root/fs/ubifs/budget.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. shrink_liability
  2. run_gc
  3. get_liability
  4. make_free_space
  5. ubifs_calc_min_idx_lebs
  6. ubifs_calc_available
  7. can_use_rp
  8. do_budget_space
  9. calc_idx_growth
  10. calc_data_growth
  11. calc_dd_growth
  12. ubifs_budget_space
  13. ubifs_release_budget
  14. ubifs_convert_page_budget
  15. ubifs_release_dirty_inode_budget
  16. ubifs_reported_space
  17. ubifs_get_free_space_nolock
  18. ubifs_get_free_space

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * This file is part of UBIFS.
   4  *
   5  * Copyright (C) 2006-2008 Nokia Corporation.
   6  *
   7  * Authors: Adrian Hunter
   8  *          Artem Bityutskiy (Битюцкий Артём)
   9  */
  10 
  11 /*
  12  * This file implements the budgeting sub-system which is responsible for UBIFS
  13  * space management.
  14  *
  15  * Factors such as compression, wasted space at the ends of LEBs, space in other
  16  * journal heads, the effect of updates on the index, and so on, make it
  17  * impossible to accurately predict the amount of space needed. Consequently
  18  * approximations are used.
  19  */
  20 
  21 #include "ubifs.h"
  22 #include <linux/writeback.h>
  23 #include <linux/math64.h>
  24 
  25 /*
  26  * When pessimistic budget calculations say that there is no enough space,
  27  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
  28  * or committing. The below constant defines maximum number of times UBIFS
  29  * repeats the operations.
  30  */
  31 #define MAX_MKSPC_RETRIES 3
  32 
  33 /*
  34  * The below constant defines amount of dirty pages which should be written
  35  * back at when trying to shrink the liability.
  36  */
  37 #define NR_TO_WRITE 16
  38 
  39 /**
  40  * shrink_liability - write-back some dirty pages/inodes.
  41  * @c: UBIFS file-system description object
  42  * @nr_to_write: how many dirty pages to write-back
  43  *
  44  * This function shrinks UBIFS liability by means of writing back some amount
  45  * of dirty inodes and their pages.
  46  *
  47  * Note, this function synchronizes even VFS inodes which are locked
  48  * (@i_mutex) by the caller of the budgeting function, because write-back does
  49  * not touch @i_mutex.
  50  */
  51 static void shrink_liability(struct ubifs_info *c, int nr_to_write)
  52 {
  53         down_read(&c->vfs_sb->s_umount);
  54         writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
  55         up_read(&c->vfs_sb->s_umount);
  56 }
  57 
  58 /**
  59  * run_gc - run garbage collector.
  60  * @c: UBIFS file-system description object
  61  *
  62  * This function runs garbage collector to make some more free space. Returns
  63  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
  64  * negative error code in case of failure.
  65  */
  66 static int run_gc(struct ubifs_info *c)
  67 {
  68         int err, lnum;
  69 
  70         /* Make some free space by garbage-collecting dirty space */
  71         down_read(&c->commit_sem);
  72         lnum = ubifs_garbage_collect(c, 1);
  73         up_read(&c->commit_sem);
  74         if (lnum < 0)
  75                 return lnum;
  76 
  77         /* GC freed one LEB, return it to lprops */
  78         dbg_budg("GC freed LEB %d", lnum);
  79         err = ubifs_return_leb(c, lnum);
  80         if (err)
  81                 return err;
  82         return 0;
  83 }
  84 
  85 /**
  86  * get_liability - calculate current liability.
  87  * @c: UBIFS file-system description object
  88  *
  89  * This function calculates and returns current UBIFS liability, i.e. the
  90  * amount of bytes UBIFS has "promised" to write to the media.
  91  */
  92 static long long get_liability(struct ubifs_info *c)
  93 {
  94         long long liab;
  95 
  96         spin_lock(&c->space_lock);
  97         liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
  98         spin_unlock(&c->space_lock);
  99         return liab;
 100 }
 101 
 102 /**
 103  * make_free_space - make more free space on the file-system.
 104  * @c: UBIFS file-system description object
 105  *
 106  * This function is called when an operation cannot be budgeted because there
 107  * is supposedly no free space. But in most cases there is some free space:
 108  *   o budgeting is pessimistic, so it always budgets more than it is actually
 109  *     needed, so shrinking the liability is one way to make free space - the
 110  *     cached data will take less space then it was budgeted for;
 111  *   o GC may turn some dark space into free space (budgeting treats dark space
 112  *     as not available);
 113  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 114  *
 115  * So this function tries to do the above. Returns %-EAGAIN if some free space
 116  * was presumably made and the caller has to re-try budgeting the operation.
