root/fs/ubifs/debug.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_key_fmt
  2. get_key_hash
  3. get_key_type
  4. get_dent_type
  5. dbg_snprintf_key
  6. dbg_ntype
  7. dbg_gtype
  8. dbg_cstate
  9. dbg_jhead
  10. dump_ch
  11. ubifs_dump_inode
  12. ubifs_dump_node
  13. ubifs_dump_budget_req
  14. ubifs_dump_lstats
  15. ubifs_dump_budg
  16. ubifs_dump_lprop
  17. ubifs_dump_lprops
  18. ubifs_dump_lpt_info
  19. ubifs_dump_sleb
  20. ubifs_dump_leb
  21. ubifs_dump_znode
  22. ubifs_dump_heap
  23. ubifs_dump_pnode
  24. ubifs_dump_tnc
  25. dump_znode
  26. ubifs_dump_index
  27. dbg_save_space_info
  28. dbg_check_space_info
  29. dbg_check_synced_i_size
  30. dbg_check_dir
  31. dbg_check_key_order
  32. dbg_check_znode
  33. dbg_check_tnc
  34. dbg_walk_index
  35. add_size
  36. dbg_check_idx_size
  37. add_inode
  38. search_inode
  39. read_add_inode
  40. check_leaf
  41. free_inodes
  42. check_inodes
  43. dbg_check_filesystem
  44. dbg_check_data_nodes_order
  45. dbg_check_nondata_nodes_order
  46. chance
  47. power_cut_emulated
  48. corrupt_data
  49. dbg_leb_write
  50. dbg_leb_change
  51. dbg_leb_unmap
  52. dbg_leb_map
  53. dfs_file_open
  54. provide_user_output
  55. dfs_file_read
  56. interpret_user_input
  57. dfs_file_write
  58. dbg_debugfs_init_fs
  59. dbg_debugfs_exit_fs
  60. dfs_global_file_read
  61. dfs_global_file_write
  62. dbg_debugfs_init
  63. dbg_debugfs_exit
  64. ubifs_assert_failed
  65. ubifs_debugging_init
  66. ubifs_debugging_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * This file is part of UBIFS.
   4  *
   5  * Copyright (C) 2006-2008 Nokia Corporation
   6  *
   7  * Authors: Artem Bityutskiy (Битюцкий Артём)
   8  *          Adrian Hunter
   9  */
  10 
  11 /*
  12  * This file implements most of the debugging stuff which is compiled in only
  13  * when it is enabled. But some debugging check functions are implemented in
  14  * corresponding subsystem, just because they are closely related and utilize
  15  * various local functions of those subsystems.
  16  */
  17 
  18 #include <linux/module.h>
  19 #include <linux/debugfs.h>
  20 #include <linux/math64.h>
  21 #include <linux/uaccess.h>
  22 #include <linux/random.h>
  23 #include <linux/ctype.h>
  24 #include "ubifs.h"
  25 
  26 static DEFINE_SPINLOCK(dbg_lock);
  27 
  28 static const char *get_key_fmt(int fmt)
  29 {
  30         switch (fmt) {
  31         case UBIFS_SIMPLE_KEY_FMT:
  32                 return "simple";
  33         default:
  34                 return "unknown/invalid format";
  35         }
  36 }
  37 
  38 static const char *get_key_hash(int hash)
  39 {
  40         switch (hash) {
  41         case UBIFS_KEY_HASH_R5:
  42                 return "R5";
  43         case UBIFS_KEY_HASH_TEST:
  44                 return "test";
  45         default:
  46                 return "unknown/invalid name hash";
  47         }
  48 }
  49 
  50 static const char *get_key_type(int type)
  51 {
  52         switch (type) {
  53         case UBIFS_INO_KEY:
  54                 return "inode";
  55         case UBIFS_DENT_KEY:
  56                 return "direntry";
  57         case UBIFS_XENT_KEY:
  58                 return "xentry";
  59         case UBIFS_DATA_KEY:
  60                 return "data";
  61         case UBIFS_TRUN_KEY:
  62                 return "truncate";
  63         default:
  64                 return "unknown/invalid key";
  65         }
  66 }
  67 
  68 static const char *get_dent_type(int type)
  69 {
  70         switch (type) {
  71         case UBIFS_ITYPE_REG:
  72                 return "file";
  73         case UBIFS_ITYPE_DIR:
  74                 return "dir";
  75         case UBIFS_ITYPE_LNK:
  76                 return "symlink";
  77         case UBIFS_ITYPE_BLK:
  78                 return "blkdev";
  79         case UBIFS_ITYPE_CHR:
  80                 return "char dev";
  81         case UBIFS_ITYPE_FIFO:
  82                 return "fifo";
  83         case UBIFS_ITYPE_SOCK:
  84                 return "socket";
  85         default:
  86                 return "unknown/invalid type";
  87         }
  88 }
  89 
  90 const char *dbg_snprintf_key(const struct ubifs_info *c,
  91                              const union ubifs_key *key, char *buffer, int len)
  92 {
  93         char *p = buffer;
  94         int type = key_type(c, key);
  95 
  96         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97                 switch (type) {
  98                 case UBIFS_INO_KEY:
  99                         len -= snprintf(p, len, "(%lu, %s)",
 100                                         (unsigned long)key_inum(c, key),
 101                                         get_key_type(type));
 102                         break;
 103                 case UBIFS_DENT_KEY:
 104                 case UBIFS_XENT_KEY:
 105                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106                                         (unsigned long)key_inum(c, key),
 107                                         get_key_type(type), key_hash(c, key));
 108                         break;
 109                 case UBIFS_DATA_KEY:
 110                         len -= snprintf(p, len, "(%lu, %s, %u)",
 111                                         (unsigned long)key_inum(c, key),
 112                                         get_key_type(type), key_block(c, key));
 113                         break;
 114                 case UBIFS_TRUN_KEY:
 115                         len -= snprintf(p, len, "(%lu, %s)",
 116                                         (unsigned long)key_inum(c, key),
 117                                         get_key_type(type));
 118                         break;
 119                 default:
 120                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121                                         key->u32[0], key->u32[1]);
 122                 }
 123         } else
 124                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125         ubifs_assert(c, len > 0);
 126         return p;
 127 }
 128 
 129 const char *dbg_ntype(int type)
 130 {
 131         switch (type) {
 132         case UBIFS_PAD_NODE:
 133                 return "padding node";
 134         case UBIFS_SB_NODE:
 135                 return "superblock node";
 136         case UBIFS_MST_NODE:
 137                 return "master node";
 138         case UBIFS_REF_NODE:
 139                 return "reference node";
 140         case UBIFS_INO_NODE:
 141                 return "inode node";
 142         case UBIFS_DENT_NODE:
 143                 return "direntry node";
 144         case UBIFS_XENT_NODE:
 145                 return "xentry node";
 146         case UBIFS_DATA_NODE:
 147                 return "data node";
 148         case UBIFS_TRUN_NODE:
 149                 return "truncate node";
 150         case UBIFS_IDX_NODE:
 151                 return "indexing node";
 152         case UBIFS_CS_NODE:
 153                 return "commit start node";
 154         case UBIFS_ORPH_NODE:
 155                 return "orphan node";
 156         case UBIFS_AUTH_NODE:
 157                 return "auth node";
 158         default:
 159                 return "unknown node";
 160         }
 161 }
 162 
 163 static const char *dbg_gtype(int type)
 164 {
 165         switch (type) {
 166         case UBIFS_NO_NODE_GROUP:
 167                 return "no node group";
 168         case UBIFS_IN_NODE_GROUP:
 169                 return "in node group";
 170         case UBIFS_LAST_OF_NODE_GROUP:
 171                 return "last of node group";
 172         default:
 173                 return "unknown";
 174         }
 175 }
 176 
 177 const char *dbg_cstate(int cmt_state)
 178 {
 179         switch (cmt_state) {
 180         case COMMIT_RESTING:
 181                 return "commit resting";
 182         case COMMIT_BACKGROUND:
 183                 return "background commit requested";
 184         case COMMIT_REQUIRED:
 185                 return "commit required";
 186         case COMMIT_RUNNING_BACKGROUND:
 187                 return "BACKGROUND commit running";
 188         case COMMIT_RUNNING_REQUIRED:
 189                 return "commit running and required";
 190         case COMMIT_BROKEN:
 191                 return "broken commit";
 192         default:
 193                 return "unknown commit state";
 194         }
 195 }
 196 
 197 const char *dbg_jhead(int jhead)
 198 {
 199         switch (jhead) {
 200         case GCHD:
 201                 return "0 (GC)";
 202         case BASEHD:
 203                 return "1 (base)";
 204         case DATAHD:
 205                 return "2 (data)";
 206         default:
 207                 return "unknown journal head";
 208         }
 209 }
 210 
 211 static void dump_ch(const struct ubifs_ch *ch)
 212 {
 213         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216                dbg_ntype(ch->node_type));
 217         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218                dbg_gtype(ch->group_type));
 219         pr_err("\tsqnum          %llu\n",
 220                (unsigned long long)le64_to_cpu(ch->sqnum));
 221         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222 }
 223 
 224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225 {
 226         const struct ubifs_inode *ui = ubifs_inode(inode);
 227         struct fscrypt_name nm = {0};
 228         union ubifs_key key;
 229         struct ubifs_dent_node *dent, *pdent = NULL;
 230         int count = 2;
 231 
 232         pr_err("Dump in-memory inode:");
 233         pr_err("\tinode          %lu\n", inode->i_ino);
 234         pr_err("\tsize           %llu\n",
 235                (unsigned long long)i_size_read(inode));
 236         pr_err("\tnlink          %u\n", inode->i_nlink);
 237         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239         pr_err("\tatime          %u.%u\n",
 240                (unsigned int)inode->i_atime.tv_sec,
 241                (unsigned int)inode->i_atime.tv_nsec);
 242         pr_err("\tmtime          %u.%u\n",
 243                (unsigned int)inode->i_mtime.tv_sec,
 244                (unsigned int)inode->i_mtime.tv_nsec);
 245         pr_err("\tctime          %u.%u\n",
 246                (unsigned int)inode->i_ctime.tv_sec,
 247                (unsigned int)inode->i_ctime.tv_nsec);
 248         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249         pr_err("\txattr_size     %u\n", ui->xattr_size);
 250         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251         pr_err("\txattr_names    %u\n", ui->xattr_names);
 252         pr_err("\tdirty          %u\n", ui->dirty);
 253         pr_err("\txattr          %u\n", ui->xattr);
 254         pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255         pr_err("\tsynced_i_size  %llu\n",
 256                (unsigned long long)ui->synced_i_size);
 257         pr_err("\tui_size        %llu\n",
 258                (unsigned long long)ui->ui_size);
 259         pr_err("\tflags          %d\n", ui->flags);
 260         pr_err("\tcompr_type     %d\n", ui->compr_type);
 261         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263         pr_err("\tdata_len       %d\n", ui->data_len);
 264 
 265         if (!S_ISDIR(inode->i_mode))
 266                 return;
 267 
 268         pr_err("List of directory entries:\n");
 269         ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270 
 271         lowest_dent_key(c, &key, inode->i_ino);
 272         while (1) {
 273                 dent = ubifs_tnc_next_ent(c, &key, &nm);
 274                 if (IS_ERR(dent)) {
 275                         if (PTR_ERR(dent) != -ENOENT)
 276                                 pr_err("error %ld\n", PTR_ERR(dent));
 277                         break;
 278                 }
 279 
 280                 pr_err("\t%d: inode %llu, type %s, len %d\n",
 281                        count++, (unsigned long long) le64_to_cpu(dent->inum),
 282                        get_dent_type(dent->type),
 283                        le16_to_cpu(dent->nlen));
 284 
 285                 fname_name(&nm) = dent->name;
 286                 fname_len(&nm) = le16_to_cpu(dent->nlen);
 287                 kfree(pdent);
 288                 pdent = dent;
 289                 key_read(c, &dent->key, &key);
 290         }
 291         kfree(pdent);
 292 }
 293 
 294 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 295 {
 296         int i, n;
 297         union ubifs_key key;
 298         const struct ubifs_ch *ch = node;
 299         char key_buf[DBG_KEY_BUF_LEN];
 300 
 301         /* If the magic is incorrect, just hexdump the first bytes */
 302         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305                                (void *)node, UBIFS_CH_SZ, 1);
 306                 return;
 307         }
 308 
 309         spin_lock(&dbg_lock);
 310         dump_ch(node);
 311 
 312         switch (ch->node_type) {
 313         case UBIFS_PAD_NODE:
 314         {
 315                 const struct ubifs_pad_node *pad = node;
 316 
 317                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 318                 break;
 319         }
 320         case UBIFS_SB_NODE:
 321         {
 322                 const struct ubifs_sb_node *sup = node;
 323                 unsigned int sup_flags = le32_to_cpu(sup->flags);
 324 
 325                 pr_err("\tkey_hash       %d (%s)\n",
 326                        (int)sup->key_hash, get_key_hash(sup->key_hash));
 327                 pr_err("\tkey_fmt        %d (%s)\n",
 328                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 329                 pr_err("\tflags          %#x\n", sup_flags);
 330                 pr_err("\tbig_lpt        %u\n",
 331                        !!(sup_flags & UBIFS_FLG_BIGLPT));
 332                 pr_err("\tspace_fixup    %u\n",
 333                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 334                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 335                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 336                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 337                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 338                 pr_err("\tmax_bud_bytes  %llu\n",
 339                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 340                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 341                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 342                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 343                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 344                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 345                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 346                 pr_err("\tdefault_compr  %u\n",
 347                        (int)le16_to_cpu(sup->default_compr));
 348                 pr_err("\trp_size        %llu\n",
 349                        (unsigned long long)le64_to_cpu(sup->rp_size));
 350                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 351                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 352                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 353                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 354                 pr_err("\tUUID           %pUB\n", sup->uuid);
 355                 break;
 356         }
 357         case UBIFS_MST_NODE:
 358         {
 359                 const struct ubifs_mst_node *mst = node;
 360 
 361                 pr_err("\thighest_inum   %llu\n",
 362                        (unsigned long long)le64_to_cpu(mst->highest_inum));
 363                 pr_err("\tcommit number  %llu\n",
 364                        (unsigned long long)le64_to_cpu(mst->cmt_no));
 365                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 366                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 367                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 368                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 369                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 370                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 371                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 372                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 373                 pr_err("\tindex_size     %llu\n",
 374                        (unsigned long long)le64_to_cpu(mst->index_size));
