root/fs/ubifs/file.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. read_block
  2. do_readpage
  3. release_new_page_budget
  4. release_existing_page_budget
  5. write_begin_slow
  6. allocate_budget
  7. ubifs_write_begin
  8. cancel_budget
  9. ubifs_write_end
  10. populate_page
  11. ubifs_do_bulk_read
  12. ubifs_bulk_read
  13. ubifs_readpage
  14. do_writepage
  15. ubifs_writepage
  16. do_attr_changes
  17. do_truncation
  18. do_setattr
  19. ubifs_setattr
  20. ubifs_invalidatepage
  21. ubifs_fsync
  22. mctime_update_needed
  23. ubifs_update_time
  24. update_mctime
  25. ubifs_write_iter
  26. ubifs_set_page_dirty
  27. ubifs_migrate_page
  28. ubifs_releasepage
  29. ubifs_vm_page_mkwrite
  30. ubifs_file_mmap
  31. ubifs_get_link

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * This file is part of UBIFS.
   4  *
   5  * Copyright (C) 2006-2008 Nokia Corporation.
   6  *
   7  * Authors: Artem Bityutskiy (Битюцкий Артём)
   8  *          Adrian Hunter
   9  */
  10 
  11 /*
  12  * This file implements VFS file and inode operations for regular files, device
  13  * nodes and symlinks as well as address space operations.
  14  *
  15  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  16  * the page is dirty and is used for optimization purposes - dirty pages are
  17  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  18  * the budget for this page. The @PG_checked flag is set if full budgeting is
  19  * required for the page e.g., when it corresponds to a file hole or it is
  20  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  21  * it is OK to fail in this function, and the budget is released in
  22  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  23  * information about how the page was budgeted, to make it possible to release
  24  * the budget properly.
  25  *
  26  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  27  * implement. However, this is not true for 'ubifs_writepage()', which may be
  28  * called with @i_mutex unlocked. For example, when flusher thread is doing
  29  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  30  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  31  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  32  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  33  *
  34  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  35  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  36  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  37  * set as well. However, UBIFS disables readahead.
  38  */
  39 
  40 #include "ubifs.h"
  41 #include <linux/mount.h>
  42 #include <linux/slab.h>
  43 #include <linux/migrate.h>
  44 
  45 static int read_block(struct inode *inode, void *addr, unsigned int block,
  46                       struct ubifs_data_node *dn)
  47 {
  48         struct ubifs_info *c = inode->i_sb->s_fs_info;
  49         int err, len, out_len;
  50         union ubifs_key key;
  51         unsigned int dlen;
  52 
  53         data_key_init(c, &key, inode->i_ino, block);
  54         err = ubifs_tnc_lookup(c, &key, dn);
  55         if (err) {
  56                 if (err == -ENOENT)
  57                         /* Not found, so it must be a hole */
  58                         memset(addr, 0, UBIFS_BLOCK_SIZE);
  59                 return err;
  60         }
  61 
  62         ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
  63                      ubifs_inode(inode)->creat_sqnum);
  64         len = le32_to_cpu(dn->size);
  65         if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  66                 goto dump;
  67 
  68         dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  69 
  70         if (ubifs_crypt_is_encrypted(inode)) {
  71                 err = ubifs_decrypt(inode, dn, &dlen, block);
  72                 if (err)
  73                         goto dump;
  74         }
  75 
  76         out_len = UBIFS_BLOCK_SIZE;
  77         err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  78                                le16_to_cpu(dn->compr_type));
  79         if (err || len != out_len)
  80                 goto dump;
  81 
  82         /*
  83          * Data length can be less than a full block, even for blocks that are
  84          * not the last in the file (e.g., as a result of making a hole and
  85          * appending data). Ensure that the remainder is zeroed out.
  86          */
  87         if (len < UBIFS_BLOCK_SIZE)
  88                 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  89 
  90         return 0;
  91 
  92 dump:
  93         ubifs_err(c, "bad data node (block %u, inode %lu)",
  94                   block, inode->i_ino);
  95         ubifs_dump_node(c, dn);
  96         return -EINVAL;
  97 }
  98 
  99 static int do_readpage(struct page *page)
 100 {
 101         void *addr;
 102         int err = 0, i;
 103         unsigned int block, beyond;
 104         struct ubifs_data_node *dn;
 105         struct inode *inode = page->mapping->host;
 106         struct ubifs_info *c = inode->i_sb->s_fs_info;
 107         loff_t i_size = i_size_read(inode);
 108 
 109         dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 110                 inode->i_ino, page->index, i_size, page->flags);
 111         ubifs_assert(c, !PageChecked(page));
 112         ubifs_assert(c, !PagePrivate(page));
 113 
 114         addr = kmap(page);
 115 
 116         block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 117         beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 118         if (block >= beyond) {
 119                 /* Reading beyond inode */
 120                 SetPageChecked(page);
 121                 memset(addr, 0, PAGE_SIZE);
 122                 goto out;
 123         }
 124 
 125         dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 126         if (!dn) {
 127                 err = -ENOMEM;
 128                 goto error;
 129         }
 130 
 131         i = 0;
 132         while (1) {
 133                 int ret;
 134 
 135                 if (block >= beyond) {
 136                         /* Reading beyond inode */
 137                         err = -ENOENT;
 138                         memset(addr, 0, UBIFS_BLOCK_SIZE);
 139                 } else {
 140                         ret = read_block(inode, addr, block, dn);
 141                         if (ret) {
 142                                 err = ret;
 143                                 if (err != -ENOENT)
 144                                         break;
 145                         } else if (block + 1 == beyond) {
 146                                 int dlen = le32_to_cpu(dn->size);
 147                                 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 148 
 149                                 if (ilen && ilen < dlen)
 150                                         memset(addr + ilen, 0, dlen - ilen);
 151                         }
 152                 }
 153                 if (++i >= UBIFS_BLOCKS_PER_PAGE)
 154                         break;
 155                 block += 1;
 156                 addr += UBIFS_BLOCK_SIZE;
 157         }
 158         if (err) {
 159                 struct ubifs_info *c = inode->i_sb->s_fs_info;
 160                 if (err == -ENOENT) {
 161                         /* Not found, so it must be a hole */
 162                         SetPageChecked(page);
 163                         dbg_gen("hole");
 164                         goto out_free;
 165                 }
 166                 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 167                           page->index, inode->i_ino, err);
 168                 goto error;
 169         }
 170 
 171 out_free:
 172         kfree(dn);
 173 out:
 174         SetPageUptodate(page);
 175         ClearPageError(page);
 176         flush_dcache_page(page);
 177         kunmap(page);
 178         return 0;
 179 
 180 error:
 181         kfree(dn);
 182         ClearPageUptodate(page);
 183         SetPageError(page);
 184         flush_dcache_page(page);
 185         kunmap(page);
 186         return err;
 187 }
 188 
 189 /**
 190  * release_new_page_budget - release budget of a new page.
 191  * @c: UBIFS file-system description object
 192  *
 193  * This is a helper function which releases budget corresponding to the budget
 194  * of one new page of data.
 195  */
 196 static void release_new_page_budget(struct ubifs_info *c)
 197 {
 198         struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 199 
 200         ubifs_release_budget(c, &req);
 201 }
 202 
 203 /**
 204  * release_existing_page_budget - release budget of an existing page.
