root/fs/xfs/xfs_buf_item.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. BUF_ITEM
  2. xfs_buf_log_format_size
  3. xfs_buf_item_size_segment
  4. xfs_buf_item_size
  5. xfs_buf_item_copy_iovec
  6. xfs_buf_item_straddle
  7. xfs_buf_item_format_segment
  8. xfs_buf_item_format
  9. xfs_buf_item_pin
  10. xfs_buf_item_unpin
  11. xfs_buf_item_push
  12. xfs_buf_item_put
  13. xfs_buf_item_release
  14. xfs_buf_item_committing
  15. xfs_buf_item_committed
  16. xfs_buf_item_get_format
  17. xfs_buf_item_free_format
  18. xfs_buf_item_init
  19. xfs_buf_item_log_segment
  20. xfs_buf_item_log
  21. xfs_buf_item_dirty_format
  22. xfs_buf_item_free
  23. xfs_buf_item_relse
  24. xfs_buf_attach_iodone
  25. xfs_buf_do_callbacks
  26. xfs_buf_do_callbacks_fail
  27. xfs_buf_iodone_callback_error
  28. xfs_buf_iodone_callbacks
  29. xfs_buf_iodone
  30. xfs_buf_resubmit_failed_buffers

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4  * All Rights Reserved.
   5  */
   6 #include "xfs.h"
   7 #include "xfs_fs.h"
   8 #include "xfs_shared.h"
   9 #include "xfs_format.h"
  10 #include "xfs_log_format.h"
  11 #include "xfs_trans_resv.h"
  12 #include "xfs_bit.h"
  13 #include "xfs_mount.h"
  14 #include "xfs_trans.h"
  15 #include "xfs_buf_item.h"
  16 #include "xfs_trans_priv.h"
  17 #include "xfs_trace.h"
  18 #include "xfs_log.h"
  19 
  20 
  21 kmem_zone_t     *xfs_buf_item_zone;
  22 
  23 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  24 {
  25         return container_of(lip, struct xfs_buf_log_item, bli_item);
  26 }
  27 
  28 STATIC void     xfs_buf_do_callbacks(struct xfs_buf *bp);
  29 
  30 static inline int
  31 xfs_buf_log_format_size(
  32         struct xfs_buf_log_format *blfp)
  33 {
  34         return offsetof(struct xfs_buf_log_format, blf_data_map) +
  35                         (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  36 }
  37 
  38 /*
  39  * This returns the number of log iovecs needed to log the
  40  * given buf log item.
  41  *
  42  * It calculates this as 1 iovec for the buf log format structure
  43  * and 1 for each stretch of non-contiguous chunks to be logged.
  44  * Contiguous chunks are logged in a single iovec.
  45  *
  46  * If the XFS_BLI_STALE flag has been set, then log nothing.
  47  */
  48 STATIC void
  49 xfs_buf_item_size_segment(
  50         struct xfs_buf_log_item         *bip,
  51         struct xfs_buf_log_format       *blfp,
  52         int                             *nvecs,
  53         int                             *nbytes)
  54 {
  55         struct xfs_buf                  *bp = bip->bli_buf;
  56         int                             next_bit;
  57         int                             last_bit;
  58 
  59         last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  60         if (last_bit == -1)
  61                 return;
  62 
  63         /*
  64          * initial count for a dirty buffer is 2 vectors - the format structure
  65          * and the first dirty region.
  66          */
  67         *nvecs += 2;
  68         *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
  69 
  70         while (last_bit != -1) {
  71                 /*
  72                  * This takes the bit number to start looking from and
  73                  * returns the next set bit from there.  It returns -1
  74                  * if there are no more bits set or the start bit is
  75                  * beyond the end of the bitmap.
  76                  */
  77                 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  78                                         last_bit + 1);
  79                 /*
  80                  * If we run out of bits, leave the loop,
  81                  * else if we find a new set of bits bump the number of vecs,
  82                  * else keep scanning the current set of bits.
  83                  */
  84                 if (next_bit == -1) {
  85                         break;
  86                 } else if (next_bit != last_bit + 1) {
  87                         last_bit = next_bit;
  88                         (*nvecs)++;
  89                 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  90                            (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  91                             XFS_BLF_CHUNK)) {
  92                         last_bit = next_bit;
  93                         (*nvecs)++;
  94                 } else {
  95                         last_bit++;
  96                 }
  97                 *nbytes += XFS_BLF_CHUNK;
  98         }
  99 }
 100 
 101 /*
 102  * This returns the number of log iovecs needed to log the given buf log item.
 103  *
 104  * It calculates this as 1 iovec for the buf log format structure and 1 for each
 105  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 106  * in a single iovec.
 107  *
 108  * Discontiguous buffers need a format structure per region that that is being
 109  * logged. This makes the changes in the buffer appear to log recovery as though
 110  * they came from separate buffers, just like would occur if multiple buffers
 111  * were used instead of a single discontiguous buffer. This enables
 112  * discontiguous buffers to be in-memory constructs, completely transparent to
 113  * what ends up on disk.
 114  *
 115  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 116  * format structures.
 117  */
 118 STATIC void
 119 xfs_buf_item_size(
 120         struct xfs_log_item     *lip,
 121         int                     *nvecs,
 122         int                     *nbytes)
 123 {
 124         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 125         int                     i;
 126 
 127         ASSERT(atomic_read(&bip->bli_refcount) > 0);
 128         if (bip->bli_flags & XFS_BLI_STALE) {
 129                 /*
 130                  * The buffer is stale, so all we need to log
 131                  * is the buf log format structure with the
 132                  * cancel flag in it.
