root/fs/ubifs/tnc_commit.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. make_idx_node
  2. fill_gap
  3. find_old_idx
  4. is_idx_node_in_use
  5. layout_leb_in_gaps
  6. get_leb_cnt
  7. layout_in_gaps
  8. layout_in_empty_space
  9. layout_commit
  10. find_first_dirty
  11. find_next_dirty
  12. get_znodes_to_commit
  13. alloc_idx_lebs
  14. free_unused_idx_lebs
  15. free_idx_lebs
  16. ubifs_tnc_start_commit
  17. write_index
  18. free_obsolete_znodes
  19. return_gap_lebs
  20. ubifs_tnc_end_commit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * This file is part of UBIFS.
   4  *
   5  * Copyright (C) 2006-2008 Nokia Corporation.
   6  *
   7  * Authors: Adrian Hunter
   8  *          Artem Bityutskiy (Битюцкий Артём)
   9  */
  10 
  11 /* This file implements TNC functions for committing */
  12 
  13 #include <linux/random.h>
  14 #include "ubifs.h"
  15 
  16 /**
  17  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
  18  * @c: UBIFS file-system description object
  19  * @idx: buffer in which to place new index node
  20  * @znode: znode from which to make new index node
  21  * @lnum: LEB number where new index node will be written
  22  * @offs: offset where new index node will be written
  23  * @len: length of new index node
  24  */
  25 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
  26                          struct ubifs_znode *znode, int lnum, int offs, int len)
  27 {
  28         struct ubifs_znode *zp;
  29         u8 hash[UBIFS_HASH_ARR_SZ];
  30         int i, err;
  31 
  32         /* Make index node */
  33         idx->ch.node_type = UBIFS_IDX_NODE;
  34         idx->child_cnt = cpu_to_le16(znode->child_cnt);
  35         idx->level = cpu_to_le16(znode->level);
  36         for (i = 0; i < znode->child_cnt; i++) {
  37                 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
  38                 struct ubifs_zbranch *zbr = &znode->zbranch[i];
  39 
  40                 key_write_idx(c, &zbr->key, &br->key);
  41                 br->lnum = cpu_to_le32(zbr->lnum);
  42                 br->offs = cpu_to_le32(zbr->offs);
  43                 br->len = cpu_to_le32(zbr->len);
  44                 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
  45                 if (!zbr->lnum || !zbr->len) {
  46                         ubifs_err(c, "bad ref in znode");
  47                         ubifs_dump_znode(c, znode);
  48                         if (zbr->znode)
  49                                 ubifs_dump_znode(c, zbr->znode);
  50 
  51                         return -EINVAL;
  52                 }
  53         }
  54         ubifs_prepare_node(c, idx, len, 0);
  55         ubifs_node_calc_hash(c, idx, hash);
  56 
  57         znode->lnum = lnum;
  58         znode->offs = offs;
  59         znode->len = len;
  60 
  61         err = insert_old_idx_znode(c, znode);
  62 
  63         /* Update the parent */
  64         zp = znode->parent;
  65         if (zp) {
  66                 struct ubifs_zbranch *zbr;
  67 
  68                 zbr = &zp->zbranch[znode->iip];
  69                 zbr->lnum = lnum;
  70                 zbr->offs = offs;
  71                 zbr->len = len;
  72                 ubifs_copy_hash(c, hash, zbr->hash);
  73         } else {
  74                 c->zroot.lnum = lnum;
  75                 c->zroot.offs = offs;
  76                 c->zroot.len = len;
  77                 ubifs_copy_hash(c, hash, c->zroot.hash);
  78         }
  79         c->calc_idx_sz += ALIGN(len, 8);
  80 
  81         atomic_long_dec(&c->dirty_zn_cnt);
  82 
  83         ubifs_assert(c, ubifs_zn_dirty(znode));
  84         ubifs_assert(c, ubifs_zn_cow(znode));
  85 
  86         /*
  87          * Note, unlike 'write_index()' we do not add memory barriers here
  88          * because this function is called with @c->tnc_mutex locked.
  89          */
  90         __clear_bit(DIRTY_ZNODE, &znode->flags);
  91         __clear_bit(COW_ZNODE, &znode->flags);
  92 
  93         return err;
  94 }
  95 
  96 /**
  97  * fill_gap - make index nodes in gaps in dirty index LEBs.
  98  * @c: UBIFS file-system description object
  99  * @lnum: LEB number that gap appears in
 100  * @gap_start: offset of start of gap
 101  * @gap_end: offset of end of gap
 102  * @dirt: adds dirty space to this
 103  *
 104  * This function returns the number of index nodes written into the gap.
