root/fs/ubifs/recovery.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_empty
  2. first_non_ff
  3. get_master_node
  4. write_rcvrd_mst_node
  5. ubifs_recover_master_node
  6. ubifs_write_rcvrd_mst_node
  7. is_last_write
  8. clean_buf
  9. no_more_nodes
  10. fix_unclean_leb
  11. drop_last_group
  12. drop_last_node
  13. ubifs_recover_leb
  14. get_cs_sqnum
  15. ubifs_recover_log_leb
  16. recover_head
  17. ubifs_recover_inl_heads
  18. clean_an_unclean_leb
  19. ubifs_clean_lebs
  20. grab_empty_leb
  21. ubifs_rcvry_gc_commit
  22. add_ino
  23. find_ino
  24. remove_ino
  25. ubifs_destroy_size_tree
  26. ubifs_recover_size_accum
  27. fix_size_in_place
  28. inode_fix_size
  29. ubifs_recover_size

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * This file is part of UBIFS.
   4  *
   5  * Copyright (C) 2006-2008 Nokia Corporation
   6  *
   7  * Authors: Adrian Hunter
   8  *          Artem Bityutskiy (Битюцкий Артём)
   9  */
  10 
  11 /*
  12  * This file implements functions needed to recover from unclean un-mounts.
  13  * When UBIFS is mounted, it checks a flag on the master node to determine if
  14  * an un-mount was completed successfully. If not, the process of mounting
  15  * incorporates additional checking and fixing of on-flash data structures.
  16  * UBIFS always cleans away all remnants of an unclean un-mount, so that
  17  * errors do not accumulate. However UBIFS defers recovery if it is mounted
  18  * read-only, and the flash is not modified in that case.
  19  *
  20  * The general UBIFS approach to the recovery is that it recovers from
  21  * corruptions which could be caused by power cuts, but it refuses to recover
  22  * from corruption caused by other reasons. And UBIFS tries to distinguish
  23  * between these 2 reasons of corruptions and silently recover in the former
  24  * case and loudly complain in the latter case.
  25  *
  26  * UBIFS writes only to erased LEBs, so it writes only to the flash space
  27  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
  28  * of the LEB to the end. And UBIFS assumes that the underlying flash media
  29  * writes in @c->max_write_size bytes at a time.
  30  *
  31  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
  32  * I/O unit corresponding to offset X to contain corrupted data, all the
  33  * following min. I/O units have to contain empty space (all 0xFFs). If this is
  34  * not true, the corruption cannot be the result of a power cut, and UBIFS
  35  * refuses to mount.
  36  */
  37 
  38 #include <linux/crc32.h>
  39 #include <linux/slab.h>
  40 #include "ubifs.h"
  41 
  42 /**
  43  * is_empty - determine whether a buffer is empty (contains all 0xff).
  44  * @buf: buffer to clean
  45  * @len: length of buffer
  46  *
  47  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
  48  * %0 is returned.
  49  */
  50 static int is_empty(void *buf, int len)
  51 {
  52         uint8_t *p = buf;
  53         int i;
  54 
  55         for (i = 0; i < len; i++)
  56                 if (*p++ != 0xff)
  57                         return 0;
  58         return 1;
  59 }
  60 
  61 /**
  62  * first_non_ff - find offset of the first non-0xff byte.
  63  * @buf: buffer to search in
  64  * @len: length of buffer
  65  *
  66  * This function returns offset of the first non-0xff byte in @buf or %-1 if
  67  * the buffer contains only 0xff bytes.
  68  */
  69 static int first_non_ff(void *buf, int len)
  70 {
  71         uint8_t *p = buf;
  72         int i;
  73 
  74         for (i = 0; i < len; i++)
  75                 if (*p++ != 0xff)
  76                         return i;
  77         return -1;
  78 }
  79 
  80 /**
  81  * get_master_node - get the last valid master node allowing for corruption.
  82  * @c: UBIFS file-system description object
  83  * @lnum: LEB number
  84  * @pbuf: buffer containing the LEB read, is returned here
  85  * @mst: master node, if found, is returned here
  86  * @cor: corruption, if found, is returned here
  87  *
  88  * This function allocates a buffer, reads the LEB into it, and finds and
  89  * returns the last valid master node allowing for one area of corruption.
  90  * The corrupt area, if there is one, must be consistent with the assumption
  91  * that it is the result of an unclean unmount while the master node was being
  92  * written. Under those circumstances, it is valid to use the previously written
  93  * master node.
  94  *
  95  * This function returns %0 on success and a negative error code on failure.
  96  */
  97 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
  98                            struct ubifs_mst_node **mst, void **cor)
  99 {
 100         const int sz = c->mst_node_alsz;
 101         int err, offs, len;
 102         void *sbuf, *buf;
 103 
 104         sbuf = vmalloc(c->leb_size);
 105         if (!sbuf)
 106                 return -ENOMEM;
 107 
 108         err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
 109         if (err && err != -EBADMSG)
 110                 goto out_free;
 111 
 112         /* Find the first position that is definitely not a node */
 113         offs = 0;
 114         buf = sbuf;
 115         len = c->leb_size;
 116         while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
 117                 struct ubifs_ch *ch = buf;
 118 
 119                 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 120                         break;
 121                 offs += sz;
 122                 buf  += sz;
 123                 len  -= sz;
 124         }
 125         /* See if there was a valid master node before that */
 126         if (offs) {
 127                 int ret;
 128 
 129                 offs -= sz;
 130                 buf  -= sz;
 131                 len  += sz;
 132                 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 133                 if (ret != SCANNED_A_NODE && offs) {
 134                         /* Could have been corruption so check one place back */
 135                         offs -= sz;
 136                         buf  -= sz;
 137                         len  += sz;
 138                         ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 139                         if (ret != SCANNED_A_NODE)
 140                                 /*
 141                                  * We accept only one area of corruption because
 142                                  * we are assuming that it was caused while
 143                                  * trying to write a master node.
 144                                  */
 145                                 goto out_err;
 146                 }
 147                 if (ret == SCANNED_A_NODE) {
 148                         struct ubifs_ch *ch = buf;
 149 
 150                         if (ch->node_type != UBIFS_MST_NODE)
 151                                 goto out_err;
 152                         dbg_rcvry("found a master node at %d:%d", lnum, offs);
 153                         *mst = buf;
 154                         offs += sz;
 155                         buf  += sz;
 156                         len  -= sz;
 157                 }
 158         }
 159         /* Check for corruption */
 160         if (offs < c->leb_size) {
 161                 if (!is_empty(buf, min_t(int, len, sz))) {
 162                         *cor = buf;
 163                         dbg_rcvry("found corruption at %d:%d", lnum, offs);
 164                 }
 165                 offs += sz;
 166                 buf  += sz;
 167                 len  -= sz;
 168         }
 169         /* Check remaining empty space */
 170         if (offs < c->leb_size)
 171                 if (!is_empty(buf, len))
 172                         goto out_err;
 173         *pbuf = sbuf;
 174         return 0;
 175 
 176 out_err:
 177         err = -EINVAL;
 178 out_free:
 179         vfree(sbuf);
 180         *mst = NULL;
 181         *cor = NULL;
 182         return err;
 183 }
 184 
 185 /**
 186  * write_rcvrd_mst_node - write recovered master node.