 133                  */
 134                 trace_xfs_buf_item_size_stale(bip);
 135                 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 136                 *nvecs += bip->bli_format_count;
 137                 for (i = 0; i < bip->bli_format_count; i++) {
 138                         *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
 139                 }
 140                 return;
 141         }
 142 
 143         ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 144 
 145         if (bip->bli_flags & XFS_BLI_ORDERED) {
 146                 /*
 147                  * The buffer has been logged just to order it.
 148                  * It is not being included in the transaction
 149                  * commit, so no vectors are used at all.
 150                  */
 151                 trace_xfs_buf_item_size_ordered(bip);
 152                 *nvecs = XFS_LOG_VEC_ORDERED;
 153                 return;
 154         }
 155 
 156         /*
 157          * the vector count is based on the number of buffer vectors we have
 158          * dirty bits in. This will only be greater than one when we have a
 159          * compound buffer with more than one segment dirty. Hence for compound
 160          * buffers we need to track which segment the dirty bits correspond to,
 161          * and when we move from one segment to the next increment the vector
 162          * count for the extra buf log format structure that will need to be
 163          * written.
 164          */
 165         for (i = 0; i < bip->bli_format_count; i++) {
 166                 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
 167                                           nvecs, nbytes);
 168         }
 169         trace_xfs_buf_item_size(bip);
 170 }
 171 
 172 static inline void
 173 xfs_buf_item_copy_iovec(
 174         struct xfs_log_vec      *lv,
 175         struct xfs_log_iovec    **vecp,
 176         struct xfs_buf          *bp,
 177         uint                    offset,
 178         int                     first_bit,
 179         uint                    nbits)
 180 {
 181         offset += first_bit * XFS_BLF_CHUNK;
 182         xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
 183                         xfs_buf_offset(bp, offset),
 184                         nbits * XFS_BLF_CHUNK);
 185 }
 186 
 187 static inline bool
 188 xfs_buf_item_straddle(
 189         struct xfs_buf          *bp,
 190         uint                    offset,
 191         int                     next_bit,
 192         int                     last_bit)
 193 {
 194         return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
 195                 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
 196                  XFS_BLF_CHUNK);
 197 }
 198 
 199 static void
 200 xfs_buf_item_format_segment(
 201         struct xfs_buf_log_item *bip,
 202         struct xfs_log_vec      *lv,
 203         struct xfs_log_iovec    **vecp,
 204         uint                    offset,
 205         struct xfs_buf_log_format *blfp)
 206 {
 207         struct xfs_buf          *bp = bip->bli_buf;
 208         uint                    base_size;
 209         int                     first_bit;
 210         int                     last_bit;
 211         int                     next_bit;
 212         uint                    nbits;
 213 
 214         /* copy the flags across from the base format item */
 215         blfp->blf_flags = bip->__bli_format.blf_flags;
 216 
 217         /*
 218          * Base size is the actual size of the ondisk structure - it reflects
 219          * the actual size of the dirty bitmap rather than the size of the in
 220          * memory structure.
 221          */
 222         base_size = xfs_buf_log_format_size(blfp);
 223 
 224         first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 225         if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 226                 /*
 227                  * If the map is not be dirty in the transaction, mark
 228                  * the size as zero and do not advance the vector pointer.
 229                  */
 230                 return;
 231         }
 232 
 233         blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
 234         blfp->blf_size = 1;
 235 
 236         if (bip->bli_flags & XFS_BLI_STALE) {
 237                 /*
 238                  * The buffer is stale, so all we need to log
 239                  * is the buf log format structure with the
 240                  * cancel flag in it.
 241                  */
 242                 trace_xfs_buf_item_format_stale(bip);
 243                 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 244                 return;
 245         }
 246 
 247 
 248         /*
 249          * Fill in an iovec for each set of contiguous chunks.
 250          */
 251         last_bit = first_bit;
 252         nbits = 1;
 253         for (;;) {
 254                 /*
 255                  * This takes the bit number to start looking from and
 256                  * returns the next set bit from there.  It returns -1
 257                  * if there are no more bits set or the start bit is
 258                  * beyond the end of the bitmap.
 259                  */
 260                 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 261                                         (uint)last_bit + 1);
 262                 /*
 263                  * If we run out of bits fill in the last iovec and get out of
 264                  * the loop.  Else if we start a new set of bits then fill in
 265                  * the iovec for the series we were looking at and start
 266                  * counting the bits in the new one.  Else we're still in the
 267                  * same set of bits so just keep counting and scanning.
 268                  */
 269                 if (next_bit == -1) {
 270                         xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 271                                                 first_bit, nbits);
 272                         blfp->blf_size++;
 273                         break;
 274                 } else if (next_bit != last_bit + 1 ||
 275                            xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
 276                         xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 277                                                 first_bit, nbits);
 278                         blfp->blf_size++;
 279                         first_bit = next_bit;
 280                         last_bit = next_bit;
 281                         nbits = 1;
 282                 } else {
 283                         last_bit++;
 284                         nbits++;
 285                 }
 286         }
 287 }
 288 
 289 /*
 290  * This is called to fill in the vector of log iovecs for the
 291  * given log buf item.  It fills the first entry with a buf log
 292  * format structure, and the rest point to contiguous chunks
 293  * within the buffer.
 294  */
 295 STATIC void
 296 xfs_buf_item_format(
 297         struct xfs_log_item     *lip,
 298         struct xfs_log_vec      *lv)
 299 {
 300         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 301         struct xfs_buf          *bp = bip->bli_buf;
 302         struct xfs_log_iovec    *vecp = NULL;
 303         uint                    offset = 0;
 304         int                     i;
 305 
 306         ASSERT(atomic_read(&bip->bli_refcount) > 0);
 307         ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 308                (bip->bli_flags & XFS_BLI_STALE));
 309         ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
 310                (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
 311                 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
 312         ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
 313                (bip->bli_flags & XFS_BLI_STALE));
 314 
 315 
 316         /*
 317          * If it is an inode buffer, transfer the in-memory state to the
 318          * format flags and clear the in-memory state.