 375                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 376                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 377                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 378                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 379                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 380                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 381                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 382                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 383                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 384                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 385                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 386                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 387                 pr_err("\ttotal_free     %llu\n",
 388                        (unsigned long long)le64_to_cpu(mst->total_free));
 389                 pr_err("\ttotal_dirty    %llu\n",
 390                        (unsigned long long)le64_to_cpu(mst->total_dirty));
 391                 pr_err("\ttotal_used     %llu\n",
 392                        (unsigned long long)le64_to_cpu(mst->total_used));
 393                 pr_err("\ttotal_dead     %llu\n",
 394                        (unsigned long long)le64_to_cpu(mst->total_dead));
 395                 pr_err("\ttotal_dark     %llu\n",
 396                        (unsigned long long)le64_to_cpu(mst->total_dark));
 397                 break;
 398         }
 399         case UBIFS_REF_NODE:
 400         {
 401                 const struct ubifs_ref_node *ref = node;
 402 
 403                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 404                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 405                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 406                 break;
 407         }
 408         case UBIFS_INO_NODE:
 409         {
 410                 const struct ubifs_ino_node *ino = node;
 411 
 412                 key_read(c, &ino->key, &key);
 413                 pr_err("\tkey            %s\n",
 414                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 415                 pr_err("\tcreat_sqnum    %llu\n",
 416                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 417                 pr_err("\tsize           %llu\n",
 418                        (unsigned long long)le64_to_cpu(ino->size));
 419                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 420                 pr_err("\tatime          %lld.%u\n",
 421                        (long long)le64_to_cpu(ino->atime_sec),
 422                        le32_to_cpu(ino->atime_nsec));
 423                 pr_err("\tmtime          %lld.%u\n",
 424                        (long long)le64_to_cpu(ino->mtime_sec),
 425                        le32_to_cpu(ino->mtime_nsec));
 426                 pr_err("\tctime          %lld.%u\n",
 427                        (long long)le64_to_cpu(ino->ctime_sec),
 428                        le32_to_cpu(ino->ctime_nsec));
 429                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 430                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 431                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 432                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 433                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 434                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 435                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 436                 pr_err("\tcompr_type     %#x\n",
 437                        (int)le16_to_cpu(ino->compr_type));
 438                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 439                 break;
 440         }
 441         case UBIFS_DENT_NODE:
 442         case UBIFS_XENT_NODE:
 443         {
 444                 const struct ubifs_dent_node *dent = node;
 445                 int nlen = le16_to_cpu(dent->nlen);
 446 
 447                 key_read(c, &dent->key, &key);
 448                 pr_err("\tkey            %s\n",
 449                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 450                 pr_err("\tinum           %llu\n",
 451                        (unsigned long long)le64_to_cpu(dent->inum));
 452                 pr_err("\ttype           %d\n", (int)dent->type);
 453                 pr_err("\tnlen           %d\n", nlen);
 454                 pr_err("\tname           ");
 455 
 456                 if (nlen > UBIFS_MAX_NLEN)
 457                         pr_err("(bad name length, not printing, bad or corrupted node)");
 458                 else {
 459                         for (i = 0; i < nlen && dent->name[i]; i++)
 460                                 pr_cont("%c", isprint(dent->name[i]) ?
 461                                         dent->name[i] : '?');
 462                 }
 463                 pr_cont("\n");
 464 
 465                 break;
 466         }
 467         case UBIFS_DATA_NODE:
 468         {
 469                 const struct ubifs_data_node *dn = node;
 470                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 471 
 472                 key_read(c, &dn->key, &key);
 473                 pr_err("\tkey            %s\n",
 474                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 475                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 476                 pr_err("\tcompr_typ      %d\n",
 477                        (int)le16_to_cpu(dn->compr_type));
 478                 pr_err("\tdata size      %d\n", dlen);
 479                 pr_err("\tdata:\n");
 480                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 481                                (void *)&dn->data, dlen, 0);
 482                 break;
 483         }
 484         case UBIFS_TRUN_NODE:
 485         {
 486                 const struct ubifs_trun_node *trun = node;
 487 
 488                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 489                 pr_err("\told_size       %llu\n",
 490                        (unsigned long long)le64_to_cpu(trun->old_size));
 491                 pr_err("\tnew_size       %llu\n",
 492                        (unsigned long long)le64_to_cpu(trun->new_size));
 493                 break;
 494         }
 495         case UBIFS_IDX_NODE:
 496         {
 497                 const struct ubifs_idx_node *idx = node;
 498 
 499                 n = le16_to_cpu(idx->child_cnt);
 500                 pr_err("\tchild_cnt      %d\n", n);
 501                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 502                 pr_err("\tBranches:\n");
 503 
 504                 for (i = 0; i < n && i < c->fanout - 1; i++) {
 505                         const struct ubifs_branch *br;
 506 
 507                         br = ubifs_idx_branch(c, idx, i);
 508                         key_read(c, &br->key, &key);
 509                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
 510                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 511                                le32_to_cpu(br->len),
 512                                dbg_snprintf_key(c, &key, key_buf,
 513                                                 DBG_KEY_BUF_LEN));
 514                 }
 515                 break;
 516         }
 517         case UBIFS_CS_NODE:
 518                 break;
 519         case UBIFS_ORPH_NODE:
 520         {
 521                 const struct ubifs_orph_node *orph = node;
 522 
 523                 pr_err("\tcommit number  %llu\n",
 524                        (unsigned long long)
 525                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 526                 pr_err("\tlast node flag %llu\n",
 527                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 528                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 529                 pr_err("\t%d orphan inode numbers:\n", n);
 530                 for (i = 0; i < n; i++)
 531                         pr_err("\t  ino %llu\n",
 532                                (unsigned long long)le64_to_cpu(orph->inos[i]));
 533                 break;
 534         }
 535         case UBIFS_AUTH_NODE:
 536         {
 537                 break;
 538         }
 539         default:
 540                 pr_err("node type %d was not recognized\n",
 541                        (int)ch->node_type);
 542         }
 543         spin_unlock(&dbg_lock);
 544 }
 545 
 546 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 547 {
 548         spin_lock(&dbg_lock);
 549         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 550                req->new_ino, req->dirtied_ino);
 551         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 552                req->new_ino_d, req->dirtied_ino_d);
 553         pr_err("\tnew_page    %d, dirtied_page %d\n",
 554                req->new_page, req->dirtied_page);
 555         pr_err("\tnew_dent    %d, mod_dent     %d\n",
 556                req->new_dent, req->mod_dent);
 557         pr_err("\tidx_growth  %d\n", req->idx_growth);
 558         pr_err("\tdata_growth %d dd_growth     %d\n",
 559                req->data_growth, req->dd_growth);
 560         spin_unlock(&dbg_lock);
 561 }
 562 
 563 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 564 {
 565         spin_lock(&dbg_lock);
 566         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 567                current->pid, lst->empty_lebs, lst->idx_lebs);
 568         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 569                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 570         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 571                lst->total_used, lst->total_dark, lst->total_dead);
 572         spin_unlock(&dbg_lock);
 573 }
 574 
 575 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 576 {
 577         int i;
 578         struct rb_node *rb;
 579         struct ubifs_bud *bud;
 580         struct ubifs_gced_idx_leb *idx_gc;
 581         long long available, outstanding, free;
 582 
 583         spin_lock(&c->space_lock);
 584         spin_lock(&dbg_lock);
 585         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 586                current->pid, bi->data_growth + bi->dd_growth,
 587                bi->data_growth + bi->dd_growth + bi->idx_growth);
 588         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 589                bi->data_growth, bi->dd_growth, bi->idx_growth);
 590         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 591                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 592         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 593                bi->page_budget, bi->inode_budget, bi->dent_budget);
 594         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 595         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 596                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 597 
 598         if (bi != &c->bi)
 599                 /*
 600                  * If we are dumping saved budgeting data, do not print
 601                  * additional information which is about the current state, not
 602                  * the old one which corresponded to the saved budgeting data.
 603                  */
 604                 goto out_unlock;
 605 
 606         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 607                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 608         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 609                atomic_long_read(&c->dirty_pg_cnt),
 610                atomic_long_read(&c->dirty_zn_cnt),
 611                atomic_long_read(&c->clean_zn_cnt));
 612         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 613 
 614         /* If we are in R/O mode, journal heads do not exist */
 615         if (c->jheads)
 616                 for (i = 0; i < c->jhead_cnt; i++)
 617                         pr_err("\tjhead %s\t LEB %d\n",
 618                                dbg_jhead(c->jheads[i].wbuf.jhead),
 619                                c->jheads[i].wbuf.lnum);
 620         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 621                 bud = rb_entry(rb, struct ubifs_bud, rb);
 622                 pr_err("\tbud LEB %d\n", bud->lnum);
 623         }
 624         list_for_each_entry(bud, &c->old_buds, list)
 625                 pr_err("\told bud LEB %d\n", bud->lnum);
 626         list_for_each_entry(idx_gc, &c->idx_gc, list)
 627                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
 628                        idx_gc->lnum, idx_gc->unmap);
 629         pr_err("\tcommit state %d\n", c->cmt_state);
 630 
 631         /* Print budgeting predictions */
 632         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 633         outstanding = c->bi.data_growth + c->bi.dd_growth;
 634         free = ubifs_get_free_space_nolock(c);
 635         pr_err("Budgeting predictions:\n");
 636         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 637                available, outstanding, free);
 638 out_unlock:
 639         spin_unlock(&dbg_lock);
 640         spin_unlock(&c->space_lock);
 641 }
 642 
 643 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 644 {
 645         int i, spc, dark = 0, dead = 0;
 646         struct rb_node *rb;
 647         struct ubifs_bud *bud;
 648 
 649         spc = lp->free + lp->dirty;
 650         if (spc < c->dead_wm)
 651                 dead = spc;
 652         else
 653                 dark = ubifs_calc_dark(c, spc);
 654 
 655         if (lp->flags & LPROPS_INDEX)
 656                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 657                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 658                        lp->flags);
 659         else
 660                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 661                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 662                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 663 
 664         if (lp->flags & LPROPS_TAKEN) {
 665                 if (lp->flags & LPROPS_INDEX)
 666                         pr_cont("index, taken");
 667                 else
 668                         pr_cont("taken");
 669         } else {
 670                 const char *s;
 671 
 672                 if (lp->flags & LPROPS_INDEX) {
 673                         switch (lp->flags & LPROPS_CAT_MASK) {
 674                         case LPROPS_DIRTY_IDX:
 675                                 s = "dirty index";
 676                                 break;
 677                         case LPROPS_FRDI_IDX:
 678                                 s = "freeable index";
 679                                 break;
 680                         default:
 681                                 s = "index";
 682                         }
 683                 } else {
 684                         switch (lp->flags & LPROPS_CAT_MASK) {
 685                         case LPROPS_UNCAT:
 686                                 s = "not categorized";
 687                                 break;
 688                         case LPROPS_DIRTY:
 689                                 s = "dirty";
 690                                 break;
 691                         case LPROPS_FREE:
 692                                 s = "free";
 693                                 break;
 694                         case LPROPS_EMPTY:
 695                                 s = "empty";
 696                                 break;
 697                         case LPROPS_FREEABLE:
 698                                 s = "freeable";
 699                                 break;
 700                         default:
 701                                 s = NULL;
 702                                 break;
 703                         }
 704                 }
 705                 pr_cont("%s", s);
 706         }
 707 
 708         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 709                 bud = rb_entry(rb, struct ubifs_bud, rb);
 710                 if (bud->lnum == lp->lnum) {
 711                         int head = 0;
 712                         for (i = 0; i < c->jhead_cnt; i++) {
 713                                 /*
 714                                  * Note, if we are in R/O mode or in the middle
 715                                  * of mounting/re-mounting, the write-buffers do
 716                                  * not exist.