 187  * @c: UBIFS file-system description object
 188  * @mst: master node
 189  *
 190  * This function returns %0 on success and a negative error code on failure.
 191  */
 192 static int write_rcvrd_mst_node(struct ubifs_info *c,
 193                                 struct ubifs_mst_node *mst)
 194 {
 195         int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
 196         __le32 save_flags;
 197 
 198         dbg_rcvry("recovery");
 199 
 200         save_flags = mst->flags;
 201         mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 202 
 203         err = ubifs_prepare_node_hmac(c, mst, UBIFS_MST_NODE_SZ,
 204                                       offsetof(struct ubifs_mst_node, hmac), 1);
 205         if (err)
 206                 goto out;
 207         err = ubifs_leb_change(c, lnum, mst, sz);
 208         if (err)
 209                 goto out;
 210         err = ubifs_leb_change(c, lnum + 1, mst, sz);
 211         if (err)
 212                 goto out;
 213 out:
 214         mst->flags = save_flags;
 215         return err;
 216 }
 217 
 218 /**
 219  * ubifs_recover_master_node - recover the master node.
 220  * @c: UBIFS file-system description object
 221  *
 222  * This function recovers the master node from corruption that may occur due to
 223  * an unclean unmount.
 224  *
 225  * This function returns %0 on success and a negative error code on failure.
 226  */
 227 int ubifs_recover_master_node(struct ubifs_info *c)
 228 {
 229         void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
 230         struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
 231         const int sz = c->mst_node_alsz;
 232         int err, offs1, offs2;
 233 
 234         dbg_rcvry("recovery");
 235 
 236         err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
 237         if (err)
 238                 goto out_free;
 239 
 240         err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
 241         if (err)
 242                 goto out_free;
 243 
 244         if (mst1) {
 245                 offs1 = (void *)mst1 - buf1;
 246                 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
 247                     (offs1 == 0 && !cor1)) {
 248                         /*
 249                          * mst1 was written by recovery at offset 0 with no
 250                          * corruption.
 251                          */
 252                         dbg_rcvry("recovery recovery");
 253                         mst = mst1;
 254                 } else if (mst2) {
 255                         offs2 = (void *)mst2 - buf2;
 256                         if (offs1 == offs2) {
 257                                 /* Same offset, so must be the same */
 258                                 if (ubifs_compare_master_node(c, mst1, mst2))
 259                                         goto out_err;
 260                                 mst = mst1;
 261                         } else if (offs2 + sz == offs1) {
 262                                 /* 1st LEB was written, 2nd was not */
 263                                 if (cor1)
 264                                         goto out_err;
 265                                 mst = mst1;
 266                         } else if (offs1 == 0 &&
 267                                    c->leb_size - offs2 - sz < sz) {
 268                                 /* 1st LEB was unmapped and written, 2nd not */
 269                                 if (cor1)
 270                                         goto out_err;
 271                                 mst = mst1;
 272                         } else
 273                                 goto out_err;
 274                 } else {
 275                         /*
 276                          * 2nd LEB was unmapped and about to be written, so
 277                          * there must be only one master node in the first LEB
 278                          * and no corruption.
 279                          */
 280                         if (offs1 != 0 || cor1)
 281                                 goto out_err;
 282                         mst = mst1;
 283                 }
 284         } else {
 285                 if (!mst2)
 286                         goto out_err;
 287                 /*
 288                  * 1st LEB was unmapped and about to be written, so there must
 289                  * be no room left in 2nd LEB.
 290                  */
 291                 offs2 = (void *)mst2 - buf2;
 292                 if (offs2 + sz + sz <= c->leb_size)
 293                         goto out_err;
 294                 mst = mst2;
 295         }
 296 
 297         ubifs_msg(c, "recovered master node from LEB %d",
 298                   (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 299 
 300         memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 301 
 302         if (c->ro_mount) {
 303                 /* Read-only mode. Keep a copy for switching to rw mode */
 304                 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
 305                 if (!c->rcvrd_mst_node) {
 306                         err = -ENOMEM;
 307                         goto out_free;
 308                 }
 309                 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
 310 
 311                 /*
 312                  * We had to recover the master node, which means there was an
 313                  * unclean reboot. However, it is possible that the master node
 314                  * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
 315                  * E.g., consider the following chain of events:
 316                  *
 317                  * 1. UBIFS was cleanly unmounted, so the master node is clean
 318                  * 2. UBIFS is being mounted R/W and starts changing the master
 319                  *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
 320                  *    so this LEB ends up with some amount of garbage at the
 321                  *    end.
 322                  * 3. UBIFS is being mounted R/O. We reach this place and
 323                  *    recover the master node from the second LEB
 324                  *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
 325                  *    because we are being mounted R/O. We have to defer the
 326                  *    operation.
 327                  * 4. However, this master node (@c->mst_node) is marked as
 328                  *    clean (since the step 1). And if we just return, the
 329                  *    mount code will be confused and won't recover the master
 330                  *    node when it is re-mounter R/W later.
 331                  *
 332                  *    Thus, to force the recovery by marking the master node as
 333                  *    dirty.
 334                  */
 335                 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 336         } else {
 337                 /* Write the recovered master node */
 338                 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
 339                 err = write_rcvrd_mst_node(c, c->mst_node);
 340                 if (err)
 341                         goto out_free;
 342         }
 343 
 344         vfree(buf2);
 345         vfree(buf1);
 346 
 347         return 0;
 348 
 349 out_err:
 350         err = -EINVAL;
 351 out_free:
 352         ubifs_err(c, "failed to recover master node");
 353         if (mst1) {
 354                 ubifs_err(c, "dumping first master node");
 355                 ubifs_dump_node(c, mst1);
 356         }
 357         if (mst2) {
 358                 ubifs_err(c, "dumping second master node");
 359                 ubifs_dump_node(c, mst2);
 360         }
 361         vfree(buf2);
 362         vfree(buf1);
 363         return err;
 364 }
 365 
 366 /**
 367  * ubifs_write_rcvrd_mst_node - write the recovered master node.
 368  * @c: UBIFS file-system description object
 369  *
 370  * This function writes the master node that was recovered during mounting in
 371  * read-only mode and must now be written because we are remounting rw.
 372  *
 373  * This function returns %0 on success and a negative error code on failure.