 319          *
 320          * For buffer based inode allocation, we do not transfer
 321          * this state if the inode buffer allocation has not yet been committed
 322          * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 323          * correct replay of the inode allocation.
 324          *
 325          * For icreate item based inode allocation, the buffers aren't written
 326          * to the journal during allocation, and hence we should always tag the
 327          * buffer as an inode buffer so that the correct unlinked list replay
 328          * occurs during recovery.
 329          */
 330         if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 331                 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
 332                     !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 333                       xfs_log_item_in_current_chkpt(lip)))
 334                         bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 335                 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 336         }
 337 
 338         for (i = 0; i < bip->bli_format_count; i++) {
 339                 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
 340                                             &bip->bli_formats[i]);
 341                 offset += BBTOB(bp->b_maps[i].bm_len);
 342         }
 343 
 344         /*
 345          * Check to make sure everything is consistent.
 346          */
 347         trace_xfs_buf_item_format(bip);
 348 }
 349 
 350 /*
 351  * This is called to pin the buffer associated with the buf log item in memory
 352  * so it cannot be written out.
 353  *
 354  * We also always take a reference to the buffer log item here so that the bli
 355  * is held while the item is pinned in memory. This means that we can
 356  * unconditionally drop the reference count a transaction holds when the
 357  * transaction is completed.
 358  */
 359 STATIC void
 360 xfs_buf_item_pin(
 361         struct xfs_log_item     *lip)
 362 {
 363         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 364 
 365         ASSERT(atomic_read(&bip->bli_refcount) > 0);
 366         ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 367                (bip->bli_flags & XFS_BLI_ORDERED) ||
 368                (bip->bli_flags & XFS_BLI_STALE));
 369 
 370         trace_xfs_buf_item_pin(bip);
 371 
 372         atomic_inc(&bip->bli_refcount);
 373         atomic_inc(&bip->bli_buf->b_pin_count);
 374 }
 375 
 376 /*
 377  * This is called to unpin the buffer associated with the buf log
 378  * item which was previously pinned with a call to xfs_buf_item_pin().
 379  *
 380  * Also drop the reference to the buf item for the current transaction.
 381  * If the XFS_BLI_STALE flag is set and we are the last reference,
 382  * then free up the buf log item and unlock the buffer.
 383  *
 384  * If the remove flag is set we are called from uncommit in the
 385  * forced-shutdown path.  If that is true and the reference count on
 386  * the log item is going to drop to zero we need to free the item's
 387  * descriptor in the transaction.
 388  */
 389 STATIC void
 390 xfs_buf_item_unpin(
 391         struct xfs_log_item     *lip,
 392         int                     remove)
 393 {
 394         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 395         xfs_buf_t               *bp = bip->bli_buf;
 396         struct xfs_ail          *ailp = lip->li_ailp;
 397         int                     stale = bip->bli_flags & XFS_BLI_STALE;
 398         int                     freed;
 399 
 400         ASSERT(bp->b_log_item == bip);
 401         ASSERT(atomic_read(&bip->bli_refcount) > 0);
 402 
 403         trace_xfs_buf_item_unpin(bip);
 404 
 405         freed = atomic_dec_and_test(&bip->bli_refcount);
 406 
 407         if (atomic_dec_and_test(&bp->b_pin_count))
 408                 wake_up_all(&bp->b_waiters);
 409 
 410         if (freed && stale) {
 411                 ASSERT(bip->bli_flags & XFS_BLI_STALE);
 412                 ASSERT(xfs_buf_islocked(bp));
 413                 ASSERT(bp->b_flags & XBF_STALE);
 414                 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 415 
 416                 trace_xfs_buf_item_unpin_stale(bip);
 417 
 418                 if (remove) {
 419                         /*
 420                          * If we are in a transaction context, we have to
 421                          * remove the log item from the transaction as we are
 422                          * about to release our reference to the buffer.  If we
 423                          * don't, the unlock that occurs later in
 424                          * xfs_trans_uncommit() will try to reference the
 425                          * buffer which we no longer have a hold on.
 426                          */
 427                         if (!list_empty(&lip->li_trans))
 428                                 xfs_trans_del_item(lip);
 429 
 430                         /*
 431                          * Since the transaction no longer refers to the buffer,
 432                          * the buffer should no longer refer to the transaction.
 433                          */
 434                         bp->b_transp = NULL;
 435                 }
 436 
 437                 /*
 438                  * If we get called here because of an IO error, we may
 439                  * or may not have the item on the AIL. xfs_trans_ail_delete()
 440                  * will take care of that situation.
 441                  * xfs_trans_ail_delete() drops the AIL lock.
 442                  */
 443                 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 444                         xfs_buf_do_callbacks(bp);
 445                         bp->b_log_item = NULL;
 446                         list_del_init(&bp->b_li_list);
 447                         bp->b_iodone = NULL;
 448                 } else {
 449                         spin_lock(&ailp->ail_lock);
 450                         xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
 451                         xfs_buf_item_relse(bp);
 452                         ASSERT(bp->b_log_item == NULL);
 453                 }
 454                 xfs_buf_relse(bp);
 455         } else if (freed && remove) {
 456                 /*
 457                  * There are currently two references to the buffer - the active
 458                  * LRU reference and the buf log item. What we are about to do
 459                  * here - simulate a failed IO completion - requires 3
 460                  * references.