 205  * @c: UBIFS file-system description object
 206  *
 207  * This is a helper function which releases budget corresponding to the budget
 208  * of changing one one page of data which already exists on the flash media.
 209  */
 210 static void release_existing_page_budget(struct ubifs_info *c)
 211 {
 212         struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 213 
 214         ubifs_release_budget(c, &req);
 215 }
 216 
 217 static int write_begin_slow(struct address_space *mapping,
 218                             loff_t pos, unsigned len, struct page **pagep,
 219                             unsigned flags)
 220 {
 221         struct inode *inode = mapping->host;
 222         struct ubifs_info *c = inode->i_sb->s_fs_info;
 223         pgoff_t index = pos >> PAGE_SHIFT;
 224         struct ubifs_budget_req req = { .new_page = 1 };
 225         int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 226         struct page *page;
 227 
 228         dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 229                 inode->i_ino, pos, len, inode->i_size);
 230 
 231         /*
 232          * At the slow path we have to budget before locking the page, because
 233          * budgeting may force write-back, which would wait on locked pages and
 234          * deadlock if we had the page locked. At this point we do not know
 235          * anything about the page, so assume that this is a new page which is
 236          * written to a hole. This corresponds to largest budget. Later the
 237          * budget will be amended if this is not true.
 238          */
 239         if (appending)
 240                 /* We are appending data, budget for inode change */
 241                 req.dirtied_ino = 1;
 242 
 243         err = ubifs_budget_space(c, &req);
 244         if (unlikely(err))
 245                 return err;
 246 
 247         page = grab_cache_page_write_begin(mapping, index, flags);
 248         if (unlikely(!page)) {
 249                 ubifs_release_budget(c, &req);
 250                 return -ENOMEM;
 251         }
 252 
 253         if (!PageUptodate(page)) {
 254                 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
 255                         SetPageChecked(page);
 256                 else {
 257                         err = do_readpage(page);
 258                         if (err) {
 259                                 unlock_page(page);
 260                                 put_page(page);
 261                                 ubifs_release_budget(c, &req);
 262                                 return err;
 263                         }
 264                 }
 265 
 266                 SetPageUptodate(page);
 267                 ClearPageError(page);
 268         }
 269 
 270         if (PagePrivate(page))
 271                 /*
 272                  * The page is dirty, which means it was budgeted twice:
 273                  *   o first time the budget was allocated by the task which
 274                  *     made the page dirty and set the PG_private flag;
 275                  *   o and then we budgeted for it for the second time at the
 276                  *     very beginning of this function.
 277                  *
 278                  * So what we have to do is to release the page budget we
 279                  * allocated.
 280                  */
 281                 release_new_page_budget(c);
 282         else if (!PageChecked(page))
 283                 /*
 284                  * We are changing a page which already exists on the media.
 285                  * This means that changing the page does not make the amount
 286                  * of indexing information larger, and this part of the budget
 287                  * which we have already acquired may be released.
 288                  */
 289                 ubifs_convert_page_budget(c);
 290 
 291         if (appending) {
 292                 struct ubifs_inode *ui = ubifs_inode(inode);
 293 
 294                 /*
 295                  * 'ubifs_write_end()' is optimized from the fast-path part of
 296                  * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 297                  * if data is appended.
 298                  */
 299                 mutex_lock(&ui->ui_mutex);
 300                 if (ui->dirty)
 301                         /*
 302                          * The inode is dirty already, so we may free the
 303                          * budget we allocated.
 304                          */
 305                         ubifs_release_dirty_inode_budget(c, ui);
 306         }
 307 
 308         *pagep = page;
 309         return 0;
 310 }
 311 
 312 /**
 313  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 314  * @c: UBIFS file-system description object
 315  * @page: page to allocate budget for
 316  * @ui: UBIFS inode object the page belongs to
 317  * @appending: non-zero if the page is appended
 318  *
 319  * This is a helper function for 'ubifs_write_begin()' which allocates budget
 320  * for the operation. The budget is allocated differently depending on whether
 321  * this is appending, whether the page is dirty or not, and so on. This
 322  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 323  * in case of success and %-ENOSPC in case of failure.
 324  */
 325 static int allocate_budget(struct ubifs_info *c, struct page *page,
 326                            struct ubifs_inode *ui, int appending)
 327 {
 328         struct ubifs_budget_req req = { .fast = 1 };
 329 
 330         if (PagePrivate(page)) {
 331                 if (!appending)
 332                         /*
 333                          * The page is dirty and we are not appending, which
 334                          * means no budget is needed at all.
 335                          */
 336                         return 0;
 337 
 338                 mutex_lock(&ui->ui_mutex);
 339                 if (ui->dirty)
 340                         /*
 341                          * The page is dirty and we are appending, so the inode
 342                          * has to be marked as dirty. However, it is already
 343                          * dirty, so we do not need any budget. We may return,
 344                          * but @ui->ui_mutex hast to be left locked because we
 345                          * should prevent write-back from flushing the inode
 346                          * and freeing the budget. The lock will be released in
 347                          * 'ubifs_write_end()'.
 348                          */
 349                         return 0;
 350 
 351                 /*
 352                  * The page is dirty, we are appending, the inode is clean, so
 353                  * we need to budget the inode change.
 354                  */
 355                 req.dirtied_ino = 1;
 356         } else {
 357                 if (PageChecked(page))
 358                         /*
 359                          * The page corresponds to a hole and does not
 360                          * exist on the media. So changing it makes
 361                          * make the amount of indexing information
 362                          * larger, and we have to budget for a new
 363                          * page.
 364                          */
 365                         req.new_page = 1;
 366                 else
 367                         /*
 368                          * Not a hole, the change will not add any new
 369                          * indexing information, budget for page
 370                          * change.
 371                          */
 372                         req.dirtied_page = 1;
 373 
 374                 if (appending) {
 375                         mutex_lock(&ui->ui_mutex);
 376                         if (!ui->dirty)
 377                                 /*
 378                                  * The inode is clean but we will have to mark
 379                                  * it as dirty because we are appending. This
 380                                  * needs a budget.
 381                                  */
 382                                 req.dirtied_ino = 1;
 383                 }
 384         }
 385 
 386         return ubifs_budget_space(c, &req);
 387 }
 388 
 389 /*
 390  * This function is called when a page of data is going to be written. Since
 391  * the page of data will not necessarily go to the flash straight away, UBIFS
 392  * has to reserve space on the media for it, which is done by means of
 393  * budgeting.
 394  *
 395  * This is the hot-path of the file-system and we are trying to optimize it as
 396  * much as possible. For this reasons it is split on 2 parts - slow and fast.
 397  *
 398  * There many budgeting cases:
 399  *     o a new page is appended - we have to budget for a new page and for
 400  *       changing the inode; however, if the inode is already dirty, there is
 401  *       no need to budget for it;
 402  *     o an existing clean page is changed - we have budget for it; if the page
 403  *       does not exist on the media (a hole), we have to budget for a new
 404  *       page; otherwise, we may budget for changing an existing page; the
 405  *       difference between these cases is that changing an existing page does
 406  *       not introduce anything new to the FS indexing information, so it does
 407  *       not grow, and smaller budget is acquired in this case;
 408  *     o an existing dirty page is changed - no need to budget at all, because
 409  *       the page budget has been acquired by earlier, when the page has been
 410  *       marked dirty.
