct xlog             *log,
  81         struct xlog_ticket      *ticket);
  82 STATIC void
  83 xlog_ungrant_log_space(
  84         struct xlog             *log,
  85         struct xlog_ticket      *ticket);
  86 
  87 #if defined(DEBUG)
  88 STATIC void
  89 xlog_verify_dest_ptr(
  90         struct xlog             *log,
  91         void                    *ptr);
  92 STATIC void
  93 xlog_verify_grant_tail(
  94         struct xlog *log);
  95 STATIC void
  96 xlog_verify_iclog(
  97         struct xlog             *log,
  98         struct xlog_in_core     *iclog,
  99         int                     count);
 100 STATIC void
 101 xlog_verify_tail_lsn(
 102         struct xlog             *log,
 103         struct xlog_in_core     *iclog,
 104         xfs_lsn_t               tail_lsn);
 105 #else
 106 #define xlog_verify_dest_ptr(a,b)
 107 #define xlog_verify_grant_tail(a)
 108 #define xlog_verify_iclog(a,b,c)
 109 #define xlog_verify_tail_lsn(a,b,c)
 110 #endif
 111 
 112 STATIC int
 113 xlog_iclogs_empty(
 114         struct xlog             *log);
 115 
 116 static void
 117 xlog_grant_sub_space(
 118         struct xlog             *log,
 119         atomic64_t              *head,
 120         int                     bytes)
 121 {
 122         int64_t head_val = atomic64_read(head);
 123         int64_t new, old;
 124 
 125         do {
 126                 int     cycle, space;
 127 
 128                 xlog_crack_grant_head_val(head_val, &cycle, &space);
 129 
 130                 space -= bytes;
 131                 if (space < 0) {
 132                         space += log->l_logsize;
 133                         cycle--;
 134                 }
 135 
 136                 old = head_val;
 137                 new = xlog_assign_grant_head_val(cycle, space);
 138                 head_val = atomic64_cmpxchg(head, old, new);
 139         } while (head_val != old);
 140 }
 141 
 142 static void
 143 xlog_grant_add_space(
 144         struct xlog             *log,
 145         atomic64_t              *head,
 146         int                     bytes)
 147 {
 148         int64_t head_val = atomic64_read(head);
 149         int64_t new, old;
 150 
 151         do {
 152                 int             tmp;
 153                 int             cycle, space;
 154 
 155                 xlog_crack_grant_head_val(head_val, &cycle, &space);
 156 
 157                 tmp = log->l_logsize - space;
 158                 if (tmp > bytes)
 159                         space += bytes;
 160                 else {
 161                         space = bytes - tmp;
 162                         cycle++;
 163                 }
 164 
 165                 old = head_val;
 166                 new = xlog_assign_grant_head_val(cycle, space);
 167                 head_val = atomic64_cmpxchg(head, old, new);
 168         } while (head_val != old);
 169 }
 170 
 171 STATIC void
 172 xlog_grant_head_init(
 173         struct xlog_grant_head  *head)
 174 {
 175         xlog_assign_grant_head(&head->grant, 1, 0);
 176         INIT_LIST_HEAD(&head->waiters);
 177         spin_lock_init(&head->lock);
 178 }
 179 
 180 STATIC void
 181 xlog_grant_head_wake_all(
 182         struct xlog_grant_head  *head)
 183 {
 184         struct xlog_ticket      *tic;
 185 
 186         spin_lock(&head->lock);
 187         list_for_each_entry(tic, &head->waiters, t_queue)
 188                 wake_up_process(tic->t_task);
 189         spin_unlock(&head->lock);
 190 }
 191 
 192 static inline int
 193 xlog_ticket_reservation(
 194         struct xlog             *log,
 195         struct xlog_grant_head  *head,
 196         struct xlog_ticket      *tic)
 197 {
 198         if (head == &log->l_write_head) {
 199                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 200                 return tic->t_unit_res;
 201         } else {
 202                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 203                         return tic->t_unit_res * tic->t_cnt;
 204                 else
 205                         return tic->t_unit_res;
 206         }
 207 }
 208 
 209 STATIC bool
 210 xlog_grant_head_wake(
 211         struct xlog             *log,
 212         struct xlog_grant_head  *head,
 213         int                     *free_bytes)
 214 {
 215         struct xlog_ticket      *tic;
 216         int                     need_bytes;
 217         bool                    woken_task = false;
 218 
 219         list_for_each_entry(tic, &head->waiters, t_queue) {
 220 
 221                 /*
 222                  * There is a chance that the size of the CIL checkpoints in
 223                  * progress at the last AIL push target calculation resulted in
 224                  * limiting the target to the log head (l_last_sync_lsn) at the
 225                  * time. This may not reflect where the log head is now as the
 226                  * CIL checkpoints may have completed.
 227                  *
 228                  * Hence when we are woken here, it may be that the head of the
 229                  * log that has moved rather than the tail. As the tail didn't
 230                  * move, there still won't be space available for the
 231                  * reservation we require.  However, if the AIL has already
 232                  * pushed to the target defined by the old log head location, we
 233                  * will hang here waiting for something else to update the AIL
 234                  * push target.
 235                  *
 236                  * Therefore, if there isn't space to wake the first waiter on
 237                  * the grant head, we need to push the AIL again to ensure the
 238                  * target reflects both the current log tail and log head
 239                  * position before we wait for the tail to move again.
 240                  */
 241 
 242                 need_bytes = xlog_ticket_reservation(log, head, tic);
 243                 if (*free_bytes < need_bytes) {
 244                         if (!woken_task)
 245                                 xlog_grant_push_ail(log, need_bytes);
 246                         return false;
 247                 }
 248 
 249                 *free_bytes -= need_bytes;
 250                 trace_xfs_log_grant_wake_up(log, tic);
 251                 wake_up_process(tic->t_task);
 252                 woken_task = true;
 253         }
 254 
 255         return true;
 256 }
 257 
 258 STATIC int
 259 xlog_grant_head_wait(
 260         struct xlog             *log,
 261         struct xlog_grant_head  *head,
 262         struct xlog_ticket      *tic,
 263         int                     need_bytes) __releases(&head->lock)
 264                                             __acquires(&head->lock)
 265 {
 266         list_add_tail(&tic->t_queue, &head->waiters);
 267 
 268         do {
 269                 if (XLOG_FORCED_SHUTDOWN(log))
 270                         goto shutdown;
 271                 xlog_grant_push_ail(log, need_bytes);
 272 
 273                 __set_current_state(TASK_UNINTERRUPTIBLE);
 274                 spin_unlock(&head->lock);
 275 
 276                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 277 
 278                 trace_xfs_log_grant_sleep(log, tic);
 279                 schedule();
 280                 trace_xfs_log_grant_wake(log, tic);
 281 
 282                 spin_lock(&head->lock);
 283                 if (XLOG_FORCED_SHUTDOWN(log))
 284                         goto shutdown;
 285         } while (xlog_space_left(log, &head->grant) < need_bytes);
 286 
 287         list_del_init(&tic->t_queue);
 288         return 0;
 289 shutdown:
 290         list_del_init(&tic->t_queue);
 291         return -EIO;
 292 }
 293 
 294 /*
 295  * Atomically get the log space required for a log ticket.
 296  *
 297  * Once a ticket gets put onto head->waiters, it will only return after the
 298  * needed reservation is satisfied.
 299  *
 300  * This function is structured so that it has a lock free fast path. This is
 301  * necessary because every new transaction reservation will come through this
 302  * path. Hence any lock will be globally hot if we take it unconditionally on
 303  * every pass.
 304  *
 305  * As tickets are only ever moved on and off head->waiters under head->lock, we
 306  * only need to take that lock if we are going to add the ticket to the queue
 307  * and sleep. We can avoid taking the lock if the ticket was never added to
 308  * head->waiters because the t_queue list head will be empty and we hold the
 309  * only reference to it so it can safely be checked unlocked.
 310  */
 311 STATIC int
 312 xlog_grant_head_check(
 313         struct xlog             *log,
 314         struct xlog_grant_head  *head,
 315         struct xlog_ticket      *tic,
 316         int                     *need_bytes)
 317 {
 318         int                     free_bytes;
 319         int                     error = 0;
 320 
 321         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 322 
 323         /*
 324          * If there are other waiters on the queue then give them a chance at
 325          * logspace before us.  Wake up the first waiters, if we do not wake
 326          * up all the waiters then go to sleep waiting for more free space,
 327          * otherwise try to get some space for this transaction.
 328          */
 329         *need_bytes = xlog_ticket_reservation(log, head, tic);
 330         free_bytes = xlog_space_left(log, &head->grant);
 331         if (!list_empty_careful(&head->waiters)) {
 332                 spin_lock(&head->lock);
 333                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 334                     free_bytes < *need_bytes) {
 335                         error = xlog_grant_head_wait(log, head, tic,
 336                                                      *need_bytes);
 337                 }
 338                 spin_unlock(&head->lock);
 339         } else if (free_bytes < *need_bytes) {
 340                 spin_lock(&head->lock);
 341                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 342                 spin_unlock(&head->lock);
 343         }
 344 
 345         return error;
 346 }
 347 
 348 static void
 349 xlog_tic_reset_res(xlog_ticket_t *tic)
 350 {
 351         tic->t_res_num = 0;
 352         tic->t_res_arr_sum = 0;
 353         tic->t_res_num_ophdrs = 0;
 354 }
 355 
 356 static void
 357 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 358 {
 359         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 360                 /* add to overflow and start again */
 361                 tic->t_res_o_flow += tic->t_res_arr_sum;
 362                 tic->t_res_num = 0;
 363                 tic->t_res_arr_sum = 0;
 364         }
 365 
 366         tic->t_res_arr[tic->t_res_num].r_len = len;
 367         tic->t_res_arr[tic->t_res_num].r_type = type;
 368         tic->t_res_arr_sum += len;
 369         tic->t_res_num++;
 370 }
 371 
 372 /*
 373  * Replenish the byte reservation required by moving the grant write head.
 374  */
 375 int
 376 xfs_log_regrant(
 377         struct xfs_mount        *mp,
 378         struct xlog_ticket      *tic)
 379 {
 380         struct xlog             *log = mp->m_log;
 381         int                     need_bytes;
 382         int                     error = 0;
 383 
 384         if (XLOG_FORCED_SHUTDOWN(log))
 385                 return -EIO;
 386 
 387         XFS_STATS_INC(mp, xs_try_logspace);
 388 
 389         /*
 390          * This is a new transaction on the ticket, so we need to change the
 391          * transaction ID so that the next transaction has a different TID in
 392          * the log. Just add one to the existing tid so that we can see chains
 393          * of rolling transactions in the log easily.
 394          */
 395         tic->t_tid++;
 396 
 397         xlog_grant_push_ail(log, tic->t_unit_res);
 398 
 399         tic->t_curr_res = tic->t_unit_res;
 400         xlog_tic_reset_res(tic);
 401 
 402         if (tic->t_cnt > 0)
 403                 return 0;
 404 
 405         trace_xfs_log_regrant(log, tic);
 406 
 407         error = xlog_grant_head_check(log, &log->l_write_head, tic,
 408                                       &need_bytes);
 409         if (error)
 410                 goto out_error;
 411 
 412         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 413         trace_xfs_log_regrant_exit(log, tic);
 414         xlog_verify_grant_tail(log);
 415         return 0;
 416 
 417 out_error:
 418         /*
 419          * If we are failing, make sure the ticket doesn't have any current
 420          * reservations.  We don't want to add this back when the ticket/
 421          * transaction gets cancelled.
 422          */
 423         tic->t_curr_res = 0;
 424         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 425         return error;
 426 }
 427 
 428 /*
 429  * Reserve log space and return a ticket corresponding to the reservation.
 430  *
 431  * Each reservation is going to reserve extra space for a log record header.
 432  * When writes happen to the on-disk log, we don't subtract the length of the
 433  * log record header from any reservation.  By wasting space in each
 434  * reservation, we prevent over allocation problems.
 435  */
 436 int
 437 xfs_log_reserve(
 438         struct xfs_mount        *mp,
 439         int                     unit_bytes,
 440         int                     cnt,
 441         struct xlog_ticket      **ticp,
 442         uint8_t                 client,
 443         bool                    permanent)
 444 {
 445         struct xlog             *log = mp->m_log;
 446         struct xlog_ticket      *tic;
 447         int                     need_bytes;
 448         int                     error = 0;
 449 
 450         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 451 
 452         if (XLOG_FORCED_SHUTDOWN(log))
 453                 return -EIO;
 454 
 455         XFS_STATS_INC(mp, xs_try_logspace);
 456 
 457         ASSERT(*ticp == NULL);
 458         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
 459         *ticp = tic;
 460 
 461         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 462                                             : tic->t_unit_res);
 463 
 464         trace_xfs_log_reserve(log, tic);
 465 
 466         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 467                                       &need_bytes);
 468         if (error)
 469                 goto out_error;
 470 
 471         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 472         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 473         trace_xfs_log_reserve_exit(log, tic);
 474         xlog_verify_grant_tail(log);
 475         return 0;
 476 
 477 out_error:
 478         /*
 479          * If we are failing, make sure the ticket doesn't have any current
 480          * reservations.  We don't want to add this back when the ticket/
 481          * transaction gets cancelled.
 482          */
 483         tic->t_curr_res = 0;
 484         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 485         return error;
 486 }
 487 
 488 
 489 /*
 490  * NOTES:
 491  *
 492  *      1. currblock field gets updated at startup and after in-core logs
 493  *              marked as with WANT_SYNC.
 494  */
 495 
 496 /*
 497  * This routine is called when a user of a log manager ticket is done with
 498  * the reservation.  If the ticket was ever used, then a commit record for
 499  * the associated transaction is written out as a log operation header with
 500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 501  * a given ticket.  If the ticket was one with a permanent reservation, then
 502  * a few operations are done differently.  Permanent reservation tickets by
 503  * default don't release the reservation.  They just commit the current
 504  * transaction with the belief that the reservation is still needed.  A flag
 505  * must be passed in before permanent reservations are actually released.
 506  * When these type of tickets are not released, they need to be set into
 507  * the inited state again.  By doing this, a start record will be written
 508  * out when the next write occurs.
 509  */
 510 xfs_lsn_t
 511 xfs_log_done(
 512         struct xfs_mount        *mp,
 513         struct xlog_ticket      *ticket,
 514         struct xlog_in_core     **iclog,
 515         bool                    regrant)
 516 {
 517         struct xlog             *log = mp->m_log;
 518         xfs_lsn_t               lsn = 0;
 519 
 520         if (XLOG_FORCED_SHUTDOWN(log) ||
 521             /*
 522              * If nothing was ever written, don't write out commit record.
 523              * If we get an error, just continue and give back the log ticket.
 524              */
 525             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 526              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 527                 lsn = (xfs_lsn_t) -1;
 528                 regrant = false;
 529         }
 530 
 531 
 532         if (!regrant) {
 533                 trace_xfs_log_done_nonperm(log, ticket);
 534 
 535                 /*
 536                  * Release ticket if not permanent reservation or a specific
 537                  * request has been made to release a permanent reservation.
 538                  */
 539                 xlog_ungrant_log_space(log, ticket);
 540         } else {
 541                 trace_xfs_log_done_perm(log, ticket);
 542 
 543                 xlog_regrant_reserve_log_space(log, ticket);
 544                 /* If this ticket was a permanent reservation and we aren't
 545                  * trying to release it, reset the inited flags; so next time
 546                  * we write, a start record will be written out.
 547                  */
 548                 ticket->t_flags |= XLOG_TIC_INITED;
 549         }
 550 
 551         xfs_log_ticket_put(ticket);
 552         return lsn;
 553 }
 554 
 555 int
 556 xfs_log_release_iclog(
 557         struct xfs_mount        *mp,
 558         struct xlog_in_core     *iclog)
 559 {
 560         if (xlog_state_release_iclog(mp->m_log, iclog)) {
 561                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 562                 return -EIO;
 563         }
 564 
 565         return 0;
 566 }
 567 
 568 /*
 569  * Mount a log filesystem
 570  *
 571  * mp           - ubiquitous xfs mount point structure
 572  * log_target   - buftarg of on-disk log device
 573  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 574  * num_bblocks  - Number of BBSIZE blocks in on-disk log
 575  *
 576  * Return error or zero.