 461                  *
 462                  * The LRU reference is removed by the xfs_buf_stale() call. The
 463                  * buf item reference is removed by the xfs_buf_iodone()
 464                  * callback that is run by xfs_buf_do_callbacks() during ioend
 465                  * processing (via the bp->b_iodone callback), and then finally
 466                  * the ioend processing will drop the IO reference if the buffer
 467                  * is marked XBF_ASYNC.
 468                  *
 469                  * Hence we need to take an additional reference here so that IO
 470                  * completion processing doesn't free the buffer prematurely.
 471                  */
 472                 xfs_buf_lock(bp);
 473                 xfs_buf_hold(bp);
 474                 bp->b_flags |= XBF_ASYNC;
 475                 xfs_buf_ioerror(bp, -EIO);
 476                 bp->b_flags &= ~XBF_DONE;
 477                 xfs_buf_stale(bp);
 478                 xfs_buf_ioend(bp);
 479         }
 480 }
 481 
 482 /*
 483  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
 484  * seconds so as to not spam logs too much on repeated detection of the same
 485  * buffer being bad..
 486  */
 487 
 488 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
 489 
 490 STATIC uint
 491 xfs_buf_item_push(
 492         struct xfs_log_item     *lip,
 493         struct list_head        *buffer_list)
 494 {
 495         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 496         struct xfs_buf          *bp = bip->bli_buf;
 497         uint                    rval = XFS_ITEM_SUCCESS;
 498 
 499         if (xfs_buf_ispinned(bp))
 500                 return XFS_ITEM_PINNED;
 501         if (!xfs_buf_trylock(bp)) {
 502                 /*
 503                  * If we have just raced with a buffer being pinned and it has
 504                  * been marked stale, we could end up stalling until someone else
 505                  * issues a log force to unpin the stale buffer. Check for the
 506                  * race condition here so xfsaild recognizes the buffer is pinned
 507                  * and queues a log force to move it along.
 508                  */
 509                 if (xfs_buf_ispinned(bp))
 510                         return XFS_ITEM_PINNED;
 511                 return XFS_ITEM_LOCKED;
 512         }
 513 
 514         ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 515 
 516         trace_xfs_buf_item_push(bip);
 517 
 518         /* has a previous flush failed due to IO errors? */
 519         if ((bp->b_flags & XBF_WRITE_FAIL) &&
 520             ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
 521                 xfs_warn(bp->b_mount,
 522 "Failing async write on buffer block 0x%llx. Retrying async write.",
 523                          (long long)bp->b_bn);
 524         }
 525 
 526         if (!xfs_buf_delwri_queue(bp, buffer_list))
 527                 rval = XFS_ITEM_FLUSHING;
 528         xfs_buf_unlock(bp);
 529         return rval;
 530 }
 531 
 532 /*
 533  * Drop the buffer log item refcount and take appropriate action. This helper
 534  * determines whether the bli must be freed or not, since a decrement to zero
 535  * does not necessarily mean the bli is unused.
 536  *
 537  * Return true if the bli is freed, false otherwise.
 538  */
 539 bool
 540 xfs_buf_item_put(
 541         struct xfs_buf_log_item *bip)
 542 {
 543         struct xfs_log_item     *lip = &bip->bli_item;
 544         bool                    aborted;
 545         bool                    dirty;
 546 
 547         /* drop the bli ref and return if it wasn't the last one */
 548         if (!atomic_dec_and_test(&bip->bli_refcount))
 549                 return false;
 550 
 551         /*
 552          * We dropped the last ref and must free the item if clean or aborted.
 553          * If the bli is dirty and non-aborted, the buffer was clean in the
 554          * transaction but still awaiting writeback from previous changes. In
 555          * that case, the bli is freed on buffer writeback completion.
 556          */
 557         aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
 558                   XFS_FORCED_SHUTDOWN(lip->li_mountp);
 559         dirty = bip->bli_flags & XFS_BLI_DIRTY;
 560         if (dirty && !aborted)
 561                 return false;
 562 
 563         /*
 564          * The bli is aborted or clean. An aborted item may be in the AIL
 565          * regardless of dirty state.  For example, consider an aborted
 566          * transaction that invalidated a dirty bli and cleared the dirty
 567          * state.
 568          */
 569         if (aborted)
 570                 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
 571         xfs_buf_item_relse(bip->bli_buf);
 572         return true;
 573 }
 574 
 575 /*
 576  * Release the buffer associated with the buf log item.  If there is no dirty
 577  * logged data associated with the buffer recorded in the buf log item, then
 578  * free the buf log item and remove the reference to it in the buffer.
 579  *
 580  * This call ignores the recursion count.  It is only called when the buffer
 581  * should REALLY be unlocked, regardless of the recursion count.
 582  *
 583  * We unconditionally drop the transaction's reference to the log item. If the
 584  * item was logged, then another reference was taken when it was pinned, so we
 585  * can safely drop the transaction reference now.  This also allows us to avoid
 586  * potential races with the unpin code freeing the bli by not referencing the
 587  * bli after we've dropped the reference count.
 588  *
 589  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 590  * if necessary but do not unlock the buffer.  This is for support of
 591  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 592  * free the item.
 593  */
 594 STATIC void
 595 xfs_buf_item_release(
 596         struct xfs_log_item     *lip)
 597 {
 598         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 599         struct xfs_buf          *bp = bip->bli_buf;
 600         bool                    released;
 601         bool                    hold = bip->bli_flags & XFS_BLI_HOLD;
 602         bool                    stale = bip->bli_flags & XFS_BLI_STALE;
 603 #if defined(DEBUG) || defined(XFS_WARN)
 604         bool                    ordered = bip->bli_flags & XFS_BLI_ORDERED;
 605         bool                    dirty = bip->bli_flags & XFS_BLI_DIRTY;
 606         bool                    aborted = test_bit(XFS_LI_ABORTED,
 607                                                    &lip->li_flags);
 608 #endif
 609 
 610         trace_xfs_buf_item_release(bip);
 611 
 612         /*
 613          * The bli dirty state should match whether the blf has logged segments
 614          * except for ordered buffers, where only the bli should be dirty.