 717                                  */
 718                                 if (c->jheads &&
 719                                     lp->lnum == c->jheads[i].wbuf.lnum) {
 720                                         pr_cont(", jhead %s", dbg_jhead(i));
 721                                         head = 1;
 722                                 }
 723                         }
 724                         if (!head)
 725                                 pr_cont(", bud of jhead %s",
 726                                        dbg_jhead(bud->jhead));
 727                 }
 728         }
 729         if (lp->lnum == c->gc_lnum)
 730                 pr_cont(", GC LEB");
 731         pr_cont(")\n");
 732 }
 733 
 734 void ubifs_dump_lprops(struct ubifs_info *c)
 735 {
 736         int lnum, err;
 737         struct ubifs_lprops lp;
 738         struct ubifs_lp_stats lst;
 739 
 740         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 741         ubifs_get_lp_stats(c, &lst);
 742         ubifs_dump_lstats(&lst);
 743 
 744         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 745                 err = ubifs_read_one_lp(c, lnum, &lp);
 746                 if (err) {
 747                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 748                         continue;
 749                 }
 750 
 751                 ubifs_dump_lprop(c, &lp);
 752         }
 753         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 754 }
 755 
 756 void ubifs_dump_lpt_info(struct ubifs_info *c)
 757 {
 758         int i;
 759 
 760         spin_lock(&dbg_lock);
 761         pr_err("(pid %d) dumping LPT information\n", current->pid);
 762         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 763         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 764         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 765         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 766         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 767         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 768         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 769         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 770         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 771         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 772         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 773         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 774         pr_err("\tspace_bits:    %d\n", c->space_bits);
 775         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 776         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 777         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 778         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 779         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 780         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 781         pr_err("\tLPT head is at %d:%d\n",
 782                c->nhead_lnum, c->nhead_offs);
 783         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 784         if (c->big_lpt)
 785                 pr_err("\tLPT lsave is at %d:%d\n",
 786                        c->lsave_lnum, c->lsave_offs);
 787         for (i = 0; i < c->lpt_lebs; i++)
 788                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 789                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 790                        c->ltab[i].tgc, c->ltab[i].cmt);
 791         spin_unlock(&dbg_lock);
 792 }
 793 
 794 void ubifs_dump_sleb(const struct ubifs_info *c,
 795                      const struct ubifs_scan_leb *sleb, int offs)
 796 {
 797         struct ubifs_scan_node *snod;
 798 
 799         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 800                current->pid, sleb->lnum, offs);
 801 
 802         list_for_each_entry(snod, &sleb->nodes, list) {
 803                 cond_resched();
 804                 pr_err("Dumping node at LEB %d:%d len %d\n",
 805                        sleb->lnum, snod->offs, snod->len);
 806                 ubifs_dump_node(c, snod->node);
 807         }
 808 }
 809 
 810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 811 {
 812         struct ubifs_scan_leb *sleb;
 813         struct ubifs_scan_node *snod;
 814         void *buf;
 815 
 816         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 817 
 818         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 819         if (!buf) {
 820                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 821                 return;
 822         }
 823 
 824         sleb = ubifs_scan(c, lnum, 0, buf, 0);
 825         if (IS_ERR(sleb)) {
 826                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 827                 goto out;
 828         }
 829 
 830         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 831                sleb->nodes_cnt, sleb->endpt);
 832 
 833         list_for_each_entry(snod, &sleb->nodes, list) {
 834                 cond_resched();
 835                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 836                        snod->offs, snod->len);
 837                 ubifs_dump_node(c, snod->node);
 838         }
 839 
 840         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 841         ubifs_scan_destroy(sleb);
 842 
 843 out:
 844         vfree(buf);
 845         return;
 846 }
 847 
 848 void ubifs_dump_znode(const struct ubifs_info *c,
 849                       const struct ubifs_znode *znode)
 850 {
 851         int n;
 852         const struct ubifs_zbranch *zbr;
 853         char key_buf[DBG_KEY_BUF_LEN];
 854 
 855         spin_lock(&dbg_lock);
 856         if (znode->parent)
 857                 zbr = &znode->parent->zbranch[znode->iip];
 858         else
 859                 zbr = &c->zroot;
 860 
 861         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 862                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 863                znode->level, znode->child_cnt, znode->flags);
 864 
 865         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 866                 spin_unlock(&dbg_lock);
 867                 return;
 868         }
 869 
 870         pr_err("zbranches:\n");
 871         for (n = 0; n < znode->child_cnt; n++) {
 872                 zbr = &znode->zbranch[n];
 873                 if (znode->level > 0)
 874                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 875                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 876                                dbg_snprintf_key(c, &zbr->key, key_buf,
 877                                                 DBG_KEY_BUF_LEN));
 878                 else
 879                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 880                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 881                                dbg_snprintf_key(c, &zbr->key, key_buf,
 882                                                 DBG_KEY_BUF_LEN));
 883         }
 884         spin_unlock(&dbg_lock);
 885 }
 886 
 887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 888 {
 889         int i;
 890 
 891         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 892                current->pid, cat, heap->cnt);
 893         for (i = 0; i < heap->cnt; i++) {
 894                 struct ubifs_lprops *lprops = heap->arr[i];
 895 
 896                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 897                        i, lprops->lnum, lprops->hpos, lprops->free,
 898                        lprops->dirty, lprops->flags);
 899         }
 900         pr_err("(pid %d) finish dumping heap\n", current->pid);
 901 }
 902 
 903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 904                       struct ubifs_nnode *parent, int iip)
 905 {
 906         int i;
 907 
 908         pr_err("(pid %d) dumping pnode:\n", current->pid);
 909         pr_err("\taddress %zx parent %zx cnext %zx\n",
 910                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 911         pr_err("\tflags %lu iip %d level %d num %d\n",
 912                pnode->flags, iip, pnode->level, pnode->num);
 913         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 914                 struct ubifs_lprops *lp = &pnode->lprops[i];
 915 
 916                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 917                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
 918         }
 919 }
 920 
 921 void ubifs_dump_tnc(struct ubifs_info *c)
 922 {
 923         struct ubifs_znode *znode;
 924         int level;
 925 
 926         pr_err("\n");
 927         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 928         znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 929         level = znode->level;
 930         pr_err("== Level %d ==\n", level);
 931         while (znode) {
 932                 if (level != znode->level) {
 933                         level = znode->level;
 934                         pr_err("== Level %d ==\n", level);
 935                 }
 936                 ubifs_dump_znode(c, znode);
 937                 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 938         }
 939         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 940 }
 941 
 942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 943                       void *priv)
 944 {
 945         ubifs_dump_znode(c, znode);
 946         return 0;
 947 }
 948 
 949 /**
 950  * ubifs_dump_index - dump the on-flash index.
 951  * @c: UBIFS file-system description object
 952  *
 953  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 954  * which dumps only in-memory znodes and does not read znodes which from flash.
 955  */
 956 void ubifs_dump_index(struct ubifs_info *c)
 957 {
 958         dbg_walk_index(c, NULL, dump_znode, NULL);
 959 }
 960 
 961 /**
 962  * dbg_save_space_info - save information about flash space.
 963  * @c: UBIFS file-system description object
 964  *
 965  * This function saves information about UBIFS free space, dirty space, etc, in
 966  * order to check it later.
 967  */
 968 void dbg_save_space_info(struct ubifs_info *c)
 969 {
 970         struct ubifs_debug_info *d = c->dbg;
 971         int freeable_cnt;
 972 
 973         spin_lock(&c->space_lock);
 974         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 975         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 976         d->saved_idx_gc_cnt = c->idx_gc_cnt;
 977 
 978         /*
 979          * We use a dirty hack here and zero out @c->freeable_cnt, because it
 980          * affects the free space calculations, and UBIFS might not know about
 981          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 982          * only when we read their lprops, and we do this only lazily, upon the
 983          * need. So at any given point of time @c->freeable_cnt might be not
 984          * exactly accurate.
 985          *
 986          * Just one example about the issue we hit when we did not zero
 987          * @c->freeable_cnt.
 988          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 989          *    amount of free space in @d->saved_free
 990          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 991          *    information from flash, where we cache LEBs from various
 992          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 993          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 994          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 995          *    -> 'ubifs_add_to_cat()').
 996          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 997          *    becomes %1.
 998          * 4. We calculate the amount of free space when the re-mount is
 999          *    finished in 'dbg_check_space_info()' and it does not match
1000          *    @d->saved_free.
1001          */
1002         freeable_cnt = c->freeable_cnt;
1003         c->freeable_cnt = 0;
1004         d->saved_free = ubifs_get_free_space_nolock(c);
1005         c->freeable_cnt = freeable_cnt;
1006         spin_unlock(&c->space_lock);
1007 }
1008 
1009 /**
1010  * dbg_check_space_info - check flash space information.
1011  * @c: UBIFS file-system description object
1012  *
1013  * This function compares current flash space information with the information
1014  * which was saved when the 'dbg_save_space_info()' function was called.
1015  * Returns zero if the information has not changed, and %-EINVAL it it has
1016  * changed.
1017  */
1018 int dbg_check_space_info(struct ubifs_info *c)
1019 {
1020         struct ubifs_debug_info *d = c->dbg;
1021         struct ubifs_lp_stats lst;
1022         long long free;
1023         int freeable_cnt;
1024 
1025         spin_lock(&c->space_lock);
1026         freeable_cnt = c->freeable_cnt;
1027         c->freeable_cnt = 0;
1028         free = ubifs_get_free_space_nolock(c);
1029         c->freeable_cnt = freeable_cnt;
1030         spin_unlock(&c->space_lock);
1031 
1032         if (free != d->saved_free) {
1033                 ubifs_err(c, "free space changed from %lld to %lld",
1034                           d->saved_free, free);
1035                 goto out;
1036         }
1037 
1038         return 0;
1039 
1040 out:
1041         ubifs_msg(c, "saved lprops statistics dump");
1042         ubifs_dump_lstats(&d->saved_lst);
1043         ubifs_msg(c, "saved budgeting info dump");
1044         ubifs_dump_budg(c, &d->saved_bi);
1045         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046         ubifs_msg(c, "current lprops statistics dump");
1047         ubifs_get_lp_stats(c, &lst);
1048         ubifs_dump_lstats(&lst);
1049         ubifs_msg(c, "current budgeting info dump");
1050         ubifs_dump_budg(c, &c->bi);
1051         dump_stack();
1052         return -EINVAL;
1053 }
1054 
1055 /**
1056  * dbg_check_synced_i_size - check synchronized inode size.
1057  * @c: UBIFS file-system description object
1058  * @inode: inode to check
1059  *
1060  * If inode is clean, synchronized inode size has to be equivalent to current
1061  * inode size. This function has to be called only for locked inodes (@i_mutex
1062  * has to be locked). Returns %0 if synchronized inode size if correct, and
1063  * %-EINVAL if not.