 577  */
 578 int
 579 xfs_log_mount(
 580         xfs_mount_t     *mp,
 581         xfs_buftarg_t   *log_target,
 582         xfs_daddr_t     blk_offset,
 583         int             num_bblks)
 584 {
 585         bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 586         int             error = 0;
 587         int             min_logfsbs;
 588 
 589         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 590                 xfs_notice(mp, "Mounting V%d Filesystem",
 591                            XFS_SB_VERSION_NUM(&mp->m_sb));
 592         } else {
 593                 xfs_notice(mp,
 594 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 595                            XFS_SB_VERSION_NUM(&mp->m_sb));
 596                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 597         }
 598 
 599         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 600         if (IS_ERR(mp->m_log)) {
 601                 error = PTR_ERR(mp->m_log);
 602                 goto out;
 603         }
 604 
 605         /*
 606          * Validate the given log space and drop a critical message via syslog
 607          * if the log size is too small that would lead to some unexpected
 608          * situations in transaction log space reservation stage.
 609          *
 610          * Note: we can't just reject the mount if the validation fails.  This
 611          * would mean that people would have to downgrade their kernel just to
 612          * remedy the situation as there is no way to grow the log (short of
 613          * black magic surgery with xfs_db).
 614          *
 615          * We can, however, reject mounts for CRC format filesystems, as the
 616          * mkfs binary being used to make the filesystem should never create a
 617          * filesystem with a log that is too small.
 618          */
 619         min_logfsbs = xfs_log_calc_minimum_size(mp);
 620 
 621         if (mp->m_sb.sb_logblocks < min_logfsbs) {
 622                 xfs_warn(mp,
 623                 "Log size %d blocks too small, minimum size is %d blocks",
 624                          mp->m_sb.sb_logblocks, min_logfsbs);
 625                 error = -EINVAL;
 626         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 627                 xfs_warn(mp,
 628                 "Log size %d blocks too large, maximum size is %lld blocks",
 629                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 630                 error = -EINVAL;
 631         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 632                 xfs_warn(mp,
 633                 "log size %lld bytes too large, maximum size is %lld bytes",
 634                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 635                          XFS_MAX_LOG_BYTES);
 636                 error = -EINVAL;
 637         } else if (mp->m_sb.sb_logsunit > 1 &&
 638                    mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 639                 xfs_warn(mp,
 640                 "log stripe unit %u bytes must be a multiple of block size",
 641                          mp->m_sb.sb_logsunit);
 642                 error = -EINVAL;
 643                 fatal = true;
 644         }
 645         if (error) {
 646                 /*
 647                  * Log check errors are always fatal on v5; or whenever bad
 648                  * metadata leads to a crash.
 649                  */
 650                 if (fatal) {
 651                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 652                         ASSERT(0);
 653                         goto out_free_log;
 654                 }
 655                 xfs_crit(mp, "Log size out of supported range.");
 656                 xfs_crit(mp,
 657 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 658         }
 659 
 660         /*
 661          * Initialize the AIL now we have a log.
 662          */
 663         error = xfs_trans_ail_init(mp);
 664         if (error) {
 665                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
 666                 goto out_free_log;
 667         }
 668         mp->m_log->l_ailp = mp->m_ail;
 669 
 670         /*
 671          * skip log recovery on a norecovery mount.  pretend it all
 672          * just worked.
 673          */
 674         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 675                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 676 
 677                 if (readonly)
 678                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
 679 
 680                 error = xlog_recover(mp->m_log);
 681 
 682                 if (readonly)
 683                         mp->m_flags |= XFS_MOUNT_RDONLY;
 684                 if (error) {
 685                         xfs_warn(mp, "log mount/recovery failed: error %d",
 686                                 error);
 687                         xlog_recover_cancel(mp->m_log);
 688                         goto out_destroy_ail;
 689                 }
 690         }
 691 
 692         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 693                                "log");
 694         if (error)
 695                 goto out_destroy_ail;
 696 
 697         /* Normal transactions can now occur */
 698         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 699 
 700         /*
 701          * Now the log has been fully initialised and we know were our
 702          * space grant counters are, we can initialise the permanent ticket
 703          * needed for delayed logging to work.
 704          */
 705         xlog_cil_init_post_recovery(mp->m_log);
 706 
 707         return 0;
 708 
 709 out_destroy_ail:
 710         xfs_trans_ail_destroy(mp);
 711 out_free_log:
 712         xlog_dealloc_log(mp->m_log);
 713 out:
 714         return error;
 715 }
 716 
 717 /*
 718  * Finish the recovery of the file system.  This is separate from the
 719  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 720  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 721  * here.
 722  *
 723  * If we finish recovery successfully, start the background log work. If we are
 724  * not doing recovery, then we have a RO filesystem and we don't need to start
 725  * it.
 726  */
 727 int
 728 xfs_log_mount_finish(
 729         struct xfs_mount        *mp)
 730 {
 731         int     error = 0;
 732         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 733         bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 734 
 735         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 736                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 737                 return 0;
 738         } else if (readonly) {
 739                 /* Allow unlinked processing to proceed */
 740                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
 741         }
 742 
 743         /*
 744          * During the second phase of log recovery, we need iget and
 745          * iput to behave like they do for an active filesystem.
 746          * xfs_fs_drop_inode needs to be able to prevent the deletion
 747          * of inodes before we're done replaying log items on those
 748          * inodes.  Turn it off immediately after recovery finishes
 749          * so that we don't leak the quota inodes if subsequent mount
 750          * activities fail.
 751          *
 752          * We let all inodes involved in redo item processing end up on
 753          * the LRU instead of being evicted immediately so that if we do
 754          * something to an unlinked inode, the irele won't cause
 755          * premature truncation and freeing of the inode, which results
 756          * in log recovery failure.  We have to evict the unreferenced
 757          * lru inodes after clearing SB_ACTIVE because we don't
 758          * otherwise clean up the lru if there's a subsequent failure in
 759          * xfs_mountfs, which leads to us leaking the inodes if nothing
 760          * else (e.g. quotacheck) references the inodes before the
 761          * mount failure occurs.
 762          */
 763         mp->m_super->s_flags |= SB_ACTIVE;
 764         error = xlog_recover_finish(mp->m_log);
 765         if (!error)
 766                 xfs_log_work_queue(mp);
 767         mp->m_super->s_flags &= ~SB_ACTIVE;
 768         evict_inodes(mp->m_super);
 769 
 770         /*
 771          * Drain the buffer LRU after log recovery. This is required for v4
 772          * filesystems to avoid leaving around buffers with NULL verifier ops,
 773          * but we do it unconditionally to make sure we're always in a clean
 774          * cache state after mount.
 775          *
 776          * Don't push in the error case because the AIL may have pending intents
 777          * that aren't removed until recovery is cancelled.
 778          */
 779         if (!error && recovered) {
 780                 xfs_log_force(mp, XFS_LOG_SYNC);
 781                 xfs_ail_push_all_sync(mp->m_ail);
 782         }
 783         xfs_wait_buftarg(mp->m_ddev_targp);
 784 
 785         if (readonly)
 786                 mp->m_flags |= XFS_MOUNT_RDONLY;
 787 
 788         return error;
 789 }
 790 
 791 /*
 792  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 793  * the log.
 794  */
 795 void
 796 xfs_log_mount_cancel(
 797         struct xfs_mount        *mp)
 798 {
 799         xlog_recover_cancel(mp->m_log);
 800         xfs_log_unmount(mp);
 801 }
 802 
 803 /*
 804  * Final log writes as part of unmount.
 805  *
 806  * Mark the filesystem clean as unmount happens.  Note that during relocation
 807  * this routine needs to be executed as part of source-bag while the
 808  * deallocation must not be done until source-end.
 809  */
 810 
 811 /* Actually write the unmount record to disk. */
 812 static void
 813 xfs_log_write_unmount_record(
 814         struct xfs_mount        *mp)
 815 {
 816         /* the data section must be 32 bit size aligned */
 817         struct xfs_unmount_log_format magic = {
 818                 .magic = XLOG_UNMOUNT_TYPE,
 819         };
 820         struct xfs_log_iovec reg = {
 821                 .i_addr = &magic,
 822                 .i_len = sizeof(magic),
 823                 .i_type = XLOG_REG_TYPE_UNMOUNT,
 824         };
 825         struct xfs_log_vec vec = {
 826                 .lv_niovecs = 1,
 827                 .lv_iovecp = &reg,
 828         };
 829         struct xlog             *log = mp->m_log;
 830         struct xlog_in_core     *iclog;
 831         struct xlog_ticket      *tic = NULL;
 832         xfs_lsn_t               lsn;
 833         uint                    flags = XLOG_UNMOUNT_TRANS;
 834         int                     error;
 835 
 836         error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 837         if (error)
 838                 goto out_err;
 839 
 840         /*
 841          * If we think the summary counters are bad, clear the unmount header
 842          * flag in the unmount record so that the summary counters will be
 843          * recalculated during log recovery at next mount.  Refer to
 844          * xlog_check_unmount_rec for more details.
 845          */
 846         if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 847                         XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 848                 xfs_alert(mp, "%s: will fix summary counters at next mount",
 849                                 __func__);
 850                 flags &= ~XLOG_UNMOUNT_TRANS;
 851         }
 852 
 853         /* remove inited flag, and account for space used */
 854         tic->t_flags = 0;
 855         tic->t_curr_res -= sizeof(magic);
 856         error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
 857         /*
 858          * At this point, we're umounting anyway, so there's no point in
 859          * transitioning log state to IOERROR. Just continue...
 860          */
 861 out_err:
 862         if (error)
 863                 xfs_alert(mp, "%s: unmount record failed", __func__);
 864 
 865         spin_lock(&log->l_icloglock);
 866         iclog = log->l_iclog;
 867         atomic_inc(&iclog->ic_refcnt);
 868         xlog_state_want_sync(log, iclog);
 869         spin_unlock(&log->l_icloglock);
 870         error = xlog_state_release_iclog(log, iclog);
 871 
 872         spin_lock(&log->l_icloglock);
 873         switch (iclog->ic_state) {
 874         default:
 875                 if (!XLOG_FORCED_SHUTDOWN(log)) {
 876                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 877                         break;
 878                 }
 879                 /* fall through */
 880         case XLOG_STATE_ACTIVE:
 881         case XLOG_STATE_DIRTY:
 882                 spin_unlock(&log->l_icloglock);
 883                 break;
 884         }
 885 
 886         if (tic) {
 887                 trace_xfs_log_umount_write(log, tic);
 888                 xlog_ungrant_log_space(log, tic);
 889                 xfs_log_ticket_put(tic);
 890         }
 891 }
 892 
 893 /*
 894  * Unmount record used to have a string "Unmount filesystem--" in the
 895  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 896  * We just write the magic number now since that particular field isn't
 897  * currently architecture converted and "Unmount" is a bit foo.
 898  * As far as I know, there weren't any dependencies on the old behaviour.
 899  */
 900 
 901 static int
 902 xfs_log_unmount_write(xfs_mount_t *mp)
 903 {
 904         struct xlog      *log = mp->m_log;
 905         xlog_in_core_t   *iclog;
 906 #ifdef DEBUG
 907         xlog_in_core_t   *first_iclog;
 908 #endif
 909         int              error;
 910 
 911         /*
 912          * Don't write out unmount record on norecovery mounts or ro devices.
 913          * Or, if we are doing a forced umount (typically because of IO errors).
 914          */
 915         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 916             xfs_readonly_buftarg(log->l_targ)) {
 917                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 918                 return 0;
 919         }
 920 
 921         error = xfs_log_force(mp, XFS_LOG_SYNC);
 922         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 923 
 924 #ifdef DEBUG
 925         first_iclog = iclog = log->l_iclog;
 926         do {
 927                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 928                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 929                         ASSERT(iclog->ic_offset == 0);
 930                 }
 931                 iclog = iclog->ic_next;
 932         } while (iclog != first_iclog);
 933 #endif
 934         if (! (XLOG_FORCED_SHUTDOWN(log))) {
 935                 xfs_log_write_unmount_record(mp);
 936         } else {
 937                 /*
 938                  * We're already in forced_shutdown mode, couldn't
 939                  * even attempt to write out the unmount transaction.
 940                  *
 941                  * Go through the motions of sync'ing and releasing
 942                  * the iclog, even though no I/O will actually happen,
 943                  * we need to wait for other log I/Os that may already
 944                  * be in progress.  Do this as a separate section of
 945                  * code so we'll know if we ever get stuck here that
 946                  * we're in this odd situation of trying to unmount
 947                  * a file system that went into forced_shutdown as
 948                  * the result of an unmount..
 949                  */
 950                 spin_lock(&log->l_icloglock);
 951                 iclog = log->l_iclog;
 952                 atomic_inc(&iclog->ic_refcnt);
 953 
 954                 xlog_state_want_sync(log, iclog);
 955                 spin_unlock(&log->l_icloglock);
 956                 error =  xlog_state_release_iclog(log, iclog);
 957 
 958                 spin_lock(&log->l_icloglock);
 959 
 960                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 961                         || iclog->ic_state == XLOG_STATE_DIRTY
 962                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 963 
 964                                 xlog_wait(&iclog->ic_force_wait,
 965                                                         &log->l_icloglock);
 966                 } else {
 967                         spin_unlock(&log->l_icloglock);
 968                 }
 969         }
 970 
 971         return error;
 972 }       /* xfs_log_unmount_write */
 973 
 974 /*
 975  * Empty the log for unmount/freeze.
 976  *
 977  * To do this, we first need to shut down the background log work so it is not
 978  * trying to cover the log as we clean up. We then need to unpin all objects in
 979  * the log so we can then flush them out. Once they have completed their IO and
 980  * run the callbacks removing themselves from the AIL, we can write the unmount
 981  * record.
 982  */
 983 void
 984 xfs_log_quiesce(
 985         struct xfs_mount        *mp)
 986 {
 987         cancel_delayed_work_sync(&mp->m_log->l_work);
 988         xfs_log_force(mp, XFS_LOG_SYNC);
 989 
 990         /*
 991          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 992          * will push it, xfs_wait_buftarg() will not wait for it. Further,
 993          * xfs_buf_iowait() cannot be used because it was pushed with the
 994          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 995          * the IO to complete.
 996          */
 997         xfs_ail_push_all_sync(mp->m_ail);
 998         xfs_wait_buftarg(mp->m_ddev_targp);
 999         xfs_buf_lock(mp->m_sb_bp);
1000         xfs_buf_unlock(mp->m_sb_bp);
1001 
1002         xfs_log_unmount_write(mp);
1003 }
1004 
1005 /*
1006  * Shut down and release the AIL and Log.
1007  *
1008  * During unmount, we need to ensure we flush all the dirty metadata objects
1009  * from the AIL so that the log is empty before we write the unmount record to
1010  * the log. Once this is done, we can tear down the AIL and the log.
1011  */
1012 void
1013 xfs_log_unmount(
1014         struct xfs_mount        *mp)
1015 {
1016         xfs_log_quiesce(mp);
1017 
1018         xfs_trans_ail_destroy(mp);
1019 
1020         xfs_sysfs_del(&mp->m_log->l_kobj);
1021 
1022         xlog_dealloc_log(mp->m_log);
1023 }
1024 
1025 void
1026 xfs_log_item_init(
1027         struct xfs_mount        *mp,
1028         struct xfs_log_item     *item,
1029         int                     type,
1030         const struct xfs_item_ops *ops)
1031 {
1032         item->li_mountp = mp;
1033         item->li_ailp = mp->m_ail;
1034         item->li_type = type;
1035         item->li_ops = ops;
1036         item->li_lv = NULL;
1037 
1038         INIT_LIST_HEAD(&item->li_ail);
1039         INIT_LIST_HEAD(&item->li_cil);
1040         INIT_LIST_HEAD(&item->li_bio_list);
1041         INIT_LIST_HEAD(&item->li_trans);
1042 }
1043 
1044 /*
1045  * Wake up processes waiting for log space after we have moved the log tail.
1046  */
1047 void
1048 xfs_log_space_wake(
1049         struct xfs_mount        *mp)
1050 {
1051         struct xlog             *log = mp->m_log;
1052         int                     free_bytes;
1053 
1054         if (XLOG_FORCED_SHUTDOWN(log))
1055                 return;
1056 
1057         if (!list_empty_careful(&log->l_write_head.waiters)) {
1058                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059 
1060                 spin_lock(&log->l_write_head.lock);
1061                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1062                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1063                 spin_unlock(&log->l_write_head.lock);
1064         }
1065 
1066         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1067                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068 
1069                 spin_lock(&log->l_reserve_head.lock);
1070                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1071                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1072                 spin_unlock(&log->l_reserve_head.lock);
1073         }
1074 }
1075 
1076 /*
1077  * Determine if we have a transaction that has gone to disk that needs to be
1078  * covered. To begin the transition to the idle state firstly the log needs to
1079  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1080  * we start attempting to cover the log.