 117  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 118  * codes on failures.
 119  */
 120 static int make_free_space(struct ubifs_info *c)
 121 {
 122         int err, retries = 0;
 123         long long liab1, liab2;
 124 
 125         do {
 126                 liab1 = get_liability(c);
 127                 /*
 128                  * We probably have some dirty pages or inodes (liability), try
 129                  * to write them back.
 130                  */
 131                 dbg_budg("liability %lld, run write-back", liab1);
 132                 shrink_liability(c, NR_TO_WRITE);
 133 
 134                 liab2 = get_liability(c);
 135                 if (liab2 < liab1)
 136                         return -EAGAIN;
 137 
 138                 dbg_budg("new liability %lld (not shrunk)", liab2);
 139 
 140                 /* Liability did not shrink again, try GC */
 141                 dbg_budg("Run GC");
 142                 err = run_gc(c);
 143                 if (!err)
 144                         return -EAGAIN;
 145 
 146                 if (err != -EAGAIN && err != -ENOSPC)
 147                         /* Some real error happened */
 148                         return err;
 149 
 150                 dbg_budg("Run commit (retries %d)", retries);
 151                 err = ubifs_run_commit(c);
 152                 if (err)
 153                         return err;
 154         } while (retries++ < MAX_MKSPC_RETRIES);
 155 
 156         return -ENOSPC;
 157 }
 158 
 159 /**
 160  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
 161  * @c: UBIFS file-system description object
 162  *
 163  * This function calculates and returns the number of LEBs which should be kept
 164  * for index usage.
 165  */
 166 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
 167 {
 168         int idx_lebs;
 169         long long idx_size;
 170 
 171         idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
 172         /* And make sure we have thrice the index size of space reserved */
 173         idx_size += idx_size << 1;
 174         /*
 175          * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
 176          * pair, nor similarly the two variables for the new index size, so we
 177          * have to do this costly 64-bit division on fast-path.
 178          */
 179         idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
 180         /*
 181          * The index head is not available for the in-the-gaps method, so add an
 182          * extra LEB to compensate.
 183          */
 184         idx_lebs += 1;
 185         if (idx_lebs < MIN_INDEX_LEBS)
 186                 idx_lebs = MIN_INDEX_LEBS;
 187         return idx_lebs;
 188 }
 189 
 190 /**
 191  * ubifs_calc_available - calculate available FS space.
 192  * @c: UBIFS file-system description object
 193  * @min_idx_lebs: minimum number of LEBs reserved for the index
 194  *
 195  * This function calculates and returns amount of FS space available for use.
 196  */
 197 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
 198 {
 199         int subtract_lebs;
 200         long long available;
 201 
 202         available = c->main_bytes - c->lst.total_used;
 203 
 204         /*
 205          * Now 'available' contains theoretically available flash space
 206          * assuming there is no index, so we have to subtract the space which
 207          * is reserved for the index.
 208          */
 209         subtract_lebs = min_idx_lebs;
 210 
 211         /* Take into account that GC reserves one LEB for its own needs */
 212         subtract_lebs += 1;
 213 
 214         /*
 215          * The GC journal head LEB is not really accessible. And since
 216          * different write types go to different heads, we may count only on
 217          * one head's space.
 218          */
 219         subtract_lebs += c->jhead_cnt - 1;
 220 
 221         /* We also reserve one LEB for deletions, which bypass budgeting */
 222         subtract_lebs += 1;
 223 
 224         available -= (long long)subtract_lebs * c->leb_size;
 225 
 226         /* Subtract the dead space which is not available for use */
 227         available -= c->lst.total_dead;
 228 
 229         /*
 230          * Subtract dark space, which might or might not be usable - it depends
 231          * on the data which we have on the media and which will be written. If
 232          * this is a lot of uncompressed or not-compressible data, the dark
 233          * space cannot be used.
 234          */
 235         available -= c->lst.total_dark;
 236 
 237         /*
 238          * However, there is more dark space. The index may be bigger than
 239          * @min_idx_lebs. Those extra LEBs are assumed to be available, but
 240          * their dark space is not included in total_dark, so it is subtracted
 241          * here.