1064  */
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 {
1067         int err = 0;
1068         struct ubifs_inode *ui = ubifs_inode(inode);
1069 
1070         if (!dbg_is_chk_gen(c))
1071                 return 0;
1072         if (!S_ISREG(inode->i_mode))
1073                 return 0;
1074 
1075         mutex_lock(&ui->ui_mutex);
1076         spin_lock(&ui->ui_lock);
1077         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079                           ui->ui_size, ui->synced_i_size);
1080                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081                           inode->i_mode, i_size_read(inode));
1082                 dump_stack();
1083                 err = -EINVAL;
1084         }
1085         spin_unlock(&ui->ui_lock);
1086         mutex_unlock(&ui->ui_mutex);
1087         return err;
1088 }
1089 
1090 /*
1091  * dbg_check_dir - check directory inode size and link count.
1092  * @c: UBIFS file-system description object
1093  * @dir: the directory to calculate size for
1094  * @size: the result is returned here
1095  *
1096  * This function makes sure that directory size and link count are correct.
1097  * Returns zero in case of success and a negative error code in case of
1098  * failure.
1099  *
1100  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101  * calling this function.
1102  */
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 {
1105         unsigned int nlink = 2;
1106         union ubifs_key key;
1107         struct ubifs_dent_node *dent, *pdent = NULL;
1108         struct fscrypt_name nm = {0};
1109         loff_t size = UBIFS_INO_NODE_SZ;
1110 
1111         if (!dbg_is_chk_gen(c))
1112                 return 0;
1113 
1114         if (!S_ISDIR(dir->i_mode))
1115                 return 0;
1116 
1117         lowest_dent_key(c, &key, dir->i_ino);
1118         while (1) {
1119                 int err;
1120 
1121                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1122                 if (IS_ERR(dent)) {
1123                         err = PTR_ERR(dent);
1124                         if (err == -ENOENT)
1125                                 break;
1126                         return err;
1127                 }
1128 
1129                 fname_name(&nm) = dent->name;
1130                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1131                 size += CALC_DENT_SIZE(fname_len(&nm));
1132                 if (dent->type == UBIFS_ITYPE_DIR)
1133                         nlink += 1;
1134                 kfree(pdent);
1135                 pdent = dent;
1136                 key_read(c, &dent->key, &key);
1137         }
1138         kfree(pdent);
1139 
1140         if (i_size_read(dir) != size) {
1141                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1142                           dir->i_ino, (unsigned long long)i_size_read(dir),
1143                           (unsigned long long)size);
1144                 ubifs_dump_inode(c, dir);
1145                 dump_stack();
1146                 return -EINVAL;
1147         }
1148         if (dir->i_nlink != nlink) {
1149                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1150                           dir->i_ino, dir->i_nlink, nlink);
1151                 ubifs_dump_inode(c, dir);
1152                 dump_stack();
1153                 return -EINVAL;
1154         }
1155 
1156         return 0;
1157 }
1158 
1159 /**
1160  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161  * @c: UBIFS file-system description object
1162  * @zbr1: first zbranch
1163  * @zbr2: following zbranch
1164  *
1165  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166  * names of the direntries/xentries which are referred by the keys. This
1167  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168  * sure the name of direntry/xentry referred by @zbr1 is less than
1169  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170  * and a negative error code in case of failure.
1171  */
1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173                                struct ubifs_zbranch *zbr2)
1174 {
1175         int err, nlen1, nlen2, cmp;
1176         struct ubifs_dent_node *dent1, *dent2;
1177         union ubifs_key key;
1178         char key_buf[DBG_KEY_BUF_LEN];
1179 
1180         ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1181         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182         if (!dent1)
1183                 return -ENOMEM;
1184         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185         if (!dent2) {
1186                 err = -ENOMEM;
1187                 goto out_free;
1188         }
1189 
1190         err = ubifs_tnc_read_node(c, zbr1, dent1);
1191         if (err)
1192                 goto out_free;
1193         err = ubifs_validate_entry(c, dent1);
1194         if (err)
1195                 goto out_free;
1196 
1197         err = ubifs_tnc_read_node(c, zbr2, dent2);
1198         if (err)
1199                 goto out_free;
1200         err = ubifs_validate_entry(c, dent2);
1201         if (err)
1202                 goto out_free;
1203 
1204         /* Make sure node keys are the same as in zbranch */
1205         err = 1;
1206         key_read(c, &dent1->key, &key);
1207         if (keys_cmp(c, &zbr1->key, &key)) {
1208                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1209                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210                                                        DBG_KEY_BUF_LEN));
1211                 ubifs_err(c, "but it should have key %s according to tnc",
1212                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1213                                            DBG_KEY_BUF_LEN));
1214                 ubifs_dump_node(c, dent1);
1215                 goto out_free;
1216         }
1217 
1218         key_read(c, &dent2->key, &key);
1219         if (keys_cmp(c, &zbr2->key, &key)) {
1220                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1221                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                        DBG_KEY_BUF_LEN));
1223                 ubifs_err(c, "but it should have key %s according to tnc",
1224                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1225                                            DBG_KEY_BUF_LEN));
1226                 ubifs_dump_node(c, dent2);
1227                 goto out_free;
1228         }
1229 
1230         nlen1 = le16_to_cpu(dent1->nlen);
1231         nlen2 = le16_to_cpu(dent2->nlen);
1232 
1233         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235                 err = 0;
1236                 goto out_free;
1237         }
1238         if (cmp == 0 && nlen1 == nlen2)
1239                 ubifs_err(c, "2 xent/dent nodes with the same name");
1240         else
1241                 ubifs_err(c, "bad order of colliding key %s",
1242                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243 
1244         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245         ubifs_dump_node(c, dent1);
1246         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247         ubifs_dump_node(c, dent2);
1248 
1249 out_free:
1250         kfree(dent2);
1251         kfree(dent1);
1252         return err;
1253 }
1254 
1255 /**
1256  * dbg_check_znode - check if znode is all right.
1257  * @c: UBIFS file-system description object
1258  * @zbr: zbranch which points to this znode
1259  *
1260  * This function makes sure that znode referred to by @zbr is all right.
1261  * Returns zero if it is, and %-EINVAL if it is not.
1262  */
1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264 {
1265         struct ubifs_znode *znode = zbr->znode;
1266         struct ubifs_znode *zp = znode->parent;
1267         int n, err, cmp;
1268 
1269         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270                 err = 1;
1271                 goto out;
1272         }
1273         if (znode->level < 0) {
1274                 err = 2;
1275                 goto out;
1276         }
1277         if (znode->iip < 0 || znode->iip >= c->fanout) {
1278                 err = 3;
1279                 goto out;
1280         }
1281 
1282         if (zbr->len == 0)
1283                 /* Only dirty zbranch may have no on-flash nodes */
1284                 if (!ubifs_zn_dirty(znode)) {
1285                         err = 4;
1286                         goto out;
1287                 }
1288 
1289         if (ubifs_zn_dirty(znode)) {
1290                 /*
1291                  * If znode is dirty, its parent has to be dirty as well. The
1292                  * order of the operation is important, so we have to have
1293                  * memory barriers.
1294                  */
1295                 smp_mb();
1296                 if (zp && !ubifs_zn_dirty(zp)) {
1297                         /*
1298                          * The dirty flag is atomic and is cleared outside the
1299                          * TNC mutex, so znode's dirty flag may now have
1300                          * been cleared. The child is always cleared before the
1301                          * parent, so we just need to check again.
1302                          */
1303                         smp_mb();
1304                         if (ubifs_zn_dirty(znode)) {
1305                                 err = 5;
1306                                 goto out;
1307                         }
1308                 }
1309         }
1310 
1311         if (zp) {
1312                 const union ubifs_key *min, *max;
1313 
1314                 if (znode->level != zp->level - 1) {
1315                         err = 6;
1316                         goto out;
1317                 }
1318 
1319                 /* Make sure the 'parent' pointer in our znode is correct */
1320                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321                 if (!err) {
1322                         /* This zbranch does not exist in the parent */
1323                         err = 7;
1324                         goto out;
1325                 }
1326 
1327                 if (znode->iip >= zp->child_cnt) {
1328                         err = 8;
1329                         goto out;
1330                 }
1331 
1332                 if (znode->iip != n) {
1333                         /* This may happen only in case of collisions */
1334                         if (keys_cmp(c, &zp->zbranch[n].key,
1335                                      &zp->zbranch[znode->iip].key)) {
1336                                 err = 9;
1337                                 goto out;
1338                         }
1339                         n = znode->iip;
1340                 }
1341 
1342                 /*
1343                  * Make sure that the first key in our znode is greater than or
1344                  * equal to the key in the pointing zbranch.
1345                  */
1346                 min = &zbr->key;
1347                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348                 if (cmp == 1) {
1349                         err = 10;
1350                         goto out;
1351                 }
1352 
1353                 if (n + 1 < zp->child_cnt) {
1354                         max = &zp->zbranch[n + 1].key;
1355 
1356                         /*
1357                          * Make sure the last key in our znode is less or
1358                          * equivalent than the key in the zbranch which goes
1359                          * after our pointing zbranch.
1360                          */
1361                         cmp = keys_cmp(c, max,
1362                                 &znode->zbranch[znode->child_cnt - 1].key);
1363                         if (cmp == -1) {
1364                                 err = 11;
1365                                 goto out;
1366                         }
1367                 }
1368         } else {
1369                 /* This may only be root znode */
1370                 if (zbr != &c->zroot) {
1371                         err = 12;
1372                         goto out;
1373                 }
1374         }
1375 
1376         /*
1377          * Make sure that next key is greater or equivalent then the previous
1378          * one.
1379          */
1380         for (n = 1; n < znode->child_cnt; n++) {
1381                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382                                &znode->zbranch[n].key);
1383                 if (cmp > 0) {
1384                         err = 13;
1385                         goto out;
1386                 }
1387                 if (cmp == 0) {
1388                         /* This can only be keys with colliding hash */
1389                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390                                 err = 14;
1391                                 goto out;
1392                         }
1393 
1394                         if (znode->level != 0 || c->replaying)
1395                                 continue;
1396 
1397                         /*
1398                          * Colliding keys should follow binary order of
1399                          * corresponding xentry/dentry names.
1400                          */
1401                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402                                                   &znode->zbranch[n]);
1403                         if (err < 0)
1404                                 return err;
1405                         if (err) {
1406                                 err = 15;
1407                                 goto out;
1408                         }
1409                 }
1410         }
1411 
1412         for (n = 0; n < znode->child_cnt; n++) {
1413                 if (!znode->zbranch[n].znode &&
1414                     (znode->zbranch[n].lnum == 0 ||
1415                      znode->zbranch[n].len == 0)) {
1416                         err = 16;
1417                         goto out;
1418                 }
1419 
1420                 if (znode->zbranch[n].lnum != 0 &&
1421                     znode->zbranch[n].len == 0) {
1422                         err = 17;
1423                         goto out;
1424                 }
1425 
1426                 if (znode->zbranch[n].lnum == 0 &&
1427                     znode->zbranch[n].len != 0) {
1428                         err = 18;
1429                         goto out;
1430                 }
1431 
1432                 if (znode->zbranch[n].lnum == 0 &&
1433                     znode->zbranch[n].offs != 0) {
1434                         err = 19;
1435                         goto out;
1436                 }
1437 
1438                 if (znode->level != 0 && znode->zbranch[n].znode)
1439                         if (znode->zbranch[n].znode->parent != znode) {
1440                                 err = 20;
1441                                 goto out;
1442                         }
1443         }
1444 
1445         return 0;
1446 
1447 out:
1448         ubifs_err(c, "failed, error %d", err);
1449         ubifs_msg(c, "dump of the znode");
1450         ubifs_dump_znode(c, znode);
1451         if (zp) {
1452                 ubifs_msg(c, "dump of the parent znode");
1453                 ubifs_dump_znode(c, zp);
1454         }
1455         dump_stack();
1456         return -EINVAL;
1457 }
1458 
1459 /**
1460  * dbg_check_tnc - check TNC tree.
1461  * @c: UBIFS file-system description object
1462  * @extra: do extra checks that are possible at start commit
1463  *
1464  * This function traverses whole TNC tree and checks every znode. Returns zero
1465  * if everything is all right and %-EINVAL if something is wrong with TNC.