1081  *
1082  * Only if we are then in a state where covering is needed, the caller is
1083  * informed that dummy transactions are required to move the log into the idle
1084  * state.
1085  *
1086  * If there are any items in the AIl or CIL, then we do not want to attempt to
1087  * cover the log as we may be in a situation where there isn't log space
1088  * available to run a dummy transaction and this can lead to deadlocks when the
1089  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1090  * there's no point in running a dummy transaction at this point because we
1091  * can't start trying to idle the log until both the CIL and AIL are empty.
1092  */
1093 static int
1094 xfs_log_need_covered(xfs_mount_t *mp)
1095 {
1096         struct xlog     *log = mp->m_log;
1097         int             needed = 0;
1098 
1099         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1100                 return 0;
1101 
1102         if (!xlog_cil_empty(log))
1103                 return 0;
1104 
1105         spin_lock(&log->l_icloglock);
1106         switch (log->l_covered_state) {
1107         case XLOG_STATE_COVER_DONE:
1108         case XLOG_STATE_COVER_DONE2:
1109         case XLOG_STATE_COVER_IDLE:
1110                 break;
1111         case XLOG_STATE_COVER_NEED:
1112         case XLOG_STATE_COVER_NEED2:
1113                 if (xfs_ail_min_lsn(log->l_ailp))
1114                         break;
1115                 if (!xlog_iclogs_empty(log))
1116                         break;
1117 
1118                 needed = 1;
1119                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1120                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1121                 else
1122                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1123                 break;
1124         default:
1125                 needed = 1;
1126                 break;
1127         }
1128         spin_unlock(&log->l_icloglock);
1129         return needed;
1130 }
1131 
1132 /*
1133  * We may be holding the log iclog lock upon entering this routine.
1134  */
1135 xfs_lsn_t
1136 xlog_assign_tail_lsn_locked(
1137         struct xfs_mount        *mp)
1138 {
1139         struct xlog             *log = mp->m_log;
1140         struct xfs_log_item     *lip;
1141         xfs_lsn_t               tail_lsn;
1142 
1143         assert_spin_locked(&mp->m_ail->ail_lock);
1144 
1145         /*
1146          * To make sure we always have a valid LSN for the log tail we keep
1147          * track of the last LSN which was committed in log->l_last_sync_lsn,
1148          * and use that when the AIL was empty.
1149          */
1150         lip = xfs_ail_min(mp->m_ail);
1151         if (lip)
1152                 tail_lsn = lip->li_lsn;
1153         else
1154                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1155         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1156         atomic64_set(&log->l_tail_lsn, tail_lsn);
1157         return tail_lsn;
1158 }
1159 
1160 xfs_lsn_t
1161 xlog_assign_tail_lsn(
1162         struct xfs_mount        *mp)
1163 {
1164         xfs_lsn_t               tail_lsn;
1165 
1166         spin_lock(&mp->m_ail->ail_lock);
1167         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1168         spin_unlock(&mp->m_ail->ail_lock);
1169 
1170         return tail_lsn;
1171 }
1172 
1173 /*
1174  * Return the space in the log between the tail and the head.  The head
1175  * is passed in the cycle/bytes formal parms.  In the special case where
1176  * the reserve head has wrapped passed the tail, this calculation is no
1177  * longer valid.  In this case, just return 0 which means there is no space
1178  * in the log.  This works for all places where this function is called
1179  * with the reserve head.  Of course, if the write head were to ever
1180  * wrap the tail, we should blow up.  Rather than catch this case here,
1181  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1182  *
1183  * This code also handles the case where the reservation head is behind
1184  * the tail.  The details of this case are described below, but the end
1185  * result is that we return the size of the log as the amount of space left.
1186  */
1187 STATIC int
1188 xlog_space_left(
1189         struct xlog     *log,
1190         atomic64_t      *head)
1191 {
1192         int             free_bytes;
1193         int             tail_bytes;
1194         int             tail_cycle;
1195         int             head_cycle;
1196         int             head_bytes;
1197 
1198         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1199         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1200         tail_bytes = BBTOB(tail_bytes);
1201         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1202                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1203         else if (tail_cycle + 1 < head_cycle)
1204                 return 0;
1205         else if (tail_cycle < head_cycle) {
1206                 ASSERT(tail_cycle == (head_cycle - 1));
1207                 free_bytes = tail_bytes - head_bytes;
1208         } else {
1209                 /*
1210                  * The reservation head is behind the tail.
1211                  * In this case we just want to return the size of the
1212                  * log as the amount of space left.
1213                  */
1214                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1215                 xfs_alert(log->l_mp,
1216                           "  tail_cycle = %d, tail_bytes = %d",
1217                           tail_cycle, tail_bytes);
1218                 xfs_alert(log->l_mp,
1219                           "  GH   cycle = %d, GH   bytes = %d",
1220                           head_cycle, head_bytes);
1221                 ASSERT(0);
1222                 free_bytes = log->l_logsize;
1223         }
1224         return free_bytes;
1225 }
1226 
1227 
1228 static void
1229 xlog_ioend_work(
1230         struct work_struct      *work)
1231 {
1232         struct xlog_in_core     *iclog =
1233                 container_of(work, struct xlog_in_core, ic_end_io_work);
1234         struct xlog             *log = iclog->ic_log;
1235         bool                    aborted = false;
1236         int                     error;
1237 
1238         error = blk_status_to_errno(iclog->ic_bio.bi_status);
1239 #ifdef DEBUG
1240         /* treat writes with injected CRC errors as failed */
1241         if (iclog->ic_fail_crc)
1242                 error = -EIO;
1243 #endif
1244 
1245         /*
1246          * Race to shutdown the filesystem if we see an error.
1247          */
1248         if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1249                 xfs_alert(log->l_mp, "log I/O error %d", error);
1250                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251                 /*
1252                  * This flag will be propagated to the trans-committed
1253                  * callback routines to let them know that the log-commit
1254                  * didn't succeed.
1255                  */
1256                 aborted = true;
1257         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258                 aborted = true;
1259         }
1260 
1261         xlog_state_done_syncing(iclog, aborted);
1262         bio_uninit(&iclog->ic_bio);
1263 
1264         /*
1265          * Drop the lock to signal that we are done. Nothing references the
1266          * iclog after this, so an unmount waiting on this lock can now tear it
1267          * down safely. As such, it is unsafe to reference the iclog after the
1268          * unlock as we could race with it being freed.
1269          */
1270         up(&iclog->ic_sema);
1271 }
1272 
1273 /*
1274  * Return size of each in-core log record buffer.
1275  *
1276  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1277  *
1278  * If the filesystem blocksize is too large, we may need to choose a
1279  * larger size since the directory code currently logs entire blocks.
1280  */
1281 STATIC void
1282 xlog_get_iclog_buffer_size(
1283         struct xfs_mount        *mp,
1284         struct xlog             *log)
1285 {
1286         if (mp->m_logbufs <= 0)
1287                 mp->m_logbufs = XLOG_MAX_ICLOGS;
1288         if (mp->m_logbsize <= 0)
1289                 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1290 
1291         log->l_iclog_bufs = mp->m_logbufs;
1292         log->l_iclog_size = mp->m_logbsize;
1293 
1294         /*
1295          * # headers = size / 32k - one header holds cycles from 32k of data.
1296          */
1297         log->l_iclog_heads =
1298                 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1299         log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1300 }
1301 
1302 void
1303 xfs_log_work_queue(
1304         struct xfs_mount        *mp)
1305 {
1306         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308 }
1309 
1310 /*
1311  * Every sync period we need to unpin all items in the AIL and push them to
1312  * disk. If there is nothing dirty, then we might need to cover the log to
1313  * indicate that the filesystem is idle.
1314  */
1315 static void
1316 xfs_log_worker(
1317         struct work_struct      *work)
1318 {
1319         struct xlog             *log = container_of(to_delayed_work(work),
1320                                                 struct xlog, l_work);
1321         struct xfs_mount        *mp = log->l_mp;
1322 
1323         /* dgc: errors ignored - not fatal and nowhere to report them */
1324         if (xfs_log_need_covered(mp)) {
1325                 /*
1326                  * Dump a transaction into the log that contains no real change.
1327                  * This is needed to stamp the current tail LSN into the log
1328                  * during the covering operation.
1329                  *
1330                  * We cannot use an inode here for this - that will push dirty
1331                  * state back up into the VFS and then periodic inode flushing
1332                  * will prevent log covering from making progress. Hence we
1333                  * synchronously log the superblock instead to ensure the
1334                  * superblock is immediately unpinned and can be written back.
1335                  */
1336                 xfs_sync_sb(mp, true);
1337         } else
1338                 xfs_log_force(mp, 0);
1339 
1340         /* start pushing all the metadata that is currently dirty */
1341         xfs_ail_push_all(mp->m_ail);
1342 
1343         /* queue us up again */
1344         xfs_log_work_queue(mp);
1345 }
1346 
1347 /*
1348  * This routine initializes some of the log structure for a given mount point.
1349  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1350  * some other stuff may be filled in too.
1351  */
1352 STATIC struct xlog *
1353 xlog_alloc_log(
1354         struct xfs_mount        *mp,
1355         struct xfs_buftarg      *log_target,
1356         xfs_daddr_t             blk_offset,
1357         int                     num_bblks)
1358 {
1359         struct xlog             *log;
1360         xlog_rec_header_t       *head;
1361         xlog_in_core_t          **iclogp;
1362         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1363         int                     i;
1364         int                     error = -ENOMEM;
1365         uint                    log2_size = 0;
1366 
1367         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1368         if (!log) {
1369                 xfs_warn(mp, "Log allocation failed: No memory!");
1370                 goto out;
1371         }
1372 
1373         log->l_mp          = mp;
1374         log->l_targ        = log_target;
1375         log->l_logsize     = BBTOB(num_bblks);
1376         log->l_logBBstart  = blk_offset;
1377         log->l_logBBsize   = num_bblks;
1378         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1379         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1380         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1381 
1382         log->l_prev_block  = -1;
1383         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1384         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1385         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1386         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1387 
1388         xlog_grant_head_init(&log->l_reserve_head);
1389         xlog_grant_head_init(&log->l_write_head);
1390 
1391         error = -EFSCORRUPTED;
1392         if (xfs_sb_version_hassector(&mp->m_sb)) {
1393                 log2_size = mp->m_sb.sb_logsectlog;
1394                 if (log2_size < BBSHIFT) {
1395                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1396                                 log2_size, BBSHIFT);
1397                         goto out_free_log;
1398                 }
1399 
1400                 log2_size -= BBSHIFT;
1401                 if (log2_size > mp->m_sectbb_log) {
1402                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1403                                 log2_size, mp->m_sectbb_log);
1404                         goto out_free_log;
1405                 }
1406 
1407                 /* for larger sector sizes, must have v2 or external log */
1408                 if (log2_size && log->l_logBBstart > 0 &&
1409                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1410                         xfs_warn(mp,
1411                 "log sector size (0x%x) invalid for configuration.",
1412                                 log2_size);
1413                         goto out_free_log;
1414                 }
1415         }
1416         log->l_sectBBsize = 1 << log2_size;
1417 
1418         xlog_get_iclog_buffer_size(mp, log);
1419 
1420         spin_lock_init(&log->l_icloglock);
1421         init_waitqueue_head(&log->l_flush_wait);
1422 
1423         iclogp = &log->l_iclog;
1424         /*
1425          * The amount of memory to allocate for the iclog structure is
1426          * rather funky due to the way the structure is defined.  It is
1427          * done this way so that we can use different sizes for machines
1428          * with different amounts of memory.  See the definition of
1429          * xlog_in_core_t in xfs_log_priv.h for details.
1430          */
1431         ASSERT(log->l_iclog_size >= 4096);
1432         for (i = 0; i < log->l_iclog_bufs; i++) {
1433                 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1434                 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1435                                 sizeof(struct bio_vec);
1436 
1437                 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1438                 if (!iclog)
1439                         goto out_free_iclog;
1440 
1441                 *iclogp = iclog;
1442                 iclog->ic_prev = prev_iclog;
1443                 prev_iclog = iclog;
1444 
1445                 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1446                                                 KM_MAYFAIL | KM_ZERO);
1447                 if (!iclog->ic_data)
1448                         goto out_free_iclog;
1449 #ifdef DEBUG
1450                 log->l_iclog_bak[i] = &iclog->ic_header;
1451 #endif
1452                 head = &iclog->ic_header;
1453                 memset(head, 0, sizeof(xlog_rec_header_t));
1454                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455                 head->h_version = cpu_to_be32(
1456                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457                 head->h_size = cpu_to_be32(log->l_iclog_size);
1458                 /* new fields */
1459                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1460                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461 
1462                 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1463                 iclog->ic_state = XLOG_STATE_ACTIVE;
1464                 iclog->ic_log = log;
1465                 atomic_set(&iclog->ic_refcnt, 0);
1466                 spin_lock_init(&iclog->ic_callback_lock);
1467                 INIT_LIST_HEAD(&iclog->ic_callbacks);
1468                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469 
1470                 init_waitqueue_head(&iclog->ic_force_wait);
1471                 init_waitqueue_head(&iclog->ic_write_wait);
1472                 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1473                 sema_init(&iclog->ic_sema, 1);
1474 
1475                 iclogp = &iclog->ic_next;
1476         }
1477         *iclogp = log->l_iclog;                 /* complete ring */
1478         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1479 
1480         log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1481                         WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1482                         mp->m_fsname);
1483         if (!log->l_ioend_workqueue)
1484                 goto out_free_iclog;
1485 
1486         error = xlog_cil_init(log);
1487         if (error)
1488                 goto out_destroy_workqueue;
1489         return log;
1490 
1491 out_destroy_workqueue:
1492         destroy_workqueue(log->l_ioend_workqueue);
1493 out_free_iclog:
1494         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1495                 prev_iclog = iclog->ic_next;
1496                 kmem_free(iclog->ic_data);
1497                 kmem_free(iclog);
1498                 if (prev_iclog == log->l_iclog)
1499                         break;
1500         }
1501 out_free_log:
1502         kmem_free(log);
1503 out:
1504         return ERR_PTR(error);
1505 }       /* xlog_alloc_log */
1506 
1507 
1508 /*
1509  * Write out the commit record of a transaction associated with the given
1510  * ticket.  Return the lsn of the commit record.
1511  */
1512 STATIC int
1513 xlog_commit_record(
1514         struct xlog             *log,
1515         struct xlog_ticket      *ticket,
1516         struct xlog_in_core     **iclog,
1517         xfs_lsn_t               *commitlsnp)
1518 {
1519         struct xfs_mount *mp = log->l_mp;
1520         int     error;
1521         struct xfs_log_iovec reg = {
1522                 .i_addr = NULL,
1523                 .i_len = 0,
1524                 .i_type = XLOG_REG_TYPE_COMMIT,
1525         };
1526         struct xfs_log_vec vec = {
1527                 .lv_niovecs = 1,
1528                 .lv_iovecp = &reg,
1529         };
1530 
1531         ASSERT_ALWAYS(iclog);
1532         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1533                                         XLOG_COMMIT_TRANS);
1534         if (error)
1535                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1536         return error;
1537 }
1538 
1539 /*
1540  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1541  * log space.  This code pushes on the lsn which would supposedly free up
1542  * the 25% which we want to leave free.  We may need to adopt a policy which
1543  * pushes on an lsn which is further along in the log once we reach the high
1544  * water mark.  In this manner, we would be creating a low water mark.
1545  */
1546 STATIC void
1547 xlog_grant_push_ail(
1548         struct xlog     *log,
1549         int             need_bytes)
1550 {
1551         xfs_lsn_t       threshold_lsn = 0;
1552         xfs_lsn_t       last_sync_lsn;
1553         int             free_blocks;
1554         int             free_bytes;
1555         int             threshold_block;
1556         int             threshold_cycle;
1557         int             free_threshold;
1558 
1559         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1560 
1561         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1562         free_blocks = BTOBBT(free_bytes);
1563 
1564         /*
1565          * Set the threshold for the minimum number of free blocks in the
1566          * log to the maximum of what the caller needs, one quarter of the
1567          * log, and 256 blocks.