 105  */
 106 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
 107                     int *dirt)
 108 {
 109         int len, gap_remains, gap_pos, written, pad_len;
 110 
 111         ubifs_assert(c, (gap_start & 7) == 0);
 112         ubifs_assert(c, (gap_end & 7) == 0);
 113         ubifs_assert(c, gap_end >= gap_start);
 114 
 115         gap_remains = gap_end - gap_start;
 116         if (!gap_remains)
 117                 return 0;
 118         gap_pos = gap_start;
 119         written = 0;
 120         while (c->enext) {
 121                 len = ubifs_idx_node_sz(c, c->enext->child_cnt);
 122                 if (len < gap_remains) {
 123                         struct ubifs_znode *znode = c->enext;
 124                         const int alen = ALIGN(len, 8);
 125                         int err;
 126 
 127                         ubifs_assert(c, alen <= gap_remains);
 128                         err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
 129                                             lnum, gap_pos, len);
 130                         if (err)
 131                                 return err;
 132                         gap_remains -= alen;
 133                         gap_pos += alen;
 134                         c->enext = znode->cnext;
 135                         if (c->enext == c->cnext)
 136                                 c->enext = NULL;
 137                         written += 1;
 138                 } else
 139                         break;
 140         }
 141         if (gap_end == c->leb_size) {
 142                 c->ileb_len = ALIGN(gap_pos, c->min_io_size);
 143                 /* Pad to end of min_io_size */
 144                 pad_len = c->ileb_len - gap_pos;
 145         } else
 146                 /* Pad to end of gap */
 147                 pad_len = gap_remains;
 148         dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
 149                lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
 150         ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
 151         *dirt += pad_len;
 152         return written;
 153 }
 154 
 155 /**
 156  * find_old_idx - find an index node obsoleted since the last commit start.
 157  * @c: UBIFS file-system description object
 158  * @lnum: LEB number of obsoleted index node
 159  * @offs: offset of obsoleted index node
 160  *
 161  * Returns %1 if found and %0 otherwise.
 162  */
 163 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
 164 {
 165         struct ubifs_old_idx *o;
 166         struct rb_node *p;
 167 
 168         p = c->old_idx.rb_node;
 169         while (p) {
 170                 o = rb_entry(p, struct ubifs_old_idx, rb);
 171                 if (lnum < o->lnum)
 172                         p = p->rb_left;
 173                 else if (lnum > o->lnum)
 174                         p = p->rb_right;
 175                 else if (offs < o->offs)
 176                         p = p->rb_left;
 177                 else if (offs > o->offs)
 178                         p = p->rb_right;
 179                 else
 180                         return 1;
 181         }
 182         return 0;
 183 }
 184 
 185 /**
 186  * is_idx_node_in_use - determine if an index node can be overwritten.
 187  * @c: UBIFS file-system description object
 188  * @key: key of index node
 189  * @level: index node level
 190  * @lnum: LEB number of index node
 191  * @offs: offset of index node
 192  *
 193  * If @key / @lnum / @offs identify an index node that was not part of the old
 194  * index, then this function returns %0 (obsolete).  Else if the index node was
 195  * part of the old index but is now dirty %1 is returned, else if it is clean %2
 196  * is returned. A negative error code is returned on failure.
 197  */
 198 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
 199                               int level, int lnum, int offs)
 200 {
 201         int ret;
 202 
 203         ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
 204         if (ret < 0)
 205                 return ret; /* Error code */
 206         if (ret == 0)
 207                 if (find_old_idx(c, lnum, offs))
 208                         return 1;
 209         return ret;
 210 }
 211 
 212 /**
 213  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
 214  * @c: UBIFS file-system description object
 215  * @p: return LEB number in @c->gap_lebs[p]
 216  *
 217  * This function lays out new index nodes for dirty znodes using in-the-gaps
 218  * method of TNC commit.
 219  * This function merely puts the next znode into the next gap, making no attempt
 220  * to try to maximise the number of znodes that fit.
 221  * This function returns the number of index nodes written into the gaps, or a
 222  * negative error code on failure.
 223  */
 224 static int layout_leb_in_gaps(struct ubifs_info *c, int p)
 225 {
 226         struct ubifs_scan_leb *sleb;
 227         struct ubifs_scan_node *snod;
 228         int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
 229 
 230         tot_written = 0;
 231         /* Get an index LEB with lots of obsolete index nodes */
 232         lnum = ubifs_find_dirty_idx_leb(c);
 233         if (lnum < 0)
 234                 /*
 235                  * There also may be dirt in the index head that could be
 236                  * filled, however we do not check there at present.
 237                  */
 238                 return lnum; /* Error code */
 239         c->gap_lebs[p] = lnum;
 240         dbg_gc("LEB %d", lnum);
 241         /*
 242          * Scan the index LEB.  We use the generic scan for this even though
 243          * it is more comprehensive and less efficient than is needed for this
 244          * purpose.