1466  */
1467 int dbg_check_tnc(struct ubifs_info *c, int extra)
1468 {
1469         struct ubifs_znode *znode;
1470         long clean_cnt = 0, dirty_cnt = 0;
1471         int err, last;
1472 
1473         if (!dbg_is_chk_index(c))
1474                 return 0;
1475 
1476         ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1477         if (!c->zroot.znode)
1478                 return 0;
1479 
1480         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481         while (1) {
1482                 struct ubifs_znode *prev;
1483                 struct ubifs_zbranch *zbr;
1484 
1485                 if (!znode->parent)
1486                         zbr = &c->zroot;
1487                 else
1488                         zbr = &znode->parent->zbranch[znode->iip];
1489 
1490                 err = dbg_check_znode(c, zbr);
1491                 if (err)
1492                         return err;
1493 
1494                 if (extra) {
1495                         if (ubifs_zn_dirty(znode))
1496                                 dirty_cnt += 1;
1497                         else
1498                                 clean_cnt += 1;
1499                 }
1500 
1501                 prev = znode;
1502                 znode = ubifs_tnc_postorder_next(c, znode);
1503                 if (!znode)
1504                         break;
1505 
1506                 /*
1507                  * If the last key of this znode is equivalent to the first key
1508                  * of the next znode (collision), then check order of the keys.
1509                  */
1510                 last = prev->child_cnt - 1;
1511                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512                     !keys_cmp(c, &prev->zbranch[last].key,
1513                               &znode->zbranch[0].key)) {
1514                         err = dbg_check_key_order(c, &prev->zbranch[last],
1515                                                   &znode->zbranch[0]);
1516                         if (err < 0)
1517                                 return err;
1518                         if (err) {
1519                                 ubifs_msg(c, "first znode");
1520                                 ubifs_dump_znode(c, prev);
1521                                 ubifs_msg(c, "second znode");
1522                                 ubifs_dump_znode(c, znode);
1523                                 return -EINVAL;
1524                         }
1525                 }
1526         }
1527 
1528         if (extra) {
1529                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1531                                   atomic_long_read(&c->clean_zn_cnt),
1532                                   clean_cnt);
1533                         return -EINVAL;
1534                 }
1535                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1537                                   atomic_long_read(&c->dirty_zn_cnt),
1538                                   dirty_cnt);
1539                         return -EINVAL;
1540                 }
1541         }
1542 
1543         return 0;
1544 }
1545 
1546 /**
1547  * dbg_walk_index - walk the on-flash index.
1548  * @c: UBIFS file-system description object
1549  * @leaf_cb: called for each leaf node
1550  * @znode_cb: called for each indexing node
1551  * @priv: private data which is passed to callbacks
1552  *
1553  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554  * node and @znode_cb for each indexing node. Returns zero in case of success
1555  * and a negative error code in case of failure.
1556  *
1557  * It would be better if this function removed every znode it pulled to into
1558  * the TNC, so that the behavior more closely matched the non-debugging
1559  * behavior.
1560  */
1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562                    dbg_znode_callback znode_cb, void *priv)
1563 {
1564         int err;
1565         struct ubifs_zbranch *zbr;
1566         struct ubifs_znode *znode, *child;
1567 
1568         mutex_lock(&c->tnc_mutex);
1569         /* If the root indexing node is not in TNC - pull it */
1570         if (!c->zroot.znode) {
1571                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572                 if (IS_ERR(c->zroot.znode)) {
1573                         err = PTR_ERR(c->zroot.znode);
1574                         c->zroot.znode = NULL;
1575                         goto out_unlock;
1576                 }
1577         }
1578 
1579         /*
1580          * We are going to traverse the indexing tree in the postorder manner.
1581          * Go down and find the leftmost indexing node where we are going to
1582          * start from.
1583          */
1584         znode = c->zroot.znode;
1585         while (znode->level > 0) {
1586                 zbr = &znode->zbranch[0];
1587                 child = zbr->znode;
1588                 if (!child) {
1589                         child = ubifs_load_znode(c, zbr, znode, 0);
1590                         if (IS_ERR(child)) {
1591                                 err = PTR_ERR(child);
1592                                 goto out_unlock;
1593                         }
1594                 }
1595 
1596                 znode = child;
1597         }
1598 
1599         /* Iterate over all indexing nodes */
1600         while (1) {
1601                 int idx;
1602 
1603                 cond_resched();
1604 
1605                 if (znode_cb) {
1606                         err = znode_cb(c, znode, priv);
1607                         if (err) {
1608                                 ubifs_err(c, "znode checking function returned error %d",
1609                                           err);
1610                                 ubifs_dump_znode(c, znode);
1611                                 goto out_dump;
1612                         }
1613                 }
1614                 if (leaf_cb && znode->level == 0) {
1615                         for (idx = 0; idx < znode->child_cnt; idx++) {
1616                                 zbr = &znode->zbranch[idx];
1617                                 err = leaf_cb(c, zbr, priv);
1618                                 if (err) {
1619                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1620                                                   err, zbr->lnum, zbr->offs);
1621                                         goto out_dump;
1622                                 }
1623                         }
1624                 }
1625 
1626                 if (!znode->parent)
1627                         break;
1628 
1629                 idx = znode->iip + 1;
1630                 znode = znode->parent;
1631                 if (idx < znode->child_cnt) {
1632                         /* Switch to the next index in the parent */
1633                         zbr = &znode->zbranch[idx];
1634                         child = zbr->znode;
1635                         if (!child) {
1636                                 child = ubifs_load_znode(c, zbr, znode, idx);
1637                                 if (IS_ERR(child)) {
1638                                         err = PTR_ERR(child);
1639                                         goto out_unlock;
1640                                 }
1641                                 zbr->znode = child;
1642                         }
1643                         znode = child;
1644                 } else
1645                         /*
1646                          * This is the last child, switch to the parent and
1647                          * continue.
1648                          */
1649                         continue;
1650 
1651                 /* Go to the lowest leftmost znode in the new sub-tree */
1652                 while (znode->level > 0) {
1653                         zbr = &znode->zbranch[0];
1654                         child = zbr->znode;
1655                         if (!child) {
1656                                 child = ubifs_load_znode(c, zbr, znode, 0);
1657                                 if (IS_ERR(child)) {
1658                                         err = PTR_ERR(child);
1659                                         goto out_unlock;
1660                                 }
1661                                 zbr->znode = child;
1662                         }
1663                         znode = child;
1664                 }
1665         }
1666 
1667         mutex_unlock(&c->tnc_mutex);
1668         return 0;
1669 
1670 out_dump:
1671         if (znode->parent)
1672                 zbr = &znode->parent->zbranch[znode->iip];
1673         else
1674                 zbr = &c->zroot;
1675         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1676         ubifs_dump_znode(c, znode);
1677 out_unlock:
1678         mutex_unlock(&c->tnc_mutex);
1679         return err;
1680 }
1681 
1682 /**
1683  * add_size - add znode size to partially calculated index size.
1684  * @c: UBIFS file-system description object
1685  * @znode: znode to add size for
1686  * @priv: partially calculated index size
1687  *
1688  * This is a helper function for 'dbg_check_idx_size()' which is called for
1689  * every indexing node and adds its size to the 'long long' variable pointed to
1690  * by @priv.
1691  */
1692 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1693 {
1694         long long *idx_size = priv;
1695         int add;
1696 
1697         add = ubifs_idx_node_sz(c, znode->child_cnt);
1698         add = ALIGN(add, 8);
1699         *idx_size += add;
1700         return 0;
1701 }
1702 
1703 /**
1704  * dbg_check_idx_size - check index size.
1705  * @c: UBIFS file-system description object
1706  * @idx_size: size to check
1707  *
1708  * This function walks the UBIFS index, calculates its size and checks that the
1709  * size is equivalent to @idx_size. Returns zero in case of success and a
1710  * negative error code in case of failure.
1711  */
1712 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1713 {
1714         int err;
1715         long long calc = 0;
1716 
1717         if (!dbg_is_chk_index(c))
1718                 return 0;
1719 
1720         err = dbg_walk_index(c, NULL, add_size, &calc);
1721         if (err) {
1722                 ubifs_err(c, "error %d while walking the index", err);
1723                 return err;
1724         }
1725 
1726         if (calc != idx_size) {
1727                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1728                           calc, idx_size);
1729                 dump_stack();
1730                 return -EINVAL;
1731         }
1732 
1733         return 0;
1734 }
1735 
1736 /**
1737  * struct fsck_inode - information about an inode used when checking the file-system.
1738  * @rb: link in the RB-tree of inodes
1739  * @inum: inode number
1740  * @mode: inode type, permissions, etc
1741  * @nlink: inode link count
1742  * @xattr_cnt: count of extended attributes
1743  * @references: how many directory/xattr entries refer this inode (calculated
1744  *              while walking the index)
1745  * @calc_cnt: for directory inode count of child directories
1746  * @size: inode size (read from on-flash inode)
1747  * @xattr_sz: summary size of all extended attributes (read from on-flash
1748  *            inode)
1749  * @calc_sz: for directories calculated directory size
1750  * @calc_xcnt: count of extended attributes
1751  * @calc_xsz: calculated summary size of all extended attributes
1752  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1753  *             inode (read from on-flash inode)
1754  * @calc_xnms: calculated sum of lengths of all extended attribute names
1755  */
1756 struct fsck_inode {
1757         struct rb_node rb;
1758         ino_t inum;
1759         umode_t mode;
1760         unsigned int nlink;
1761         unsigned int xattr_cnt;
1762         int references;
1763         int calc_cnt;
1764         long long size;
1765         unsigned int xattr_sz;
1766         long long calc_sz;
1767         long long calc_xcnt;
1768         long long calc_xsz;
1769         unsigned int xattr_nms;
1770         long long calc_xnms;
1771 };
1772 
1773 /**
1774  * struct fsck_data - private FS checking information.
1775  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1776  */
1777 struct fsck_data {
1778         struct rb_root inodes;
1779 };
1780 
1781 /**
1782  * add_inode - add inode information to RB-tree of inodes.
1783  * @c: UBIFS file-system description object
1784  * @fsckd: FS checking information
1785  * @ino: raw UBIFS inode to add
1786  *
1787  * This is a helper function for 'check_leaf()' which adds information about
1788  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1789  * case of success and a negative error code in case of failure.
1790  */
1791 static struct fsck_inode *add_inode(struct ubifs_info *c,
1792                                     struct fsck_data *fsckd,
1793                                     struct ubifs_ino_node *ino)
1794 {
1795         struct rb_node **p, *parent = NULL;
1796         struct fsck_inode *fscki;
1797         ino_t inum = key_inum_flash(c, &ino->key);
1798         struct inode *inode;
1799         struct ubifs_inode *ui;
1800 
1801         p = &fsckd->inodes.rb_node;
1802         while (*p) {
1803                 parent = *p;
1804                 fscki = rb_entry(parent, struct fsck_inode, rb);
1805                 if (inum < fscki->inum)
1806                         p = &(*p)->rb_left;
1807                 else if (inum > fscki->inum)
1808                         p = &(*p)->rb_right;
1809                 else
1810                         return fscki;
1811         }
1812 
1813         if (inum > c->highest_inum) {
1814                 ubifs_err(c, "too high inode number, max. is %lu",
1815                           (unsigned long)c->highest_inum);
1816                 return ERR_PTR(-EINVAL);
1817         }
1818 
1819         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1820         if (!fscki)
1821                 return ERR_PTR(-ENOMEM);
1822 
1823         inode = ilookup(c->vfs_sb, inum);
1824 
1825         fscki->inum = inum;
1826         /*
1827          * If the inode is present in the VFS inode cache, use it instead of
1828          * the on-flash inode which might be out-of-date. E.g., the size might
1829          * be out-of-date. If we do not do this, the following may happen, for
1830          * example:
1831          *   1. A power cut happens
1832          *   2. We mount the file-system R/O, the replay process fixes up the
1833          *      inode size in the VFS cache, but on on-flash.
1834          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1835          *      size.
1836          */
1837         if (!inode) {
1838                 fscki->nlink = le32_to_cpu(ino->nlink);
1839                 fscki->size = le64_to_cpu(ino->size);
1840                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1841                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1842                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1843                 fscki->mode = le32_to_cpu(ino->mode);
1844         } else {
1845                 ui = ubifs_inode(inode);
1846                 fscki->nlink = inode->i_nlink;
1847                 fscki->size = inode->i_size;
1848                 fscki->xattr_cnt = ui->xattr_cnt;
1849                 fscki->xattr_sz = ui->xattr_size;
1850                 fscki->xattr_nms = ui->xattr_names;
1851                 fscki->mode = inode->i_mode;
1852                 iput(inode);
1853         }
1854 
1855         if (S_ISDIR(fscki->mode)) {
1856                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1857                 fscki->calc_cnt = 2;
1858         }
1859 
1860         rb_link_node(&fscki->rb, parent, p);
1861         rb_insert_color(&fscki->rb, &fsckd->inodes);
1862 
1863         return fscki;
1864 }
1865 
1866 /**
1867  * search_inode - search inode in the RB-tree of inodes.