1568          */
1569         free_threshold = BTOBB(need_bytes);
1570         free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1571         free_threshold = max(free_threshold, 256);
1572         if (free_blocks >= free_threshold)
1573                 return;
1574 
1575         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1576                                                 &threshold_block);
1577         threshold_block += free_threshold;
1578         if (threshold_block >= log->l_logBBsize) {
1579                 threshold_block -= log->l_logBBsize;
1580                 threshold_cycle += 1;
1581         }
1582         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1583                                         threshold_block);
1584         /*
1585          * Don't pass in an lsn greater than the lsn of the last
1586          * log record known to be on disk. Use a snapshot of the last sync lsn
1587          * so that it doesn't change between the compare and the set.
1588          */
1589         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1590         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1591                 threshold_lsn = last_sync_lsn;
1592 
1593         /*
1594          * Get the transaction layer to kick the dirty buffers out to
1595          * disk asynchronously. No point in trying to do this if
1596          * the filesystem is shutting down.
1597          */
1598         if (!XLOG_FORCED_SHUTDOWN(log))
1599                 xfs_ail_push(log->l_ailp, threshold_lsn);
1600 }
1601 
1602 /*
1603  * Stamp cycle number in every block
1604  */
1605 STATIC void
1606 xlog_pack_data(
1607         struct xlog             *log,
1608         struct xlog_in_core     *iclog,
1609         int                     roundoff)
1610 {
1611         int                     i, j, k;
1612         int                     size = iclog->ic_offset + roundoff;
1613         __be32                  cycle_lsn;
1614         char                    *dp;
1615 
1616         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1617 
1618         dp = iclog->ic_datap;
1619         for (i = 0; i < BTOBB(size); i++) {
1620                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1621                         break;
1622                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1623                 *(__be32 *)dp = cycle_lsn;
1624                 dp += BBSIZE;
1625         }
1626 
1627         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1628                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1629 
1630                 for ( ; i < BTOBB(size); i++) {
1631                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1632                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1633                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1634                         *(__be32 *)dp = cycle_lsn;
1635                         dp += BBSIZE;
1636                 }
1637 
1638                 for (i = 1; i < log->l_iclog_heads; i++)
1639                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1640         }
1641 }
1642 
1643 /*
1644  * Calculate the checksum for a log buffer.
1645  *
1646  * This is a little more complicated than it should be because the various
1647  * headers and the actual data are non-contiguous.
1648  */
1649 __le32
1650 xlog_cksum(
1651         struct xlog             *log,
1652         struct xlog_rec_header  *rhead,
1653         char                    *dp,
1654         int                     size)
1655 {
1656         uint32_t                crc;
1657 
1658         /* first generate the crc for the record header ... */
1659         crc = xfs_start_cksum_update((char *)rhead,
1660                               sizeof(struct xlog_rec_header),
1661                               offsetof(struct xlog_rec_header, h_crc));
1662 
1663         /* ... then for additional cycle data for v2 logs ... */
1664         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1665                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1666                 int             i;
1667                 int             xheads;
1668 
1669                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1670                 if (size % XLOG_HEADER_CYCLE_SIZE)
1671                         xheads++;
1672 
1673                 for (i = 1; i < xheads; i++) {
1674                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1675                                      sizeof(struct xlog_rec_ext_header));
1676                 }
1677         }
1678 
1679         /* ... and finally for the payload */
1680         crc = crc32c(crc, dp, size);
1681 
1682         return xfs_end_cksum(crc);
1683 }
1684 
1685 static void
1686 xlog_bio_end_io(
1687         struct bio              *bio)
1688 {
1689         struct xlog_in_core     *iclog = bio->bi_private;
1690 
1691         queue_work(iclog->ic_log->l_ioend_workqueue,
1692                    &iclog->ic_end_io_work);
1693 }
1694 
1695 static void
1696 xlog_map_iclog_data(
1697         struct bio              *bio,
1698         void                    *data,
1699         size_t                  count)
1700 {
1701         do {
1702                 struct page     *page = kmem_to_page(data);
1703                 unsigned int    off = offset_in_page(data);
1704                 size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1705 
1706                 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1707 
1708                 data += len;
1709                 count -= len;
1710         } while (count);
1711 }
1712 
1713 STATIC void
1714 xlog_write_iclog(
1715         struct xlog             *log,
1716         struct xlog_in_core     *iclog,
1717         uint64_t                bno,
1718         unsigned int            count,
1719         bool                    need_flush)
1720 {
1721         ASSERT(bno < log->l_logBBsize);
1722 
1723         /*
1724          * We lock the iclogbufs here so that we can serialise against I/O
1725          * completion during unmount.  We might be processing a shutdown
1726          * triggered during unmount, and that can occur asynchronously to the
1727          * unmount thread, and hence we need to ensure that completes before
1728          * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1729          * across the log IO to archieve that.
1730          */
1731         down(&iclog->ic_sema);
1732         if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1733                 /*
1734                  * It would seem logical to return EIO here, but we rely on
1735                  * the log state machine to propagate I/O errors instead of
1736                  * doing it here.  We kick of the state machine and unlock
1737                  * the buffer manually, the code needs to be kept in sync
1738                  * with the I/O completion path.
1739                  */
1740                 xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1741                 up(&iclog->ic_sema);
1742                 return;
1743         }
1744 
1745         iclog->ic_io_size = count;
1746 
1747         bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1748         bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1749         iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1750         iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1751         iclog->ic_bio.bi_private = iclog;
1752         iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1753         if (need_flush)
1754                 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1755 
1756         xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1757         if (is_vmalloc_addr(iclog->ic_data))
1758                 flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1759 
1760         /*
1761          * If this log buffer would straddle the end of the log we will have
1762          * to split it up into two bios, so that we can continue at the start.
1763          */
1764         if (bno + BTOBB(count) > log->l_logBBsize) {
1765                 struct bio *split;
1766 
1767                 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1768                                   GFP_NOIO, &fs_bio_set);
1769                 bio_chain(split, &iclog->ic_bio);
1770                 submit_bio(split);
1771 
1772                 /* restart at logical offset zero for the remainder */
1773                 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1774         }
1775 
1776         submit_bio(&iclog->ic_bio);
1777 }
1778 
1779 /*
1780  * We need to bump cycle number for the part of the iclog that is
1781  * written to the start of the log. Watch out for the header magic
1782  * number case, though.
1783  */
1784 static void
1785 xlog_split_iclog(
1786         struct xlog             *log,
1787         void                    *data,
1788         uint64_t                bno,
1789         unsigned int            count)
1790 {
1791         unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1792         unsigned int            i;
1793 
1794         for (i = split_offset; i < count; i += BBSIZE) {
1795                 uint32_t cycle = get_unaligned_be32(data + i);
1796 
1797                 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1798                         cycle++;
1799                 put_unaligned_be32(cycle, data + i);
1800         }
1801 }
1802 
1803 static int
1804 xlog_calc_iclog_size(
1805         struct xlog             *log,
1806         struct xlog_in_core     *iclog,
1807         uint32_t                *roundoff)
1808 {
1809         uint32_t                count_init, count;
1810         bool                    use_lsunit;
1811 
1812         use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1813                         log->l_mp->m_sb.sb_logsunit > 1;
1814 
1815         /* Add for LR header */
1816         count_init = log->l_iclog_hsize + iclog->ic_offset;
1817 
1818         /* Round out the log write size */
1819         if (use_lsunit) {
1820                 /* we have a v2 stripe unit to use */
1821                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1822         } else {
1823                 count = BBTOB(BTOBB(count_init));
1824         }
1825 
1826         ASSERT(count >= count_init);
1827         *roundoff = count - count_init;
1828 
1829         if (use_lsunit)
1830                 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1831         else
1832                 ASSERT(*roundoff < BBTOB(1));
1833         return count;
1834 }
1835 
1836 /*
1837  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1838  * fashion.  Previously, we should have moved the current iclog
1839  * ptr in the log to point to the next available iclog.  This allows further
1840  * write to continue while this code syncs out an iclog ready to go.
1841  * Before an in-core log can be written out, the data section must be scanned
1842  * to save away the 1st word of each BBSIZE block into the header.  We replace
1843  * it with the current cycle count.  Each BBSIZE block is tagged with the
1844  * cycle count because there in an implicit assumption that drives will
1845  * guarantee that entire 512 byte blocks get written at once.  In other words,
1846  * we can't have part of a 512 byte block written and part not written.  By
1847  * tagging each block, we will know which blocks are valid when recovering
1848  * after an unclean shutdown.
1849  *
1850  * This routine is single threaded on the iclog.  No other thread can be in
1851  * this routine with the same iclog.  Changing contents of iclog can there-
1852  * fore be done without grabbing the state machine lock.  Updating the global
1853  * log will require grabbing the lock though.
1854  *
1855  * The entire log manager uses a logical block numbering scheme.  Only
1856  * xlog_write_iclog knows about the fact that the log may not start with
1857  * block zero on a given device.
1858  */
1859 STATIC void
1860 xlog_sync(
1861         struct xlog             *log,
1862         struct xlog_in_core     *iclog)
1863 {
1864         unsigned int            count;          /* byte count of bwrite */
1865         unsigned int            roundoff;       /* roundoff to BB or stripe */
1866         uint64_t                bno;
1867         unsigned int            size;
1868         bool                    need_flush = true, split = false;
1869 
1870         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1871 
1872         count = xlog_calc_iclog_size(log, iclog, &roundoff);
1873 
1874         /* move grant heads by roundoff in sync */
1875         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1876         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1877 
1878         /* put cycle number in every block */
1879         xlog_pack_data(log, iclog, roundoff); 
1880 
1881         /* real byte length */
1882         size = iclog->ic_offset;
1883         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1884                 size += roundoff;
1885         iclog->ic_header.h_len = cpu_to_be32(size);
1886 
1887         XFS_STATS_INC(log->l_mp, xs_log_writes);
1888         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1889 
1890         bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1891 
1892         /* Do we need to split this write into 2 parts? */
1893         if (bno + BTOBB(count) > log->l_logBBsize) {
1894                 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1895                 split = true;
1896         }
1897 
1898         /* calculcate the checksum */
1899         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1900                                             iclog->ic_datap, size);
1901         /*
1902          * Intentionally corrupt the log record CRC based on the error injection
1903          * frequency, if defined. This facilitates testing log recovery in the
1904          * event of torn writes. Hence, set the IOABORT state to abort the log
1905          * write on I/O completion and shutdown the fs. The subsequent mount
1906          * detects the bad CRC and attempts to recover.
1907          */
1908 #ifdef DEBUG
1909         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1910                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1911                 iclog->ic_fail_crc = true;
1912                 xfs_warn(log->l_mp,
1913         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1914                          be64_to_cpu(iclog->ic_header.h_lsn));
1915         }
1916 #endif
1917 
1918         /*
1919          * Flush the data device before flushing the log to make sure all meta
1920          * data written back from the AIL actually made it to disk before
1921          * stamping the new log tail LSN into the log buffer.  For an external
1922          * log we need to issue the flush explicitly, and unfortunately
1923          * synchronously here; for an internal log we can simply use the block
1924          * layer state machine for preflushes.
1925          */
1926         if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1927                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1928                 need_flush = false;
1929         }
1930 
1931         xlog_verify_iclog(log, iclog, count);
1932         xlog_write_iclog(log, iclog, bno, count, need_flush);
1933 }
1934 
1935 /*
1936  * Deallocate a log structure
1937  */
1938 STATIC void
1939 xlog_dealloc_log(
1940         struct xlog     *log)
1941 {
1942         xlog_in_core_t  *iclog, *next_iclog;
1943         int             i;
1944 
1945         xlog_cil_destroy(log);
1946 
1947         /*
1948          * Cycle all the iclogbuf locks to make sure all log IO completion
1949          * is done before we tear down these buffers.
1950          */
1951         iclog = log->l_iclog;
1952         for (i = 0; i < log->l_iclog_bufs; i++) {
1953                 down(&iclog->ic_sema);
1954                 up(&iclog->ic_sema);
1955                 iclog = iclog->ic_next;
1956         }
1957 
1958         iclog = log->l_iclog;
1959         for (i = 0; i < log->l_iclog_bufs; i++) {
1960                 next_iclog = iclog->ic_next;
1961                 kmem_free(iclog->ic_data);
1962                 kmem_free(iclog);
1963                 iclog = next_iclog;
1964         }
1965 
1966         log->l_mp->m_log = NULL;
1967         destroy_workqueue(log->l_ioend_workqueue);
1968         kmem_free(log);
1969 }       /* xlog_dealloc_log */
1970 
1971 /*
1972  * Update counters atomically now that memcpy is done.
1973  */
1974 /* ARGSUSED */
1975 static inline void
1976 xlog_state_finish_copy(
1977         struct xlog             *log,
1978         struct xlog_in_core     *iclog,
1979         int                     record_cnt,
1980         int                     copy_bytes)
1981 {
1982         spin_lock(&log->l_icloglock);
1983 
1984         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1985         iclog->ic_offset += copy_bytes;
1986 
1987         spin_unlock(&log->l_icloglock);
1988 }       /* xlog_state_finish_copy */
1989 
1990 
1991 
1992 
1993 /*
1994  * print out info relating to regions written which consume
1995  * the reservation
1996  */
1997 void
1998 xlog_print_tic_res(
1999         struct xfs_mount        *mp,
2000         struct xlog_ticket      *ticket)
2001 {
2002         uint i;
2003         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2004 
2005         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2006 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2007         static char *res_type_str[] = {
2008             REG_TYPE_STR(BFORMAT, "bformat"),
2009             REG_TYPE_STR(BCHUNK, "bchunk"),
2010             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2011             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2012             REG_TYPE_STR(IFORMAT, "iformat"),
2013             REG_TYPE_STR(ICORE, "icore"),
2014             REG_TYPE_STR(IEXT, "iext"),
2015             REG_TYPE_STR(IBROOT, "ibroot"),
2016             REG_TYPE_STR(ILOCAL, "ilocal"),
2017             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2018             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2019             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2020             REG_TYPE_STR(QFORMAT, "qformat"),
2021             REG_TYPE_STR(DQUOT, "dquot"),
2022             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2023             REG_TYPE_STR(LRHEADER, "LR header"),
2024             REG_TYPE_STR(UNMOUNT, "unmount"),
2025             REG_TYPE_STR(COMMIT, "commit"),
2026             REG_TYPE_STR(TRANSHDR, "trans header"),
2027             REG_TYPE_STR(ICREATE, "inode create"),
2028             REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2029             REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2030             REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2031             REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2032             REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2033             REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2034         };
2035         BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2036 #undef REG_TYPE_STR
2037 
2038         xfs_warn(mp, "ticket reservation summary:");
2039         xfs_warn(mp, "  unit res    = %d bytes",
2040                  ticket->t_unit_res);
2041         xfs_warn(mp, "  current res = %d bytes",
2042                  ticket->t_curr_res);
2043         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2044                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2045         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2046                  ticket->t_res_num_ophdrs, ophdr_spc);
2047         xfs_warn(mp, "  ophdr + reg = %u bytes",
2048                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2049         xfs_warn(mp, "  num regions = %u",
2050                  ticket->t_res_num);
2051 
2052         for (i = 0; i < ticket->t_res_num; i++) {
2053                 uint r_type = ticket->t_res_arr[i].r_type;
2054                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2055                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2056                             "bad-rtype" : res_type_str[r_type]),
2057                             ticket->t_res_arr[i].r_len);
2058         }
2059 }
2060 
2061 /*
2062  * Print a summary of the transaction.
2063  */
2064 void
2065 xlog_print_trans(
2066         struct xfs_trans        *tp)
2067 {
2068         struct xfs_mount        *mp = tp->t_mountp;
2069         struct xfs_log_item     *lip;
2070 
2071         /* dump core transaction and ticket info */
2072         xfs_warn(mp, "transaction summary:");
2073         xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2074         xfs_warn(mp, "  log count = %d", tp->t_log_count);
2075         xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2076 
2077         xlog_print_tic_res(mp, tp->t_ticket);
2078 
2079         /* dump each log item */
2080         list_for_each_entry(lip, &tp->t_items, li_trans) {
2081                 struct xfs_log_vec      *lv = lip->li_lv;
2082                 struct xfs_log_iovec    *vec;
2083                 int                     i;
2084 
2085                 xfs_warn(mp, "log item: ");
2086                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2087                 xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2088                 if (!lv)
2089                         continue;
2090                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2091                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2092                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2093                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2094 
2095                 /* dump each iovec for the log item */
2096                 vec = lv->lv_iovecp;
2097                 for (i = 0; i < lv->lv_niovecs; i++) {
2098                         int dumplen = min(vec->i_len, 32);
2099 
2100                         xfs_warn(mp, "  iovec[%d]", i);
2101                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2102                         xfs_warn(mp, "    len   = %d", vec->i_len);
2103                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2104                         xfs_hex_dump(vec->i_addr, dumplen);
2105 
2106                         vec++;
2107                 }
2108         }
2109 }
2110 
2111 /*
2112  * Calculate the potential space needed by the log vector.  Each region gets
2113  * its own xlog_op_header_t and may need to be double word aligned.