 245          */
 246         sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
 247         c->ileb_len = 0;
 248         if (IS_ERR(sleb))
 249                 return PTR_ERR(sleb);
 250         gap_start = 0;
 251         list_for_each_entry(snod, &sleb->nodes, list) {
 252                 struct ubifs_idx_node *idx;
 253                 int in_use, level;
 254 
 255                 ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
 256                 idx = snod->node;
 257                 key_read(c, ubifs_idx_key(c, idx), &snod->key);
 258                 level = le16_to_cpu(idx->level);
 259                 /* Determine if the index node is in use (not obsolete) */
 260                 in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
 261                                             snod->offs);
 262                 if (in_use < 0) {
 263                         ubifs_scan_destroy(sleb);
 264                         return in_use; /* Error code */
 265                 }
 266                 if (in_use) {
 267                         if (in_use == 1)
 268                                 dirt += ALIGN(snod->len, 8);
 269                         /*
 270                          * The obsolete index nodes form gaps that can be
 271                          * overwritten.  This gap has ended because we have
 272                          * found an index node that is still in use
 273                          * i.e. not obsolete
 274                          */
 275                         gap_end = snod->offs;
 276                         /* Try to fill gap */
 277                         written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 278                         if (written < 0) {
 279                                 ubifs_scan_destroy(sleb);
 280                                 return written; /* Error code */
 281                         }
 282                         tot_written += written;
 283                         gap_start = ALIGN(snod->offs + snod->len, 8);
 284                 }
 285         }
 286         ubifs_scan_destroy(sleb);
 287         c->ileb_len = c->leb_size;
 288         gap_end = c->leb_size;
 289         /* Try to fill gap */
 290         written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 291         if (written < 0)
 292                 return written; /* Error code */
 293         tot_written += written;
 294         if (tot_written == 0) {
 295                 struct ubifs_lprops lp;
 296 
 297                 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 298                 err = ubifs_read_one_lp(c, lnum, &lp);
 299                 if (err)
 300                         return err;
 301                 if (lp.free == c->leb_size) {
 302                         /*
 303                          * We must have snatched this LEB from the idx_gc list
 304                          * so we need to correct the free and dirty space.
 305                          */
 306                         err = ubifs_change_one_lp(c, lnum,
 307                                                   c->leb_size - c->ileb_len,
 308                                                   dirt, 0, 0, 0);
 309                         if (err)
 310                                 return err;
 311                 }
 312                 return 0;
 313         }
 314         err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
 315                                   0, 0, 0);
 316         if (err)
 317                 return err;
 318         err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
 319         if (err)
 320                 return err;
 321         dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 322         return tot_written;
 323 }
 324 
 325 /**
 326  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
 327  * @c: UBIFS file-system description object
 328  * @cnt: number of znodes to commit
 329  *
 330  * This function returns the number of empty LEBs needed to commit @cnt znodes
 331  * to the current index head.  The number is not exact and may be more than
 332  * needed.
 333  */
 334 static int get_leb_cnt(struct ubifs_info *c, int cnt)
 335 {
 336         int d;
 337 
 338         /* Assume maximum index node size (i.e. overestimate space needed) */
 339         cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
 340         if (cnt < 0)
 341                 cnt = 0;
 342         d = c->leb_size / c->max_idx_node_sz;
 343         return DIV_ROUND_UP(cnt, d);
 344 }
 345 
 346 /**
 347  * layout_in_gaps - in-the-gaps method of committing TNC.
 348  * @c: UBIFS file-system description object
 349  * @cnt: number of dirty znodes to commit.
 350  *
 351  * This function lays out new index nodes for dirty znodes using in-the-gaps
 352  * method of TNC commit.
 353  *
 354  * This function returns %0 on success and a negative error code on failure.
 355  */
 356 static int layout_in_gaps(struct ubifs_info *c, int cnt)
 357 {
 358         int err, leb_needed_cnt, written, p = 0, old_idx_lebs, *gap_lebs;
 359 
 360         dbg_gc("%d znodes to write", cnt);
 361 
 362         c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
 363                                     GFP_NOFS);
 364         if (!c->gap_lebs)
 365                 return -ENOMEM;
 366 
 367         old_idx_lebs = c->lst.idx_lebs;
 368         do {
 369                 ubifs_assert(c, p < c->lst.idx_lebs);
 370                 written = layout_leb_in_gaps(c, p);
 371                 if (written < 0) {
 372                         err = written;
 373                         if (err != -ENOSPC) {
 374                                 kfree(c->gap_lebs);
 375                                 c->gap_lebs = NULL;
 376                                 return err;
 377                         }
 378                         if (!dbg_is_chk_index(c)) {
 379                                 /*
 380                                  * Do not print scary warnings if the debugging
 381                                  * option which forces in-the-gaps is enabled.