 242          */
 243         if (c->lst.idx_lebs > min_idx_lebs) {
 244                 subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
 245                 available -= subtract_lebs * c->dark_wm;
 246         }
 247 
 248         /* The calculations are rough and may end up with a negative number */
 249         return available > 0 ? available : 0;
 250 }
 251 
 252 /**
 253  * can_use_rp - check whether the user is allowed to use reserved pool.
 254  * @c: UBIFS file-system description object
 255  *
 256  * UBIFS has so-called "reserved pool" which is flash space reserved
 257  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
 258  * This function checks whether current user is allowed to use reserved pool.
 259  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
 260  */
 261 static int can_use_rp(struct ubifs_info *c)
 262 {
 263         if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
 264             (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
 265                 return 1;
 266         return 0;
 267 }
 268 
 269 /**
 270  * do_budget_space - reserve flash space for index and data growth.
 271  * @c: UBIFS file-system description object
 272  *
 273  * This function makes sure UBIFS has enough free LEBs for index growth and
 274  * data.
 275  *
 276  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
 277  * would take if it was consolidated and written to the flash. This guarantees
 278  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 279  * be able to commit dirty index. So this function basically adds amount of
 280  * budgeted index space to the size of the current index, multiplies this by 3,
 281  * and makes sure this does not exceed the amount of free LEBs.
 282  *
 283  * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
 284  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 285  *    be large, because UBIFS does not do any index consolidation as long as
 286  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 287  *    will contain a lot of dirt.
 288  * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
 289  *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
 290  *
 291  * This function returns zero in case of success, and %-ENOSPC in case of
 292  * failure.
 293  */
 294 static int do_budget_space(struct ubifs_info *c)
 295 {
 296         long long outstanding, available;
 297         int lebs, rsvd_idx_lebs, min_idx_lebs;
 298 
 299         /* First budget index space */
 300         min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 301 
 302         /* Now 'min_idx_lebs' contains number of LEBs to reserve */
 303         if (min_idx_lebs > c->lst.idx_lebs)
 304                 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
 305         else
 306                 rsvd_idx_lebs = 0;
 307 
 308         /*
 309          * The number of LEBs that are available to be used by the index is:
 310          *
 311          *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
 312          *    @c->lst.taken_empty_lebs
 313          *
 314          * @c->lst.empty_lebs are available because they are empty.
 315          * @c->freeable_cnt are available because they contain only free and
 316          * dirty space, @c->idx_gc_cnt are available because they are index
 317          * LEBs that have been garbage collected and are awaiting the commit
 318          * before they can be used. And the in-the-gaps method will grab these
 319          * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
 320          * already been allocated for some purpose.
 321          *
 322          * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
 323          * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
 324          * are taken until after the commit).
 325          *
 326          * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
 327          * because of the way we serialize LEB allocations and budgeting. See a
 328          * comment in 'ubifs_find_free_space()'.
 329          */
 330         lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 331                c->lst.taken_empty_lebs;
 332         if (unlikely(rsvd_idx_lebs > lebs)) {
 333                 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
 334                          min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
 335                 return -ENOSPC;
 336         }
 337 
 338         available = ubifs_calc_available(c, min_idx_lebs);
 339         outstanding = c->bi.data_growth + c->bi.dd_growth;
 340 
 341         if (unlikely(available < outstanding)) {
 342                 dbg_budg("out of data space: available %lld, outstanding %lld",
 343                          available, outstanding);
 344                 return -ENOSPC;
 345         }
 346 
 347         if (available - outstanding <= c->rp_size && !can_use_rp(c))
 348                 return -ENOSPC;
 349 
 350         c->bi.min_idx_lebs = min_idx_lebs;
 351         return 0;
 352 }
 353 
 354 /**
 355  * calc_idx_growth - calculate approximate index growth from budgeting request.
 356  * @c: UBIFS file-system description object
 357  * @req: budgeting request
 358  *
 359  * For now we assume each new node adds one znode. But this is rather poor
 360  * approximation, though.
 361  */
 362 static int calc_idx_growth(const struct ubifs_info *c,
 363                            const struct ubifs_budget_req *req)
 364 {
 365         int znodes;
 366 
 367         znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
 368                  req->new_dent;
 369         return znodes * c->max_idx_node_sz;
 370 }
 371 
 372 /**
 373  * calc_data_growth - calculate approximate amount of new data from budgeting
 374  * request.