 374  */
 375 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
 376 {
 377         int err;
 378 
 379         if (!c->rcvrd_mst_node)
 380                 return 0;
 381         c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 382         c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 383         err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
 384         if (err)
 385                 return err;
 386         kfree(c->rcvrd_mst_node);
 387         c->rcvrd_mst_node = NULL;
 388         return 0;
 389 }
 390 
 391 /**
 392  * is_last_write - determine if an offset was in the last write to a LEB.
 393  * @c: UBIFS file-system description object
 394  * @buf: buffer to check
 395  * @offs: offset to check
 396  *
 397  * This function returns %1 if @offs was in the last write to the LEB whose data
 398  * is in @buf, otherwise %0 is returned. The determination is made by checking
 399  * for subsequent empty space starting from the next @c->max_write_size
 400  * boundary.
 401  */
 402 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 403 {
 404         int empty_offs, check_len;
 405         uint8_t *p;
 406 
 407         /*
 408          * Round up to the next @c->max_write_size boundary i.e. @offs is in
 409          * the last wbuf written. After that should be empty space.
 410          */
 411         empty_offs = ALIGN(offs + 1, c->max_write_size);
 412         check_len = c->leb_size - empty_offs;
 413         p = buf + empty_offs - offs;
 414         return is_empty(p, check_len);
 415 }
 416 
 417 /**
 418  * clean_buf - clean the data from an LEB sitting in a buffer.
 419  * @c: UBIFS file-system description object
 420  * @buf: buffer to clean
 421  * @lnum: LEB number to clean
 422  * @offs: offset from which to clean
 423  * @len: length of buffer
 424  *
 425  * This function pads up to the next min_io_size boundary (if there is one) and
 426  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 427  * @c->min_io_size boundary.
 428  */
 429 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
 430                       int *offs, int *len)
 431 {
 432         int empty_offs, pad_len;
 433 
 434         dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 435 
 436         ubifs_assert(c, !(*offs & 7));
 437         empty_offs = ALIGN(*offs, c->min_io_size);
 438         pad_len = empty_offs - *offs;
 439         ubifs_pad(c, *buf, pad_len);
 440         *offs += pad_len;
 441         *buf += pad_len;
 442         *len -= pad_len;
 443         memset(*buf, 0xff, c->leb_size - empty_offs);
 444 }
 445 
 446 /**
 447  * no_more_nodes - determine if there are no more nodes in a buffer.
 448  * @c: UBIFS file-system description object
 449  * @buf: buffer to check
 450  * @len: length of buffer
 451  * @lnum: LEB number of the LEB from which @buf was read
 452  * @offs: offset from which @buf was read
 453  *
 454  * This function ensures that the corrupted node at @offs is the last thing
 455  * written to a LEB. This function returns %1 if more data is not found and
 456  * %0 if more data is found.
 457  */
 458 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
 459                         int lnum, int offs)
 460 {
 461         struct ubifs_ch *ch = buf;
 462         int skip, dlen = le32_to_cpu(ch->len);
 463 
 464         /* Check for empty space after the corrupt node's common header */
 465         skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
 466         if (is_empty(buf + skip, len - skip))
 467                 return 1;
 468         /*
 469          * The area after the common header size is not empty, so the common
 470          * header must be intact. Check it.
 471          */
 472         if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
 473                 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
 474                 return 0;
 475         }
 476         /* Now we know the corrupt node's length we can skip over it */
 477         skip = ALIGN(offs + dlen, c->max_write_size) - offs;
 478         /* After which there should be empty space */
 479         if (is_empty(buf + skip, len - skip))
 480                 return 1;
 481         dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
 482         return 0;
 483 }
 484 
 485 /**
 486  * fix_unclean_leb - fix an unclean LEB.
 487  * @c: UBIFS file-system description object
 488  * @sleb: scanned LEB information
 489  * @start: offset where scan started
 490  */
 491 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 492                            int start)
 493 {
 494         int lnum = sleb->lnum, endpt = start;
 495 
 496         /* Get the end offset of the last node we are keeping */
 497         if (!list_empty(&sleb->nodes)) {
 498                 struct ubifs_scan_node *snod;
 499 
 500                 snod = list_entry(sleb->nodes.prev,
 501                                   struct ubifs_scan_node, list);
 502                 endpt = snod->offs + snod->len;
 503         }
 504 
 505         if (c->ro_mount && !c->remounting_rw) {
 506                 /* Add to recovery list */
 507                 struct ubifs_unclean_leb *ucleb;
 508 
 509                 dbg_rcvry("need to fix LEB %d start %d endpt %d",
 510                           lnum, start, sleb->endpt);
 511                 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
 512                 if (!ucleb)
 513                         return -ENOMEM;
 514                 ucleb->lnum = lnum;
 515                 ucleb->endpt = endpt;
 516                 list_add_tail(&ucleb->list, &c->unclean_leb_list);
 517         } else {
 518                 /* Write the fixed LEB back to flash */
 519                 int err;
 520 
 521                 dbg_rcvry("fixing LEB %d start %d endpt %d",
 522                           lnum, start, sleb->endpt);
 523                 if (endpt == 0) {
 524                         err = ubifs_leb_unmap(c, lnum);
 525                         if (err)
 526                                 return err;
 527                 } else {
 528                         int len = ALIGN(endpt, c->min_io_size);
 529 
 530                         if (start) {
 531                                 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
 532                                                      start, 1);
 533                                 if (err)
 534                                         return err;
 535                         }
 536                         /* Pad to min_io_size */
 537                         if (len > endpt) {
 538                                 int pad_len = len - ALIGN(endpt, 8);
 539 
 540                                 if (pad_len > 0) {
 541                                         void *buf = sleb->buf + len - pad_len;
 542 
 543                                         ubifs_pad(c, buf, pad_len);
 544                                 }
 545                         }
 546                         err = ubifs_leb_change(c, lnum, sleb->buf, len);
 547                         if (err)
 548                                 return err;
 549                 }
 550         }
 551         return 0;
 552 }
 553 
 554 /**
 555  * drop_last_group - drop the last group of nodes.
 556  * @sleb: scanned LEB information
 557  * @offs: offset of dropped nodes is returned here
 558  *
 559  * This is a helper function for 'ubifs_recover_leb()' which drops the last
 560  * group of nodes of the scanned LEB.
 561  */
 562 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
 563 {
 564         while (!list_empty(&sleb->nodes)) {
 565                 struct ubifs_scan_node *snod;
 566                 struct ubifs_ch *ch;
 567 
 568                 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 569                                   list);
 570                 ch = snod->node;
 571                 if (ch->group_type != UBIFS_IN_NODE_GROUP)
 572                         break;
 573 
 574                 dbg_rcvry("dropping grouped node at %d:%d",
 575                           sleb->lnum, snod->offs);
 576                 *offs = snod->offs;
 577                 list_del(&snod->list);
 578                 kfree(snod);
 579                 sleb->nodes_cnt -= 1;
 580         }
 581 }
 582 
 583 /**
 584  * drop_last_node - drop the last node.