 382                                  */
 383                                 ubifs_warn(c, "out of space");
 384                                 ubifs_dump_budg(c, &c->bi);
 385                                 ubifs_dump_lprops(c);
 386                         }
 387                         /* Try to commit anyway */
 388                         break;
 389                 }
 390                 p++;
 391                 cnt -= written;
 392                 leb_needed_cnt = get_leb_cnt(c, cnt);
 393                 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
 394                        leb_needed_cnt, c->ileb_cnt);
 395                 /*
 396                  * Dynamically change the size of @c->gap_lebs to prevent
 397                  * oob, because @c->lst.idx_lebs could be increased by
 398                  * function @get_idx_gc_leb (called by layout_leb_in_gaps->
 399                  * ubifs_find_dirty_idx_leb) during loop. Only enlarge
 400                  * @c->gap_lebs when needed.
 401                  *
 402                  */
 403                 if (leb_needed_cnt > c->ileb_cnt && p >= old_idx_lebs &&
 404                     old_idx_lebs < c->lst.idx_lebs) {
 405                         old_idx_lebs = c->lst.idx_lebs;
 406                         gap_lebs = krealloc(c->gap_lebs, sizeof(int) *
 407                                                (old_idx_lebs + 1), GFP_NOFS);
 408                         if (!gap_lebs) {
 409                                 kfree(c->gap_lebs);
 410                                 c->gap_lebs = NULL;
 411                                 return -ENOMEM;
 412                         }
 413                         c->gap_lebs = gap_lebs;
 414                 }
 415         } while (leb_needed_cnt > c->ileb_cnt);
 416 
 417         c->gap_lebs[p] = -1;
 418         return 0;
 419 }
 420 
 421 /**
 422  * layout_in_empty_space - layout index nodes in empty space.
 423  * @c: UBIFS file-system description object
 424  *
 425  * This function lays out new index nodes for dirty znodes using empty LEBs.
 426  *
 427  * This function returns %0 on success and a negative error code on failure.
 428  */
 429 static int layout_in_empty_space(struct ubifs_info *c)
 430 {
 431         struct ubifs_znode *znode, *cnext, *zp;
 432         int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
 433         int wlen, blen, err;
 434 
 435         cnext = c->enext;
 436         if (!cnext)
 437                 return 0;
 438 
 439         lnum = c->ihead_lnum;
 440         buf_offs = c->ihead_offs;
 441 
 442         buf_len = ubifs_idx_node_sz(c, c->fanout);
 443         buf_len = ALIGN(buf_len, c->min_io_size);
 444         used = 0;
 445         avail = buf_len;
 446 
 447         /* Ensure there is enough room for first write */
 448         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 449         if (buf_offs + next_len > c->leb_size)
 450                 lnum = -1;
 451 
 452         while (1) {
 453                 znode = cnext;
 454 
 455                 len = ubifs_idx_node_sz(c, znode->child_cnt);
 456 
 457                 /* Determine the index node position */
 458                 if (lnum == -1) {
 459                         if (c->ileb_nxt >= c->ileb_cnt) {
 460                                 ubifs_err(c, "out of space");
 461                                 return -ENOSPC;
 462                         }
 463                         lnum = c->ilebs[c->ileb_nxt++];
 464                         buf_offs = 0;
 465                         used = 0;
 466                         avail = buf_len;
 467                 }
 468 
 469                 offs = buf_offs + used;
 470 
 471                 znode->lnum = lnum;
 472                 znode->offs = offs;
 473                 znode->len = len;
 474 
 475                 /* Update the parent */
 476                 zp = znode->parent;
 477                 if (zp) {
 478                         struct ubifs_zbranch *zbr;
 479                         int i;
 480 
 481                         i = znode->iip;
 482                         zbr = &zp->zbranch[i];
 483                         zbr->lnum = lnum;
 484                         zbr->offs = offs;
 485                         zbr->len = len;
 486                 } else {
 487                         c->zroot.lnum = lnum;
 488                         c->zroot.offs = offs;
 489                         c->zroot.len = len;
 490                 }
 491                 c->calc_idx_sz += ALIGN(len, 8);
 492 
 493                 /*
 494                  * Once lprops is updated, we can decrease the dirty znode count
 495                  * but it is easier to just do it here.
 496                  */
 497                 atomic_long_dec(&c->dirty_zn_cnt);
 498 
 499                 /*
 500                  * Calculate the next index node length to see if there is
 501                  * enough room for it
 502                  */
 503                 cnext = znode->cnext;
 504                 if (cnext == c->cnext)
 505                         next_len = 0;
 506                 else
 507                         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 508 
 509                 /* Update buffer positions */
 510                 wlen = used + len;
 511                 used += ALIGN(len, 8);
 512                 avail -= ALIGN(len, 8);
 513 
 514                 if (next_len != 0 &&
 515                     buf_offs + used + next_len <= c->leb_size &&
 516                     avail > 0)
 517                         continue;
 518 
 519                 if (avail <= 0 && next_len &&
 520                     buf_offs + used + next_len <= c->leb_size)
 521                         blen = buf_len;
 522                 else
 523                         blen = ALIGN(wlen, c->min_io_size);
 524 
 525                 /* The buffer is full or there are no more znodes to do */
 526                 buf_offs += blen;
 527                 if (next_len) {
 528                         if (buf_offs + next_len > c->leb_size) {
 529                                 err = ubifs_update_one_lp(c, lnum,
 530                                         c->leb_size - buf_offs, blen - used,
 531                                         0, 0);
 532                                 if (err)
 533                                         return err;
 534                                 lnum = -1;
 535                         }
 536                         used -= blen;
 537                         if (used < 0)
 538                                 used = 0;
 539                         avail = buf_len - used;
 540                         continue;
 541                 }
 542                 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
 543                                           blen - used, 0, 0);
 544                 if (err)
 545                         return err;
 546                 break;
 547         }
 548 
 549         c->dbg->new_ihead_lnum = lnum;
 550         c->dbg->new_ihead_offs = buf_offs;
 551 
 552         return 0;
 553 }
 554 
 555 /**
 556  * layout_commit - determine positions of index nodes to commit.