 411  *
 412  * UBIFS budgeting sub-system may force write-back if it thinks there is no
 413  * space to reserve. This imposes some locking restrictions and makes it
 414  * impossible to take into account the above cases, and makes it impossible to
 415  * optimize budgeting.
 416  *
 417  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 418  * there is a plenty of flash space and the budget will be acquired quickly,
 419  * without forcing write-back. The slow path does not make this assumption.
 420  */
 421 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 422                              loff_t pos, unsigned len, unsigned flags,
 423                              struct page **pagep, void **fsdata)
 424 {
 425         struct inode *inode = mapping->host;
 426         struct ubifs_info *c = inode->i_sb->s_fs_info;
 427         struct ubifs_inode *ui = ubifs_inode(inode);
 428         pgoff_t index = pos >> PAGE_SHIFT;
 429         int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 430         int skipped_read = 0;
 431         struct page *page;
 432 
 433         ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
 434         ubifs_assert(c, !c->ro_media && !c->ro_mount);
 435 
 436         if (unlikely(c->ro_error))
 437                 return -EROFS;
 438 
 439         /* Try out the fast-path part first */
 440         page = grab_cache_page_write_begin(mapping, index, flags);
 441         if (unlikely(!page))
 442                 return -ENOMEM;
 443 
 444         if (!PageUptodate(page)) {
 445                 /* The page is not loaded from the flash */
 446                 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
 447                         /*
 448                          * We change whole page so no need to load it. But we
 449                          * do not know whether this page exists on the media or
 450                          * not, so we assume the latter because it requires
 451                          * larger budget. The assumption is that it is better
 452                          * to budget a bit more than to read the page from the
 453                          * media. Thus, we are setting the @PG_checked flag
 454                          * here.
 455                          */
 456                         SetPageChecked(page);
 457                         skipped_read = 1;
 458                 } else {
 459                         err = do_readpage(page);
 460                         if (err) {
 461                                 unlock_page(page);
 462                                 put_page(page);
 463                                 return err;
 464                         }
 465                 }
 466 
 467                 SetPageUptodate(page);
 468                 ClearPageError(page);
 469         }
 470 
 471         err = allocate_budget(c, page, ui, appending);
 472         if (unlikely(err)) {
 473                 ubifs_assert(c, err == -ENOSPC);
 474                 /*
 475                  * If we skipped reading the page because we were going to
 476                  * write all of it, then it is not up to date.
 477                  */
 478                 if (skipped_read) {
 479                         ClearPageChecked(page);
 480                         ClearPageUptodate(page);
 481                 }
 482                 /*
 483                  * Budgeting failed which means it would have to force
 484                  * write-back but didn't, because we set the @fast flag in the
 485                  * request. Write-back cannot be done now, while we have the
 486                  * page locked, because it would deadlock. Unlock and free
 487                  * everything and fall-back to slow-path.
 488                  */
 489                 if (appending) {
 490                         ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 491                         mutex_unlock(&ui->ui_mutex);
 492                 }
 493                 unlock_page(page);
 494                 put_page(page);
 495 
 496                 return write_begin_slow(mapping, pos, len, pagep, flags);
 497         }
 498 
 499         /*
 500          * Whee, we acquired budgeting quickly - without involving
 501          * garbage-collection, committing or forcing write-back. We return
 502          * with @ui->ui_mutex locked if we are appending pages, and unlocked
 503          * otherwise. This is an optimization (slightly hacky though).
 504          */
 505         *pagep = page;
 506         return 0;
 507 
 508 }
 509 
 510 /**
 511  * cancel_budget - cancel budget.
 512  * @c: UBIFS file-system description object
 513  * @page: page to cancel budget for
 514  * @ui: UBIFS inode object the page belongs to
 515  * @appending: non-zero if the page is appended
 516  *
 517  * This is a helper function for a page write operation. It unlocks the
 518  * @ui->ui_mutex in case of appending.
 519  */
 520 static void cancel_budget(struct ubifs_info *c, struct page *page,
 521                           struct ubifs_inode *ui, int appending)
 522 {
 523         if (appending) {
 524                 if (!ui->dirty)
 525                         ubifs_release_dirty_inode_budget(c, ui);
 526                 mutex_unlock(&ui->ui_mutex);
 527         }
 528         if (!PagePrivate(page)) {
 529                 if (PageChecked(page))
 530                         release_new_page_budget(c);
 531                 else
 532                         release_existing_page_budget(c);
 533         }
 534 }
 535 
 536 static int ubifs_write_end(struct file *file, struct address_space *mapping,
 537                            loff_t pos, unsigned len, unsigned copied,
 538                            struct page *page, void *fsdata)
 539 {
 540         struct inode *inode = mapping->host;
 541         struct ubifs_inode *ui = ubifs_inode(inode);
 542         struct ubifs_info *c = inode->i_sb->s_fs_info;
 543         loff_t end_pos = pos + len;
 544         int appending = !!(end_pos > inode->i_size);
 545 
 546         dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 547                 inode->i_ino, pos, page->index, len, copied, inode->i_size);
 548 
 549         if (unlikely(copied < len && len == PAGE_SIZE)) {
 550                 /*
 551                  * VFS copied less data to the page that it intended and
 552                  * declared in its '->write_begin()' call via the @len
 553                  * argument. If the page was not up-to-date, and @len was
 554                  * @PAGE_SIZE, the 'ubifs_write_begin()' function did
 555                  * not load it from the media (for optimization reasons). This
 556                  * means that part of the page contains garbage. So read the
 557                  * page now.
 558                  */
 559                 dbg_gen("copied %d instead of %d, read page and repeat",
 560                         copied, len);
 561                 cancel_budget(c, page, ui, appending);
 562                 ClearPageChecked(page);
 563 
 564                 /*
 565                  * Return 0 to force VFS to repeat the whole operation, or the
 566                  * error code if 'do_readpage()' fails.
 567                  */
 568                 copied = do_readpage(page);
 569                 goto out;
 570         }
 571 
 572         if (!PagePrivate(page)) {
 573                 SetPagePrivate(page);
 574                 atomic_long_inc(&c->dirty_pg_cnt);
 575                 __set_page_dirty_nobuffers(page);
 576         }
 577 
 578         if (appending) {
 579                 i_size_write(inode, end_pos);
 580                 ui->ui_size = end_pos;
 581                 /*
 582                  * Note, we do not set @I_DIRTY_PAGES (which means that the
 583                  * inode has dirty pages), this has been done in
 584                  * '__set_page_dirty_nobuffers()'.
 585                  */
 586                 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 587                 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 588                 mutex_unlock(&ui->ui_mutex);
 589         }
 590 
 591 out:
 592         unlock_page(page);
 593         put_page(page);
 594         return copied;
 595 }
 596 
 597 /**
 598  * populate_page - copy data nodes into a page for bulk-read.
 599  * @c: UBIFS file-system description object
 600  * @page: page
 601  * @bu: bulk-read information
 602  * @n: next zbranch slot
 603  *
 604  * This function returns %0 on success and a negative error code on failure.