 585  * @sleb: scanned LEB information
 586  * @offs: offset of dropped nodes is returned here
 587  *
 588  * This is a helper function for 'ubifs_recover_leb()' which drops the last
 589  * node of the scanned LEB.
 590  */
 591 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
 592 {
 593         struct ubifs_scan_node *snod;
 594 
 595         if (!list_empty(&sleb->nodes)) {
 596                 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 597                                   list);
 598 
 599                 dbg_rcvry("dropping last node at %d:%d",
 600                           sleb->lnum, snod->offs);
 601                 *offs = snod->offs;
 602                 list_del(&snod->list);
 603                 kfree(snod);
 604                 sleb->nodes_cnt -= 1;
 605         }
 606 }
 607 
 608 /**
 609  * ubifs_recover_leb - scan and recover a LEB.
 610  * @c: UBIFS file-system description object
 611  * @lnum: LEB number
 612  * @offs: offset
 613  * @sbuf: LEB-sized buffer to use
 614  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
 615  *         belong to any journal head)
 616  *
 617  * This function does a scan of a LEB, but caters for errors that might have
 618  * been caused by the unclean unmount from which we are attempting to recover.
 619  * Returns the scanned information on success and a negative error code on
 620  * failure.
 621  */
 622 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
 623                                          int offs, void *sbuf, int jhead)
 624 {
 625         int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
 626         int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
 627         struct ubifs_scan_leb *sleb;
 628         void *buf = sbuf + offs;
 629 
 630         dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
 631 
 632         sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 633         if (IS_ERR(sleb))
 634                 return sleb;
 635 
 636         ubifs_assert(c, len >= 8);
 637         while (len >= 8) {
 638                 dbg_scan("look at LEB %d:%d (%d bytes left)",
 639                          lnum, offs, len);
 640 
 641                 cond_resched();
 642 
 643                 /*
 644                  * Scan quietly until there is an error from which we cannot
 645                  * recover
 646                  */
 647                 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 648                 if (ret == SCANNED_A_NODE) {
 649                         /* A valid node, and not a padding node */
 650                         struct ubifs_ch *ch = buf;
 651                         int node_len;
 652 
 653                         err = ubifs_add_snod(c, sleb, buf, offs);
 654                         if (err)
 655                                 goto error;
 656                         node_len = ALIGN(le32_to_cpu(ch->len), 8);
 657                         offs += node_len;
 658                         buf += node_len;
 659                         len -= node_len;
 660                 } else if (ret > 0) {
 661                         /* Padding bytes or a valid padding node */
 662                         offs += ret;
 663                         buf += ret;
 664                         len -= ret;
 665                 } else if (ret == SCANNED_EMPTY_SPACE ||
 666                            ret == SCANNED_GARBAGE     ||
 667                            ret == SCANNED_A_BAD_PAD_NODE ||
 668                            ret == SCANNED_A_CORRUPT_NODE) {
 669                         dbg_rcvry("found corruption (%d) at %d:%d",
 670                                   ret, lnum, offs);
 671                         break;
 672                 } else {
 673                         ubifs_err(c, "unexpected return value %d", ret);
 674                         err = -EINVAL;
 675                         goto error;
 676                 }
 677         }
 678 
 679         if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
 680                 if (!is_last_write(c, buf, offs))
 681                         goto corrupted_rescan;
 682         } else if (ret == SCANNED_A_CORRUPT_NODE) {
 683                 if (!no_more_nodes(c, buf, len, lnum, offs))
 684                         goto corrupted_rescan;
 685         } else if (!is_empty(buf, len)) {
 686                 if (!is_last_write(c, buf, offs)) {
 687                         int corruption = first_non_ff(buf, len);
 688 
 689                         /*
 690                          * See header comment for this file for more
 691                          * explanations about the reasons we have this check.
 692                          */
 693                         ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
 694                                   lnum, offs, corruption);
 695                         /* Make sure we dump interesting non-0xFF data */
 696                         offs += corruption;
 697                         buf += corruption;
 698                         goto corrupted;
 699                 }
 700         }
 701 
 702         min_io_unit = round_down(offs, c->min_io_size);
 703         if (grouped)
 704                 /*
 705                  * If nodes are grouped, always drop the incomplete group at
 706                  * the end.
 707                  */
 708                 drop_last_group(sleb, &offs);
 709 
 710         if (jhead == GCHD) {
 711                 /*
 712                  * If this LEB belongs to the GC head then while we are in the
 713                  * middle of the same min. I/O unit keep dropping nodes. So
 714                  * basically, what we want is to make sure that the last min.
 715                  * I/O unit where we saw the corruption is dropped completely
 716                  * with all the uncorrupted nodes which may possibly sit there.
 717                  *
 718                  * In other words, let's name the min. I/O unit where the
 719                  * corruption starts B, and the previous min. I/O unit A. The
 720                  * below code tries to deal with a situation when half of B
 721                  * contains valid nodes or the end of a valid node, and the
 722                  * second half of B contains corrupted data or garbage. This
 723                  * means that UBIFS had been writing to B just before the power
 724                  * cut happened. I do not know how realistic is this scenario
 725                  * that half of the min. I/O unit had been written successfully
 726                  * and the other half not, but this is possible in our 'failure
 727                  * mode emulation' infrastructure at least.
 728                  *
 729                  * So what is the problem, why we need to drop those nodes? Why
 730                  * can't we just clean-up the second half of B by putting a
 731                  * padding node there? We can, and this works fine with one
 732                  * exception which was reproduced with power cut emulation
 733                  * testing and happens extremely rarely.
 734                  *
 735                  * Imagine the file-system is full, we run GC which starts
 736                  * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
 737                  * the current GC head LEB). The @c->gc_lnum is -1, which means
 738                  * that GC will retain LEB X and will try to continue. Imagine
 739                  * that LEB X is currently the dirtiest LEB, and the amount of
 740                  * used space in LEB Y is exactly the same as amount of free
 741                  * space in LEB X.
 742                  *
 743                  * And a power cut happens when nodes are moved from LEB X to
 744                  * LEB Y. We are here trying to recover LEB Y which is the GC
 745                  * head LEB. We find the min. I/O unit B as described above.
 746                  * Then we clean-up LEB Y by padding min. I/O unit. And later
 747                  * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
 748                  * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
 749                  * does not match because the amount of valid nodes there does
 750                  * not fit the free space in LEB Y any more! And this is
 751                  * because of the padding node which we added to LEB Y. The
 752                  * user-visible effect of this which I once observed and
 753                  * analysed is that we cannot mount the file-system with
 754                  * -ENOSPC error.