2114  */
2115 static int
2116 xlog_write_calc_vec_length(
2117         struct xlog_ticket      *ticket,
2118         struct xfs_log_vec      *log_vector)
2119 {
2120         struct xfs_log_vec      *lv;
2121         int                     headers = 0;
2122         int                     len = 0;
2123         int                     i;
2124 
2125         /* acct for start rec of xact */
2126         if (ticket->t_flags & XLOG_TIC_INITED)
2127                 headers++;
2128 
2129         for (lv = log_vector; lv; lv = lv->lv_next) {
2130                 /* we don't write ordered log vectors */
2131                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2132                         continue;
2133 
2134                 headers += lv->lv_niovecs;
2135 
2136                 for (i = 0; i < lv->lv_niovecs; i++) {
2137                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2138 
2139                         len += vecp->i_len;
2140                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2141                 }
2142         }
2143 
2144         ticket->t_res_num_ophdrs += headers;
2145         len += headers * sizeof(struct xlog_op_header);
2146 
2147         return len;
2148 }
2149 
2150 /*
2151  * If first write for transaction, insert start record  We can't be trying to
2152  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2153  */
2154 static int
2155 xlog_write_start_rec(
2156         struct xlog_op_header   *ophdr,
2157         struct xlog_ticket      *ticket)
2158 {
2159         if (!(ticket->t_flags & XLOG_TIC_INITED))
2160                 return 0;
2161 
2162         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2163         ophdr->oh_clientid = ticket->t_clientid;
2164         ophdr->oh_len = 0;
2165         ophdr->oh_flags = XLOG_START_TRANS;
2166         ophdr->oh_res2 = 0;
2167 
2168         ticket->t_flags &= ~XLOG_TIC_INITED;
2169 
2170         return sizeof(struct xlog_op_header);
2171 }
2172 
2173 static xlog_op_header_t *
2174 xlog_write_setup_ophdr(
2175         struct xlog             *log,
2176         struct xlog_op_header   *ophdr,
2177         struct xlog_ticket      *ticket,
2178         uint                    flags)
2179 {
2180         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2181         ophdr->oh_clientid = ticket->t_clientid;
2182         ophdr->oh_res2 = 0;
2183 
2184         /* are we copying a commit or unmount record? */
2185         ophdr->oh_flags = flags;
2186 
2187         /*
2188          * We've seen logs corrupted with bad transaction client ids.  This
2189          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2190          * and shut down the filesystem.
2191          */
2192         switch (ophdr->oh_clientid)  {
2193         case XFS_TRANSACTION:
2194         case XFS_VOLUME:
2195         case XFS_LOG:
2196                 break;
2197         default:
2198                 xfs_warn(log->l_mp,
2199                         "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2200                         ophdr->oh_clientid, ticket);
2201                 return NULL;
2202         }
2203 
2204         return ophdr;
2205 }
2206 
2207 /*
2208  * Set up the parameters of the region copy into the log. This has
2209  * to handle region write split across multiple log buffers - this
2210  * state is kept external to this function so that this code can
2211  * be written in an obvious, self documenting manner.
2212  */
2213 static int
2214 xlog_write_setup_copy(
2215         struct xlog_ticket      *ticket,
2216         struct xlog_op_header   *ophdr,
2217         int                     space_available,
2218         int                     space_required,
2219         int                     *copy_off,
2220         int                     *copy_len,
2221         int                     *last_was_partial_copy,
2222         int                     *bytes_consumed)
2223 {
2224         int                     still_to_copy;
2225 
2226         still_to_copy = space_required - *bytes_consumed;
2227         *copy_off = *bytes_consumed;
2228 
2229         if (still_to_copy <= space_available) {
2230                 /* write of region completes here */
2231                 *copy_len = still_to_copy;
2232                 ophdr->oh_len = cpu_to_be32(*copy_len);
2233                 if (*last_was_partial_copy)
2234                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2235                 *last_was_partial_copy = 0;
2236                 *bytes_consumed = 0;
2237                 return 0;
2238         }
2239 
2240         /* partial write of region, needs extra log op header reservation */
2241         *copy_len = space_available;
2242         ophdr->oh_len = cpu_to_be32(*copy_len);
2243         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2244         if (*last_was_partial_copy)
2245                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2246         *bytes_consumed += *copy_len;
2247         (*last_was_partial_copy)++;
2248 
2249         /* account for new log op header */
2250         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2251         ticket->t_res_num_ophdrs++;
2252 
2253         return sizeof(struct xlog_op_header);
2254 }
2255 
2256 static int
2257 xlog_write_copy_finish(
2258         struct xlog             *log,
2259         struct xlog_in_core     *iclog,
2260         uint                    flags,
2261         int                     *record_cnt,
2262         int                     *data_cnt,
2263         int                     *partial_copy,
2264         int                     *partial_copy_len,
2265         int                     log_offset,
2266         struct xlog_in_core     **commit_iclog)
2267 {
2268         if (*partial_copy) {
2269                 /*
2270                  * This iclog has already been marked WANT_SYNC by
2271                  * xlog_state_get_iclog_space.
2272                  */
2273                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2274                 *record_cnt = 0;
2275                 *data_cnt = 0;
2276                 return xlog_state_release_iclog(log, iclog);
2277         }
2278 
2279         *partial_copy = 0;
2280         *partial_copy_len = 0;
2281 
2282         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2283                 /* no more space in this iclog - push it. */
2284                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2285                 *record_cnt = 0;
2286                 *data_cnt = 0;
2287 
2288                 spin_lock(&log->l_icloglock);
2289                 xlog_state_want_sync(log, iclog);
2290                 spin_unlock(&log->l_icloglock);
2291 
2292                 if (!commit_iclog)
2293                         return xlog_state_release_iclog(log, iclog);
2294                 ASSERT(flags & XLOG_COMMIT_TRANS);
2295                 *commit_iclog = iclog;
2296         }
2297 
2298         return 0;
2299 }
2300 
2301 /*
2302  * Write some region out to in-core log
2303  *
2304  * This will be called when writing externally provided regions or when
2305  * writing out a commit record for a given transaction.
2306  *
2307  * General algorithm:
2308  *      1. Find total length of this write.  This may include adding to the
2309  *              lengths passed in.
2310  *      2. Check whether we violate the tickets reservation.
2311  *      3. While writing to this iclog
2312  *          A. Reserve as much space in this iclog as can get
2313  *          B. If this is first write, save away start lsn
2314  *          C. While writing this region:
2315  *              1. If first write of transaction, write start record
2316  *              2. Write log operation header (header per region)
2317  *              3. Find out if we can fit entire region into this iclog
2318  *              4. Potentially, verify destination memcpy ptr
2319  *              5. Memcpy (partial) region
2320  *              6. If partial copy, release iclog; otherwise, continue
2321  *                      copying more regions into current iclog
2322  *      4. Mark want sync bit (in simulation mode)
2323  *      5. Release iclog for potential flush to on-disk log.
2324  *
2325  * ERRORS:
2326  * 1.   Panic if reservation is overrun.  This should never happen since
2327  *      reservation amounts are generated internal to the filesystem.
2328  * NOTES:
2329  * 1. Tickets are single threaded data structures.
2330  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2331  *      syncing routine.  When a single log_write region needs to span
2332  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2333  *      on all log operation writes which don't contain the end of the
2334  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2335  *      operation which contains the end of the continued log_write region.
2336  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2337  *      we don't really know exactly how much space will be used.  As a result,
2338  *      we don't update ic_offset until the end when we know exactly how many
2339  *      bytes have been written out.
2340  */
2341 int
2342 xlog_write(
2343         struct xlog             *log,
2344         struct xfs_log_vec      *log_vector,
2345         struct xlog_ticket      *ticket,
2346         xfs_lsn_t               *start_lsn,
2347         struct xlog_in_core     **commit_iclog,
2348         uint                    flags)
2349 {
2350         struct xlog_in_core     *iclog = NULL;
2351         struct xfs_log_iovec    *vecp;
2352         struct xfs_log_vec      *lv;
2353         int                     len;
2354         int                     index;
2355         int                     partial_copy = 0;
2356         int                     partial_copy_len = 0;
2357         int                     contwr = 0;
2358         int                     record_cnt = 0;
2359         int                     data_cnt = 0;
2360         int                     error;
2361 
2362         *start_lsn = 0;
2363 
2364         len = xlog_write_calc_vec_length(ticket, log_vector);
2365 
2366         /*
2367          * Region headers and bytes are already accounted for.
2368          * We only need to take into account start records and
2369          * split regions in this function.
2370          */
2371         if (ticket->t_flags & XLOG_TIC_INITED)
2372                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2373 
2374         /*
2375          * Commit record headers need to be accounted for. These
2376          * come in as separate writes so are easy to detect.
2377          */
2378         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2379                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2380 
2381         if (ticket->t_curr_res < 0) {
2382                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2383                      "ctx ticket reservation ran out. Need to up reservation");
2384                 xlog_print_tic_res(log->l_mp, ticket);
2385                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2386         }
2387 
2388         index = 0;
2389         lv = log_vector;
2390         vecp = lv->lv_iovecp;
2391         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2392                 void            *ptr;
2393                 int             log_offset;
2394 
2395                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2396                                                    &contwr, &log_offset);
2397                 if (error)
2398                         return error;
2399 
2400                 ASSERT(log_offset <= iclog->ic_size - 1);
2401                 ptr = iclog->ic_datap + log_offset;
2402 
2403                 /* start_lsn is the first lsn written to. That's all we need. */
2404                 if (!*start_lsn)
2405                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2406 
2407                 /*
2408                  * This loop writes out as many regions as can fit in the amount
2409                  * of space which was allocated by xlog_state_get_iclog_space().
2410                  */
2411                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2412                         struct xfs_log_iovec    *reg;
2413                         struct xlog_op_header   *ophdr;
2414                         int                     start_rec_copy;
2415                         int                     copy_len;
2416                         int                     copy_off;
2417                         bool                    ordered = false;
2418 
2419                         /* ordered log vectors have no regions to write */
2420                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2421                                 ASSERT(lv->lv_niovecs == 0);
2422                                 ordered = true;
2423                                 goto next_lv;
2424                         }
2425 
2426                         reg = &vecp[index];
2427                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2428                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2429 
2430                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2431                         if (start_rec_copy) {
2432                                 record_cnt++;
2433                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2434                                                    start_rec_copy);
2435                         }
2436 
2437                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2438                         if (!ophdr)
2439                                 return -EIO;
2440 
2441                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2442                                            sizeof(struct xlog_op_header));
2443 
2444                         len += xlog_write_setup_copy(ticket, ophdr,
2445                                                      iclog->ic_size-log_offset,
2446                                                      reg->i_len,
2447                                                      &copy_off, &copy_len,
2448                                                      &partial_copy,
2449                                                      &partial_copy_len);
2450                         xlog_verify_dest_ptr(log, ptr);
2451 
2452                         /*
2453                          * Copy region.
2454                          *
2455                          * Unmount records just log an opheader, so can have
2456                          * empty payloads with no data region to copy. Hence we
2457                          * only copy the payload if the vector says it has data
2458                          * to copy.
2459                          */
2460                         ASSERT(copy_len >= 0);
2461                         if (copy_len > 0) {
2462                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2463                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2464                                                    copy_len);
2465                         }
2466                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2467                         record_cnt++;
2468                         data_cnt += contwr ? copy_len : 0;
2469 
2470                         error = xlog_write_copy_finish(log, iclog, flags,
2471                                                        &record_cnt, &data_cnt,
2472                                                        &partial_copy,
2473                                                        &partial_copy_len,
2474                                                        log_offset,
2475                                                        commit_iclog);
2476                         if (error)
2477                                 return error;
2478 
2479                         /*
2480                          * if we had a partial copy, we need to get more iclog
2481                          * space but we don't want to increment the region
2482                          * index because there is still more is this region to
2483                          * write.
2484                          *
2485                          * If we completed writing this region, and we flushed
2486                          * the iclog (indicated by resetting of the record
2487                          * count), then we also need to get more log space. If
2488                          * this was the last record, though, we are done and
2489                          * can just return.
2490                          */
2491                         if (partial_copy)
2492                                 break;
2493 
2494                         if (++index == lv->lv_niovecs) {
2495 next_lv:
2496                                 lv = lv->lv_next;
2497                                 index = 0;
2498                                 if (lv)
2499                                         vecp = lv->lv_iovecp;
2500                         }
2501                         if (record_cnt == 0 && !ordered) {
2502                                 if (!lv)
2503                                         return 0;
2504                                 break;
2505                         }
2506                 }
2507         }
2508 
2509         ASSERT(len == 0);
2510 
2511         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2512         if (!commit_iclog)
2513                 return xlog_state_release_iclog(log, iclog);
2514 
2515         ASSERT(flags & XLOG_COMMIT_TRANS);
2516         *commit_iclog = iclog;
2517         return 0;
2518 }
2519 
2520 
2521 /*****************************************************************************
2522  *
2523  *              State Machine functions
2524  *
2525  *****************************************************************************
2526  */
2527 
2528 /*
2529  * An iclog has just finished IO completion processing, so we need to update
2530  * the iclog state and propagate that up into the overall log state. Hence we
2531  * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2532  * starting from the head, and then wake up any threads that are waiting for the
2533  * iclog to be marked clean.
2534  *
2535  * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2536  * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2537  * maintain the notion that we use a ordered wait queue to hold off would be
2538  * writers to the log when every iclog is trying to sync to disk.
2539  *
2540  * Caller must hold the icloglock before calling us.
2541  *
2542  * State Change: !IOERROR -> DIRTY -> ACTIVE
2543  */
2544 STATIC void
2545 xlog_state_clean_iclog(
2546         struct xlog             *log,
2547         struct xlog_in_core     *dirty_iclog)
2548 {
2549         struct xlog_in_core     *iclog;
2550         int                     changed = 0;
2551 
2552         /* Prepare the completed iclog. */
2553         if (!(dirty_iclog->ic_state & XLOG_STATE_IOERROR))
2554                 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2555 
2556         /* Walk all the iclogs to update the ordered active state. */
2557         iclog = log->l_iclog;
2558         do {
2559                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2560                         iclog->ic_state = XLOG_STATE_ACTIVE;
2561                         iclog->ic_offset       = 0;
2562                         ASSERT(list_empty_careful(&iclog->ic_callbacks));
2563                         /*
2564                          * If the number of ops in this iclog indicate it just
2565                          * contains the dummy transaction, we can
2566                          * change state into IDLE (the second time around).
2567                          * Otherwise we should change the state into
2568                          * NEED a dummy.
2569                          * We don't need to cover the dummy.
2570                          */
2571                         if (!changed &&
2572                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2573                                         XLOG_COVER_OPS)) {
2574                                 changed = 1;
2575                         } else {
2576                                 /*
2577                                  * We have two dirty iclogs so start over
2578                                  * This could also be num of ops indicates
2579                                  * this is not the dummy going out.
2580                                  */
2581                                 changed = 2;
2582                         }
2583                         iclog->ic_header.h_num_logops = 0;
2584                         memset(iclog->ic_header.h_cycle_data, 0,
2585                               sizeof(iclog->ic_header.h_cycle_data));
2586                         iclog->ic_header.h_lsn = 0;
2587                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2588                         /* do nothing */;
2589                 else
2590                         break;  /* stop cleaning */
2591                 iclog = iclog->ic_next;
2592         } while (iclog != log->l_iclog);
2593 
2594 
2595         /*
2596          * Wake up threads waiting in xfs_log_force() for the dirty iclog
2597          * to be cleaned.
2598          */
2599         wake_up_all(&dirty_iclog->ic_force_wait);
2600 
2601         /*
2602          * Change state for the dummy log recording.
2603          * We usually go to NEED. But we go to NEED2 if the changed indicates
2604          * we are done writing the dummy record.
2605          * If we are done with the second dummy recored (DONE2), then
2606          * we go to IDLE.