 605  */
 606 static int populate_page(struct ubifs_info *c, struct page *page,
 607                          struct bu_info *bu, int *n)
 608 {
 609         int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 610         struct inode *inode = page->mapping->host;
 611         loff_t i_size = i_size_read(inode);
 612         unsigned int page_block;
 613         void *addr, *zaddr;
 614         pgoff_t end_index;
 615 
 616         dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 617                 inode->i_ino, page->index, i_size, page->flags);
 618 
 619         addr = zaddr = kmap(page);
 620 
 621         end_index = (i_size - 1) >> PAGE_SHIFT;
 622         if (!i_size || page->index > end_index) {
 623                 hole = 1;
 624                 memset(addr, 0, PAGE_SIZE);
 625                 goto out_hole;
 626         }
 627 
 628         page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 629         while (1) {
 630                 int err, len, out_len, dlen;
 631 
 632                 if (nn >= bu->cnt) {
 633                         hole = 1;
 634                         memset(addr, 0, UBIFS_BLOCK_SIZE);
 635                 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 636                         struct ubifs_data_node *dn;
 637 
 638                         dn = bu->buf + (bu->zbranch[nn].offs - offs);
 639 
 640                         ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
 641                                      ubifs_inode(inode)->creat_sqnum);
 642 
 643                         len = le32_to_cpu(dn->size);
 644                         if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 645                                 goto out_err;
 646 
 647                         dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 648                         out_len = UBIFS_BLOCK_SIZE;
 649 
 650                         if (ubifs_crypt_is_encrypted(inode)) {
 651                                 err = ubifs_decrypt(inode, dn, &dlen, page_block);
 652                                 if (err)
 653                                         goto out_err;
 654                         }
 655 
 656                         err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 657                                                le16_to_cpu(dn->compr_type));
 658                         if (err || len != out_len)
 659                                 goto out_err;
 660 
 661                         if (len < UBIFS_BLOCK_SIZE)
 662                                 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 663 
 664                         nn += 1;
 665                         read = (i << UBIFS_BLOCK_SHIFT) + len;
 666                 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 667                         nn += 1;
 668                         continue;
 669                 } else {
 670                         hole = 1;
 671                         memset(addr, 0, UBIFS_BLOCK_SIZE);
 672                 }
 673                 if (++i >= UBIFS_BLOCKS_PER_PAGE)
 674                         break;
 675                 addr += UBIFS_BLOCK_SIZE;
 676                 page_block += 1;
 677         }
 678 
 679         if (end_index == page->index) {
 680                 int len = i_size & (PAGE_SIZE - 1);
 681 
 682                 if (len && len < read)
 683                         memset(zaddr + len, 0, read - len);
 684         }
 685 
 686 out_hole:
 687         if (hole) {
 688                 SetPageChecked(page);
 689                 dbg_gen("hole");
 690         }
 691 
 692         SetPageUptodate(page);
 693         ClearPageError(page);
 694         flush_dcache_page(page);
 695         kunmap(page);
 696         *n = nn;
 697         return 0;
 698 
 699 out_err:
 700         ClearPageUptodate(page);
 701         SetPageError(page);
 702         flush_dcache_page(page);
 703         kunmap(page);
 704         ubifs_err(c, "bad data node (block %u, inode %lu)",
 705                   page_block, inode->i_ino);
 706         return -EINVAL;
 707 }
 708 
 709 /**
 710  * ubifs_do_bulk_read - do bulk-read.
 711  * @c: UBIFS file-system description object
 712  * @bu: bulk-read information
 713  * @page1: first page to read
 714  *
 715  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 716  */
 717 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 718                               struct page *page1)
 719 {
 720         pgoff_t offset = page1->index, end_index;
 721         struct address_space *mapping = page1->mapping;
 722         struct inode *inode = mapping->host;
 723         struct ubifs_inode *ui = ubifs_inode(inode);
 724         int err, page_idx, page_cnt, ret = 0, n = 0;
 725         int allocate = bu->buf ? 0 : 1;
 726         loff_t isize;
 727         gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
 728 
 729         err = ubifs_tnc_get_bu_keys(c, bu);
 730         if (err)
 731                 goto out_warn;
 732 
 733         if (bu->eof) {
 734                 /* Turn off bulk-read at the end of the file */
 735                 ui->read_in_a_row = 1;
 736                 ui->bulk_read = 0;
 737         }
 738 
 739         page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 740         if (!page_cnt) {
 741                 /*
 742                  * This happens when there are multiple blocks per page and the
 743                  * blocks for the first page we are looking for, are not
 744                  * together. If all the pages were like this, bulk-read would
 745                  * reduce performance, so we turn it off for a while.
 746                  */
 747                 goto out_bu_off;
 748         }
 749 
 750         if (bu->cnt) {
 751                 if (allocate) {
 752                         /*
 753                          * Allocate bulk-read buffer depending on how many data
 754                          * nodes we are going to read.
 755                          */
 756                         bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 757                                       bu->zbranch[bu->cnt - 1].len -
 758                                       bu->zbranch[0].offs;
 759                         ubifs_assert(c, bu->buf_len > 0);
 760                         ubifs_assert(c, bu->buf_len <= c->leb_size);
 761                         bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 762                         if (!bu->buf)
 763                                 goto out_bu_off;
 764                 }
 765 
 766                 err = ubifs_tnc_bulk_read(c, bu);
 767                 if (err)
 768                         goto out_warn;
 769         }
 770 
 771         err = populate_page(c, page1, bu, &n);
 772         if (err)
 773                 goto out_warn;
 774 
 775         unlock_page(page1);
 776         ret = 1;
 777 
 778         isize = i_size_read(inode);
 779         if (isize == 0)
 780                 goto out_free;
 781         end_index = ((isize - 1) >> PAGE_SHIFT);
 782 
 783         for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 784                 pgoff_t page_offset = offset + page_idx;
 785                 struct page *page;
 786 
 787                 if (page_offset > end_index)
 788                         break;
 789                 page = pagecache_get_page(mapping, page_offset,
 790                                  FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
 791                                  ra_gfp_mask);
 792                 if (!page)
 793                         break;
 794                 if (!PageUptodate(page))
 795                         err = populate_page(c, page, bu, &n);
 796                 unlock_page(page);
 797                 put_page(page);
 798                 if (err)
 799                         break;
 800         }
 801 
 802         ui->last_page_read = offset + page_idx - 1;
 803 
 804 out_free:
 805         if (allocate)
 806                 kfree(bu->buf);
 807         return ret;
 808 
 809 out_warn:
 810         ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 811         goto out_free;
 812 
 813 out_bu_off:
 814         ui->read_in_a_row = ui->bulk_read = 0;
 815         goto out_free;
 816 }
 817 
 818 /**
 819  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 820  * @page: page from which to start bulk-read.
 821  *
 822  * Some flash media are capable of reading sequentially at faster rates. UBIFS
 823  * bulk-read facility is designed to take advantage of that, by reading in one
 824  * go consecutive data nodes that are also located consecutively in the same
 825  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 826  */
 827 static int ubifs_bulk_read(struct page *page)
 828 {
 829         struct inode *inode = page->mapping->host;
 830         struct ubifs_info *c = inode->i_sb->s_fs_info;
 831         struct ubifs_inode *ui = ubifs_inode(inode);
 832         pgoff_t index = page->index, last_page_read = ui->last_page_read;
 833         struct bu_info *bu;
 834         int err = 0, allocated = 0;
 835 
 836         ui->last_page_read = index;
 837         if (!c->bulk_read)
 838                 return 0;
 839 
 840         /*
 841          * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 842          * so don't bother if we cannot lock the mutex.