 755                  *
 756                  * So obviously, to make sure that situation does not happen we
 757                  * should free min. I/O unit B in LEB Y completely and the last
 758                  * used min. I/O unit in LEB Y should be A. This is basically
 759                  * what the below code tries to do.
 760                  */
 761                 while (offs > min_io_unit)
 762                         drop_last_node(sleb, &offs);
 763         }
 764 
 765         buf = sbuf + offs;
 766         len = c->leb_size - offs;
 767 
 768         clean_buf(c, &buf, lnum, &offs, &len);
 769         ubifs_end_scan(c, sleb, lnum, offs);
 770 
 771         err = fix_unclean_leb(c, sleb, start);
 772         if (err)
 773                 goto error;
 774 
 775         return sleb;
 776 
 777 corrupted_rescan:
 778         /* Re-scan the corrupted data with verbose messages */
 779         ubifs_err(c, "corruption %d", ret);
 780         ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
 781 corrupted:
 782         ubifs_scanned_corruption(c, lnum, offs, buf);
 783         err = -EUCLEAN;
 784 error:
 785         ubifs_err(c, "LEB %d scanning failed", lnum);
 786         ubifs_scan_destroy(sleb);
 787         return ERR_PTR(err);
 788 }
 789 
 790 /**
 791  * get_cs_sqnum - get commit start sequence number.
 792  * @c: UBIFS file-system description object
 793  * @lnum: LEB number of commit start node
 794  * @offs: offset of commit start node
 795  * @cs_sqnum: commit start sequence number is returned here
 796  *
 797  * This function returns %0 on success and a negative error code on failure.
 798  */
 799 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
 800                         unsigned long long *cs_sqnum)
 801 {
 802         struct ubifs_cs_node *cs_node = NULL;
 803         int err, ret;
 804 
 805         dbg_rcvry("at %d:%d", lnum, offs);
 806         cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
 807         if (!cs_node)
 808                 return -ENOMEM;
 809         if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
 810                 goto out_err;
 811         err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
 812                              UBIFS_CS_NODE_SZ, 0);
 813         if (err && err != -EBADMSG)
 814                 goto out_free;
 815         ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
 816         if (ret != SCANNED_A_NODE) {
 817                 ubifs_err(c, "Not a valid node");
 818                 goto out_err;
 819         }
 820         if (cs_node->ch.node_type != UBIFS_CS_NODE) {
 821                 ubifs_err(c, "Not a CS node, type is %d", cs_node->ch.node_type);
 822                 goto out_err;
 823         }
 824         if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
 825                 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
 826                           (unsigned long long)le64_to_cpu(cs_node->cmt_no),
 827                           c->cmt_no);
 828                 goto out_err;
 829         }
 830         *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
 831         dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
 832         kfree(cs_node);
 833         return 0;
 834 
 835 out_err:
 836         err = -EINVAL;
 837 out_free:
 838         ubifs_err(c, "failed to get CS sqnum");
 839         kfree(cs_node);
 840         return err;
 841 }
 842 
 843 /**
 844  * ubifs_recover_log_leb - scan and recover a log LEB.
 845  * @c: UBIFS file-system description object
 846  * @lnum: LEB number
 847  * @offs: offset
 848  * @sbuf: LEB-sized buffer to use
 849  *
 850  * This function does a scan of a LEB, but caters for errors that might have
 851  * been caused by unclean reboots from which we are attempting to recover
 852  * (assume that only the last log LEB can be corrupted by an unclean reboot).
 853  *
 854  * This function returns %0 on success and a negative error code on failure.
 855  */
 856 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
 857                                              int offs, void *sbuf)
 858 {
 859         struct ubifs_scan_leb *sleb;
 860         int next_lnum;
 861 
 862         dbg_rcvry("LEB %d", lnum);
 863         next_lnum = lnum + 1;
 864         if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
 865                 next_lnum = UBIFS_LOG_LNUM;
 866         if (next_lnum != c->ltail_lnum) {
 867                 /*
 868                  * We can only recover at the end of the log, so check that the
 869                  * next log LEB is empty or out of date.
 870                  */
 871                 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
 872                 if (IS_ERR(sleb))
 873                         return sleb;
 874                 if (sleb->nodes_cnt) {
 875                         struct ubifs_scan_node *snod;
 876                         unsigned long long cs_sqnum = c->cs_sqnum;
 877 
 878                         snod = list_entry(sleb->nodes.next,
 879                                           struct ubifs_scan_node, list);
 880                         if (cs_sqnum == 0) {
 881                                 int err;
 882 
 883                                 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
 884                                 if (err) {
 885                                         ubifs_scan_destroy(sleb);
 886                                         return ERR_PTR(err);
 887                                 }
 888                         }
 889                         if (snod->sqnum > cs_sqnum) {
 890                                 ubifs_err(c, "unrecoverable log corruption in LEB %d",
 891                                           lnum);
 892                                 ubifs_scan_destroy(sleb);
 893                                 return ERR_PTR(-EUCLEAN);
 894                         }
 895                 }
 896                 ubifs_scan_destroy(sleb);
 897         }
 898         return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
 899 }
 900 
 901 /**
 902  * recover_head - recover a head.
 903  * @c: UBIFS file-system description object
 904  * @lnum: LEB number of head to recover
 905  * @offs: offset of head to recover
 906  * @sbuf: LEB-sized buffer to use
 907  *
 908  * This function ensures that there is no data on the flash at a head location.
 909  *
 910  * This function returns %0 on success and a negative error code on failure.
 911  */
 912 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 913 {
 914         int len = c->max_write_size, err;
 915 
 916         if (offs + len > c->leb_size)
 917                 len = c->leb_size - offs;
 918 
 919         if (!len)
 920                 return 0;
 921 
 922         /* Read at the head location and check it is empty flash */
 923         err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
 924         if (err || !is_empty(sbuf, len)) {
 925                 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
 926                 if (offs == 0)
 927                         return ubifs_leb_unmap(c, lnum);
 928                 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
 929                 if (err)
 930                         return err;
 931                 return ubifs_leb_change(c, lnum, sbuf, offs);
 932         }
 933 
 934         return 0;
 935 }
 936 
 937 /**
 938  * ubifs_recover_inl_heads - recover index and LPT heads.
 939  * @c: UBIFS file-system description object
 940  * @sbuf: LEB-sized buffer to use
 941  *
 942  * This function ensures that there is no data on the flash at the index and
 943  * LPT head locations.
 944  *
 945  * This deals with the recovery of a half-completed journal commit. UBIFS is
 946  * careful never to overwrite the last version of the index or the LPT. Because
 947  * the index and LPT are wandering trees, data from a half-completed commit will
 948  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 949  * assumed to be empty and will be unmapped anyway before use, or in the index
 950  * and LPT heads.