 557  * @c: UBIFS file-system description object
 558  * @no_space: indicates that insufficient empty LEBs were allocated
 559  * @cnt: number of znodes to commit
 560  *
 561  * Calculate and update the positions of index nodes to commit.  If there were
 562  * an insufficient number of empty LEBs allocated, then index nodes are placed
 563  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
 564  * this purpose, an obsolete index node is one that was not in the index as at
 565  * the end of the last commit.  To write "in-the-gaps" requires that those index
 566  * LEBs are updated atomically in-place.
 567  */
 568 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
 569 {
 570         int err;
 571 
 572         if (no_space) {
 573                 err = layout_in_gaps(c, cnt);
 574                 if (err)
 575                         return err;
 576         }
 577         err = layout_in_empty_space(c);
 578         return err;
 579 }
 580 
 581 /**
 582  * find_first_dirty - find first dirty znode.
 583  * @znode: znode to begin searching from
 584  */
 585 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
 586 {
 587         int i, cont;
 588 
 589         if (!znode)
 590                 return NULL;
 591 
 592         while (1) {
 593                 if (znode->level == 0) {
 594                         if (ubifs_zn_dirty(znode))
 595                                 return znode;
 596                         return NULL;
 597                 }
 598                 cont = 0;
 599                 for (i = 0; i < znode->child_cnt; i++) {
 600                         struct ubifs_zbranch *zbr = &znode->zbranch[i];
 601 
 602                         if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
 603                                 znode = zbr->znode;
 604                                 cont = 1;
 605                                 break;
 606                         }
 607                 }
 608                 if (!cont) {
 609                         if (ubifs_zn_dirty(znode))
 610                                 return znode;
 611                         return NULL;
 612                 }
 613         }
 614 }
 615 
 616 /**
 617  * find_next_dirty - find next dirty znode.
 618  * @znode: znode to begin searching from
 619  */
 620 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
 621 {
 622         int n = znode->iip + 1;
 623 
 624         znode = znode->parent;
 625         if (!znode)
 626                 return NULL;
 627         for (; n < znode->child_cnt; n++) {
 628                 struct ubifs_zbranch *zbr = &znode->zbranch[n];
 629 
 630                 if (zbr->znode && ubifs_zn_dirty(zbr->znode))
 631                         return find_first_dirty(zbr->znode);
 632         }
 633         return znode;
 634 }
 635 
 636 /**
 637  * get_znodes_to_commit - create list of dirty znodes to commit.
 638  * @c: UBIFS file-system description object
 639  *
 640  * This function returns the number of znodes to commit.
 641  */
 642 static int get_znodes_to_commit(struct ubifs_info *c)
 643 {
 644         struct ubifs_znode *znode, *cnext;
 645         int cnt = 0;
 646 
 647         c->cnext = find_first_dirty(c->zroot.znode);
 648         znode = c->enext = c->cnext;
 649         if (!znode) {
 650                 dbg_cmt("no znodes to commit");
 651                 return 0;
 652         }
 653         cnt += 1;
 654         while (1) {
 655                 ubifs_assert(c, !ubifs_zn_cow(znode));
 656                 __set_bit(COW_ZNODE, &znode->flags);
 657                 znode->alt = 0;
 658                 cnext = find_next_dirty(znode);
 659                 if (!cnext) {
 660                         znode->cnext = c->cnext;
 661                         break;
 662                 }
 663                 znode->cparent = znode->parent;
 664                 znode->ciip = znode->iip;
 665                 znode->cnext = cnext;
 666                 znode = cnext;
 667                 cnt += 1;
 668         }
 669         dbg_cmt("committing %d znodes", cnt);
 670         ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
 671         return cnt;
 672 }
 673 
 674 /**
 675  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
 676  * @c: UBIFS file-system description object
 677  * @cnt: number of znodes to commit
 678  *
 679  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
 680  * empty LEBs.  %0 is returned on success, otherwise a negative error code
 681  * is returned.