 615          */
 616         ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
 617                (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
 618         ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 619 
 620         /*
 621          * Clear the buffer's association with this transaction and
 622          * per-transaction state from the bli, which has been copied above.
 623          */
 624         bp->b_transp = NULL;
 625         bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
 626 
 627         /*
 628          * Unref the item and unlock the buffer unless held or stale. Stale
 629          * buffers remain locked until final unpin unless the bli is freed by
 630          * the unref call. The latter implies shutdown because buffer
 631          * invalidation dirties the bli and transaction.
 632          */
 633         released = xfs_buf_item_put(bip);
 634         if (hold || (stale && !released))
 635                 return;
 636         ASSERT(!stale || aborted);
 637         xfs_buf_relse(bp);
 638 }
 639 
 640 STATIC void
 641 xfs_buf_item_committing(
 642         struct xfs_log_item     *lip,
 643         xfs_lsn_t               commit_lsn)
 644 {
 645         return xfs_buf_item_release(lip);
 646 }
 647 
 648 /*
 649  * This is called to find out where the oldest active copy of the
 650  * buf log item in the on disk log resides now that the last log
 651  * write of it completed at the given lsn.
 652  * We always re-log all the dirty data in a buffer, so usually the
 653  * latest copy in the on disk log is the only one that matters.  For
 654  * those cases we simply return the given lsn.
 655  *
 656  * The one exception to this is for buffers full of newly allocated
 657  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 658  * flag set, indicating that only the di_next_unlinked fields from the
 659  * inodes in the buffers will be replayed during recovery.  If the
 660  * original newly allocated inode images have not yet been flushed
 661  * when the buffer is so relogged, then we need to make sure that we
 662  * keep the old images in the 'active' portion of the log.  We do this
 663  * by returning the original lsn of that transaction here rather than
 664  * the current one.
 665  */
 666 STATIC xfs_lsn_t
 667 xfs_buf_item_committed(
 668         struct xfs_log_item     *lip,
 669         xfs_lsn_t               lsn)
 670 {
 671         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 672 
 673         trace_xfs_buf_item_committed(bip);
 674 
 675         if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 676                 return lip->li_lsn;
 677         return lsn;
 678 }
 679 
 680 static const struct xfs_item_ops xfs_buf_item_ops = {
 681         .iop_size       = xfs_buf_item_size,
 682         .iop_format     = xfs_buf_item_format,
 683         .iop_pin        = xfs_buf_item_pin,
 684         .iop_unpin      = xfs_buf_item_unpin,
 685         .iop_release    = xfs_buf_item_release,
 686         .iop_committing = xfs_buf_item_committing,
 687         .iop_committed  = xfs_buf_item_committed,
 688         .iop_push       = xfs_buf_item_push,
 689 };
 690 
 691 STATIC int
 692 xfs_buf_item_get_format(
 693         struct xfs_buf_log_item *bip,
 694         int                     count)
 695 {
 696         ASSERT(bip->bli_formats == NULL);
 697         bip->bli_format_count = count;
 698 
 699         if (count == 1) {
 700                 bip->bli_formats = &bip->__bli_format;
 701                 return 0;
 702         }
 703 
 704         bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
 705                                 0);
 706         if (!bip->bli_formats)
 707                 return -ENOMEM;
 708         return 0;
 709 }
 710 
 711 STATIC void
 712 xfs_buf_item_free_format(
 713         struct xfs_buf_log_item *bip)
 714 {
 715         if (bip->bli_formats != &bip->__bli_format) {
 716                 kmem_free(bip->bli_formats);
 717                 bip->bli_formats = NULL;
 718         }
 719 }
 720 
 721 /*
 722  * Allocate a new buf log item to go with the given buffer.
 723  * Set the buffer's b_log_item field to point to the new
 724  * buf log item.
 725  */
 726 int
 727 xfs_buf_item_init(
 728         struct xfs_buf  *bp,
 729         struct xfs_mount *mp)
 730 {
 731         struct xfs_buf_log_item *bip = bp->b_log_item;
 732         int                     chunks;
 733         int                     map_size;
 734         int                     error;
 735         int                     i;
 736 
 737         /*
 738          * Check to see if there is already a buf log item for
 739          * this buffer. If we do already have one, there is
 740          * nothing to do here so return.
 741          */
 742         ASSERT(bp->b_mount == mp);
 743         if (bip) {
 744                 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 745                 ASSERT(!bp->b_transp);
 746                 ASSERT(bip->bli_buf == bp);
 747                 return 0;
 748         }
 749 
 750         bip = kmem_zone_zalloc(xfs_buf_item_zone, 0);
 751         xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 752         bip->bli_buf = bp;
 753 
 754         /*
 755          * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 756          * can be divided into. Make sure not to truncate any pieces.
 757          * map_size is the size of the bitmap needed to describe the
 758          * chunks of the buffer.
 759          *
 760          * Discontiguous buffer support follows the layout of the underlying
 761          * buffer. This makes the implementation as simple as possible.