 843          */
 844         if (!mutex_trylock(&ui->ui_mutex))
 845                 return 0;
 846 
 847         if (index != last_page_read + 1) {
 848                 /* Turn off bulk-read if we stop reading sequentially */
 849                 ui->read_in_a_row = 1;
 850                 if (ui->bulk_read)
 851                         ui->bulk_read = 0;
 852                 goto out_unlock;
 853         }
 854 
 855         if (!ui->bulk_read) {
 856                 ui->read_in_a_row += 1;
 857                 if (ui->read_in_a_row < 3)
 858                         goto out_unlock;
 859                 /* Three reads in a row, so switch on bulk-read */
 860                 ui->bulk_read = 1;
 861         }
 862 
 863         /*
 864          * If possible, try to use pre-allocated bulk-read information, which
 865          * is protected by @c->bu_mutex.
 866          */
 867         if (mutex_trylock(&c->bu_mutex))
 868                 bu = &c->bu;
 869         else {
 870                 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 871                 if (!bu)
 872                         goto out_unlock;
 873 
 874                 bu->buf = NULL;
 875                 allocated = 1;
 876         }
 877 
 878         bu->buf_len = c->max_bu_buf_len;
 879         data_key_init(c, &bu->key, inode->i_ino,
 880                       page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 881         err = ubifs_do_bulk_read(c, bu, page);
 882 
 883         if (!allocated)
 884                 mutex_unlock(&c->bu_mutex);
 885         else
 886                 kfree(bu);
 887 
 888 out_unlock:
 889         mutex_unlock(&ui->ui_mutex);
 890         return err;
 891 }
 892 
 893 static int ubifs_readpage(struct file *file, struct page *page)
 894 {
 895         if (ubifs_bulk_read(page))
 896                 return 0;
 897         do_readpage(page);
 898         unlock_page(page);
 899         return 0;
 900 }
 901 
 902 static int do_writepage(struct page *page, int len)
 903 {
 904         int err = 0, i, blen;
 905         unsigned int block;
 906         void *addr;
 907         union ubifs_key key;
 908         struct inode *inode = page->mapping->host;
 909         struct ubifs_info *c = inode->i_sb->s_fs_info;
 910 
 911 #ifdef UBIFS_DEBUG
 912         struct ubifs_inode *ui = ubifs_inode(inode);
 913         spin_lock(&ui->ui_lock);
 914         ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
 915         spin_unlock(&ui->ui_lock);
 916 #endif
 917 
 918         /* Update radix tree tags */
 919         set_page_writeback(page);
 920 
 921         addr = kmap(page);
 922         block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 923         i = 0;
 924         while (len) {
 925                 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 926                 data_key_init(c, &key, inode->i_ino, block);
 927                 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 928                 if (err)
 929                         break;
 930                 if (++i >= UBIFS_BLOCKS_PER_PAGE)
 931                         break;
 932                 block += 1;
 933                 addr += blen;
 934                 len -= blen;
 935         }
 936         if (err) {
 937                 SetPageError(page);
 938                 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
 939                           page->index, inode->i_ino, err);
 940                 ubifs_ro_mode(c, err);
 941         }
 942 
 943         ubifs_assert(c, PagePrivate(page));
 944         if (PageChecked(page))
 945                 release_new_page_budget(c);
 946         else
 947                 release_existing_page_budget(c);
 948 
 949         atomic_long_dec(&c->dirty_pg_cnt);
 950         ClearPagePrivate(page);
 951         ClearPageChecked(page);
 952 
 953         kunmap(page);
 954         unlock_page(page);
 955         end_page_writeback(page);
 956         return err;
 957 }
 958 
 959 /*
 960  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 961  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 962  * situation when a we have an inode with size 0, then a megabyte of data is
 963  * appended to the inode, then write-back starts and flushes some amount of the
 964  * dirty pages, the journal becomes full, commit happens and finishes, and then
 965  * an unclean reboot happens. When the file system is mounted next time, the
 966  * inode size would still be 0, but there would be many pages which are beyond
 967  * the inode size, they would be indexed and consume flash space. Because the
 968  * journal has been committed, the replay would not be able to detect this
 969  * situation and correct the inode size. This means UBIFS would have to scan
 970  * whole index and correct all inode sizes, which is long an unacceptable.
 971  *
 972  * To prevent situations like this, UBIFS writes pages back only if they are
 973  * within the last synchronized inode size, i.e. the size which has been
 974  * written to the flash media last time. Otherwise, UBIFS forces inode
 975  * write-back, thus making sure the on-flash inode contains current inode size,
 976  * and then keeps writing pages back.
 977  *
 978  * Some locking issues explanation. 'ubifs_writepage()' first is called with
 979  * the page locked, and it locks @ui_mutex. However, write-back does take inode
 980  * @i_mutex, which means other VFS operations may be run on this inode at the
 981  * same time. And the problematic one is truncation to smaller size, from where
 982  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 983  * then drops the truncated pages. And while dropping the pages, it takes the
 984  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 985  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 986  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 987  *
 988  * XXX(truncate): with the new truncate sequence this is not true anymore,
 989  * and the calls to truncate_setsize can be move around freely.  They should
 990  * be moved to the very end of the truncate sequence.
 991  *
 992  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 993  * inode size. How do we do this if @inode->i_size may became smaller while we
 994  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 995  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 996  * internally and updates it under @ui_mutex.
 997  *
 998  * Q: why we do not worry that if we race with truncation, we may end up with a
 999  * situation when the inode is truncated while we are in the middle of
1000  * 'do_writepage()', so we do write beyond inode size?
1001  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1002  * on the page lock and it would not write the truncated inode node to the
1003  * journal before we have finished.
1004  */
1005 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1006 {
1007         struct inode *inode = page->mapping->host;
1008         struct ubifs_info *c = inode->i_sb->s_fs_info;
1009         struct ubifs_inode *ui = ubifs_inode(inode);
1010         loff_t i_size =  i_size_read(inode), synced_i_size;
1011         pgoff_t end_index = i_size >> PAGE_SHIFT;
1012         int err, len = i_size & (PAGE_SIZE - 1);
1013         void *kaddr;
1014 
1015         dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1016                 inode->i_ino, page->index, page->flags);
1017         ubifs_assert(c, PagePrivate(page));
1018 
1019         /* Is the page fully outside @i_size? (truncate in progress) */
1020         if (page->index > end_index || (page->index == end_index && !len)) {
1021                 err = 0;
1022                 goto out_unlock;
1023         }
1024 
1025         spin_lock(&ui->ui_lock);
1026         synced_i_size = ui->synced_i_size;
1027         spin_unlock(&ui->ui_lock);
1028 
1029         /* Is the page fully inside @i_size? */
1030         if (page->index < end_index) {
1031                 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1032                         err = inode->i_sb->s_op->write_inode(inode, NULL);
1033                         if (err)
1034                                 goto out_unlock;
1035                         /*
1036                          * The inode has been written, but the write-buffer has
1037                          * not been synchronized, so in case of an unclean
1038                          * reboot we may end up with some pages beyond inode
1039                          * size, but they would be in the journal (because
1040                          * commit flushes write buffers) and recovery would deal
1041                          * with this.