 682  */
 683 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
 684 {
 685         int i, leb_cnt, lnum;
 686 
 687         c->ileb_cnt = 0;
 688         c->ileb_nxt = 0;
 689         leb_cnt = get_leb_cnt(c, cnt);
 690         dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
 691         if (!leb_cnt)
 692                 return 0;
 693         c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
 694         if (!c->ilebs)
 695                 return -ENOMEM;
 696         for (i = 0; i < leb_cnt; i++) {
 697                 lnum = ubifs_find_free_leb_for_idx(c);
 698                 if (lnum < 0)
 699                         return lnum;
 700                 c->ilebs[c->ileb_cnt++] = lnum;
 701                 dbg_cmt("LEB %d", lnum);
 702         }
 703         if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
 704                 return -ENOSPC;
 705         return 0;
 706 }
 707 
 708 /**
 709  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
 710  * @c: UBIFS file-system description object
 711  *
 712  * It is possible that we allocate more empty LEBs for the commit than we need.
 713  * This functions frees the surplus.
 714  *
 715  * This function returns %0 on success and a negative error code on failure.
 716  */
 717 static int free_unused_idx_lebs(struct ubifs_info *c)
 718 {
 719         int i, err = 0, lnum, er;
 720 
 721         for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
 722                 lnum = c->ilebs[i];
 723                 dbg_cmt("LEB %d", lnum);
 724                 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 725                                          LPROPS_INDEX | LPROPS_TAKEN, 0);
 726                 if (!err)
 727                         err = er;
 728         }
 729         return err;
 730 }
 731 
 732 /**
 733  * free_idx_lebs - free unused LEBs after commit end.
 734  * @c: UBIFS file-system description object
 735  *
 736  * This function returns %0 on success and a negative error code on failure.
 737  */
 738 static int free_idx_lebs(struct ubifs_info *c)
 739 {
 740         int err;
 741 
 742         err = free_unused_idx_lebs(c);
 743         kfree(c->ilebs);
 744         c->ilebs = NULL;
 745         return err;
 746 }
 747 
 748 /**
 749  * ubifs_tnc_start_commit - start TNC commit.
 750  * @c: UBIFS file-system description object
 751  * @zroot: new index root position is returned here
 752  *
 753  * This function prepares the list of indexing nodes to commit and lays out
 754  * their positions on flash. If there is not enough free space it uses the
 755  * in-gap commit method. Returns zero in case of success and a negative error
 756  * code in case of failure.
 757  */
 758 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 759 {
 760         int err = 0, cnt;
 761 
 762         mutex_lock(&c->tnc_mutex);
 763         err = dbg_check_tnc(c, 1);
 764         if (err)
 765                 goto out;
 766         cnt = get_znodes_to_commit(c);
 767         if (cnt != 0) {
 768                 int no_space = 0;
 769 
 770                 err = alloc_idx_lebs(c, cnt);
 771                 if (err == -ENOSPC)
 772                         no_space = 1;
 773                 else if (err)
 774                         goto out_free;
 775                 err = layout_commit(c, no_space, cnt);
 776                 if (err)
 777                         goto out_free;
 778                 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
 779                 err = free_unused_idx_lebs(c);
 780                 if (err)
 781                         goto out;
 782         }
 783         destroy_old_idx(c);
 784         memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
 785 
 786         err = ubifs_save_dirty_idx_lnums(c);
 787         if (err)
 788                 goto out;
 789 
 790         spin_lock(&c->space_lock);
 791         /*
 792          * Although we have not finished committing yet, update size of the
 793          * committed index ('c->bi.old_idx_sz') and zero out the index growth
 794          * budget. It is OK to do this now, because we've reserved all the
 795          * space which is needed to commit the index, and it is save for the
 796          * budgeting subsystem to assume the index is already committed,
 797          * even though it is not.
 798          */
 799         ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 800         c->bi.old_idx_sz = c->calc_idx_sz;
 801         c->bi.uncommitted_idx = 0;
 802         c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 803         spin_unlock(&c->space_lock);
 804         mutex_unlock(&c->tnc_mutex);
 805 
 806         dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
 807         dbg_cmt("size of index %llu", c->calc_idx_sz);
 808         return err;
 809 
 810 out_free:
 811         free_idx_lebs(c);
 812 out:
 813         mutex_unlock(&c->tnc_mutex);
 814         return err;
 815 }
 816 
 817 /**
 818  * write_index - write index nodes.
 819  * @c: UBIFS file-system description object
 820  *
 821  * This function writes the index nodes whose positions were laid out in the
 822  * layout_in_empty_space function.
 823  */
 824 static int write_index(struct ubifs_info *c)
 825 {
 826         struct ubifs_idx_node *idx;
 827         struct ubifs_znode *znode, *cnext;
 828         int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
 829         int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
 830 
 831         cnext = c->enext;
 832         if (!cnext)
 833                 return 0;
 834 
 835         /*
 836          * Always write index nodes to the index head so that index nodes and
 837          * other types of nodes are never mixed in the same erase block.