 375  * @c: UBIFS file-system description object
 376  * @req: budgeting request
 377  */
 378 static int calc_data_growth(const struct ubifs_info *c,
 379                             const struct ubifs_budget_req *req)
 380 {
 381         int data_growth;
 382 
 383         data_growth = req->new_ino  ? c->bi.inode_budget : 0;
 384         if (req->new_page)
 385                 data_growth += c->bi.page_budget;
 386         if (req->new_dent)
 387                 data_growth += c->bi.dent_budget;
 388         data_growth += req->new_ino_d;
 389         return data_growth;
 390 }
 391 
 392 /**
 393  * calc_dd_growth - calculate approximate amount of data which makes other data
 394  * dirty from budgeting request.
 395  * @c: UBIFS file-system description object
 396  * @req: budgeting request
 397  */
 398 static int calc_dd_growth(const struct ubifs_info *c,
 399                           const struct ubifs_budget_req *req)
 400 {
 401         int dd_growth;
 402 
 403         dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
 404 
 405         if (req->dirtied_ino)
 406                 dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
 407         if (req->mod_dent)
 408                 dd_growth += c->bi.dent_budget;
 409         dd_growth += req->dirtied_ino_d;
 410         return dd_growth;
 411 }
 412 
 413 /**
 414  * ubifs_budget_space - ensure there is enough space to complete an operation.
 415  * @c: UBIFS file-system description object
 416  * @req: budget request
 417  *
 418  * This function allocates budget for an operation. It uses pessimistic
 419  * approximation of how much flash space the operation needs. The goal of this
 420  * function is to make sure UBIFS always has flash space to flush all dirty
 421  * pages, dirty inodes, and dirty znodes (liability). This function may force
 422  * commit, garbage-collection or write-back. Returns zero in case of success,
 423  * %-ENOSPC if there is no free space and other negative error codes in case of
 424  * failures.
 425  */
 426 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
 427 {
 428         int err, idx_growth, data_growth, dd_growth, retried = 0;
 429 
 430         ubifs_assert(c, req->new_page <= 1);
 431         ubifs_assert(c, req->dirtied_page <= 1);
 432         ubifs_assert(c, req->new_dent <= 1);
 433         ubifs_assert(c, req->mod_dent <= 1);
 434         ubifs_assert(c, req->new_ino <= 1);
 435         ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
 436         ubifs_assert(c, req->dirtied_ino <= 4);
 437         ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 438         ubifs_assert(c, !(req->new_ino_d & 7));
 439         ubifs_assert(c, !(req->dirtied_ino_d & 7));
 440 
 441         data_growth = calc_data_growth(c, req);
 442         dd_growth = calc_dd_growth(c, req);
 443         if (!data_growth && !dd_growth)
 444                 return 0;
 445         idx_growth = calc_idx_growth(c, req);
 446 
 447 again:
 448         spin_lock(&c->space_lock);
 449         ubifs_assert(c, c->bi.idx_growth >= 0);
 450         ubifs_assert(c, c->bi.data_growth >= 0);
 451         ubifs_assert(c, c->bi.dd_growth >= 0);
 452 
 453         if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
 454                 dbg_budg("no space");
 455                 spin_unlock(&c->space_lock);
 456                 return -ENOSPC;
 457         }
 458 
 459         c->bi.idx_growth += idx_growth;
 460         c->bi.data_growth += data_growth;
 461         c->bi.dd_growth += dd_growth;
 462 
 463         err = do_budget_space(c);
 464         if (likely(!err)) {
 465                 req->idx_growth = idx_growth;
 466                 req->data_growth = data_growth;
 467                 req->dd_growth = dd_growth;
 468                 spin_unlock(&c->space_lock);
 469                 return 0;
 470         }
 471 
 472         /* Restore the old values */
 473         c->bi.idx_growth -= idx_growth;
 474         c->bi.data_growth -= data_growth;
 475         c->bi.dd_growth -= dd_growth;
 476         spin_unlock(&c->space_lock);
 477 
 478         if (req->fast) {
 479                 dbg_budg("no space for fast budgeting");
 480                 return err;
 481         }
 482 
 483         err = make_free_space(c);
 484         cond_resched();
 485         if (err == -EAGAIN) {
 486                 dbg_budg("try again");
 487                 goto again;
 488         } else if (err == -ENOSPC) {
 489                 if (!retried) {
 490                         retried = 1;
 491                         dbg_budg("-ENOSPC, but anyway try once again");
 492                         goto again;
 493                 }
 494                 dbg_budg("FS is full, -ENOSPC");
 495                 c->bi.nospace = 1;
 496                 if (can_use_rp(c) || c->rp_size == 0)
 497                         c->bi.nospace_rp = 1;
 498                 smp_wmb();
 499         } else
 500                 ubifs_err(c, "cannot budget space, error %d", err);
 501         return err;
 502 }
 503 
 504 /**
 505  * ubifs_release_budget - release budgeted free space.