1042                          */
1043                 }
1044                 return do_writepage(page, PAGE_SIZE);
1045         }
1046 
1047         /*
1048          * The page straddles @i_size. It must be zeroed out on each and every
1049          * writepage invocation because it may be mmapped. "A file is mapped
1050          * in multiples of the page size. For a file that is not a multiple of
1051          * the page size, the remaining memory is zeroed when mapped, and
1052          * writes to that region are not written out to the file."
1053          */
1054         kaddr = kmap_atomic(page);
1055         memset(kaddr + len, 0, PAGE_SIZE - len);
1056         flush_dcache_page(page);
1057         kunmap_atomic(kaddr);
1058 
1059         if (i_size > synced_i_size) {
1060                 err = inode->i_sb->s_op->write_inode(inode, NULL);
1061                 if (err)
1062                         goto out_unlock;
1063         }
1064 
1065         return do_writepage(page, len);
1066 
1067 out_unlock:
1068         unlock_page(page);
1069         return err;
1070 }
1071 
1072 /**
1073  * do_attr_changes - change inode attributes.
1074  * @inode: inode to change attributes for
1075  * @attr: describes attributes to change
1076  */
1077 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1078 {
1079         if (attr->ia_valid & ATTR_UID)
1080                 inode->i_uid = attr->ia_uid;
1081         if (attr->ia_valid & ATTR_GID)
1082                 inode->i_gid = attr->ia_gid;
1083         if (attr->ia_valid & ATTR_ATIME)
1084                 inode->i_atime = attr->ia_atime;
1085         if (attr->ia_valid & ATTR_MTIME)
1086                 inode->i_mtime = attr->ia_mtime;
1087         if (attr->ia_valid & ATTR_CTIME)
1088                 inode->i_ctime = attr->ia_ctime;
1089         if (attr->ia_valid & ATTR_MODE) {
1090                 umode_t mode = attr->ia_mode;
1091 
1092                 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1093                         mode &= ~S_ISGID;
1094                 inode->i_mode = mode;
1095         }
1096 }
1097 
1098 /**
1099  * do_truncation - truncate an inode.
1100  * @c: UBIFS file-system description object
1101  * @inode: inode to truncate
1102  * @attr: inode attribute changes description
1103  *
1104  * This function implements VFS '->setattr()' call when the inode is truncated
1105  * to a smaller size. Returns zero in case of success and a negative error code
1106  * in case of failure.
1107  */
1108 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1109                          const struct iattr *attr)
1110 {
1111         int err;
1112         struct ubifs_budget_req req;
1113         loff_t old_size = inode->i_size, new_size = attr->ia_size;
1114         int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1115         struct ubifs_inode *ui = ubifs_inode(inode);
1116 
1117         dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1118         memset(&req, 0, sizeof(struct ubifs_budget_req));
1119 
1120         /*
1121          * If this is truncation to a smaller size, and we do not truncate on a
1122          * block boundary, budget for changing one data block, because the last
1123          * block will be re-written.
1124          */
1125         if (new_size & (UBIFS_BLOCK_SIZE - 1))
1126                 req.dirtied_page = 1;
1127 
1128         req.dirtied_ino = 1;
1129         /* A funny way to budget for truncation node */
1130         req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1131         err = ubifs_budget_space(c, &req);
1132         if (err) {
1133                 /*
1134                  * Treat truncations to zero as deletion and always allow them,
1135                  * just like we do for '->unlink()'.
1136                  */
1137                 if (new_size || err != -ENOSPC)
1138                         return err;
1139                 budgeted = 0;
1140         }
1141 
1142         truncate_setsize(inode, new_size);
1143 
1144         if (offset) {
1145                 pgoff_t index = new_size >> PAGE_SHIFT;
1146                 struct page *page;
1147 
1148                 page = find_lock_page(inode->i_mapping, index);
1149                 if (page) {
1150                         if (PageDirty(page)) {
1151                                 /*
1152                                  * 'ubifs_jnl_truncate()' will try to truncate
1153                                  * the last data node, but it contains
1154                                  * out-of-date data because the page is dirty.
1155                                  * Write the page now, so that
1156                                  * 'ubifs_jnl_truncate()' will see an already
1157                                  * truncated (and up to date) data node.
1158                                  */
1159                                 ubifs_assert(c, PagePrivate(page));
1160 
1161                                 clear_page_dirty_for_io(page);
1162                                 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1163                                         offset = new_size &
1164                                                  (PAGE_SIZE - 1);
1165                                 err = do_writepage(page, offset);
1166                                 put_page(page);
1167                                 if (err)
1168                                         goto out_budg;
1169                                 /*
1170                                  * We could now tell 'ubifs_jnl_truncate()' not
1171                                  * to read the last block.
1172                                  */
1173                         } else {
1174                                 /*
1175                                  * We could 'kmap()' the page and pass the data
1176                                  * to 'ubifs_jnl_truncate()' to save it from
1177                                  * having to read it.
1178                                  */
1179                                 unlock_page(page);
1180                                 put_page(page);
1181                         }
1182                 }
1183         }
1184 
1185         mutex_lock(&ui->ui_mutex);
1186         ui->ui_size = inode->i_size;
1187         /* Truncation changes inode [mc]time */
1188         inode->i_mtime = inode->i_ctime = current_time(inode);
1189         /* Other attributes may be changed at the same time as well */
1190         do_attr_changes(inode, attr);
1191         err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1192         mutex_unlock(&ui->ui_mutex);
1193 
1194 out_budg:
1195         if (budgeted)
1196                 ubifs_release_budget(c, &req);
1197         else {
1198                 c->bi.nospace = c->bi.nospace_rp = 0;
1199                 smp_wmb();
1200         }
1201         return err;
1202 }
1203 
1204 /**
1205  * do_setattr - change inode attributes.
1206  * @c: UBIFS file-system description object
1207  * @inode: inode to change attributes for
1208  * @attr: inode attribute changes description
1209  *
1210  * This function implements VFS '->setattr()' call for all cases except
1211  * truncations to smaller size. Returns zero in case of success and a negative
1212  * error code in case of failure.
1213  */
1214 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1215                       const struct iattr *attr)
1216 {
1217         int err, release;
1218         loff_t new_size = attr->ia_size;
1219         struct ubifs_inode *ui = ubifs_inode(inode);
1220         struct ubifs_budget_req req = { .dirtied_ino = 1,
1221                                 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1222 
1223         err = ubifs_budget_space(c, &req);
1224         if (err)
1225                 return err;
1226 
1227         if (attr->ia_valid & ATTR_SIZE) {
1228                 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1229                 truncate_setsize(inode, new_size);
1230         }
1231 
1232         mutex_lock(&ui->ui_mutex);
1233         if (attr->ia_valid & ATTR_SIZE) {
1234                 /* Truncation changes inode [mc]time */
1235                 inode->i_mtime = inode->i_ctime = current_time(inode);
1236                 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1237                 ui->ui_size = inode->i_size;
1238         }
1239 
1240         do_attr_changes(inode, attr);
1241 
1242         release = ui->dirty;
1243         if (attr->ia_valid & ATTR_SIZE)
1244                 /*
1245                  * Inode length changed, so we have to make sure
1246                  * @I_DIRTY_DATASYNC is set.