2607          */
2608         if (changed) {
2609                 switch (log->l_covered_state) {
2610                 case XLOG_STATE_COVER_IDLE:
2611                 case XLOG_STATE_COVER_NEED:
2612                 case XLOG_STATE_COVER_NEED2:
2613                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2614                         break;
2615 
2616                 case XLOG_STATE_COVER_DONE:
2617                         if (changed == 1)
2618                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2619                         else
2620                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2621                         break;
2622 
2623                 case XLOG_STATE_COVER_DONE2:
2624                         if (changed == 1)
2625                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2626                         else
2627                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2628                         break;
2629 
2630                 default:
2631                         ASSERT(0);
2632                 }
2633         }
2634 }
2635 
2636 STATIC xfs_lsn_t
2637 xlog_get_lowest_lsn(
2638         struct xlog             *log)
2639 {
2640         struct xlog_in_core     *iclog = log->l_iclog;
2641         xfs_lsn_t               lowest_lsn = 0, lsn;
2642 
2643         do {
2644                 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2645                         continue;
2646 
2647                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2648                 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2649                         lowest_lsn = lsn;
2650         } while ((iclog = iclog->ic_next) != log->l_iclog);
2651 
2652         return lowest_lsn;
2653 }
2654 
2655 /*
2656  * Completion of a iclog IO does not imply that a transaction has completed, as
2657  * transactions can be large enough to span many iclogs. We cannot change the
2658  * tail of the log half way through a transaction as this may be the only
2659  * transaction in the log and moving the tail to point to the middle of it
2660  * will prevent recovery from finding the start of the transaction. Hence we
2661  * should only update the last_sync_lsn if this iclog contains transaction
2662  * completion callbacks on it.
2663  *
2664  * We have to do this before we drop the icloglock to ensure we are the only one
2665  * that can update it.
2666  *
2667  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2668  * the reservation grant head pushing. This is due to the fact that the push
2669  * target is bound by the current last_sync_lsn value. Hence if we have a large
2670  * amount of log space bound up in this committing transaction then the
2671  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2672  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2673  * should push the AIL to ensure the push target (and hence the grant head) is
2674  * no longer bound by the old log head location and can move forwards and make
2675  * progress again.
2676  */
2677 static void
2678 xlog_state_set_callback(
2679         struct xlog             *log,
2680         struct xlog_in_core     *iclog,
2681         xfs_lsn_t               header_lsn)
2682 {
2683         iclog->ic_state = XLOG_STATE_CALLBACK;
2684 
2685         ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2686                            header_lsn) <= 0);
2687 
2688         if (list_empty_careful(&iclog->ic_callbacks))
2689                 return;
2690 
2691         atomic64_set(&log->l_last_sync_lsn, header_lsn);
2692         xlog_grant_push_ail(log, 0);
2693 }
2694 
2695 /*
2696  * Return true if we need to stop processing, false to continue to the next
2697  * iclog. The caller will need to run callbacks if the iclog is returned in the
2698  * XLOG_STATE_CALLBACK state.
2699  */
2700 static bool
2701 xlog_state_iodone_process_iclog(
2702         struct xlog             *log,
2703         struct xlog_in_core     *iclog,
2704         struct xlog_in_core     *completed_iclog,
2705         bool                    *ioerror)
2706 {
2707         xfs_lsn_t               lowest_lsn;
2708         xfs_lsn_t               header_lsn;
2709 
2710         /* Skip all iclogs in the ACTIVE & DIRTY states */
2711         if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2712                 return false;
2713 
2714         /*
2715          * Between marking a filesystem SHUTDOWN and stopping the log, we do
2716          * flush all iclogs to disk (if there wasn't a log I/O error). So, we do
2717          * want things to go smoothly in case of just a SHUTDOWN  w/o a
2718          * LOG_IO_ERROR.
2719          */
2720         if (iclog->ic_state & XLOG_STATE_IOERROR) {
2721                 *ioerror = true;
2722                 return false;
2723         }
2724 
2725         /*
2726          * Can only perform callbacks in order.  Since this iclog is not in the
2727          * DONE_SYNC/ DO_CALLBACK state, we skip the rest and just try to clean
2728          * up.  If we set our iclog to DO_CALLBACK, we will not process it when
2729          * we retry since a previous iclog is in the CALLBACK and the state
2730          * cannot change since we are holding the l_icloglock.
2731          */
2732         if (!(iclog->ic_state &
2733                         (XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) {
2734                 if (completed_iclog &&
2735                     (completed_iclog->ic_state == XLOG_STATE_DONE_SYNC)) {
2736                         completed_iclog->ic_state = XLOG_STATE_DO_CALLBACK;
2737                 }
2738                 return true;
2739         }
2740 
2741         /*
2742          * We now have an iclog that is in either the DO_CALLBACK or DONE_SYNC
2743          * states. The other states (WANT_SYNC, SYNCING, or CALLBACK were caught
2744          * by the above if and are going to clean (i.e. we aren't doing their
2745          * callbacks) see the above if.
2746          *
2747          * We will do one more check here to see if we have chased our tail
2748          * around. If this is not the lowest lsn iclog, then we will leave it
2749          * for another completion to process.
2750          */
2751         header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2752         lowest_lsn = xlog_get_lowest_lsn(log);
2753         if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2754                 return false;
2755 
2756         xlog_state_set_callback(log, iclog, header_lsn);
2757         return false;
2758 
2759 }
2760 
2761 /*
2762  * Keep processing entries in the iclog callback list until we come around and
2763  * it is empty.  We need to atomically see that the list is empty and change the
2764  * state to DIRTY so that we don't miss any more callbacks being added.
2765  *
2766  * This function is called with the icloglock held and returns with it held. We
2767  * drop it while running callbacks, however, as holding it over thousands of
2768  * callbacks is unnecessary and causes excessive contention if we do.
2769  */
2770 static void
2771 xlog_state_do_iclog_callbacks(
2772         struct xlog             *log,
2773         struct xlog_in_core     *iclog,
2774         bool                    aborted)
2775 {
2776         spin_unlock(&log->l_icloglock);
2777         spin_lock(&iclog->ic_callback_lock);
2778         while (!list_empty(&iclog->ic_callbacks)) {
2779                 LIST_HEAD(tmp);
2780 
2781                 list_splice_init(&iclog->ic_callbacks, &tmp);
2782 
2783                 spin_unlock(&iclog->ic_callback_lock);
2784                 xlog_cil_process_committed(&tmp, aborted);
2785                 spin_lock(&iclog->ic_callback_lock);
2786         }
2787 
2788         /*
2789          * Pick up the icloglock while still holding the callback lock so we
2790          * serialise against anyone trying to add more callbacks to this iclog
2791          * now we've finished processing.
2792          */
2793         spin_lock(&log->l_icloglock);
2794         spin_unlock(&iclog->ic_callback_lock);
2795 }
2796 
2797 #ifdef DEBUG
2798 /*
2799  * Make one last gasp attempt to see if iclogs are being left in limbo.  If the
2800  * above loop finds an iclog earlier than the current iclog and in one of the
2801  * syncing states, the current iclog is put into DO_CALLBACK and the callbacks
2802  * are deferred to the completion of the earlier iclog. Walk the iclogs in order
2803  * and make sure that no iclog is in DO_CALLBACK unless an earlier iclog is in
2804  * one of the syncing states.
2805  *
2806  * Note that SYNCING|IOERROR is a valid state so we cannot just check for
2807  * ic_state == SYNCING.
2808  */
2809 static void
2810 xlog_state_callback_check_state(
2811         struct xlog             *log)
2812 {
2813         struct xlog_in_core     *first_iclog = log->l_iclog;
2814         struct xlog_in_core     *iclog = first_iclog;
2815 
2816         do {
2817                 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2818                 /*
2819                  * Terminate the loop if iclogs are found in states
2820                  * which will cause other threads to clean up iclogs.
2821                  *
2822                  * SYNCING - i/o completion will go through logs
2823                  * DONE_SYNC - interrupt thread should be waiting for
2824                  *              l_icloglock
2825                  * IOERROR - give up hope all ye who enter here
2826                  */
2827                 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2828                     iclog->ic_state & XLOG_STATE_SYNCING ||
2829                     iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2830                     iclog->ic_state == XLOG_STATE_IOERROR )
2831                         break;
2832                 iclog = iclog->ic_next;
2833         } while (first_iclog != iclog);
2834 }
2835 #else
2836 #define xlog_state_callback_check_state(l)      ((void)0)
2837 #endif
2838 
2839 STATIC void
2840 xlog_state_do_callback(
2841         struct xlog             *log,
2842         bool                    aborted,
2843         struct xlog_in_core     *ciclog)
2844 {
2845         struct xlog_in_core     *iclog;
2846         struct xlog_in_core     *first_iclog;
2847         bool                    did_callbacks = false;
2848         bool                    cycled_icloglock;
2849         bool                    ioerror;
2850         int                     flushcnt = 0;
2851         int                     repeats = 0;
2852 
2853         spin_lock(&log->l_icloglock);
2854         do {
2855                 /*
2856                  * Scan all iclogs starting with the one pointed to by the
2857                  * log.  Reset this starting point each time the log is
2858                  * unlocked (during callbacks).
2859                  *
2860                  * Keep looping through iclogs until one full pass is made
2861                  * without running any callbacks.
2862                  */
2863                 first_iclog = log->l_iclog;
2864                 iclog = log->l_iclog;
2865                 cycled_icloglock = false;
2866                 ioerror = false;
2867                 repeats++;
2868 
2869                 do {
2870                         if (xlog_state_iodone_process_iclog(log, iclog,
2871                                                         ciclog, &ioerror))
2872                                 break;
2873 
2874                         if (!(iclog->ic_state &
2875                               (XLOG_STATE_CALLBACK | XLOG_STATE_IOERROR))) {
2876                                 iclog = iclog->ic_next;
2877                                 continue;
2878                         }
2879 
2880                         /*
2881                          * Running callbacks will drop the icloglock which means
2882                          * we'll have to run at least one more complete loop.
2883                          */
2884                         cycled_icloglock = true;
2885                         xlog_state_do_iclog_callbacks(log, iclog, aborted);
2886 
2887                         xlog_state_clean_iclog(log, iclog);
2888                         iclog = iclog->ic_next;
2889                 } while (first_iclog != iclog);
2890 
2891                 did_callbacks |= cycled_icloglock;
2892 
2893                 if (repeats > 5000) {
2894                         flushcnt += repeats;
2895                         repeats = 0;
2896                         xfs_warn(log->l_mp,
2897                                 "%s: possible infinite loop (%d iterations)",
2898                                 __func__, flushcnt);
2899                 }
2900         } while (!ioerror && cycled_icloglock);
2901 
2902         if (did_callbacks)
2903                 xlog_state_callback_check_state(log);
2904 
2905         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2906                 wake_up_all(&log->l_flush_wait);
2907 
2908         spin_unlock(&log->l_icloglock);
2909 }
2910 
2911 
2912 /*
2913  * Finish transitioning this iclog to the dirty state.
2914  *
2915  * Make sure that we completely execute this routine only when this is
2916  * the last call to the iclog.  There is a good chance that iclog flushes,
2917  * when we reach the end of the physical log, get turned into 2 separate
2918  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2919  * routine.  By using the reference count bwritecnt, we guarantee that only
2920  * the second completion goes through.
2921  *
2922  * Callbacks could take time, so they are done outside the scope of the
2923  * global state machine log lock.
2924  */
2925 STATIC void
2926 xlog_state_done_syncing(
2927         struct xlog_in_core     *iclog,
2928         bool                    aborted)
2929 {
2930         struct xlog             *log = iclog->ic_log;
2931 
2932         spin_lock(&log->l_icloglock);
2933 
2934         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2935                iclog->ic_state == XLOG_STATE_IOERROR);
2936         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2937 
2938         /*
2939          * If we got an error, either on the first buffer, or in the case of
2940          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2941          * and none should ever be attempted to be written to disk
2942          * again.
2943          */
2944         if (iclog->ic_state != XLOG_STATE_IOERROR)
2945                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2946 
2947         /*
2948          * Someone could be sleeping prior to writing out the next
2949          * iclog buffer, we wake them all, one will get to do the
2950          * I/O, the others get to wait for the result.
2951          */
2952         wake_up_all(&iclog->ic_write_wait);
2953         spin_unlock(&log->l_icloglock);
2954         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2955 }       /* xlog_state_done_syncing */
2956 
2957 
2958 /*
2959  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2960  * sleep.  We wait on the flush queue on the head iclog as that should be
2961  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2962  * we will wait here and all new writes will sleep until a sync completes.
2963  *
2964  * The in-core logs are used in a circular fashion. They are not used
2965  * out-of-order even when an iclog past the head is free.
2966  *
2967  * return:
2968  *      * log_offset where xlog_write() can start writing into the in-core
2969  *              log's data space.
2970  *      * in-core log pointer to which xlog_write() should write.
2971  *      * boolean indicating this is a continued write to an in-core log.
2972  *              If this is the last write, then the in-core log's offset field
2973  *              needs to be incremented, depending on the amount of data which
2974  *              is copied.
2975  */
2976 STATIC int
2977 xlog_state_get_iclog_space(
2978         struct xlog             *log,
2979         int                     len,
2980         struct xlog_in_core     **iclogp,
2981         struct xlog_ticket      *ticket,
2982         int                     *continued_write,
2983         int                     *logoffsetp)
2984 {
2985         int               log_offset;
2986         xlog_rec_header_t *head;
2987         xlog_in_core_t    *iclog;
2988         int               error;
2989 
2990 restart:
2991         spin_lock(&log->l_icloglock);
2992         if (XLOG_FORCED_SHUTDOWN(log)) {
2993                 spin_unlock(&log->l_icloglock);
2994                 return -EIO;
2995         }
2996 
2997         iclog = log->l_iclog;
2998         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2999                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3000 
3001                 /* Wait for log writes to have flushed */
3002                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3003                 goto restart;
3004         }
3005 
3006         head = &iclog->ic_header;
3007 
3008         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3009         log_offset = iclog->ic_offset;
3010 
3011         /* On the 1st write to an iclog, figure out lsn.  This works
3012          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3013          * committing to.  If the offset is set, that's how many blocks
3014          * must be written.
3015          */
3016         if (log_offset == 0) {
3017                 ticket->t_curr_res -= log->l_iclog_hsize;
3018                 xlog_tic_add_region(ticket,
3019                                     log->l_iclog_hsize,
3020                                     XLOG_REG_TYPE_LRHEADER);
3021                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3022                 head->h_lsn = cpu_to_be64(
3023                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3024                 ASSERT(log->l_curr_block >= 0);
3025         }
3026 
3027         /* If there is enough room to write everything, then do it.  Otherwise,
3028          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3029          * bit is on, so this will get flushed out.  Don't update ic_offset
3030          * until you know exactly how many bytes get copied.  Therefore, wait
3031          * until later to update ic_offset.
3032          *
3033          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3034          * can fit into remaining data section.
3035          */
3036         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3037                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3038 
3039                 /*
3040                  * If I'm the only one writing to this iclog, sync it to disk.
3041                  * We need to do an atomic compare and decrement here to avoid
3042                  * racing with concurrent atomic_dec_and_lock() calls in
3043                  * xlog_state_release_iclog() when there is more than one
3044                  * reference to the iclog.
3045                  */
3046                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3047                         /* we are the only one */
3048                         spin_unlock(&log->l_icloglock);
3049                         error = xlog_state_release_iclog(log, iclog);
3050                         if (error)
3051                                 return error;
3052                 } else {
3053                         spin_unlock(&log->l_icloglock);
3054                 }
3055                 goto restart;
3056         }
3057 
3058         /* Do we have enough room to write the full amount in the remainder
3059          * of this iclog?  Or must we continue a write on the next iclog and
3060          * mark this iclog as completely taken?  In the case where we switch
3061          * iclogs (to mark it taken), this particular iclog will release/sync
3062          * to disk in xlog_write().
3063          */
3064         if (len <= iclog->ic_size - iclog->ic_offset) {
3065                 *continued_write = 0;
3066                 iclog->ic_offset += len;
3067         } else {
3068                 *continued_write = 1;
3069                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3070         }
3071         *iclogp = iclog;
3072 
3073         ASSERT(iclog->ic_offset <= iclog->ic_size);
3074         spin_unlock(&log->l_icloglock);
3075 
3076         *logoffsetp = log_offset;
3077         return 0;
3078 }       /* xlog_state_get_iclog_space */
3079 
3080 /* The first cnt-1 times through here we don't need to
3081  * move the grant write head because the permanent
3082  * reservation has reserved cnt times the unit amount.
3083  * Release part of current permanent unit reservation and
3084  * reset current reservation to be one units worth.  Also
3085  * move grant reservation head forward.