1868  * @fsckd: FS checking information
1869  * @inum: inode number to search
1870  *
1871  * This is a helper function for 'check_leaf()' which searches inode @inum in
1872  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1873  * the inode was not found.
1874  */
1875 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1876 {
1877         struct rb_node *p;
1878         struct fsck_inode *fscki;
1879 
1880         p = fsckd->inodes.rb_node;
1881         while (p) {
1882                 fscki = rb_entry(p, struct fsck_inode, rb);
1883                 if (inum < fscki->inum)
1884                         p = p->rb_left;
1885                 else if (inum > fscki->inum)
1886                         p = p->rb_right;
1887                 else
1888                         return fscki;
1889         }
1890         return NULL;
1891 }
1892 
1893 /**
1894  * read_add_inode - read inode node and add it to RB-tree of inodes.
1895  * @c: UBIFS file-system description object
1896  * @fsckd: FS checking information
1897  * @inum: inode number to read
1898  *
1899  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1900  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1901  * information pointer in case of success and a negative error code in case of
1902  * failure.
1903  */
1904 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1905                                          struct fsck_data *fsckd, ino_t inum)
1906 {
1907         int n, err;
1908         union ubifs_key key;
1909         struct ubifs_znode *znode;
1910         struct ubifs_zbranch *zbr;
1911         struct ubifs_ino_node *ino;
1912         struct fsck_inode *fscki;
1913 
1914         fscki = search_inode(fsckd, inum);
1915         if (fscki)
1916                 return fscki;
1917 
1918         ino_key_init(c, &key, inum);
1919         err = ubifs_lookup_level0(c, &key, &znode, &n);
1920         if (!err) {
1921                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1922                 return ERR_PTR(-ENOENT);
1923         } else if (err < 0) {
1924                 ubifs_err(c, "error %d while looking up inode %lu",
1925                           err, (unsigned long)inum);
1926                 return ERR_PTR(err);
1927         }
1928 
1929         zbr = &znode->zbranch[n];
1930         if (zbr->len < UBIFS_INO_NODE_SZ) {
1931                 ubifs_err(c, "bad node %lu node length %d",
1932                           (unsigned long)inum, zbr->len);
1933                 return ERR_PTR(-EINVAL);
1934         }
1935 
1936         ino = kmalloc(zbr->len, GFP_NOFS);
1937         if (!ino)
1938                 return ERR_PTR(-ENOMEM);
1939 
1940         err = ubifs_tnc_read_node(c, zbr, ino);
1941         if (err) {
1942                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1943                           zbr->lnum, zbr->offs, err);
1944                 kfree(ino);
1945                 return ERR_PTR(err);
1946         }
1947 
1948         fscki = add_inode(c, fsckd, ino);
1949         kfree(ino);
1950         if (IS_ERR(fscki)) {
1951                 ubifs_err(c, "error %ld while adding inode %lu node",
1952                           PTR_ERR(fscki), (unsigned long)inum);
1953                 return fscki;
1954         }
1955 
1956         return fscki;
1957 }
1958 
1959 /**
1960  * check_leaf - check leaf node.
1961  * @c: UBIFS file-system description object
1962  * @zbr: zbranch of the leaf node to check
1963  * @priv: FS checking information
1964  *
1965  * This is a helper function for 'dbg_check_filesystem()' which is called for
1966  * every single leaf node while walking the indexing tree. It checks that the
1967  * leaf node referred from the indexing tree exists, has correct CRC, and does
1968  * some other basic validation. This function is also responsible for building
1969  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1970  * calculates reference count, size, etc for each inode in order to later
1971  * compare them to the information stored inside the inodes and detect possible
1972  * inconsistencies. Returns zero in case of success and a negative error code
1973  * in case of failure.
1974  */
1975 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1976                       void *priv)
1977 {
1978         ino_t inum;
1979         void *node;
1980         struct ubifs_ch *ch;
1981         int err, type = key_type(c, &zbr->key);
1982         struct fsck_inode *fscki;
1983 
1984         if (zbr->len < UBIFS_CH_SZ) {
1985                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1986                           zbr->len, zbr->lnum, zbr->offs);
1987                 return -EINVAL;
1988         }
1989 
1990         node = kmalloc(zbr->len, GFP_NOFS);
1991         if (!node)
1992                 return -ENOMEM;
1993 
1994         err = ubifs_tnc_read_node(c, zbr, node);
1995         if (err) {
1996                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1997                           zbr->lnum, zbr->offs, err);
1998                 goto out_free;
1999         }
2000 
2001         /* If this is an inode node, add it to RB-tree of inodes */
2002         if (type == UBIFS_INO_KEY) {
2003                 fscki = add_inode(c, priv, node);
2004                 if (IS_ERR(fscki)) {
2005                         err = PTR_ERR(fscki);
2006                         ubifs_err(c, "error %d while adding inode node", err);
2007                         goto out_dump;
2008                 }
2009                 goto out;
2010         }
2011 
2012         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2013             type != UBIFS_DATA_KEY) {
2014                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2015                           type, zbr->lnum, zbr->offs);
2016                 err = -EINVAL;
2017                 goto out_free;
2018         }
2019 
2020         ch = node;
2021         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2022                 ubifs_err(c, "too high sequence number, max. is %llu",
2023                           c->max_sqnum);
2024                 err = -EINVAL;
2025                 goto out_dump;
2026         }
2027 
2028         if (type == UBIFS_DATA_KEY) {
2029                 long long blk_offs;
2030                 struct ubifs_data_node *dn = node;
2031 
2032                 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2033 
2034                 /*
2035                  * Search the inode node this data node belongs to and insert
2036                  * it to the RB-tree of inodes.
2037                  */
2038                 inum = key_inum_flash(c, &dn->key);
2039                 fscki = read_add_inode(c, priv, inum);
2040                 if (IS_ERR(fscki)) {
2041                         err = PTR_ERR(fscki);
2042                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2043                                   err, (unsigned long)inum);
2044                         goto out_dump;
2045                 }
2046 
2047                 /* Make sure the data node is within inode size */
2048                 blk_offs = key_block_flash(c, &dn->key);
2049                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2050                 blk_offs += le32_to_cpu(dn->size);
2051                 if (blk_offs > fscki->size) {
2052                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2053                                   zbr->lnum, zbr->offs, fscki->size);
2054                         err = -EINVAL;
2055                         goto out_dump;
2056                 }
2057         } else {
2058                 int nlen;
2059                 struct ubifs_dent_node *dent = node;
2060                 struct fsck_inode *fscki1;
2061 
2062                 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2063 
2064                 err = ubifs_validate_entry(c, dent);
2065                 if (err)
2066                         goto out_dump;
2067 
2068                 /*
2069                  * Search the inode node this entry refers to and the parent
2070                  * inode node and insert them to the RB-tree of inodes.
2071                  */
2072                 inum = le64_to_cpu(dent->inum);
2073                 fscki = read_add_inode(c, priv, inum);
2074                 if (IS_ERR(fscki)) {
2075                         err = PTR_ERR(fscki);
2076                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2077                                   err, (unsigned long)inum);
2078                         goto out_dump;
2079                 }
2080 
2081                 /* Count how many direntries or xentries refers this inode */
2082                 fscki->references += 1;
2083 
2084                 inum = key_inum_flash(c, &dent->key);
2085                 fscki1 = read_add_inode(c, priv, inum);
2086                 if (IS_ERR(fscki1)) {
2087                         err = PTR_ERR(fscki1);
2088                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2089                                   err, (unsigned long)inum);
2090                         goto out_dump;
2091                 }
2092 
2093                 nlen = le16_to_cpu(dent->nlen);
2094                 if (type == UBIFS_XENT_KEY) {
2095                         fscki1->calc_xcnt += 1;
2096                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2097                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2098                         fscki1->calc_xnms += nlen;
2099                 } else {
2100                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2101                         if (dent->type == UBIFS_ITYPE_DIR)
2102                                 fscki1->calc_cnt += 1;
2103                 }
2104         }
2105 
2106 out:
2107         kfree(node);
2108         return 0;
2109 
2110 out_dump:
2111         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2112         ubifs_dump_node(c, node);
2113 out_free:
2114         kfree(node);
2115         return err;
2116 }
2117 
2118 /**
2119  * free_inodes - free RB-tree of inodes.
2120  * @fsckd: FS checking information
2121  */
2122 static void free_inodes(struct fsck_data *fsckd)
2123 {
2124         struct fsck_inode *fscki, *n;
2125 
2126         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2127                 kfree(fscki);
2128 }
2129 
2130 /**
2131  * check_inodes - checks all inodes.
2132  * @c: UBIFS file-system description object
2133  * @fsckd: FS checking information
2134  *
2135  * This is a helper function for 'dbg_check_filesystem()' which walks the
2136  * RB-tree of inodes after the index scan has been finished, and checks that
2137  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2138  * %-EINVAL if not, and a negative error code in case of failure.
2139  */
2140 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2141 {
2142         int n, err;
2143         union ubifs_key key;
2144         struct ubifs_znode *znode;
2145         struct ubifs_zbranch *zbr;
2146         struct ubifs_ino_node *ino;
2147         struct fsck_inode *fscki;
2148         struct rb_node *this = rb_first(&fsckd->inodes);
2149 
2150         while (this) {
2151                 fscki = rb_entry(this, struct fsck_inode, rb);
2152                 this = rb_next(this);
2153 
2154                 if (S_ISDIR(fscki->mode)) {
2155                         /*
2156                          * Directories have to have exactly one reference (they
2157                          * cannot have hardlinks), although root inode is an
2158                          * exception.
2159                          */
2160                         if (fscki->inum != UBIFS_ROOT_INO &&
2161                             fscki->references != 1) {
2162                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2163                                           (unsigned long)fscki->inum,
2164                                           fscki->references);
2165                                 goto out_dump;
2166                         }
2167                         if (fscki->inum == UBIFS_ROOT_INO &&
2168                             fscki->references != 0) {
2169                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2170                                           (unsigned long)fscki->inum,
2171                                           fscki->references);
2172                                 goto out_dump;
2173                         }
2174                         if (fscki->calc_sz != fscki->size) {
2175                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2176                                           (unsigned long)fscki->inum,
2177                                           fscki->size, fscki->calc_sz);
2178                                 goto out_dump;
2179                         }
2180                         if (fscki->calc_cnt != fscki->nlink) {
2181                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2182                                           (unsigned long)fscki->inum,
2183                                           fscki->nlink, fscki->calc_cnt);
2184                                 goto out_dump;
2185                         }
2186                 } else {
2187                         if (fscki->references != fscki->nlink) {
2188                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2189                                           (unsigned long)fscki->inum,
2190                                           fscki->nlink, fscki->references);
2191                                 goto out_dump;
2192                         }
2193                 }
2194                 if (fscki->xattr_sz != fscki->calc_xsz) {
2195                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2196                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2197                                   fscki->calc_xsz);
2198                         goto out_dump;
2199                 }
2200                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2201                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2202                                   (unsigned long)fscki->inum,
2203                                   fscki->xattr_cnt, fscki->calc_xcnt);
2204                         goto out_dump;
2205                 }
2206                 if (fscki->xattr_nms != fscki->calc_xnms) {
2207                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2208                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2209                                   fscki->calc_xnms);
2210                         goto out_dump;
2211                 }
2212         }
2213 
2214         return 0;
2215 
2216 out_dump:
2217         /* Read the bad inode and dump it */
2218         ino_key_init(c, &key, fscki->inum);
2219         err = ubifs_lookup_level0(c, &key, &znode, &n);
2220         if (!err) {
2221                 ubifs_err(c, "inode %lu not found in index",
2222                           (unsigned long)fscki->inum);
2223                 return -ENOENT;
2224         } else if (err < 0) {
2225                 ubifs_err(c, "error %d while looking up inode %lu",
2226                           err, (unsigned long)fscki->inum);
2227                 return err;
2228         }
2229 
2230         zbr = &znode->zbranch[n];
2231         ino = kmalloc(zbr->len, GFP_NOFS);
2232         if (!ino)
2233                 return -ENOMEM;
2234 
2235         err = ubifs_tnc_read_node(c, zbr, ino);
2236         if (err) {
2237                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2238                           zbr->lnum, zbr->offs, err);
2239                 kfree(ino);
2240                 return err;
2241         }
2242 
2243         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2244                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2245         ubifs_dump_node(c, ino);
2246         kfree(ino);
2247         return -EINVAL;
2248 }
2249 
2250 /**
2251  * dbg_check_filesystem - check the file-system.