1247                  */
1248                  __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1249         else
1250                 mark_inode_dirty_sync(inode);
1251         mutex_unlock(&ui->ui_mutex);
1252 
1253         if (release)
1254                 ubifs_release_budget(c, &req);
1255         if (IS_SYNC(inode))
1256                 err = inode->i_sb->s_op->write_inode(inode, NULL);
1257         return err;
1258 }
1259 
1260 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1261 {
1262         int err;
1263         struct inode *inode = d_inode(dentry);
1264         struct ubifs_info *c = inode->i_sb->s_fs_info;
1265 
1266         dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1267                 inode->i_ino, inode->i_mode, attr->ia_valid);
1268         err = setattr_prepare(dentry, attr);
1269         if (err)
1270                 return err;
1271 
1272         err = dbg_check_synced_i_size(c, inode);
1273         if (err)
1274                 return err;
1275 
1276         err = fscrypt_prepare_setattr(dentry, attr);
1277         if (err)
1278                 return err;
1279 
1280         if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1281                 /* Truncation to a smaller size */
1282                 err = do_truncation(c, inode, attr);
1283         else
1284                 err = do_setattr(c, inode, attr);
1285 
1286         return err;
1287 }
1288 
1289 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1290                                  unsigned int length)
1291 {
1292         struct inode *inode = page->mapping->host;
1293         struct ubifs_info *c = inode->i_sb->s_fs_info;
1294 
1295         ubifs_assert(c, PagePrivate(page));
1296         if (offset || length < PAGE_SIZE)
1297                 /* Partial page remains dirty */
1298                 return;
1299 
1300         if (PageChecked(page))
1301                 release_new_page_budget(c);
1302         else
1303                 release_existing_page_budget(c);
1304 
1305         atomic_long_dec(&c->dirty_pg_cnt);
1306         ClearPagePrivate(page);
1307         ClearPageChecked(page);
1308 }
1309 
1310 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1311 {
1312         struct inode *inode = file->f_mapping->host;
1313         struct ubifs_info *c = inode->i_sb->s_fs_info;
1314         int err;
1315 
1316         dbg_gen("syncing inode %lu", inode->i_ino);
1317 
1318         if (c->ro_mount)
1319                 /*
1320                  * For some really strange reasons VFS does not filter out
1321                  * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1322                  */
1323                 return 0;
1324 
1325         err = file_write_and_wait_range(file, start, end);
1326         if (err)
1327                 return err;
1328         inode_lock(inode);
1329 
1330         /* Synchronize the inode unless this is a 'datasync()' call. */
1331         if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1332                 err = inode->i_sb->s_op->write_inode(inode, NULL);
1333                 if (err)
1334                         goto out;
1335         }
1336 
1337         /*
1338          * Nodes related to this inode may still sit in a write-buffer. Flush
1339          * them.
1340          */
1341         err = ubifs_sync_wbufs_by_inode(c, inode);
1342 out:
1343         inode_unlock(inode);
1344         return err;
1345 }
1346 
1347 /**
1348  * mctime_update_needed - check if mtime or ctime update is needed.
1349  * @inode: the inode to do the check for
1350  * @now: current time
1351  *
1352  * This helper function checks if the inode mtime/ctime should be updated or
1353  * not. If current values of the time-stamps are within the UBIFS inode time
1354  * granularity, they are not updated. This is an optimization.
1355  */
1356 static inline int mctime_update_needed(const struct inode *inode,
1357                                        const struct timespec64 *now)
1358 {
1359         if (!timespec64_equal(&inode->i_mtime, now) ||
1360             !timespec64_equal(&inode->i_ctime, now))
1361                 return 1;
1362         return 0;
1363 }
1364 
1365 /**
1366  * ubifs_update_time - update time of inode.
1367  * @inode: inode to update
1368  *
1369  * This function updates time of the inode.
1370  */
1371 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1372                              int flags)
1373 {
1374         struct ubifs_inode *ui = ubifs_inode(inode);
1375         struct ubifs_info *c = inode->i_sb->s_fs_info;
1376         struct ubifs_budget_req req = { .dirtied_ino = 1,
1377                         .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1378         int err, release;
1379 
1380         if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1381                 return generic_update_time(inode, time, flags);
1382 
1383         err = ubifs_budget_space(c, &req);
1384         if (err)
1385                 return err;
1386 
1387         mutex_lock(&ui->ui_mutex);
1388         if (flags & S_ATIME)
1389                 inode->i_atime = *time;
1390         if (flags & S_CTIME)
1391                 inode->i_ctime = *time;
1392         if (flags & S_MTIME)
1393                 inode->i_mtime = *time;
1394 
1395         release = ui->dirty;
1396         __mark_inode_dirty(inode, I_DIRTY_SYNC);
1397         mutex_unlock(&ui->ui_mutex);
1398         if (release)
1399                 ubifs_release_budget(c, &req);
1400         return 0;
1401 }
1402 
1403 /**
1404  * update_mctime - update mtime and ctime of an inode.
1405  * @inode: inode to update
1406  *
1407  * This function updates mtime and ctime of the inode if it is not equivalent to
1408  * current time. Returns zero in case of success and a negative error code in
1409  * case of failure.
1410  */
1411 static int update_mctime(struct inode *inode)
1412 {
1413         struct timespec64 now = current_time(inode);
1414         struct ubifs_inode *ui = ubifs_inode(inode);
1415         struct ubifs_info *c = inode->i_sb->s_fs_info;
1416 
1417         if (mctime_update_needed(inode, &now)) {
1418                 int err, release;
1419                 struct ubifs_budget_req req = { .dirtied_ino = 1,
1420                                 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1421 
1422                 err = ubifs_budget_space(c, &req);
1423                 if (err)
1424                         return err;
1425 
1426                 mutex_lock(&ui->ui_mutex);
1427                 inode->i_mtime = inode->i_ctime = current_time(inode);
1428                 release = ui->dirty;
1429                 mark_inode_dirty_sync(inode);
1430                 mutex_unlock(&ui->ui_mutex);
1431                 if (release)
1432                         ubifs_release_budget(c, &req);
1433         }
1434 
1435         return 0;
1436 }
1437 
1438 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1439 {
1440         int err = update_mctime(file_inode(iocb->ki_filp));
1441         if (err)
1442                 return err;
1443 
1444         return generic_file_write_iter(iocb, from);
1445 }
1446 
1447 static int ubifs_set_page_dirty(struct page *page)
1448 {
1449         int ret;
1450         struct inode *inode = page->mapping->host;
1451         struct ubifs_info *c = inode->i_sb->s_fs_info;
1452 
1453         ret = __set_page_dirty_nobuffers(page);
1454         /*
1455          * An attempt to dirty a page without budgeting for it - should not
1456          * happen.
1457          */
1458         ubifs_assert(c, ret == 0);
1459         return ret;
1460 }
1461 
1462 #ifdef CONFIG_MIGRATION
1463 static int ubifs_migrate_page(struct address_space *mapping,
1464                 struct page *newpage, struct page *page, enum migrate_mode mode)
1465 {
1466         int rc;
1467 
1468         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1469         if (rc != MIGRATEPAGE_SUCCESS)
1470                 return rc;
1471 
1472         if (PagePrivate(page)) {
1473                 ClearPagePrivate(page);
1474                 SetPagePrivate(newpage);
1475         }
1476 
1477         if (mode != MIGRATE_SYNC_NO_COPY)
1478                 migrate_page_copy(newpage, page);
1479         else
1480                 migrate_page_states(newpage, page);
1481         return MIGRATEPAGE_SUCCESS;
1482 }
1483 #endif
1484 
1485 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1486 {
1487         struct inode *inode = page->mapping->host;
1488         struct ubifs_info *c = inode->i_sb->s_fs_info;
1489 
1490         /*
1491          * An attempt to release a dirty page without budgeting for it - should
1492          * not happen.