 506  * @c: UBIFS file-system description object
 507  * @req: budget request
 508  *
 509  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
 510  * since the index changes (which were budgeted for in @req->idx_growth) will
 511  * only be written to the media on commit, this function moves the index budget
 512  * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
 513  * by the commit operation.
 514  */
 515 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
 516 {
 517         ubifs_assert(c, req->new_page <= 1);
 518         ubifs_assert(c, req->dirtied_page <= 1);
 519         ubifs_assert(c, req->new_dent <= 1);
 520         ubifs_assert(c, req->mod_dent <= 1);
 521         ubifs_assert(c, req->new_ino <= 1);
 522         ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
 523         ubifs_assert(c, req->dirtied_ino <= 4);
 524         ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 525         ubifs_assert(c, !(req->new_ino_d & 7));
 526         ubifs_assert(c, !(req->dirtied_ino_d & 7));
 527         if (!req->recalculate) {
 528                 ubifs_assert(c, req->idx_growth >= 0);
 529                 ubifs_assert(c, req->data_growth >= 0);
 530                 ubifs_assert(c, req->dd_growth >= 0);
 531         }
 532 
 533         if (req->recalculate) {
 534                 req->data_growth = calc_data_growth(c, req);
 535                 req->dd_growth = calc_dd_growth(c, req);
 536                 req->idx_growth = calc_idx_growth(c, req);
 537         }
 538 
 539         if (!req->data_growth && !req->dd_growth)
 540                 return;
 541 
 542         c->bi.nospace = c->bi.nospace_rp = 0;
 543         smp_wmb();
 544 
 545         spin_lock(&c->space_lock);
 546         c->bi.idx_growth -= req->idx_growth;
 547         c->bi.uncommitted_idx += req->idx_growth;
 548         c->bi.data_growth -= req->data_growth;
 549         c->bi.dd_growth -= req->dd_growth;
 550         c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 551 
 552         ubifs_assert(c, c->bi.idx_growth >= 0);
 553         ubifs_assert(c, c->bi.data_growth >= 0);
 554         ubifs_assert(c, c->bi.dd_growth >= 0);
 555         ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
 556         ubifs_assert(c, !(c->bi.idx_growth & 7));
 557         ubifs_assert(c, !(c->bi.data_growth & 7));
 558         ubifs_assert(c, !(c->bi.dd_growth & 7));
 559         spin_unlock(&c->space_lock);
 560 }
 561 
 562 /**
 563  * ubifs_convert_page_budget - convert budget of a new page.
 564  * @c: UBIFS file-system description object
 565  *
 566  * This function converts budget which was allocated for a new page of data to
 567  * the budget of changing an existing page of data. The latter is smaller than
 568  * the former, so this function only does simple re-calculation and does not
 569  * involve any write-back.
 570  */
 571 void ubifs_convert_page_budget(struct ubifs_info *c)
 572 {
 573         spin_lock(&c->space_lock);
 574         /* Release the index growth reservation */
 575         c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 576         /* Release the data growth reservation */
 577         c->bi.data_growth -= c->bi.page_budget;
 578         /* Increase the dirty data growth reservation instead */
 579         c->bi.dd_growth += c->bi.page_budget;
 580         /* And re-calculate the indexing space reservation */
 581         c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 582         spin_unlock(&c->space_lock);
 583 }
 584 
 585 /**
 586  * ubifs_release_dirty_inode_budget - release dirty inode budget.
 587  * @c: UBIFS file-system description object
 588  * @ui: UBIFS inode to release the budget for
 589  *
 590  * This function releases budget corresponding to a dirty inode. It is usually
 591  * called when after the inode has been written to the media and marked as
 592  * clean. It also causes the "no space" flags to be cleared.
 593  */
 594 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
 595                                       struct ubifs_inode *ui)
 596 {
 597         struct ubifs_budget_req req;
 598 
 599         memset(&req, 0, sizeof(struct ubifs_budget_req));
 600         /* The "no space" flags will be cleared because dd_growth is > 0 */
 601         req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
 602         ubifs_release_budget(c, &req);
 603 }
 604 
 605 /**
 606  * ubifs_reported_space - calculate reported free space.