3086  */
3087 STATIC void
3088 xlog_regrant_reserve_log_space(
3089         struct xlog             *log,
3090         struct xlog_ticket      *ticket)
3091 {
3092         trace_xfs_log_regrant_reserve_enter(log, ticket);
3093 
3094         if (ticket->t_cnt > 0)
3095                 ticket->t_cnt--;
3096 
3097         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3098                                         ticket->t_curr_res);
3099         xlog_grant_sub_space(log, &log->l_write_head.grant,
3100                                         ticket->t_curr_res);
3101         ticket->t_curr_res = ticket->t_unit_res;
3102         xlog_tic_reset_res(ticket);
3103 
3104         trace_xfs_log_regrant_reserve_sub(log, ticket);
3105 
3106         /* just return if we still have some of the pre-reserved space */
3107         if (ticket->t_cnt > 0)
3108                 return;
3109 
3110         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3111                                         ticket->t_unit_res);
3112 
3113         trace_xfs_log_regrant_reserve_exit(log, ticket);
3114 
3115         ticket->t_curr_res = ticket->t_unit_res;
3116         xlog_tic_reset_res(ticket);
3117 }       /* xlog_regrant_reserve_log_space */
3118 
3119 
3120 /*
3121  * Give back the space left from a reservation.
3122  *
3123  * All the information we need to make a correct determination of space left
3124  * is present.  For non-permanent reservations, things are quite easy.  The
3125  * count should have been decremented to zero.  We only need to deal with the
3126  * space remaining in the current reservation part of the ticket.  If the
3127  * ticket contains a permanent reservation, there may be left over space which
3128  * needs to be released.  A count of N means that N-1 refills of the current
3129  * reservation can be done before we need to ask for more space.  The first
3130  * one goes to fill up the first current reservation.  Once we run out of
3131  * space, the count will stay at zero and the only space remaining will be
3132  * in the current reservation field.
3133  */
3134 STATIC void
3135 xlog_ungrant_log_space(
3136         struct xlog             *log,
3137         struct xlog_ticket      *ticket)
3138 {
3139         int     bytes;
3140 
3141         if (ticket->t_cnt > 0)
3142                 ticket->t_cnt--;
3143 
3144         trace_xfs_log_ungrant_enter(log, ticket);
3145         trace_xfs_log_ungrant_sub(log, ticket);
3146 
3147         /*
3148          * If this is a permanent reservation ticket, we may be able to free
3149          * up more space based on the remaining count.
3150          */
3151         bytes = ticket->t_curr_res;
3152         if (ticket->t_cnt > 0) {
3153                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3154                 bytes += ticket->t_unit_res*ticket->t_cnt;
3155         }
3156 
3157         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3158         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3159 
3160         trace_xfs_log_ungrant_exit(log, ticket);
3161 
3162         xfs_log_space_wake(log->l_mp);
3163 }
3164 
3165 /*
3166  * Flush iclog to disk if this is the last reference to the given iclog and
3167  * the WANT_SYNC bit is set.
3168  *
3169  * When this function is entered, the iclog is not necessarily in the
3170  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3171  *
3172  *
3173  */
3174 STATIC int
3175 xlog_state_release_iclog(
3176         struct xlog             *log,
3177         struct xlog_in_core     *iclog)
3178 {
3179         int             sync = 0;       /* do we sync? */
3180 
3181         if (iclog->ic_state & XLOG_STATE_IOERROR)
3182                 return -EIO;
3183 
3184         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3185         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3186                 return 0;
3187 
3188         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3189                 spin_unlock(&log->l_icloglock);
3190                 return -EIO;
3191         }
3192         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3193                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3194 
3195         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3196                 /* update tail before writing to iclog */
3197                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3198                 sync++;
3199                 iclog->ic_state = XLOG_STATE_SYNCING;
3200                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3201                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3202                 /* cycle incremented when incrementing curr_block */
3203         }
3204         spin_unlock(&log->l_icloglock);
3205 
3206         /*
3207          * We let the log lock go, so it's possible that we hit a log I/O
3208          * error or some other SHUTDOWN condition that marks the iclog
3209          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3210          * this iclog has consistent data, so we ignore IOERROR
3211          * flags after this point.
3212          */
3213         if (sync)
3214                 xlog_sync(log, iclog);
3215         return 0;
3216 }       /* xlog_state_release_iclog */
3217 
3218 
3219 /*
3220  * This routine will mark the current iclog in the ring as WANT_SYNC
3221  * and move the current iclog pointer to the next iclog in the ring.
3222  * When this routine is called from xlog_state_get_iclog_space(), the
3223  * exact size of the iclog has not yet been determined.  All we know is
3224  * that every data block.  We have run out of space in this log record.
3225  */
3226 STATIC void
3227 xlog_state_switch_iclogs(
3228         struct xlog             *log,
3229         struct xlog_in_core     *iclog,
3230         int                     eventual_size)
3231 {
3232         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3233         if (!eventual_size)
3234                 eventual_size = iclog->ic_offset;
3235         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3236         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3237         log->l_prev_block = log->l_curr_block;
3238         log->l_prev_cycle = log->l_curr_cycle;
3239 
3240         /* roll log?: ic_offset changed later */
3241         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3242 
3243         /* Round up to next log-sunit */
3244         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3245             log->l_mp->m_sb.sb_logsunit > 1) {
3246                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3247                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3248         }
3249 
3250         if (log->l_curr_block >= log->l_logBBsize) {
3251                 /*
3252                  * Rewind the current block before the cycle is bumped to make
3253                  * sure that the combined LSN never transiently moves forward
3254                  * when the log wraps to the next cycle. This is to support the
3255                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3256                  * other cases should acquire l_icloglock.
3257                  */
3258                 log->l_curr_block -= log->l_logBBsize;
3259                 ASSERT(log->l_curr_block >= 0);
3260                 smp_wmb();
3261                 log->l_curr_cycle++;
3262                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3263                         log->l_curr_cycle++;
3264         }
3265         ASSERT(iclog == log->l_iclog);
3266         log->l_iclog = iclog->ic_next;
3267 }       /* xlog_state_switch_iclogs */
3268 
3269 /*
3270  * Write out all data in the in-core log as of this exact moment in time.
3271  *
3272  * Data may be written to the in-core log during this call.  However,
3273  * we don't guarantee this data will be written out.  A change from past
3274  * implementation means this routine will *not* write out zero length LRs.
3275  *
3276  * Basically, we try and perform an intelligent scan of the in-core logs.
3277  * If we determine there is no flushable data, we just return.  There is no
3278  * flushable data if:
3279  *
3280  *      1. the current iclog is active and has no data; the previous iclog
3281  *              is in the active or dirty state.
3282  *      2. the current iclog is drity, and the previous iclog is in the
3283  *              active or dirty state.
3284  *
3285  * We may sleep if:
3286  *
3287  *      1. the current iclog is not in the active nor dirty state.
3288  *      2. the current iclog dirty, and the previous iclog is not in the
3289  *              active nor dirty state.
3290  *      3. the current iclog is active, and there is another thread writing
3291  *              to this particular iclog.
3292  *      4. a) the current iclog is active and has no other writers
3293  *         b) when we return from flushing out this iclog, it is still
3294  *              not in the active nor dirty state.
3295  */
3296 int
3297 xfs_log_force(
3298         struct xfs_mount        *mp,
3299         uint                    flags)
3300 {
3301         struct xlog             *log = mp->m_log;
3302         struct xlog_in_core     *iclog;
3303         xfs_lsn_t               lsn;
3304 
3305         XFS_STATS_INC(mp, xs_log_force);
3306         trace_xfs_log_force(mp, 0, _RET_IP_);
3307 
3308         xlog_cil_force(log);
3309 
3310         spin_lock(&log->l_icloglock);
3311         iclog = log->l_iclog;
3312         if (iclog->ic_state & XLOG_STATE_IOERROR)
3313                 goto out_error;
3314 
3315         if (iclog->ic_state == XLOG_STATE_DIRTY ||
3316             (iclog->ic_state == XLOG_STATE_ACTIVE &&
3317              atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3318                 /*
3319                  * If the head is dirty or (active and empty), then we need to
3320                  * look at the previous iclog.
3321                  *
3322                  * If the previous iclog is active or dirty we are done.  There
3323                  * is nothing to sync out. Otherwise, we attach ourselves to the
3324                  * previous iclog and go to sleep.
3325                  */
3326                 iclog = iclog->ic_prev;
3327                 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3328                     iclog->ic_state == XLOG_STATE_DIRTY)
3329                         goto out_unlock;
3330         } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3331                 if (atomic_read(&iclog->ic_refcnt) == 0) {
3332                         /*
3333                          * We are the only one with access to this iclog.
3334                          *
3335                          * Flush it out now.  There should be a roundoff of zero
3336                          * to show that someone has already taken care of the
3337                          * roundoff from the previous sync.
3338                          */
3339                         atomic_inc(&iclog->ic_refcnt);
3340                         lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3341                         xlog_state_switch_iclogs(log, iclog, 0);
3342                         spin_unlock(&log->l_icloglock);
3343 
3344                         if (xlog_state_release_iclog(log, iclog))
3345                                 return -EIO;
3346 
3347                         spin_lock(&log->l_icloglock);
3348                         if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3349                             iclog->ic_state == XLOG_STATE_DIRTY)
3350                                 goto out_unlock;
3351                 } else {
3352                         /*
3353                          * Someone else is writing to this iclog.
3354                          *
3355                          * Use its call to flush out the data.  However, the
3356                          * other thread may not force out this LR, so we mark
3357                          * it WANT_SYNC.
3358                          */
3359                         xlog_state_switch_iclogs(log, iclog, 0);
3360                 }
3361         } else {
3362                 /*
3363                  * If the head iclog is not active nor dirty, we just attach
3364                  * ourselves to the head and go to sleep if necessary.
3365                  */
3366                 ;
3367         }
3368 
3369         if (!(flags & XFS_LOG_SYNC))
3370                 goto out_unlock;
3371 
3372         if (iclog->ic_state & XLOG_STATE_IOERROR)
3373                 goto out_error;
3374         XFS_STATS_INC(mp, xs_log_force_sleep);
3375         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3376         if (iclog->ic_state & XLOG_STATE_IOERROR)
3377                 return -EIO;
3378         return 0;
3379 
3380 out_unlock:
3381         spin_unlock(&log->l_icloglock);
3382         return 0;
3383 out_error:
3384         spin_unlock(&log->l_icloglock);
3385         return -EIO;
3386 }
3387 
3388 static int
3389 __xfs_log_force_lsn(
3390         struct xfs_mount        *mp,
3391         xfs_lsn_t               lsn,
3392         uint                    flags,
3393         int                     *log_flushed,
3394         bool                    already_slept)
3395 {
3396         struct xlog             *log = mp->m_log;
3397         struct xlog_in_core     *iclog;
3398 
3399         spin_lock(&log->l_icloglock);
3400         iclog = log->l_iclog;
3401         if (iclog->ic_state & XLOG_STATE_IOERROR)
3402                 goto out_error;
3403 
3404         while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3405                 iclog = iclog->ic_next;
3406                 if (iclog == log->l_iclog)
3407                         goto out_unlock;
3408         }
3409 
3410         if (iclog->ic_state == XLOG_STATE_DIRTY)
3411                 goto out_unlock;
3412 
3413         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3414                 /*
3415                  * We sleep here if we haven't already slept (e.g. this is the
3416                  * first time we've looked at the correct iclog buf) and the
3417                  * buffer before us is going to be sync'ed.  The reason for this
3418                  * is that if we are doing sync transactions here, by waiting
3419                  * for the previous I/O to complete, we can allow a few more
3420                  * transactions into this iclog before we close it down.
3421                  *
3422                  * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3423                  * refcnt so we can release the log (which drops the ref count).
3424                  * The state switch keeps new transaction commits from using
3425                  * this buffer.  When the current commits finish writing into
3426                  * the buffer, the refcount will drop to zero and the buffer
3427                  * will go out then.
3428                  */
3429                 if (!already_slept &&
3430                     (iclog->ic_prev->ic_state &
3431                      (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3432                         ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3433 
3434                         XFS_STATS_INC(mp, xs_log_force_sleep);
3435 
3436                         xlog_wait(&iclog->ic_prev->ic_write_wait,
3437                                         &log->l_icloglock);
3438                         return -EAGAIN;
3439                 }
3440                 atomic_inc(&iclog->ic_refcnt);
3441                 xlog_state_switch_iclogs(log, iclog, 0);
3442                 spin_unlock(&log->l_icloglock);
3443                 if (xlog_state_release_iclog(log, iclog))
3444                         return -EIO;
3445                 if (log_flushed)
3446                         *log_flushed = 1;
3447                 spin_lock(&log->l_icloglock);
3448         }
3449 
3450         if (!(flags & XFS_LOG_SYNC) ||
3451             (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3452                 goto out_unlock;
3453 
3454         if (iclog->ic_state & XLOG_STATE_IOERROR)
3455                 goto out_error;
3456 
3457         XFS_STATS_INC(mp, xs_log_force_sleep);
3458         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3459         if (iclog->ic_state & XLOG_STATE_IOERROR)
3460                 return -EIO;
3461         return 0;
3462 
3463 out_unlock:
3464         spin_unlock(&log->l_icloglock);
3465         return 0;
3466 out_error:
3467         spin_unlock(&log->l_icloglock);
3468         return -EIO;
3469 }
3470 
3471 /*
3472  * Force the in-core log to disk for a specific LSN.
3473  *
3474  * Find in-core log with lsn.
3475  *      If it is in the DIRTY state, just return.
3476  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3477  *              state and go to sleep or return.
3478  *      If it is in any other state, go to sleep or return.
3479  *
3480  * Synchronous forces are implemented with a wait queue.  All callers trying
3481  * to force a given lsn to disk must wait on the queue attached to the
3482  * specific in-core log.  When given in-core log finally completes its write
3483  * to disk, that thread will wake up all threads waiting on the queue.
3484  */
3485 int
3486 xfs_log_force_lsn(
3487         struct xfs_mount        *mp,
3488         xfs_lsn_t               lsn,
3489         uint                    flags,
3490         int                     *log_flushed)
3491 {
3492         int                     ret;
3493         ASSERT(lsn != 0);
3494 
3495         XFS_STATS_INC(mp, xs_log_force);
3496         trace_xfs_log_force(mp, lsn, _RET_IP_);
3497 
3498         lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3499         if (lsn == NULLCOMMITLSN)
3500                 return 0;
3501 
3502         ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3503         if (ret == -EAGAIN)
3504                 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3505         return ret;
3506 }
3507 
3508 /*
3509  * Called when we want to mark the current iclog as being ready to sync to
3510  * disk.
3511  */
3512 STATIC void
3513 xlog_state_want_sync(
3514         struct xlog             *log,
3515         struct xlog_in_core     *iclog)
3516 {
3517         assert_spin_locked(&log->l_icloglock);
3518 
3519         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3520                 xlog_state_switch_iclogs(log, iclog, 0);
3521         } else {
3522                 ASSERT(iclog->ic_state &
3523                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3524         }
3525 }
3526 
3527 
3528 /*****************************************************************************
3529  *
3530  *              TICKET functions
3531  *
3532  *****************************************************************************
3533  */
3534 
3535 /*
3536  * Free a used ticket when its refcount falls to zero.
3537  */
3538 void
3539 xfs_log_ticket_put(
3540         xlog_ticket_t   *ticket)
3541 {
3542         ASSERT(atomic_read(&ticket->t_ref) > 0);
3543         if (atomic_dec_and_test(&ticket->t_ref))
3544                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3545 }
3546 
3547 xlog_ticket_t *
3548 xfs_log_ticket_get(
3549         xlog_ticket_t   *ticket)
3550 {
3551         ASSERT(atomic_read(&ticket->t_ref) > 0);
3552         atomic_inc(&ticket->t_ref);
3553         return ticket;
3554 }
3555 
3556 /*
3557  * Figure out the total log space unit (in bytes) that would be
3558  * required for a log ticket.
3559  */
3560 int
3561 xfs_log_calc_unit_res(
3562         struct xfs_mount        *mp,
3563         int                     unit_bytes)
3564 {
3565         struct xlog             *log = mp->m_log;
3566         int                     iclog_space;
3567         uint                    num_headers;
3568 
3569         /*
3570          * Permanent reservations have up to 'cnt'-1 active log operations
3571          * in the log.  A unit in this case is the amount of space for one
3572          * of these log operations.  Normal reservations have a cnt of 1
3573          * and their unit amount is the total amount of space required.
3574          *
3575          * The following lines of code account for non-transaction data
3576          * which occupy space in the on-disk log.