1493          */
1494         if (PageWriteback(page))
1495                 return 0;
1496         ubifs_assert(c, PagePrivate(page));
1497         ubifs_assert(c, 0);
1498         ClearPagePrivate(page);
1499         ClearPageChecked(page);
1500         return 1;
1501 }
1502 
1503 /*
1504  * mmap()d file has taken write protection fault and is being made writable.
1505  * UBIFS must ensure page is budgeted for.
1506  */
1507 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1508 {
1509         struct page *page = vmf->page;
1510         struct inode *inode = file_inode(vmf->vma->vm_file);
1511         struct ubifs_info *c = inode->i_sb->s_fs_info;
1512         struct timespec64 now = current_time(inode);
1513         struct ubifs_budget_req req = { .new_page = 1 };
1514         int err, update_time;
1515 
1516         dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1517                 i_size_read(inode));
1518         ubifs_assert(c, !c->ro_media && !c->ro_mount);
1519 
1520         if (unlikely(c->ro_error))
1521                 return VM_FAULT_SIGBUS; /* -EROFS */
1522 
1523         /*
1524          * We have not locked @page so far so we may budget for changing the
1525          * page. Note, we cannot do this after we locked the page, because
1526          * budgeting may cause write-back which would cause deadlock.
1527          *
1528          * At the moment we do not know whether the page is dirty or not, so we
1529          * assume that it is not and budget for a new page. We could look at
1530          * the @PG_private flag and figure this out, but we may race with write
1531          * back and the page state may change by the time we lock it, so this
1532          * would need additional care. We do not bother with this at the
1533          * moment, although it might be good idea to do. Instead, we allocate
1534          * budget for a new page and amend it later on if the page was in fact
1535          * dirty.
1536          *
1537          * The budgeting-related logic of this function is similar to what we
1538          * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1539          * for more comments.
1540          */
1541         update_time = mctime_update_needed(inode, &now);
1542         if (update_time)
1543                 /*
1544                  * We have to change inode time stamp which requires extra
1545                  * budgeting.
1546                  */
1547                 req.dirtied_ino = 1;
1548 
1549         err = ubifs_budget_space(c, &req);
1550         if (unlikely(err)) {
1551                 if (err == -ENOSPC)
1552                         ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1553                                    inode->i_ino);
1554                 return VM_FAULT_SIGBUS;
1555         }
1556 
1557         lock_page(page);
1558         if (unlikely(page->mapping != inode->i_mapping ||
1559                      page_offset(page) > i_size_read(inode))) {
1560                 /* Page got truncated out from underneath us */
1561                 goto sigbus;
1562         }
1563 
1564         if (PagePrivate(page))
1565                 release_new_page_budget(c);
1566         else {
1567                 if (!PageChecked(page))
1568                         ubifs_convert_page_budget(c);
1569                 SetPagePrivate(page);
1570                 atomic_long_inc(&c->dirty_pg_cnt);
1571                 __set_page_dirty_nobuffers(page);
1572         }
1573 
1574         if (update_time) {
1575                 int release;
1576                 struct ubifs_inode *ui = ubifs_inode(inode);
1577 
1578                 mutex_lock(&ui->ui_mutex);
1579                 inode->i_mtime = inode->i_ctime = current_time(inode);
1580                 release = ui->dirty;
1581                 mark_inode_dirty_sync(inode);
1582                 mutex_unlock(&ui->ui_mutex);
1583                 if (release)
1584                         ubifs_release_dirty_inode_budget(c, ui);
1585         }
1586 
1587         wait_for_stable_page(page);
1588         return VM_FAULT_LOCKED;
1589 
1590 sigbus:
1591         unlock_page(page);
1592         ubifs_release_budget(c, &req);
1593         return VM_FAULT_SIGBUS;
1594 }
1595 
1596 static const struct vm_operations_struct ubifs_file_vm_ops = {
1597         .fault        = filemap_fault,
1598         .map_pages = filemap_map_pages,
1599         .page_mkwrite = ubifs_vm_page_mkwrite,
1600 };
1601 
1602 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1603 {
1604         int err;
1605 
1606         err = generic_file_mmap(file, vma);
1607         if (err)
1608                 return err;
1609         vma->vm_ops = &ubifs_file_vm_ops;
1610 
1611         if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1612                 file_accessed(file);
1613 
1614         return 0;
1615 }
1616 
1617 static const char *ubifs_get_link(struct dentry *dentry,
1618                                             struct inode *inode,
1619                                             struct delayed_call *done)
1620 {
1621         struct ubifs_inode *ui = ubifs_inode(inode);
1622 
1623         if (!IS_ENCRYPTED(inode))
1624                 return ui->data;
1625 
1626         if (!dentry)
1627                 return ERR_PTR(-ECHILD);
1628 
1629         return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1630 }
1631 
1632 const struct address_space_operations ubifs_file_address_operations = {
1633         .readpage       = ubifs_readpage,
1634         .writepage      = ubifs_writepage,
1635         .write_begin    = ubifs_write_begin,
1636         .write_end      = ubifs_write_end,
1637         .invalidatepage = ubifs_invalidatepage,
1638         .set_page_dirty = ubifs_set_page_dirty,
1639 #ifdef CONFIG_MIGRATION
1640         .migratepage    = ubifs_migrate_page,
1641 #endif
1642         .releasepage    = ubifs_releasepage,
1643 };
1644 
1645 const struct inode_operations ubifs_file_inode_operations = {
1646         .setattr     = ubifs_setattr,
1647         .getattr     = ubifs_getattr,
1648 #ifdef CONFIG_UBIFS_FS_XATTR
1649         .listxattr   = ubifs_listxattr,
1650 #endif
1651         .update_time = ubifs_update_time,
1652 };
1653 
1654 const struct inode_operations ubifs_symlink_inode_operations = {
1655         .get_link    = ubifs_get_link,
1656         .setattr     = ubifs_setattr,
1657         .getattr     = ubifs_getattr,
1658 #ifdef CONFIG_UBIFS_FS_XATTR
1659         .listxattr   = ubifs_listxattr,
1660 #endif
1661         .update_time = ubifs_update_time,
1662 };
1663 
1664 const struct file_operations ubifs_file_operations = {
1665         .llseek         = generic_file_llseek,
1666         .read_iter      = generic_file_read_iter,
1667         .write_iter     = ubifs_write_iter,
1668         .mmap           = ubifs_file_mmap,
1669         .fsync          = ubifs_fsync,
1670         .unlocked_ioctl = ubifs_ioctl,
1671         .splice_read    = generic_file_splice_read,
1672         .splice_write   = iter_file_splice_write,
1673         .open           = fscrypt_file_open,
1674 #ifdef CONFIG_COMPAT
1675         .compat_ioctl   = ubifs_compat_ioctl,
1676 #endif
1677 };

/* [<][>][^][v][top][bottom][index][help] */