2252  * @c: UBIFS file-system description object
2253  *
2254  * This function checks the file system, namely:
2255  * o makes sure that all leaf nodes exist and their CRCs are correct;
2256  * o makes sure inode nlink, size, xattr size/count are correct (for all
2257  *   inodes).
2258  *
2259  * The function reads whole indexing tree and all nodes, so it is pretty
2260  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2261  * not, and a negative error code in case of failure.
2262  */
2263 int dbg_check_filesystem(struct ubifs_info *c)
2264 {
2265         int err;
2266         struct fsck_data fsckd;
2267 
2268         if (!dbg_is_chk_fs(c))
2269                 return 0;
2270 
2271         fsckd.inodes = RB_ROOT;
2272         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2273         if (err)
2274                 goto out_free;
2275 
2276         err = check_inodes(c, &fsckd);
2277         if (err)
2278                 goto out_free;
2279 
2280         free_inodes(&fsckd);
2281         return 0;
2282 
2283 out_free:
2284         ubifs_err(c, "file-system check failed with error %d", err);
2285         dump_stack();
2286         free_inodes(&fsckd);
2287         return err;
2288 }
2289 
2290 /**
2291  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2292  * @c: UBIFS file-system description object
2293  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2294  *
2295  * This function returns zero if the list of data nodes is sorted correctly,
2296  * and %-EINVAL if not.
2297  */
2298 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2299 {
2300         struct list_head *cur;
2301         struct ubifs_scan_node *sa, *sb;
2302 
2303         if (!dbg_is_chk_gen(c))
2304                 return 0;
2305 
2306         for (cur = head->next; cur->next != head; cur = cur->next) {
2307                 ino_t inuma, inumb;
2308                 uint32_t blka, blkb;
2309 
2310                 cond_resched();
2311                 sa = container_of(cur, struct ubifs_scan_node, list);
2312                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2313 
2314                 if (sa->type != UBIFS_DATA_NODE) {
2315                         ubifs_err(c, "bad node type %d", sa->type);
2316                         ubifs_dump_node(c, sa->node);
2317                         return -EINVAL;
2318                 }
2319                 if (sb->type != UBIFS_DATA_NODE) {
2320                         ubifs_err(c, "bad node type %d", sb->type);
2321                         ubifs_dump_node(c, sb->node);
2322                         return -EINVAL;
2323                 }
2324 
2325                 inuma = key_inum(c, &sa->key);
2326                 inumb = key_inum(c, &sb->key);
2327 
2328                 if (inuma < inumb)
2329                         continue;
2330                 if (inuma > inumb) {
2331                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2332                                   (unsigned long)inuma, (unsigned long)inumb);
2333                         goto error_dump;
2334                 }
2335 
2336                 blka = key_block(c, &sa->key);
2337                 blkb = key_block(c, &sb->key);
2338 
2339                 if (blka > blkb) {
2340                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2341                         goto error_dump;
2342                 }
2343                 if (blka == blkb) {
2344                         ubifs_err(c, "two data nodes for the same block");
2345                         goto error_dump;
2346                 }
2347         }
2348 
2349         return 0;
2350 
2351 error_dump:
2352         ubifs_dump_node(c, sa->node);
2353         ubifs_dump_node(c, sb->node);
2354         return -EINVAL;
2355 }
2356 
2357 /**
2358  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2359  * @c: UBIFS file-system description object
2360  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2361  *
2362  * This function returns zero if the list of non-data nodes is sorted correctly,
2363  * and %-EINVAL if not.
2364  */
2365 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2366 {
2367         struct list_head *cur;
2368         struct ubifs_scan_node *sa, *sb;
2369 
2370         if (!dbg_is_chk_gen(c))
2371                 return 0;
2372 
2373         for (cur = head->next; cur->next != head; cur = cur->next) {
2374                 ino_t inuma, inumb;
2375                 uint32_t hasha, hashb;
2376 
2377                 cond_resched();
2378                 sa = container_of(cur, struct ubifs_scan_node, list);
2379                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2380 
2381                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382                     sa->type != UBIFS_XENT_NODE) {
2383                         ubifs_err(c, "bad node type %d", sa->type);
2384                         ubifs_dump_node(c, sa->node);
2385                         return -EINVAL;
2386                 }
2387                 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2388                     sb->type != UBIFS_XENT_NODE) {
2389                         ubifs_err(c, "bad node type %d", sb->type);
2390                         ubifs_dump_node(c, sb->node);
2391                         return -EINVAL;
2392                 }
2393 
2394                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2395                         ubifs_err(c, "non-inode node goes before inode node");
2396                         goto error_dump;
2397                 }
2398 
2399                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2400                         continue;
2401 
2402                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403                         /* Inode nodes are sorted in descending size order */
2404                         if (sa->len < sb->len) {
2405                                 ubifs_err(c, "smaller inode node goes first");
2406                                 goto error_dump;
2407                         }
2408                         continue;
2409                 }
2410 
2411                 /*
2412                  * This is either a dentry or xentry, which should be sorted in
2413                  * ascending (parent ino, hash) order.
2414                  */
2415                 inuma = key_inum(c, &sa->key);
2416                 inumb = key_inum(c, &sb->key);
2417 
2418                 if (inuma < inumb)
2419                         continue;
2420                 if (inuma > inumb) {
2421                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2422                                   (unsigned long)inuma, (unsigned long)inumb);
2423                         goto error_dump;
2424                 }
2425 
2426                 hasha = key_block(c, &sa->key);
2427                 hashb = key_block(c, &sb->key);
2428 
2429                 if (hasha > hashb) {
2430                         ubifs_err(c, "larger hash %u goes before %u",
2431                                   hasha, hashb);
2432                         goto error_dump;
2433                 }
2434         }
2435 
2436         return 0;
2437 
2438 error_dump:
2439         ubifs_msg(c, "dumping first node");
2440         ubifs_dump_node(c, sa->node);
2441         ubifs_msg(c, "dumping second node");
2442         ubifs_dump_node(c, sb->node);
2443         return -EINVAL;
2444         return 0;
2445 }
2446 
2447 static inline int chance(unsigned int n, unsigned int out_of)
2448 {
2449         return !!((prandom_u32() % out_of) + 1 <= n);
2450 
2451 }
2452 
2453 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2454 {
2455         struct ubifs_debug_info *d = c->dbg;
2456 
2457         ubifs_assert(c, dbg_is_tst_rcvry(c));
2458 
2459         if (!d->pc_cnt) {
2460                 /* First call - decide delay to the power cut */
2461                 if (chance(1, 2)) {
2462                         unsigned long delay;
2463 
2464                         if (chance(1, 2)) {
2465                                 d->pc_delay = 1;
2466                                 /* Fail within 1 minute */
2467                                 delay = prandom_u32() % 60000;
2468                                 d->pc_timeout = jiffies;
2469                                 d->pc_timeout += msecs_to_jiffies(delay);
2470                                 ubifs_warn(c, "failing after %lums", delay);
2471                         } else {
2472                                 d->pc_delay = 2;
2473                                 delay = prandom_u32() % 10000;
2474                                 /* Fail within 10000 operations */
2475                                 d->pc_cnt_max = delay;
2476                                 ubifs_warn(c, "failing after %lu calls", delay);
2477                         }
2478                 }
2479 
2480                 d->pc_cnt += 1;
2481         }
2482 
2483         /* Determine if failure delay has expired */
2484         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2485                         return 0;
2486         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2487                         return 0;
2488 
2489         if (lnum == UBIFS_SB_LNUM) {
2490                 if (write && chance(1, 2))
2491                         return 0;
2492                 if (chance(19, 20))
2493                         return 0;
2494                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2495         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2496                 if (chance(19, 20))
2497                         return 0;
2498                 ubifs_warn(c, "failing in master LEB %d", lnum);
2499         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2500                 if (write && chance(99, 100))
2501                         return 0;
2502                 if (chance(399, 400))
2503                         return 0;
2504                 ubifs_warn(c, "failing in log LEB %d", lnum);
2505         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2506                 if (write && chance(7, 8))
2507                         return 0;
2508                 if (chance(19, 20))
2509                         return 0;
2510                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2511         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2512                 if (write && chance(1, 2))
2513                         return 0;
2514                 if (chance(9, 10))
2515                         return 0;
2516                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2517         } else if (lnum == c->ihead_lnum) {
2518                 if (chance(99, 100))
2519                         return 0;
2520                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2521         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2522                 if (chance(9, 10))
2523                         return 0;
2524                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2525         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2526                    !ubifs_search_bud(c, lnum)) {
2527                 if (chance(19, 20))
2528                         return 0;
2529                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2530         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2531                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2532                 if (chance(999, 1000))
2533                         return 0;
2534                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2535         } else {
2536                 if (chance(9999, 10000))
2537                         return 0;
2538                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2539         }
2540 
2541         d->pc_happened = 1;
2542         ubifs_warn(c, "========== Power cut emulated ==========");
2543         dump_stack();
2544         return 1;
2545 }
2546 
2547 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2548                         unsigned int len)
2549 {
2550         unsigned int from, to, ffs = chance(1, 2);
2551         unsigned char *p = (void *)buf;
2552 
2553         from = prandom_u32() % len;
2554         /* Corruption span max to end of write unit */
2555         to = min(len, ALIGN(from + 1, c->max_write_size));
2556 
2557         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2558                    ffs ? "0xFFs" : "random data");
2559 
2560         if (ffs)
2561                 memset(p + from, 0xFF, to - from);
2562         else
2563                 prandom_bytes(p + from, to - from);
2564 
2565         return to;
2566 }
2567 
2568 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2569                   int offs, int len)
2570 {
2571         int err, failing;
2572 
2573         if (dbg_is_power_cut(c))
2574                 return -EROFS;
2575 
2576         failing = power_cut_emulated(c, lnum, 1);
2577         if (failing) {
2578                 len = corrupt_data(c, buf, len);
2579                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2580                            len, lnum, offs);
2581         }
2582         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2583         if (err)
2584                 return err;
2585         if (failing)
2586                 return -EROFS;
2587         return 0;
2588 }
2589 
2590 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2591                    int len)
2592 {
2593         int err;
2594 
2595         if (dbg_is_power_cut(c))
2596                 return -EROFS;
2597         if (power_cut_emulated(c, lnum, 1))
2598                 return -EROFS;
2599         err = ubi_leb_change(c->ubi, lnum, buf, len);
2600         if (err)
2601                 return err;
2602         if (power_cut_emulated(c, lnum, 1))
2603                 return -EROFS;
2604         return 0;
2605 }
2606 
2607 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2608 {
2609         int err;
2610 
2611         if (dbg_is_power_cut(c))
2612                 return -EROFS;
2613         if (power_cut_emulated(c, lnum, 0))
2614                 return -EROFS;
2615         err = ubi_leb_unmap(c->ubi, lnum);
2616         if (err)
2617                 return err;
2618         if (power_cut_emulated(c, lnum, 0))
2619                 return -EROFS;
2620         return 0;
2621 }
2622 
2623 int dbg_leb_map(struct ubifs_info *c, int lnum)
2624 {
2625         int err;
2626 
2627         if (dbg_is_power_cut(c))
2628                 return -EROFS;
2629         if (power_cut_emulated(c, lnum, 0))
2630                 return -EROFS;
2631         err = ubi_leb_map(c->ubi, lnum);
2632         if (err)
2633                 return err;
2634         if (power_cut_emulated(c, lnum, 0))
2635                 return -EROFS;
2636         return 0;
2637 }
2638 
2639 /*
2640  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2641  * contain the stuff specific to particular file-system mounts.
2642  */
2643 static struct dentry *dfs_rootdir;
2644 
2645 static int dfs_file_open(struct inode *inode, struct file *file)
2646 {
2647         file->private_data = inode->i_private;
2648         return nonseekable_open(inode, file);
2649 }
2650 
2651 /**
2652  * provide_user_output - provide output to the user reading a debugfs file.