 607  * @c: the UBIFS file-system description object
 608  * @free: amount of free space
 609  *
 610  * This function calculates amount of free space which will be reported to
 611  * user-space. User-space application tend to expect that if the file-system
 612  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
 613  * are able to write a file of size N. UBIFS attaches node headers to each data
 614  * node and it has to write indexing nodes as well. This introduces additional
 615  * overhead, and UBIFS has to report slightly less free space to meet the above
 616  * expectations.
 617  *
 618  * This function assumes free space is made up of uncompressed data nodes and
 619  * full index nodes (one per data node, tripled because we always allow enough
 620  * space to write the index thrice).
 621  *
 622  * Note, the calculation is pessimistic, which means that most of the time
 623  * UBIFS reports less space than it actually has.
 624  */
 625 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
 626 {
 627         int divisor, factor, f;
 628 
 629         /*
 630          * Reported space size is @free * X, where X is UBIFS block size
 631          * divided by UBIFS block size + all overhead one data block
 632          * introduces. The overhead is the node header + indexing overhead.
 633          *
 634          * Indexing overhead calculations are based on the following formula:
 635          * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
 636          * of data nodes, f - fanout. Because effective UBIFS fanout is twice
 637          * as less than maximum fanout, we assume that each data node
 638          * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
 639          * Note, the multiplier 3 is because UBIFS reserves thrice as more space
 640          * for the index.
 641          */
 642         f = c->fanout > 3 ? c->fanout >> 1 : 2;
 643         factor = UBIFS_BLOCK_SIZE;
 644         divisor = UBIFS_MAX_DATA_NODE_SZ;
 645         divisor += (c->max_idx_node_sz * 3) / (f - 1);
 646         free *= factor;
 647         return div_u64(free, divisor);
 648 }
 649 
 650 /**
 651  * ubifs_get_free_space_nolock - return amount of free space.
 652  * @c: UBIFS file-system description object
 653  *
 654  * This function calculates amount of free space to report to user-space.
 655  *
 656  * Because UBIFS may introduce substantial overhead (the index, node headers,
 657  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
 658  * free flash space it has (well, because not all dirty space is reclaimable,
 659  * UBIFS does not actually know the real amount). If UBIFS did so, it would
 660  * bread user expectations about what free space is. Users seem to accustomed
 661  * to assume that if the file-system reports N bytes of free space, they would
 662  * be able to fit a file of N bytes to the FS. This almost works for
 663  * traditional file-systems, because they have way less overhead than UBIFS.
 664  * So, to keep users happy, UBIFS tries to take the overhead into account.
 665  */
 666 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
 667 {
 668         int rsvd_idx_lebs, lebs;
 669         long long available, outstanding, free;
 670 
 671         ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 672         outstanding = c->bi.data_growth + c->bi.dd_growth;
 673         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 674 
 675         /*
 676          * When reporting free space to user-space, UBIFS guarantees that it is
 677          * possible to write a file of free space size. This means that for
 678          * empty LEBs we may use more precise calculations than
 679          * 'ubifs_calc_available()' is using. Namely, we know that in empty
 680          * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
 681          * Thus, amend the available space.
 682          *
 683          * Note, the calculations below are similar to what we have in
 684          * 'do_budget_space()', so refer there for comments.
 685          */
 686         if (c->bi.min_idx_lebs > c->lst.idx_lebs)
 687                 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
 688         else
 689                 rsvd_idx_lebs = 0;
 690         lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 691                c->lst.taken_empty_lebs;
 692         lebs -= rsvd_idx_lebs;
 693         available += lebs * (c->dark_wm - c->leb_overhead);
 694 
 695         if (available > outstanding)
 696                 free = ubifs_reported_space(c, available - outstanding);
 697         else
 698                 free = 0;
 699         return free;
 700 }
 701 
 702 /**
 703  * ubifs_get_free_space - return amount of free space.
 704  * @c: UBIFS file-system description object
 705  *
 706  * This function calculates and returns amount of free space to report to
 707  * user-space.
 708  */
 709 long long ubifs_get_free_space(struct ubifs_info *c)
 710 {
 711         long long free;
 712 
 713         spin_lock(&c->space_lock);
 714         free = ubifs_get_free_space_nolock(c);
 715         spin_unlock(&c->space_lock);
 716 
 717         return free;
 718 }

/* [<][>][^][v][top][bottom][index][help] */