3577          *
3578          * Normal form of a transaction is:
3579          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3580          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3581          *
3582          * We need to account for all the leadup data and trailer data
3583          * around the transaction data.
3584          * And then we need to account for the worst case in terms of using
3585          * more space.
3586          * The worst case will happen if:
3587          * - the placement of the transaction happens to be such that the
3588          *   roundoff is at its maximum
3589          * - the transaction data is synced before the commit record is synced
3590          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3591          *   Therefore the commit record is in its own Log Record.
3592          *   This can happen as the commit record is called with its
3593          *   own region to xlog_write().
3594          *   This then means that in the worst case, roundoff can happen for
3595          *   the commit-rec as well.
3596          *   The commit-rec is smaller than padding in this scenario and so it is
3597          *   not added separately.
3598          */
3599 
3600         /* for trans header */
3601         unit_bytes += sizeof(xlog_op_header_t);
3602         unit_bytes += sizeof(xfs_trans_header_t);
3603 
3604         /* for start-rec */
3605         unit_bytes += sizeof(xlog_op_header_t);
3606 
3607         /*
3608          * for LR headers - the space for data in an iclog is the size minus
3609          * the space used for the headers. If we use the iclog size, then we
3610          * undercalculate the number of headers required.
3611          *
3612          * Furthermore - the addition of op headers for split-recs might
3613          * increase the space required enough to require more log and op
3614          * headers, so take that into account too.
3615          *
3616          * IMPORTANT: This reservation makes the assumption that if this
3617          * transaction is the first in an iclog and hence has the LR headers
3618          * accounted to it, then the remaining space in the iclog is
3619          * exclusively for this transaction.  i.e. if the transaction is larger
3620          * than the iclog, it will be the only thing in that iclog.
3621          * Fundamentally, this means we must pass the entire log vector to
3622          * xlog_write to guarantee this.
3623          */
3624         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3625         num_headers = howmany(unit_bytes, iclog_space);
3626 
3627         /* for split-recs - ophdrs added when data split over LRs */
3628         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3629 
3630         /* add extra header reservations if we overrun */
3631         while (!num_headers ||
3632                howmany(unit_bytes, iclog_space) > num_headers) {
3633                 unit_bytes += sizeof(xlog_op_header_t);
3634                 num_headers++;
3635         }
3636         unit_bytes += log->l_iclog_hsize * num_headers;
3637 
3638         /* for commit-rec LR header - note: padding will subsume the ophdr */
3639         unit_bytes += log->l_iclog_hsize;
3640 
3641         /* for roundoff padding for transaction data and one for commit record */
3642         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3643                 /* log su roundoff */
3644                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3645         } else {
3646                 /* BB roundoff */
3647                 unit_bytes += 2 * BBSIZE;
3648         }
3649 
3650         return unit_bytes;
3651 }
3652 
3653 /*
3654  * Allocate and initialise a new log ticket.
3655  */
3656 struct xlog_ticket *
3657 xlog_ticket_alloc(
3658         struct xlog             *log,
3659         int                     unit_bytes,
3660         int                     cnt,
3661         char                    client,
3662         bool                    permanent,
3663         xfs_km_flags_t          alloc_flags)
3664 {
3665         struct xlog_ticket      *tic;
3666         int                     unit_res;
3667 
3668         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3669         if (!tic)
3670                 return NULL;
3671 
3672         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3673 
3674         atomic_set(&tic->t_ref, 1);
3675         tic->t_task             = current;
3676         INIT_LIST_HEAD(&tic->t_queue);
3677         tic->t_unit_res         = unit_res;
3678         tic->t_curr_res         = unit_res;
3679         tic->t_cnt              = cnt;
3680         tic->t_ocnt             = cnt;
3681         tic->t_tid              = prandom_u32();
3682         tic->t_clientid         = client;
3683         tic->t_flags            = XLOG_TIC_INITED;
3684         if (permanent)
3685                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3686 
3687         xlog_tic_reset_res(tic);
3688 
3689         return tic;
3690 }
3691 
3692 
3693 /******************************************************************************
3694  *
3695  *              Log debug routines
3696  *
3697  ******************************************************************************
3698  */
3699 #if defined(DEBUG)
3700 /*
3701  * Make sure that the destination ptr is within the valid data region of
3702  * one of the iclogs.  This uses backup pointers stored in a different
3703  * part of the log in case we trash the log structure.
3704  */
3705 STATIC void
3706 xlog_verify_dest_ptr(
3707         struct xlog     *log,
3708         void            *ptr)
3709 {
3710         int i;
3711         int good_ptr = 0;
3712 
3713         for (i = 0; i < log->l_iclog_bufs; i++) {
3714                 if (ptr >= log->l_iclog_bak[i] &&
3715                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3716                         good_ptr++;
3717         }
3718 
3719         if (!good_ptr)
3720                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3721 }
3722 
3723 /*
3724  * Check to make sure the grant write head didn't just over lap the tail.  If
3725  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3726  * the cycles differ by exactly one and check the byte count.
3727  *
3728  * This check is run unlocked, so can give false positives. Rather than assert
3729  * on failures, use a warn-once flag and a panic tag to allow the admin to
3730  * determine if they want to panic the machine when such an error occurs. For
3731  * debug kernels this will have the same effect as using an assert but, unlinke
3732  * an assert, it can be turned off at runtime.
3733  */
3734 STATIC void
3735 xlog_verify_grant_tail(
3736         struct xlog     *log)
3737 {
3738         int             tail_cycle, tail_blocks;
3739         int             cycle, space;
3740 
3741         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3742         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3743         if (tail_cycle != cycle) {
3744                 if (cycle - 1 != tail_cycle &&
3745                     !(log->l_flags & XLOG_TAIL_WARN)) {
3746                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3747                                 "%s: cycle - 1 != tail_cycle", __func__);
3748                         log->l_flags |= XLOG_TAIL_WARN;
3749                 }
3750 
3751                 if (space > BBTOB(tail_blocks) &&
3752                     !(log->l_flags & XLOG_TAIL_WARN)) {
3753                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3754                                 "%s: space > BBTOB(tail_blocks)", __func__);
3755                         log->l_flags |= XLOG_TAIL_WARN;
3756                 }
3757         }
3758 }
3759 
3760 /* check if it will fit */
3761 STATIC void
3762 xlog_verify_tail_lsn(
3763         struct xlog             *log,
3764         struct xlog_in_core     *iclog,
3765         xfs_lsn_t               tail_lsn)
3766 {
3767     int blocks;
3768 
3769     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3770         blocks =
3771             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3772         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3773                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3774     } else {
3775         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3776 
3777         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3778                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3779 
3780         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3781         if (blocks < BTOBB(iclog->ic_offset) + 1)
3782                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3783     }
3784 }       /* xlog_verify_tail_lsn */
3785 
3786 /*
3787  * Perform a number of checks on the iclog before writing to disk.
3788  *
3789  * 1. Make sure the iclogs are still circular
3790  * 2. Make sure we have a good magic number
3791  * 3. Make sure we don't have magic numbers in the data
3792  * 4. Check fields of each log operation header for:
3793  *      A. Valid client identifier
3794  *      B. tid ptr value falls in valid ptr space (user space code)
3795  *      C. Length in log record header is correct according to the
3796  *              individual operation headers within record.
3797  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3798  *      log, check the preceding blocks of the physical log to make sure all
3799  *      the cycle numbers agree with the current cycle number.
3800  */
3801 STATIC void
3802 xlog_verify_iclog(
3803         struct xlog             *log,
3804         struct xlog_in_core     *iclog,
3805         int                     count)
3806 {
3807         xlog_op_header_t        *ophead;
3808         xlog_in_core_t          *icptr;
3809         xlog_in_core_2_t        *xhdr;
3810         void                    *base_ptr, *ptr, *p;
3811         ptrdiff_t               field_offset;
3812         uint8_t                 clientid;
3813         int                     len, i, j, k, op_len;
3814         int                     idx;
3815 
3816         /* check validity of iclog pointers */
3817         spin_lock(&log->l_icloglock);
3818         icptr = log->l_iclog;
3819         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3820                 ASSERT(icptr);
3821 
3822         if (icptr != log->l_iclog)
3823                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3824         spin_unlock(&log->l_icloglock);
3825 
3826         /* check log magic numbers */
3827         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3828                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3829 
3830         base_ptr = ptr = &iclog->ic_header;
3831         p = &iclog->ic_header;
3832         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3833                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3834                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3835                                 __func__);
3836         }
3837 
3838         /* check fields */
3839         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3840         base_ptr = ptr = iclog->ic_datap;
3841         ophead = ptr;
3842         xhdr = iclog->ic_data;
3843         for (i = 0; i < len; i++) {
3844                 ophead = ptr;
3845 
3846                 /* clientid is only 1 byte */
3847                 p = &ophead->oh_clientid;
3848                 field_offset = p - base_ptr;
3849                 if (field_offset & 0x1ff) {
3850                         clientid = ophead->oh_clientid;
3851                 } else {
3852                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3853                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3854                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3855                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3856                                 clientid = xlog_get_client_id(
3857                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3858                         } else {
3859                                 clientid = xlog_get_client_id(
3860                                         iclog->ic_header.h_cycle_data[idx]);
3861                         }
3862                 }
3863                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3864                         xfs_warn(log->l_mp,
3865                                 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3866                                 __func__, clientid, ophead,
3867                                 (unsigned long)field_offset);
3868 
3869                 /* check length */
3870                 p = &ophead->oh_len;
3871                 field_offset = p - base_ptr;
3872                 if (field_offset & 0x1ff) {
3873                         op_len = be32_to_cpu(ophead->oh_len);
3874                 } else {
3875                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3876                                     (uintptr_t)iclog->ic_datap);
3877                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3878                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3879                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3880                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3881                         } else {
3882                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3883                         }
3884                 }
3885                 ptr += sizeof(xlog_op_header_t) + op_len;
3886         }
3887 }       /* xlog_verify_iclog */
3888 #endif
3889 
3890 /*
3891  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3892  */
3893 STATIC int
3894 xlog_state_ioerror(
3895         struct xlog     *log)
3896 {
3897         xlog_in_core_t  *iclog, *ic;
3898 
3899         iclog = log->l_iclog;
3900         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3901                 /*
3902                  * Mark all the incore logs IOERROR.
3903                  * From now on, no log flushes will result.
3904                  */
3905                 ic = iclog;
3906                 do {
3907                         ic->ic_state = XLOG_STATE_IOERROR;
3908                         ic = ic->ic_next;
3909                 } while (ic != iclog);
3910                 return 0;
3911         }
3912         /*
3913          * Return non-zero, if state transition has already happened.
3914          */
3915         return 1;
3916 }
3917 
3918 /*
3919  * This is called from xfs_force_shutdown, when we're forcibly
3920  * shutting down the filesystem, typically because of an IO error.
3921  * Our main objectives here are to make sure that:
3922  *      a. if !logerror, flush the logs to disk. Anything modified
3923  *         after this is ignored.
3924  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3925  *         parties to find out, 'atomically'.
3926  *      c. those who're sleeping on log reservations, pinned objects and
3927  *          other resources get woken up, and be told the bad news.
3928  *      d. nothing new gets queued up after (b) and (c) are done.
3929  *
3930  * Note: for the !logerror case we need to flush the regions held in memory out
3931  * to disk first. This needs to be done before the log is marked as shutdown,
3932  * otherwise the iclog writes will fail.
3933  */
3934 int
3935 xfs_log_force_umount(
3936         struct xfs_mount        *mp,
3937         int                     logerror)
3938 {
3939         struct xlog     *log;
3940         int             retval;
3941 
3942         log = mp->m_log;
3943 
3944         /*
3945          * If this happens during log recovery, don't worry about
3946          * locking; the log isn't open for business yet.
3947          */
3948         if (!log ||
3949             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3950                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3951                 if (mp->m_sb_bp)
3952                         mp->m_sb_bp->b_flags |= XBF_DONE;
3953                 return 0;
3954         }
3955 
3956         /*
3957          * Somebody could've already done the hard work for us.
3958          * No need to get locks for this.
3959          */
3960         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3961                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3962                 return 1;
3963         }
3964 
3965         /*
3966          * Flush all the completed transactions to disk before marking the log
3967          * being shut down. We need to do it in this order to ensure that
3968          * completed operations are safely on disk before we shut down, and that
3969          * we don't have to issue any buffer IO after the shutdown flags are set
3970          * to guarantee this.
3971          */
3972         if (!logerror)
3973                 xfs_log_force(mp, XFS_LOG_SYNC);
3974 
3975         /*
3976          * mark the filesystem and the as in a shutdown state and wake
3977          * everybody up to tell them the bad news.
3978          */
3979         spin_lock(&log->l_icloglock);
3980         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3981         if (mp->m_sb_bp)
3982                 mp->m_sb_bp->b_flags |= XBF_DONE;
3983 
3984         /*
3985          * Mark the log and the iclogs with IO error flags to prevent any
3986          * further log IO from being issued or completed.
3987          */
3988         log->l_flags |= XLOG_IO_ERROR;
3989         retval = xlog_state_ioerror(log);
3990         spin_unlock(&log->l_icloglock);
3991 
3992         /*
3993          * We don't want anybody waiting for log reservations after this. That
3994          * means we have to wake up everybody queued up on reserveq as well as
3995          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3996          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3997          * action is protected by the grant locks.
3998          */
3999         xlog_grant_head_wake_all(&log->l_reserve_head);
4000         xlog_grant_head_wake_all(&log->l_write_head);
4001 
4002         /*
4003          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4004          * as if the log writes were completed. The abort handling in the log
4005          * item committed callback functions will do this again under lock to
4006          * avoid races.
4007          */
4008         spin_lock(&log->l_cilp->xc_push_lock);
4009         wake_up_all(&log->l_cilp->xc_commit_wait);
4010         spin_unlock(&log->l_cilp->xc_push_lock);
4011         xlog_state_do_callback(log, true, NULL);
4012 
4013 #ifdef XFSERRORDEBUG
4014         {
4015                 xlog_in_core_t  *iclog;
4016 
4017                 spin_lock(&log->l_icloglock);
4018                 iclog = log->l_iclog;
4019                 do {
4020                         ASSERT(iclog->ic_callback == 0);
4021                         iclog = iclog->ic_next;
4022                 } while (iclog != log->l_iclog);
4023                 spin_unlock(&log->l_icloglock);
4024         }
4025 #endif
4026         /* return non-zero if log IOERROR transition had already happened */
4027         return retval;
4028 }
4029 
4030 STATIC int
4031 xlog_iclogs_empty(
4032         struct xlog     *log)
4033 {
4034         xlog_in_core_t  *iclog;
4035 
4036         iclog = log->l_iclog;
4037         do {
4038                 /* endianness does not matter here, zero is zero in
4039                  * any language.
4040                  */
4041                 if (iclog->ic_header.h_num_logops)
4042                         return 0;
4043                 iclog = iclog->ic_next;
4044         } while (iclog != log->l_iclog);
4045         return 1;
4046 }
4047 
4048 /*
4049  * Verify that an LSN stamped into a piece of metadata is valid. This is
4050  * intended for use in read verifiers on v5 superblocks.
4051  */
4052 bool
4053 xfs_log_check_lsn(
4054         struct xfs_mount        *mp,
4055         xfs_lsn_t               lsn)
4056 {
4057         struct xlog             *log = mp->m_log;
4058         bool                    valid;
4059 
4060         /*
4061          * norecovery mode skips mount-time log processing and unconditionally
4062          * resets the in-core LSN. We can't validate in this mode, but
4063          * modifications are not allowed anyways so just return true.
4064          */
4065         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4066                 return true;
4067 
4068         /*
4069          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4070          * handled by recovery and thus safe to ignore here.
4071          */
4072         if (lsn == NULLCOMMITLSN)
4073                 return true;
4074 
4075         valid = xlog_valid_lsn(mp->m_log, lsn);
4076 
4077         /* warn the user about what's gone wrong before verifier failure */
4078         if (!valid) {
4079                 spin_lock(&log->l_icloglock);
4080                 xfs_warn(mp,
4081 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4082 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4083                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4084                          log->l_curr_cycle, log->l_curr_block);
4085                 spin_unlock(&log->l_icloglock);
4086         }
4087 
4088         return valid;
4089 }
4090 
4091 bool
4092 xfs_log_in_recovery(
4093         struct xfs_mount        *mp)
4094 {
4095         struct xlog             *log = mp->m_log;
4096 
4097         return log->l_flags & XLOG_ACTIVE_RECOVERY;
4098 }

/* [<][>][^][v][top][bottom][index][help] */