 762          */
 763         error = xfs_buf_item_get_format(bip, bp->b_map_count);
 764         ASSERT(error == 0);
 765         if (error) {    /* to stop gcc throwing set-but-unused warnings */
 766                 kmem_zone_free(xfs_buf_item_zone, bip);
 767                 return error;
 768         }
 769 
 770 
 771         for (i = 0; i < bip->bli_format_count; i++) {
 772                 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 773                                       XFS_BLF_CHUNK);
 774                 map_size = DIV_ROUND_UP(chunks, NBWORD);
 775 
 776                 bip->bli_formats[i].blf_type = XFS_LI_BUF;
 777                 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 778                 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 779                 bip->bli_formats[i].blf_map_size = map_size;
 780         }
 781 
 782         bp->b_log_item = bip;
 783         xfs_buf_hold(bp);
 784         return 0;
 785 }
 786 
 787 
 788 /*
 789  * Mark bytes first through last inclusive as dirty in the buf
 790  * item's bitmap.
 791  */
 792 static void
 793 xfs_buf_item_log_segment(
 794         uint                    first,
 795         uint                    last,
 796         uint                    *map)
 797 {
 798         uint            first_bit;
 799         uint            last_bit;
 800         uint            bits_to_set;
 801         uint            bits_set;
 802         uint            word_num;
 803         uint            *wordp;
 804         uint            bit;
 805         uint            end_bit;
 806         uint            mask;
 807 
 808         /*
 809          * Convert byte offsets to bit numbers.
 810          */
 811         first_bit = first >> XFS_BLF_SHIFT;
 812         last_bit = last >> XFS_BLF_SHIFT;
 813 
 814         /*
 815          * Calculate the total number of bits to be set.
 816          */
 817         bits_to_set = last_bit - first_bit + 1;
 818 
 819         /*
 820          * Get a pointer to the first word in the bitmap
 821          * to set a bit in.
 822          */
 823         word_num = first_bit >> BIT_TO_WORD_SHIFT;
 824         wordp = &map[word_num];
 825 
 826         /*
 827          * Calculate the starting bit in the first word.
 828          */
 829         bit = first_bit & (uint)(NBWORD - 1);
 830 
 831         /*
 832          * First set any bits in the first word of our range.
 833          * If it starts at bit 0 of the word, it will be
 834          * set below rather than here.  That is what the variable
 835          * bit tells us. The variable bits_set tracks the number
 836          * of bits that have been set so far.  End_bit is the number
 837          * of the last bit to be set in this word plus one.
 838          */
 839         if (bit) {
 840                 end_bit = min(bit + bits_to_set, (uint)NBWORD);
 841                 mask = ((1U << (end_bit - bit)) - 1) << bit;
 842                 *wordp |= mask;
 843                 wordp++;
 844                 bits_set = end_bit - bit;
 845         } else {
 846                 bits_set = 0;
 847         }
 848 
 849         /*
 850          * Now set bits a whole word at a time that are between
 851          * first_bit and last_bit.
 852          */
 853         while ((bits_to_set - bits_set) >= NBWORD) {
 854                 *wordp |= 0xffffffff;
 855                 bits_set += NBWORD;
 856                 wordp++;
 857         }
 858 
 859         /*
 860          * Finally, set any bits left to be set in one last partial word.
 861          */
 862         end_bit = bits_to_set - bits_set;
 863         if (end_bit) {
 864                 mask = (1U << end_bit) - 1;
 865                 *wordp |= mask;
 866         }
 867 }
 868 
 869 /*
 870  * Mark bytes first through last inclusive as dirty in the buf
 871  * item's bitmap.
 872  */
 873 void
 874 xfs_buf_item_log(
 875         struct xfs_buf_log_item *bip,
 876         uint                    first,
 877         uint                    last)
 878 {
 879         int                     i;
 880         uint                    start;
 881         uint                    end;
 882         struct xfs_buf          *bp = bip->bli_buf;
 883 
 884         /*
 885          * walk each buffer segment and mark them dirty appropriately.
 886          */
 887         start = 0;
 888         for (i = 0; i < bip->bli_format_count; i++) {
 889                 if (start > last)
 890                         break;
 891                 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
 892 
 893                 /* skip to the map that includes the first byte to log */
 894                 if (first > end) {
 895                         start += BBTOB(bp->b_maps[i].bm_len);
 896                         continue;
 897                 }
 898 
 899                 /*
 900                  * Trim the range to this segment and mark it in the bitmap.
 901                  * Note that we must convert buffer offsets to segment relative
 902                  * offsets (e.g., the first byte of each segment is byte 0 of
 903                  * that segment).
 904                  */
 905                 if (first < start)
 906                         first = start;
 907                 if (end > last)
 908                         end = last;
 909                 xfs_buf_item_log_segment(first - start, end - start,
 910                                          &bip->bli_formats[i].blf_data_map[0]);
 911 
 912                 start += BBTOB(bp->b_maps[i].bm_len);
 913         }
 914 }
 915 
 916 
 917 /*
 918  * Return true if the buffer has any ranges logged/dirtied by a transaction,
 919  * false otherwise.
 920  */
 921 bool
 922 xfs_buf_item_dirty_format(
 923         struct xfs_buf_log_item *bip)
 924 {
 925         int                     i;
 926 
 927         for (i = 0; i < bip->bli_format_count; i++) {
 928                 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
 929                              bip->bli_formats[i].blf_map_size))
 930                         return true;
 931         }
 932 
 933         return false;
 934 }
 935 
 936 STATIC void
 937 xfs_buf_item_free(
 938         struct xfs_buf_log_item *bip)
 939 {
 940         xfs_buf_item_free_format(bip);
 941         kmem_free(bip->bli_item.li_lv_shadow);
 942         kmem_zone_free(xfs_buf_item_zone, bip);
 943 }
 944 
 945 /*
 946  * This is called when the buf log item is no longer needed.  It should
 947  * free the buf log item associated with the given buffer and clear
 948  * the buffer's pointer to the buf log item.  If there are no more
 949  * items in the list, clear the b_iodone field of the buffer (see
 950  * xfs_buf_attach_iodone() below).