 838          */
 839         lnum = c->ihead_lnum;
 840         buf_offs = c->ihead_offs;
 841 
 842         /* Allocate commit buffer */
 843         buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
 844         used = 0;
 845         avail = buf_len;
 846 
 847         /* Ensure there is enough room for first write */
 848         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 849         if (buf_offs + next_len > c->leb_size) {
 850                 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
 851                                           LPROPS_TAKEN);
 852                 if (err)
 853                         return err;
 854                 lnum = -1;
 855         }
 856 
 857         while (1) {
 858                 u8 hash[UBIFS_HASH_ARR_SZ];
 859 
 860                 cond_resched();
 861 
 862                 znode = cnext;
 863                 idx = c->cbuf + used;
 864 
 865                 /* Make index node */
 866                 idx->ch.node_type = UBIFS_IDX_NODE;
 867                 idx->child_cnt = cpu_to_le16(znode->child_cnt);
 868                 idx->level = cpu_to_le16(znode->level);
 869                 for (i = 0; i < znode->child_cnt; i++) {
 870                         struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 871                         struct ubifs_zbranch *zbr = &znode->zbranch[i];
 872 
 873                         key_write_idx(c, &zbr->key, &br->key);
 874                         br->lnum = cpu_to_le32(zbr->lnum);
 875                         br->offs = cpu_to_le32(zbr->offs);
 876                         br->len = cpu_to_le32(zbr->len);
 877                         ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
 878                         if (!zbr->lnum || !zbr->len) {
 879                                 ubifs_err(c, "bad ref in znode");
 880                                 ubifs_dump_znode(c, znode);
 881                                 if (zbr->znode)
 882                                         ubifs_dump_znode(c, zbr->znode);
 883 
 884                                 return -EINVAL;
 885                         }
 886                 }
 887                 len = ubifs_idx_node_sz(c, znode->child_cnt);
 888                 ubifs_prepare_node(c, idx, len, 0);
 889                 ubifs_node_calc_hash(c, idx, hash);
 890 
 891                 mutex_lock(&c->tnc_mutex);
 892 
 893                 if (znode->cparent)
 894                         ubifs_copy_hash(c, hash,
 895                                         znode->cparent->zbranch[znode->ciip].hash);
 896 
 897                 if (znode->parent) {
 898                         if (!ubifs_zn_obsolete(znode))
 899                                 ubifs_copy_hash(c, hash,
 900                                         znode->parent->zbranch[znode->iip].hash);
 901                 } else {
 902                         ubifs_copy_hash(c, hash, c->zroot.hash);
 903                 }
 904 
 905                 mutex_unlock(&c->tnc_mutex);
 906 
 907                 /* Determine the index node position */
 908                 if (lnum == -1) {
 909                         lnum = c->ilebs[lnum_pos++];
 910                         buf_offs = 0;
 911                         used = 0;
 912                         avail = buf_len;
 913                 }
 914                 offs = buf_offs + used;
 915 
 916                 if (lnum != znode->lnum || offs != znode->offs ||
 917                     len != znode->len) {
 918                         ubifs_err(c, "inconsistent znode posn");
 919                         return -EINVAL;
 920                 }
 921 
 922                 /* Grab some stuff from znode while we still can */
 923                 cnext = znode->cnext;
 924 
 925                 ubifs_assert(c, ubifs_zn_dirty(znode));
 926                 ubifs_assert(c, ubifs_zn_cow(znode));
 927 
 928                 /*
 929                  * It is important that other threads should see %DIRTY_ZNODE
 930                  * flag cleared before %COW_ZNODE. Specifically, it matters in
 931                  * the 'dirty_cow_znode()' function. This is the reason for the
 932                  * first barrier. Also, we want the bit changes to be seen to
 933                  * other threads ASAP, to avoid unnecesarry copying, which is
 934                  * the reason for the second barrier.
 935                  */
 936                 clear_bit(DIRTY_ZNODE, &znode->flags);
 937                 smp_mb__before_atomic();
 938                 clear_bit(COW_ZNODE, &znode->flags);
 939                 smp_mb__after_atomic();
 940 
 941                 /*
 942                  * We have marked the znode as clean but have not updated the
 943                  * @c->clean_zn_cnt counter. If this znode becomes dirty again
 944                  * before 'free_obsolete_znodes()' is called, then
 945                  * @c->clean_zn_cnt will be decremented before it gets
 946                  * incremented (resulting in 2 decrements for the same znode).
 947                  * This means that @c->clean_zn_cnt may become negative for a
 948                  * while.
 949                  *
 950                  * Q: why we cannot increment @c->clean_zn_cnt?
 951                  * A: because we do not have the @c->tnc_mutex locked, and the
 952                  *    following code would be racy and buggy:
 953                  *
 954                  *    if (!ubifs_zn_obsolete(znode)) {
 955                  *            atomic_long_inc(&c->clean_zn_cnt);
 956                  *            atomic_long_inc(&ubifs_clean_zn_cnt);
 957                  *    }
 958                  *
 959                  *    Thus, we just delay the @c->clean_zn_cnt update until we
 960                  *    have the mutex locked.