2653  * @val: boolean value for the answer
2654  * @u: the buffer to store the answer at
2655  * @count: size of the buffer
2656  * @ppos: position in the @u output buffer
2657  *
2658  * This is a simple helper function which stores @val boolean value in the user
2659  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2660  * bytes written to @u in case of success and a negative error code in case of
2661  * failure.
2662  */
2663 static int provide_user_output(int val, char __user *u, size_t count,
2664                                loff_t *ppos)
2665 {
2666         char buf[3];
2667 
2668         if (val)
2669                 buf[0] = '1';
2670         else
2671                 buf[0] = '0';
2672         buf[1] = '\n';
2673         buf[2] = 0x00;
2674 
2675         return simple_read_from_buffer(u, count, ppos, buf, 2);
2676 }
2677 
2678 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2679                              loff_t *ppos)
2680 {
2681         struct dentry *dent = file->f_path.dentry;
2682         struct ubifs_info *c = file->private_data;
2683         struct ubifs_debug_info *d = c->dbg;
2684         int val;
2685 
2686         if (dent == d->dfs_chk_gen)
2687                 val = d->chk_gen;
2688         else if (dent == d->dfs_chk_index)
2689                 val = d->chk_index;
2690         else if (dent == d->dfs_chk_orph)
2691                 val = d->chk_orph;
2692         else if (dent == d->dfs_chk_lprops)
2693                 val = d->chk_lprops;
2694         else if (dent == d->dfs_chk_fs)
2695                 val = d->chk_fs;
2696         else if (dent == d->dfs_tst_rcvry)
2697                 val = d->tst_rcvry;
2698         else if (dent == d->dfs_ro_error)
2699                 val = c->ro_error;
2700         else
2701                 return -EINVAL;
2702 
2703         return provide_user_output(val, u, count, ppos);
2704 }
2705 
2706 /**
2707  * interpret_user_input - interpret user debugfs file input.
2708  * @u: user-provided buffer with the input
2709  * @count: buffer size
2710  *
2711  * This is a helper function which interpret user input to a boolean UBIFS
2712  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2713  * in case of failure.
2714  */
2715 static int interpret_user_input(const char __user *u, size_t count)
2716 {
2717         size_t buf_size;
2718         char buf[8];
2719 
2720         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2721         if (copy_from_user(buf, u, buf_size))
2722                 return -EFAULT;
2723 
2724         if (buf[0] == '1')
2725                 return 1;
2726         else if (buf[0] == '0')
2727                 return 0;
2728 
2729         return -EINVAL;
2730 }
2731 
2732 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2733                               size_t count, loff_t *ppos)
2734 {
2735         struct ubifs_info *c = file->private_data;
2736         struct ubifs_debug_info *d = c->dbg;
2737         struct dentry *dent = file->f_path.dentry;
2738         int val;
2739 
2740         /*
2741          * TODO: this is racy - the file-system might have already been
2742          * unmounted and we'd oops in this case. The plan is to fix it with
2743          * help of 'iterate_supers_type()' which we should have in v3.0: when
2744          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2745          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2746          * superblocks and fine the one with the same UUID, and take the
2747          * locking right.
2748          *
2749          * The other way to go suggested by Al Viro is to create a separate
2750          * 'ubifs-debug' file-system instead.
2751          */
2752         if (file->f_path.dentry == d->dfs_dump_lprops) {
2753                 ubifs_dump_lprops(c);
2754                 return count;
2755         }
2756         if (file->f_path.dentry == d->dfs_dump_budg) {
2757                 ubifs_dump_budg(c, &c->bi);
2758                 return count;
2759         }
2760         if (file->f_path.dentry == d->dfs_dump_tnc) {
2761                 mutex_lock(&c->tnc_mutex);
2762                 ubifs_dump_tnc(c);
2763                 mutex_unlock(&c->tnc_mutex);
2764                 return count;
2765         }
2766 
2767         val = interpret_user_input(u, count);
2768         if (val < 0)
2769                 return val;
2770 
2771         if (dent == d->dfs_chk_gen)
2772                 d->chk_gen = val;
2773         else if (dent == d->dfs_chk_index)
2774                 d->chk_index = val;
2775         else if (dent == d->dfs_chk_orph)
2776                 d->chk_orph = val;
2777         else if (dent == d->dfs_chk_lprops)
2778                 d->chk_lprops = val;
2779         else if (dent == d->dfs_chk_fs)
2780                 d->chk_fs = val;
2781         else if (dent == d->dfs_tst_rcvry)
2782                 d->tst_rcvry = val;
2783         else if (dent == d->dfs_ro_error)
2784                 c->ro_error = !!val;
2785         else
2786                 return -EINVAL;
2787 
2788         return count;
2789 }
2790 
2791 static const struct file_operations dfs_fops = {
2792         .open = dfs_file_open,
2793         .read = dfs_file_read,
2794         .write = dfs_file_write,
2795         .owner = THIS_MODULE,
2796         .llseek = no_llseek,
2797 };
2798 
2799 /**
2800  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2801  * @c: UBIFS file-system description object
2802  *
2803  * This function creates all debugfs files for this instance of UBIFS.
2804  *
2805  * Note, the only reason we have not merged this function with the
2806  * 'ubifs_debugging_init()' function is because it is better to initialize
2807  * debugfs interfaces at the very end of the mount process, and remove them at
2808  * the very beginning of the mount process.
2809  */
2810 void dbg_debugfs_init_fs(struct ubifs_info *c)
2811 {
2812         int n;
2813         const char *fname;
2814         struct ubifs_debug_info *d = c->dbg;
2815 
2816         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2817                      c->vi.ubi_num, c->vi.vol_id);
2818         if (n == UBIFS_DFS_DIR_LEN) {
2819                 /* The array size is too small */
2820                 return;
2821         }
2822 
2823         fname = d->dfs_dir_name;
2824         d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2825 
2826         fname = "dump_lprops";
2827         d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2828                                                  &dfs_fops);
2829 
2830         fname = "dump_budg";
2831         d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2832                                                &dfs_fops);
2833 
2834         fname = "dump_tnc";
2835         d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2836                                               &dfs_fops);
2837 
2838         fname = "chk_general";
2839         d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2840                                              d->dfs_dir, c, &dfs_fops);
2841 
2842         fname = "chk_index";
2843         d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2844                                                d->dfs_dir, c, &dfs_fops);
2845 
2846         fname = "chk_orphans";
2847         d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2848                                               d->dfs_dir, c, &dfs_fops);
2849 
2850         fname = "chk_lprops";
2851         d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2852                                                 d->dfs_dir, c, &dfs_fops);
2853 
2854         fname = "chk_fs";
2855         d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2856                                             d->dfs_dir, c, &dfs_fops);
2857 
2858         fname = "tst_recovery";
2859         d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2860                                                d->dfs_dir, c, &dfs_fops);
2861 
2862         fname = "ro_error";
2863         d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2864                                               d->dfs_dir, c, &dfs_fops);
2865 }
2866 
2867 /**
2868  * dbg_debugfs_exit_fs - remove all debugfs files.
2869  * @c: UBIFS file-system description object
2870  */
2871 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2872 {
2873         debugfs_remove_recursive(c->dbg->dfs_dir);
2874 }
2875 
2876 struct ubifs_global_debug_info ubifs_dbg;
2877 
2878 static struct dentry *dfs_chk_gen;
2879 static struct dentry *dfs_chk_index;
2880 static struct dentry *dfs_chk_orph;
2881 static struct dentry *dfs_chk_lprops;
2882 static struct dentry *dfs_chk_fs;
2883 static struct dentry *dfs_tst_rcvry;
2884 
2885 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2886                                     size_t count, loff_t *ppos)
2887 {
2888         struct dentry *dent = file->f_path.dentry;
2889         int val;
2890 
2891         if (dent == dfs_chk_gen)
2892                 val = ubifs_dbg.chk_gen;
2893         else if (dent == dfs_chk_index)
2894                 val = ubifs_dbg.chk_index;
2895         else if (dent == dfs_chk_orph)
2896                 val = ubifs_dbg.chk_orph;
2897         else if (dent == dfs_chk_lprops)
2898                 val = ubifs_dbg.chk_lprops;
2899         else if (dent == dfs_chk_fs)
2900                 val = ubifs_dbg.chk_fs;
2901         else if (dent == dfs_tst_rcvry)
2902                 val = ubifs_dbg.tst_rcvry;
2903         else
2904                 return -EINVAL;
2905 
2906         return provide_user_output(val, u, count, ppos);
2907 }
2908 
2909 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2910                                      size_t count, loff_t *ppos)
2911 {
2912         struct dentry *dent = file->f_path.dentry;
2913         int val;
2914 
2915         val = interpret_user_input(u, count);
2916         if (val < 0)
2917                 return val;
2918 
2919         if (dent == dfs_chk_gen)
2920                 ubifs_dbg.chk_gen = val;
2921         else if (dent == dfs_chk_index)
2922                 ubifs_dbg.chk_index = val;
2923         else if (dent == dfs_chk_orph)
2924                 ubifs_dbg.chk_orph = val;
2925         else if (dent == dfs_chk_lprops)
2926                 ubifs_dbg.chk_lprops = val;
2927         else if (dent == dfs_chk_fs)
2928                 ubifs_dbg.chk_fs = val;
2929         else if (dent == dfs_tst_rcvry)
2930                 ubifs_dbg.tst_rcvry = val;
2931         else
2932                 return -EINVAL;
2933 
2934         return count;
2935 }
2936 
2937 static const struct file_operations dfs_global_fops = {
2938         .read = dfs_global_file_read,
2939         .write = dfs_global_file_write,
2940         .owner = THIS_MODULE,
2941         .llseek = no_llseek,
2942 };
2943 
2944 /**
2945  * dbg_debugfs_init - initialize debugfs file-system.
2946  *
2947  * UBIFS uses debugfs file-system to expose various debugging knobs to
2948  * user-space. This function creates "ubifs" directory in the debugfs
2949  * file-system.
2950  */
2951 void dbg_debugfs_init(void)
2952 {
2953         const char *fname;
2954 
2955         fname = "ubifs";
2956         dfs_rootdir = debugfs_create_dir(fname, NULL);
2957 
2958         fname = "chk_general";
2959         dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2960                                           NULL, &dfs_global_fops);
2961 
2962         fname = "chk_index";
2963         dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2964                                             dfs_rootdir, NULL, &dfs_global_fops);
2965 
2966         fname = "chk_orphans";
2967         dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2968                                            dfs_rootdir, NULL, &dfs_global_fops);
2969 
2970         fname = "chk_lprops";
2971         dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2972                                              dfs_rootdir, NULL, &dfs_global_fops);
2973 
2974         fname = "chk_fs";
2975         dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976                                          NULL, &dfs_global_fops);
2977 
2978         fname = "tst_recovery";
2979         dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980                                             dfs_rootdir, NULL, &dfs_global_fops);
2981 }
2982 
2983 /**
2984  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2985  */
2986 void dbg_debugfs_exit(void)
2987 {
2988         debugfs_remove_recursive(dfs_rootdir);
2989 }
2990 
2991 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2992                          const char *file, int line)
2993 {
2994         ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2995 
2996         switch (c->assert_action) {
2997                 case ASSACT_PANIC:
2998                 BUG();
2999                 break;
3000 
3001                 case ASSACT_RO:
3002                 ubifs_ro_mode(c, -EINVAL);
3003                 break;
3004 
3005                 case ASSACT_REPORT:
3006                 default:
3007                 dump_stack();
3008                 break;
3009 
3010         }
3011 }
3012 
3013 /**
3014  * ubifs_debugging_init - initialize UBIFS debugging.
3015  * @c: UBIFS file-system description object
3016  *
3017  * This function initializes debugging-related data for the file system.
3018  * Returns zero in case of success and a negative error code in case of
3019  * failure.
3020  */
3021 int ubifs_debugging_init(struct ubifs_info *c)
3022 {
3023         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3024         if (!c->dbg)
3025                 return -ENOMEM;
3026 
3027         return 0;
3028 }
3029 
3030 /**
3031  * ubifs_debugging_exit - free debugging data.
3032  * @c: UBIFS file-system description object
3033  */
3034 void ubifs_debugging_exit(struct ubifs_info *c)
3035 {
3036         kfree(c->dbg);
3037 }

/* [<][>][^][v][top][bottom][index][help] */