 951  */
 952 void
 953 xfs_buf_item_relse(
 954         xfs_buf_t       *bp)
 955 {
 956         struct xfs_buf_log_item *bip = bp->b_log_item;
 957 
 958         trace_xfs_buf_item_relse(bp, _RET_IP_);
 959         ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
 960 
 961         bp->b_log_item = NULL;
 962         if (list_empty(&bp->b_li_list))
 963                 bp->b_iodone = NULL;
 964 
 965         xfs_buf_rele(bp);
 966         xfs_buf_item_free(bip);
 967 }
 968 
 969 
 970 /*
 971  * Add the given log item with its callback to the list of callbacks
 972  * to be called when the buffer's I/O completes.  If it is not set
 973  * already, set the buffer's b_iodone() routine to be
 974  * xfs_buf_iodone_callbacks() and link the log item into the list of
 975  * items rooted at b_li_list.
 976  */
 977 void
 978 xfs_buf_attach_iodone(
 979         struct xfs_buf          *bp,
 980         void                    (*cb)(struct xfs_buf *, struct xfs_log_item *),
 981         struct xfs_log_item     *lip)
 982 {
 983         ASSERT(xfs_buf_islocked(bp));
 984 
 985         lip->li_cb = cb;
 986         list_add_tail(&lip->li_bio_list, &bp->b_li_list);
 987 
 988         ASSERT(bp->b_iodone == NULL ||
 989                bp->b_iodone == xfs_buf_iodone_callbacks);
 990         bp->b_iodone = xfs_buf_iodone_callbacks;
 991 }
 992 
 993 /*
 994  * We can have many callbacks on a buffer. Running the callbacks individually
 995  * can cause a lot of contention on the AIL lock, so we allow for a single
 996  * callback to be able to scan the remaining items in bp->b_li_list for other
 997  * items of the same type and callback to be processed in the first call.
 998  *
 999  * As a result, the loop walking the callback list below will also modify the
1000  * list. it removes the first item from the list and then runs the callback.
1001  * The loop then restarts from the new first item int the list. This allows the
1002  * callback to scan and modify the list attached to the buffer and we don't
1003  * have to care about maintaining a next item pointer.
1004  */
1005 STATIC void
1006 xfs_buf_do_callbacks(
1007         struct xfs_buf          *bp)
1008 {
1009         struct xfs_buf_log_item *blip = bp->b_log_item;
1010         struct xfs_log_item     *lip;
1011 
1012         /* If there is a buf_log_item attached, run its callback */
1013         if (blip) {
1014                 lip = &blip->bli_item;
1015                 lip->li_cb(bp, lip);
1016         }
1017 
1018         while (!list_empty(&bp->b_li_list)) {
1019                 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1020                                        li_bio_list);
1021 
1022                 /*
1023                  * Remove the item from the list, so we don't have any
1024                  * confusion if the item is added to another buf.
1025                  * Don't touch the log item after calling its
1026                  * callback, because it could have freed itself.
1027                  */
1028                 list_del_init(&lip->li_bio_list);
1029                 lip->li_cb(bp, lip);
1030         }
1031 }
1032 
1033 /*
1034  * Invoke the error state callback for each log item affected by the failed I/O.
1035  *
1036  * If a metadata buffer write fails with a non-permanent error, the buffer is
1037  * eventually resubmitted and so the completion callbacks are not run. The error
1038  * state may need to be propagated to the log items attached to the buffer,
1039  * however, so the next AIL push of the item knows hot to handle it correctly.
1040  */
1041 STATIC void
1042 xfs_buf_do_callbacks_fail(
1043         struct xfs_buf          *bp)
1044 {
1045         struct xfs_log_item     *lip;
1046         struct xfs_ail          *ailp;
1047 
1048         /*
1049          * Buffer log item errors are handled directly by xfs_buf_item_push()
1050          * and xfs_buf_iodone_callback_error, and they have no IO error
1051          * callbacks. Check only for items in b_li_list.
1052          */
1053         if (list_empty(&bp->b_li_list))
1054                 return;
1055 
1056         lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1057                         li_bio_list);
1058         ailp = lip->li_ailp;
1059         spin_lock(&ailp->ail_lock);
1060         list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1061                 if (lip->li_ops->iop_error)
1062                         lip->li_ops->iop_error(lip, bp);
1063         }
1064         spin_unlock(&ailp->ail_lock);
1065 }
1066 
1067 static bool
1068 xfs_buf_iodone_callback_error(
1069         struct xfs_buf          *bp)
1070 {
1071         struct xfs_buf_log_item *bip = bp->b_log_item;
1072         struct xfs_log_item     *lip;
1073         struct xfs_mount        *mp;
1074         static ulong            lasttime;
1075         static xfs_buftarg_t    *lasttarg;
1076         struct xfs_error_cfg    *cfg;
1077 
1078         /*
1079          * The failed buffer might not have a buf_log_item attached or the
1080          * log_item list might be empty. Get the mp from the available
1081          * xfs_log_item
1082          */
1083         lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1084                                        li_bio_list);
1085         mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1086 
1087         /*
1088          * If we've already decided to shutdown the filesystem because of
1089          * I/O errors, there's no point in giving this a retry.