 961                  */
 962 
 963                 /* Do not access znode from this point on */
 964 
 965                 /* Update buffer positions */
 966                 wlen = used + len;
 967                 used += ALIGN(len, 8);
 968                 avail -= ALIGN(len, 8);
 969 
 970                 /*
 971                  * Calculate the next index node length to see if there is
 972                  * enough room for it
 973                  */
 974                 if (cnext == c->cnext)
 975                         next_len = 0;
 976                 else
 977                         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 978 
 979                 nxt_offs = buf_offs + used + next_len;
 980                 if (next_len && nxt_offs <= c->leb_size) {
 981                         if (avail > 0)
 982                                 continue;
 983                         else
 984                                 blen = buf_len;
 985                 } else {
 986                         wlen = ALIGN(wlen, 8);
 987                         blen = ALIGN(wlen, c->min_io_size);
 988                         ubifs_pad(c, c->cbuf + wlen, blen - wlen);
 989                 }
 990 
 991                 /* The buffer is full or there are no more znodes to do */
 992                 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
 993                 if (err)
 994                         return err;
 995                 buf_offs += blen;
 996                 if (next_len) {
 997                         if (nxt_offs > c->leb_size) {
 998                                 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
 999                                                           0, LPROPS_TAKEN);
1000                                 if (err)
1001                                         return err;
1002                                 lnum = -1;
1003                         }
1004                         used -= blen;
1005                         if (used < 0)
1006                                 used = 0;
1007                         avail = buf_len - used;
1008                         memmove(c->cbuf, c->cbuf + blen, used);
1009                         continue;
1010                 }
1011                 break;
1012         }
1013 
1014         if (lnum != c->dbg->new_ihead_lnum ||
1015             buf_offs != c->dbg->new_ihead_offs) {
1016                 ubifs_err(c, "inconsistent ihead");
1017                 return -EINVAL;
1018         }
1019 
1020         c->ihead_lnum = lnum;
1021         c->ihead_offs = buf_offs;
1022 
1023         return 0;
1024 }
1025 
1026 /**
1027  * free_obsolete_znodes - free obsolete znodes.
1028  * @c: UBIFS file-system description object
1029  *
1030  * At the end of commit end, obsolete znodes are freed.
1031  */
1032 static void free_obsolete_znodes(struct ubifs_info *c)
1033 {
1034         struct ubifs_znode *znode, *cnext;
1035 
1036         cnext = c->cnext;
1037         do {
1038                 znode = cnext;
1039                 cnext = znode->cnext;
1040                 if (ubifs_zn_obsolete(znode))
1041                         kfree(znode);
1042                 else {
1043                         znode->cnext = NULL;
1044                         atomic_long_inc(&c->clean_zn_cnt);
1045                         atomic_long_inc(&ubifs_clean_zn_cnt);
1046                 }
1047         } while (cnext != c->cnext);
1048 }
1049 
1050 /**
1051  * return_gap_lebs - return LEBs used by the in-gap commit method.
1052  * @c: UBIFS file-system description object
1053  *
1054  * This function clears the "taken" flag for the LEBs which were used by the
1055  * "commit in-the-gaps" method.
1056  */
1057 static int return_gap_lebs(struct ubifs_info *c)
1058 {
1059         int *p, err;
1060 
1061         if (!c->gap_lebs)
1062                 return 0;
1063 
1064         dbg_cmt("");
1065         for (p = c->gap_lebs; *p != -1; p++) {
1066                 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1067                                           LPROPS_TAKEN, 0);
1068                 if (err)
1069                         return err;
1070         }
1071 
1072         kfree(c->gap_lebs);
1073         c->gap_lebs = NULL;
1074         return 0;
1075 }
1076 
1077 /**
1078  * ubifs_tnc_end_commit - update the TNC for commit end.
1079  * @c: UBIFS file-system description object
1080  *
1081  * Write the dirty znodes.
1082  */
1083 int ubifs_tnc_end_commit(struct ubifs_info *c)
1084 {
1085         int err;
1086 
1087         if (!c->cnext)
1088                 return 0;
1089 
1090         err = return_gap_lebs(c);
1091         if (err)
1092                 return err;
1093 
1094         err = write_index(c);
1095         if (err)
1096                 return err;
1097 
1098         mutex_lock(&c->tnc_mutex);
1099 
1100         dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1101 
1102         free_obsolete_znodes(c);
1103 
1104         c->cnext = NULL;
1105         kfree(c->ilebs);
1106         c->ilebs = NULL;
1107 
1108         mutex_unlock(&c->tnc_mutex);
1109 
1110         return 0;
1111 }

/* [<][>][^][v][top][bottom][index][help] */