 951  *
 952  * This function returns %0 on success and a negative error code on failure.
 953  */
 954 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
 955 {
 956         int err;
 957 
 958         ubifs_assert(c, !c->ro_mount || c->remounting_rw);
 959 
 960         dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
 961         err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
 962         if (err)
 963                 return err;
 964 
 965         dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
 966 
 967         return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
 968 }
 969 
 970 /**
 971  * clean_an_unclean_leb - read and write a LEB to remove corruption.
 972  * @c: UBIFS file-system description object
 973  * @ucleb: unclean LEB information
 974  * @sbuf: LEB-sized buffer to use
 975  *
 976  * This function reads a LEB up to a point pre-determined by the mount recovery,
 977  * checks the nodes, and writes the result back to the flash, thereby cleaning
 978  * off any following corruption, or non-fatal ECC errors.
 979  *
 980  * This function returns %0 on success and a negative error code on failure.
 981  */
 982 static int clean_an_unclean_leb(struct ubifs_info *c,
 983                                 struct ubifs_unclean_leb *ucleb, void *sbuf)
 984 {
 985         int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
 986         void *buf = sbuf;
 987 
 988         dbg_rcvry("LEB %d len %d", lnum, len);
 989 
 990         if (len == 0) {
 991                 /* Nothing to read, just unmap it */
 992                 return ubifs_leb_unmap(c, lnum);
 993         }
 994 
 995         err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
 996         if (err && err != -EBADMSG)
 997                 return err;
 998 
 999         while (len >= 8) {
1000                 int ret;
1001 
1002                 cond_resched();
1003 
1004                 /* Scan quietly until there is an error */
1005                 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1006 
1007                 if (ret == SCANNED_A_NODE) {
1008                         /* A valid node, and not a padding node */
1009                         struct ubifs_ch *ch = buf;
1010                         int node_len;
1011 
1012                         node_len = ALIGN(le32_to_cpu(ch->len), 8);
1013                         offs += node_len;
1014                         buf += node_len;
1015                         len -= node_len;
1016                         continue;
1017                 }
1018 
1019                 if (ret > 0) {
1020                         /* Padding bytes or a valid padding node */
1021                         offs += ret;
1022                         buf += ret;
1023                         len -= ret;
1024                         continue;
1025                 }
1026 
1027                 if (ret == SCANNED_EMPTY_SPACE) {
1028                         ubifs_err(c, "unexpected empty space at %d:%d",
1029                                   lnum, offs);
1030                         return -EUCLEAN;
1031                 }
1032 
1033                 if (quiet) {
1034                         /* Redo the last scan but noisily */
1035                         quiet = 0;
1036                         continue;
1037                 }
1038 
1039                 ubifs_scanned_corruption(c, lnum, offs, buf);
1040                 return -EUCLEAN;
1041         }
1042 
1043         /* Pad to min_io_size */
1044         len = ALIGN(ucleb->endpt, c->min_io_size);
1045         if (len > ucleb->endpt) {
1046                 int pad_len = len - ALIGN(ucleb->endpt, 8);
1047 
1048                 if (pad_len > 0) {
1049                         buf = c->sbuf + len - pad_len;
1050                         ubifs_pad(c, buf, pad_len);
1051                 }
1052         }
1053 
1054         /* Write back the LEB atomically */
1055         err = ubifs_leb_change(c, lnum, sbuf, len);
1056         if (err)
1057                 return err;
1058 
1059         dbg_rcvry("cleaned LEB %d", lnum);
1060 
1061         return 0;
1062 }
1063 
1064 /**
1065  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1066  * @c: UBIFS file-system description object
1067  * @sbuf: LEB-sized buffer to use
1068  *
1069  * This function cleans a LEB identified during recovery that needs to be
1070  * written but was not because UBIFS was mounted read-only. This happens when
1071  * remounting to read-write mode.
1072  *
1073  * This function returns %0 on success and a negative error code on failure.
1074  */
1075 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1076 {
1077         dbg_rcvry("recovery");
1078         while (!list_empty(&c->unclean_leb_list)) {
1079                 struct ubifs_unclean_leb *ucleb;
1080                 int err;
1081 
1082                 ucleb = list_entry(c->unclean_leb_list.next,
1083                                    struct ubifs_unclean_leb, list);
1084                 err = clean_an_unclean_leb(c, ucleb, sbuf);
1085                 if (err)
1086                         return err;
1087                 list_del(&ucleb->list);
1088                 kfree(ucleb);
1089         }
1090         return 0;
1091 }
1092 
1093 /**
1094  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1095  * @c: UBIFS file-system description object
1096  *
1097  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1098  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1099  * zero in case of success and a negative error code in case of failure.
1100  */
1101 static int grab_empty_leb(struct ubifs_info *c)
1102 {
1103         int lnum, err;
1104 
1105         /*
1106          * Note, it is very important to first search for an empty LEB and then
1107          * run the commit, not vice-versa. The reason is that there might be
1108          * only one empty LEB at the moment, the one which has been the
1109          * @c->gc_lnum just before the power cut happened. During the regular
1110          * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1111          * one but GC can grab it. But at this moment this single empty LEB is
1112          * not marked as taken, so if we run commit - what happens? Right, the
1113          * commit will grab it and write the index there. Remember that the
1114          * index always expands as long as there is free space, and it only
1115          * starts consolidating when we run out of space.
1116          *
1117          * IOW, if we run commit now, we might not be able to find a free LEB
1118          * after this.
1119          */
1120         lnum = ubifs_find_free_leb_for_idx(c);
1121         if (lnum < 0) {
1122                 ubifs_err(c, "could not find an empty LEB");
1123                 ubifs_dump_lprops(c);
1124                 ubifs_dump_budg(c, &c->bi);
1125                 return lnum;
1126         }
1127 
1128         /* Reset the index flag */
1129         err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1130                                   LPROPS_INDEX, 0);
1131         if (err)
1132                 return err;
1133 
1134         c->gc_lnum = lnum;
1135         dbg_rcvry("found empty LEB %d, run commit", lnum);
1136 
1137         return ubifs_run_commit(c);
1138 }
1139 
1140 /**
1141  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1142  * @c: UBIFS file-system description object
1143  *
1144  * Out-of-place garbage collection requires always one empty LEB with which to
1145  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1146  * written to the master node on unmounting. In the case of an unclean unmount
1147  * the value of gc_lnum recorded in the master node is out of date and cannot
1148  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1149  * However, there may not be enough empty space, in which case it must be
1150  * possible to GC the dirtiest LEB into the GC head LEB.
1151  *
1152  * This function also runs the commit which causes the TNC updates from
1153  * size-recovery and orphans to be written to the flash. That is important to
1154  * ensure correct replay order for subsequent mounts.
1155  *
1156  * This function returns %0 on success and a negative error code on failure.