1090          */
1091         if (XFS_FORCED_SHUTDOWN(mp))
1092                 goto out_stale;
1093 
1094         if (bp->b_target != lasttarg ||
1095             time_after(jiffies, (lasttime + 5*HZ))) {
1096                 lasttime = jiffies;
1097                 xfs_buf_ioerror_alert(bp, __func__);
1098         }
1099         lasttarg = bp->b_target;
1100 
1101         /* synchronous writes will have callers process the error */
1102         if (!(bp->b_flags & XBF_ASYNC))
1103                 goto out_stale;
1104 
1105         trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1106         ASSERT(bp->b_iodone != NULL);
1107 
1108         cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1109 
1110         /*
1111          * If the write was asynchronous then no one will be looking for the
1112          * error.  If this is the first failure of this type, clear the error
1113          * state and write the buffer out again. This means we always retry an
1114          * async write failure at least once, but we also need to set the buffer
1115          * up to behave correctly now for repeated failures.
1116          */
1117         if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1118              bp->b_last_error != bp->b_error) {
1119                 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1120                 bp->b_last_error = bp->b_error;
1121                 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1122                     !bp->b_first_retry_time)
1123                         bp->b_first_retry_time = jiffies;
1124 
1125                 xfs_buf_ioerror(bp, 0);
1126                 xfs_buf_submit(bp);
1127                 return true;
1128         }
1129 
1130         /*
1131          * Repeated failure on an async write. Take action according to the
1132          * error configuration we have been set up to use.
1133          */
1134 
1135         if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1136             ++bp->b_retries > cfg->max_retries)
1137                         goto permanent_error;
1138         if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1139             time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1140                         goto permanent_error;
1141 
1142         /* At unmount we may treat errors differently */
1143         if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1144                 goto permanent_error;
1145 
1146         /*
1147          * Still a transient error, run IO completion failure callbacks and let
1148          * the higher layers retry the buffer.
1149          */
1150         xfs_buf_do_callbacks_fail(bp);
1151         xfs_buf_ioerror(bp, 0);
1152         xfs_buf_relse(bp);
1153         return true;
1154 
1155         /*
1156          * Permanent error - we need to trigger a shutdown if we haven't already
1157          * to indicate that inconsistency will result from this action.
1158          */
1159 permanent_error:
1160         xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1161 out_stale:
1162         xfs_buf_stale(bp);
1163         bp->b_flags |= XBF_DONE;
1164         trace_xfs_buf_error_relse(bp, _RET_IP_);
1165         return false;
1166 }
1167 
1168 /*
1169  * This is the iodone() function for buffers which have had callbacks attached
1170  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1171  * callback list, mark the buffer as having no more callbacks and then push the
1172  * buffer through IO completion processing.
1173  */
1174 void
1175 xfs_buf_iodone_callbacks(
1176         struct xfs_buf          *bp)
1177 {
1178         /*
1179          * If there is an error, process it. Some errors require us
1180          * to run callbacks after failure processing is done so we
1181          * detect that and take appropriate action.
1182          */
1183         if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1184                 return;
1185 
1186         /*
1187          * Successful IO or permanent error. Either way, we can clear the
1188          * retry state here in preparation for the next error that may occur.
1189          */
1190         bp->b_last_error = 0;
1191         bp->b_retries = 0;
1192         bp->b_first_retry_time = 0;
1193 
1194         xfs_buf_do_callbacks(bp);
1195         bp->b_log_item = NULL;
1196         list_del_init(&bp->b_li_list);
1197         bp->b_iodone = NULL;
1198         xfs_buf_ioend(bp);
1199 }
1200 
1201 /*
1202  * This is the iodone() function for buffers which have been
1203  * logged.  It is called when they are eventually flushed out.
1204  * It should remove the buf item from the AIL, and free the buf item.
1205  * It is called by xfs_buf_iodone_callbacks() above which will take
1206  * care of cleaning up the buffer itself.
1207  */
1208 void
1209 xfs_buf_iodone(
1210         struct xfs_buf          *bp,
1211         struct xfs_log_item     *lip)
1212 {
1213         struct xfs_ail          *ailp = lip->li_ailp;
1214 
1215         ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1216 
1217         xfs_buf_rele(bp);
1218 
1219         /*
1220          * If we are forcibly shutting down, this may well be
1221          * off the AIL already. That's because we simulate the
1222          * log-committed callbacks to unpin these buffers. Or we may never
1223          * have put this item on AIL because of the transaction was
1224          * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1225          *
1226          * Either way, AIL is useless if we're forcing a shutdown.
1227          */
1228         spin_lock(&ailp->ail_lock);
1229         xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1230         xfs_buf_item_free(BUF_ITEM(lip));
1231 }
1232 
1233 /*
1234  * Requeue a failed buffer for writeback.
1235  *
1236  * We clear the log item failed state here as well, but we have to be careful
1237  * about reference counts because the only active reference counts on the buffer
1238  * may be the failed log items. Hence if we clear the log item failed state
1239  * before queuing the buffer for IO we can release all active references to
1240  * the buffer and free it, leading to use after free problems in
1241  * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1242  * order we process them in - the buffer is locked, and we own the buffer list
1243  * so nothing on them is going to change while we are performing this action.
1244  *
1245  * Hence we can safely queue the buffer for IO before we clear the failed log
1246  * item state, therefore  always having an active reference to the buffer and
1247  * avoiding the transient zero-reference state that leads to use-after-free.
1248  *
1249  * Return true if the buffer was added to the buffer list, false if it was
1250  * already on the buffer list.
1251  */
1252 bool
1253 xfs_buf_resubmit_failed_buffers(
1254         struct xfs_buf          *bp,
1255         struct list_head        *buffer_list)
1256 {
1257         struct xfs_log_item     *lip;
1258         bool                    ret;
1259 
1260         ret = xfs_buf_delwri_queue(bp, buffer_list);
1261 
1262         /*
1263          * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
1264          * function already have it acquired
1265          */
1266         list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1267                 xfs_clear_li_failed(lip);
1268 
1269         return ret;
1270 }

/* [<][>][^][v][top][bottom][index][help] */