1157  */
1158 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1159 {
1160         struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1161         struct ubifs_lprops lp;
1162         int err;
1163 
1164         dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1165 
1166         c->gc_lnum = -1;
1167         if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1168                 return grab_empty_leb(c);
1169 
1170         err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1171         if (err) {
1172                 if (err != -ENOSPC)
1173                         return err;
1174 
1175                 dbg_rcvry("could not find a dirty LEB");
1176                 return grab_empty_leb(c);
1177         }
1178 
1179         ubifs_assert(c, !(lp.flags & LPROPS_INDEX));
1180         ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs);
1181 
1182         /*
1183          * We run the commit before garbage collection otherwise subsequent
1184          * mounts will see the GC and orphan deletion in a different order.
1185          */
1186         dbg_rcvry("committing");
1187         err = ubifs_run_commit(c);
1188         if (err)
1189                 return err;
1190 
1191         dbg_rcvry("GC'ing LEB %d", lp.lnum);
1192         mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1193         err = ubifs_garbage_collect_leb(c, &lp);
1194         if (err >= 0) {
1195                 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1196 
1197                 if (err2)
1198                         err = err2;
1199         }
1200         mutex_unlock(&wbuf->io_mutex);
1201         if (err < 0) {
1202                 ubifs_err(c, "GC failed, error %d", err);
1203                 if (err == -EAGAIN)
1204                         err = -EINVAL;
1205                 return err;
1206         }
1207 
1208         ubifs_assert(c, err == LEB_RETAINED);
1209         if (err != LEB_RETAINED)
1210                 return -EINVAL;
1211 
1212         err = ubifs_leb_unmap(c, c->gc_lnum);
1213         if (err)
1214                 return err;
1215 
1216         dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1217         return 0;
1218 }
1219 
1220 /**
1221  * struct size_entry - inode size information for recovery.
1222  * @rb: link in the RB-tree of sizes
1223  * @inum: inode number
1224  * @i_size: size on inode
1225  * @d_size: maximum size based on data nodes
1226  * @exists: indicates whether the inode exists
1227  * @inode: inode if pinned in memory awaiting rw mode to fix it
1228  */
1229 struct size_entry {
1230         struct rb_node rb;
1231         ino_t inum;
1232         loff_t i_size;
1233         loff_t d_size;
1234         int exists;
1235         struct inode *inode;
1236 };
1237 
1238 /**
1239  * add_ino - add an entry to the size tree.
1240  * @c: UBIFS file-system description object
1241  * @inum: inode number
1242  * @i_size: size on inode
1243  * @d_size: maximum size based on data nodes
1244  * @exists: indicates whether the inode exists
1245  */
1246 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1247                    loff_t d_size, int exists)
1248 {
1249         struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1250         struct size_entry *e;
1251 
1252         while (*p) {
1253                 parent = *p;
1254                 e = rb_entry(parent, struct size_entry, rb);
1255                 if (inum < e->inum)
1256                         p = &(*p)->rb_left;
1257                 else
1258                         p = &(*p)->rb_right;
1259         }
1260 
1261         e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1262         if (!e)
1263                 return -ENOMEM;
1264 
1265         e->inum = inum;
1266         e->i_size = i_size;
1267         e->d_size = d_size;
1268         e->exists = exists;
1269 
1270         rb_link_node(&e->rb, parent, p);
1271         rb_insert_color(&e->rb, &c->size_tree);
1272 
1273         return 0;
1274 }
1275 
1276 /**
1277  * find_ino - find an entry on the size tree.
1278  * @c: UBIFS file-system description object
1279  * @inum: inode number
1280  */
1281 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1282 {
1283         struct rb_node *p = c->size_tree.rb_node;
1284         struct size_entry *e;
1285 
1286         while (p) {
1287                 e = rb_entry(p, struct size_entry, rb);
1288                 if (inum < e->inum)
1289                         p = p->rb_left;
1290                 else if (inum > e->inum)
1291                         p = p->rb_right;
1292                 else
1293                         return e;
1294         }
1295         return NULL;
1296 }
1297 
1298 /**
1299  * remove_ino - remove an entry from the size tree.
1300  * @c: UBIFS file-system description object
1301  * @inum: inode number
1302  */
1303 static void remove_ino(struct ubifs_info *c, ino_t inum)
1304 {
1305         struct size_entry *e = find_ino(c, inum);
1306 
1307         if (!e)
1308                 return;
1309         rb_erase(&e->rb, &c->size_tree);
1310         kfree(e);
1311 }
1312 
1313 /**
1314  * ubifs_destroy_size_tree - free resources related to the size tree.
1315  * @c: UBIFS file-system description object
1316  */
1317 void ubifs_destroy_size_tree(struct ubifs_info *c)
1318 {
1319         struct size_entry *e, *n;
1320 
1321         rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1322                 iput(e->inode);
1323                 kfree(e);
1324         }
1325 
1326         c->size_tree = RB_ROOT;
1327 }
1328 
1329 /**
1330  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1331  * @c: UBIFS file-system description object
1332  * @key: node key
1333  * @deletion: node is for a deletion
1334  * @new_size: inode size
1335  *
1336  * This function has two purposes:
1337  *     1) to ensure there are no data nodes that fall outside the inode size
1338  *     2) to ensure there are no data nodes for inodes that do not exist
1339  * To accomplish those purposes, a rb-tree is constructed containing an entry
1340  * for each inode number in the journal that has not been deleted, and recording
1341  * the size from the inode node, the maximum size of any data node (also altered
1342  * by truncations) and a flag indicating a inode number for which no inode node
1343  * was present in the journal.
1344  *
1345  * Note that there is still the possibility that there are data nodes that have
1346  * been committed that are beyond the inode size, however the only way to find
1347  * them would be to scan the entire index. Alternatively, some provision could
1348  * be made to record the size of inodes at the start of commit, which would seem
1349  * very cumbersome for a scenario that is quite unlikely and the only negative
1350  * consequence of which is wasted space.
1351  *
1352  * This functions returns %0 on success and a negative error code on failure.
1353  */
1354 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1355                              int deletion, loff_t new_size)
1356 {
1357         ino_t inum = key_inum(c, key);
1358         struct size_entry *e;
1359         int err;
1360 
1361         switch (key_type(c, key)) {
1362         case UBIFS_INO_KEY:
1363                 if (deletion)
1364                         remove_ino(c, inum);
1365                 else {
1366                         e = find_ino(c, inum);
1367                         if (e) {
1368                                 e->i_size = new_size;
1369                                 e->exists = 1;
1370                         } else {
1371                                 err = add_ino(c, inum, new_size, 0, 1);
1372                                 if (err)
1373                                         return err;
1374                         }
1375                 }
1376                 break;
1377         case UBIFS_DATA_KEY:
1378                 e = find_ino(c, inum);
1379                 if (e) {
1380                         if (new_size > e->d_size)
1381                                 e->d_size = new_size;
1382                 } else {
1383                         err = add_ino(c, inum, 0, new_size, 0);
1384                         if (err)
1385                                 return err;
1386                 }
1387                 break;
1388         case UBIFS_TRUN_KEY:
1389                 e = find_ino(c, inum);
1390                 if (e)
1391                         e->d_size = new_size;
1392                 break;
1393         }
1394         return 0;
1395 }
1396 
1397 /**
1398  * fix_size_in_place - fix inode size in place on flash.
1399  * @c: UBIFS file-system description object
1400  * @e: inode size information for recovery
1401  */
1402 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1403 {
1404         struct ubifs_ino_node *ino = c->sbuf;
1405         unsigned char *p;
1406         union ubifs_key key;
1407         int err, lnum, offs, len;
1408         loff_t i_size;
1409         uint32_t crc;
1410 
1411         /* Locate the inode node LEB number and offset */
1412         ino_key_init(c, &key, e->inum);
1413         err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1414         if (err)
1415                 goto out;
1416         /*
1417          * If the size recorded on the inode node is greater than the size that
1418          * was calculated from nodes in the journal then don't change the inode.
1419          */
1420         i_size = le64_to_cpu(ino->size);
1421         if (i_size >= e->d_size)
1422                 return 0;
1423         /* Read the LEB */
1424         err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1425         if (err)
1426                 goto out;
1427         /* Change the size field and recalculate the CRC */
1428         ino = c->sbuf + offs;
1429         ino->size = cpu_to_le64(e->d_size);
1430         len = le32_to_cpu(ino->ch.len);
1431         crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1432         ino->ch.crc = cpu_to_le32(crc);
1433         /* Work out where data in the LEB ends and free space begins */
1434         p = c->sbuf;
1435         len = c->leb_size - 1;
1436         while (p[len] == 0xff)
1437                 len -= 1;
1438         len = ALIGN(len + 1, c->min_io_size);
1439         /* Atomically write the fixed LEB back again */
1440         err = ubifs_leb_change(c, lnum, c->sbuf, len);
1441         if (err)
1442                 goto out;
1443         dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1444                   (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1445         return 0;
1446 
1447 out:
1448         ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1449                    (unsigned long)e->inum, e->i_size, e->d_size, err);
1450         return err;
1451 }
1452 
1453 /**
1454  * inode_fix_size - fix inode size
1455  * @c: UBIFS file-system description object
1456  * @e: inode size information for recovery
1457  */
1458 static int inode_fix_size(struct ubifs_info *c, struct size_entry *e)
1459 {
1460         struct inode *inode;
1461         struct ubifs_inode *ui;
1462         int err;
1463 
1464         if (c->ro_mount)
1465                 ubifs_assert(c, !e->inode);
1466 
1467         if (e->inode) {
1468                 /* Remounting rw, pick up inode we stored earlier */
1469                 inode = e->inode;
1470         } else {
1471                 inode = ubifs_iget(c->vfs_sb, e->inum);
1472                 if (IS_ERR(inode))
1473                         return PTR_ERR(inode);
1474 
1475                 if (inode->i_size >= e->d_size) {
1476                         /*
1477                          * The original inode in the index already has a size
1478                          * big enough, nothing to do
1479                          */
1480                         iput(inode);
1481                         return 0;
1482                 }
1483 
1484                 dbg_rcvry("ino %lu size %lld -> %lld",
1485                           (unsigned long)e->inum,
1486                           inode->i_size, e->d_size);
1487 
1488                 ui = ubifs_inode(inode);
1489 
1490                 inode->i_size = e->d_size;
1491                 ui->ui_size = e->d_size;
1492                 ui->synced_i_size = e->d_size;
1493 
1494                 e->inode = inode;
1495         }
1496 
1497         /*
1498          * In readonly mode just keep the inode pinned in memory until we go
1499          * readwrite. In readwrite mode write the inode to the journal with the
1500          * fixed size.
1501          */
1502         if (c->ro_mount)
1503                 return 0;
1504 
1505         err = ubifs_jnl_write_inode(c, inode);
1506 
1507         iput(inode);
1508 
1509         if (err)
1510                 return err;
1511 
1512         rb_erase(&e->rb, &c->size_tree);
1513         kfree(e);
1514 
1515         return 0;
1516 }
1517 
1518 /**
1519  * ubifs_recover_size - recover inode size.
1520  * @c: UBIFS file-system description object
1521  * @in_place: If true, do a in-place size fixup
1522  *
1523  * This function attempts to fix inode size discrepancies identified by the
1524  * 'ubifs_recover_size_accum()' function.
1525  *
1526  * This functions returns %0 on success and a negative error code on failure.
1527  */
1528 int ubifs_recover_size(struct ubifs_info *c, bool in_place)
1529 {
1530         struct rb_node *this = rb_first(&c->size_tree);
1531 
1532         while (this) {
1533                 struct size_entry *e;
1534                 int err;
1535 
1536                 e = rb_entry(this, struct size_entry, rb);
1537 
1538                 this = rb_next(this);
1539 
1540                 if (!e->exists) {
1541                         union ubifs_key key;
1542 
1543                         ino_key_init(c, &key, e->inum);
1544                         err = ubifs_tnc_lookup(c, &key, c->sbuf);
1545                         if (err && err != -ENOENT)
1546                                 return err;
1547                         if (err == -ENOENT) {
1548                                 /* Remove data nodes that have no inode */
1549                                 dbg_rcvry("removing ino %lu",
1550                                           (unsigned long)e->inum);
1551                                 err = ubifs_tnc_remove_ino(c, e->inum);
1552                                 if (err)
1553                                         return err;
1554                         } else {
1555                                 struct ubifs_ino_node *ino = c->sbuf;
1556 
1557                                 e->exists = 1;
1558                                 e->i_size = le64_to_cpu(ino->size);
1559                         }
1560                 }
1561 
1562                 if (e->exists && e->i_size < e->d_size) {
1563                         ubifs_assert(c, !(c->ro_mount && in_place));
1564 
1565                         /*
1566                          * We found data that is outside the found inode size,
1567                          * fixup the inode size
1568                          */
1569 
1570                         if (in_place) {
1571                                 err = fix_size_in_place(c, e);
1572                                 if (err)
1573                                         return err;
1574                                 iput(e->inode);
1575                         } else {
1576                                 err = inode_fix_size(c, e);
1577                                 if (err)
1578                                         return err;
1579                                 continue;
1580                         }
1581                 }
1582 
1583                 rb_erase(&e->rb, &c->size_tree);
1584                 kfree(e);
1585         }
1586 
1587         return 0;
1588 }

/* [<][>][^][v][top][bottom][index][help] */