root/fs/ocfs2/journal.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ocfs2_wait_on_mount
  2. ocfs2_wait_on_quotas
  3. ocfs2_replay_map_set_state
  4. ocfs2_compute_replay_slots
  5. ocfs2_queue_replay_slots
  6. ocfs2_free_replay_slots
  7. ocfs2_recovery_init
  8. ocfs2_recovery_thread_running
  9. ocfs2_recovery_exit
  10. __ocfs2_recovery_map_test
  11. ocfs2_recovery_map_set
  12. ocfs2_recovery_map_clear
  13. ocfs2_commit_cache
  14. ocfs2_start_trans
  15. ocfs2_commit_trans
  16. ocfs2_extend_trans
  17. ocfs2_allocate_extend_trans
  18. to_ocfs2_trigger
  19. ocfs2_frozen_trigger
  20. ocfs2_dq_frozen_trigger
  21. ocfs2_db_frozen_trigger
  22. ocfs2_abort_trigger
  23. __ocfs2_journal_access
  24. ocfs2_journal_access_di
  25. ocfs2_journal_access_eb
  26. ocfs2_journal_access_rb
  27. ocfs2_journal_access_gd
  28. ocfs2_journal_access_db
  29. ocfs2_journal_access_xb
  30. ocfs2_journal_access_dq
  31. ocfs2_journal_access_dr
  32. ocfs2_journal_access_dl
  33. ocfs2_journal_access
  34. ocfs2_journal_dirty
  35. ocfs2_set_journal_params
  36. ocfs2_journal_init
  37. ocfs2_bump_recovery_generation
  38. ocfs2_get_recovery_generation
  39. ocfs2_journal_toggle_dirty
  40. ocfs2_journal_shutdown
  41. ocfs2_clear_journal_error
  42. ocfs2_journal_load
  43. ocfs2_journal_wipe
  44. ocfs2_recovery_completed
  45. ocfs2_wait_for_recovery
  46. ocfs2_force_read_journal
  47. ocfs2_complete_recovery
  48. ocfs2_queue_recovery_completion
  49. ocfs2_complete_mount_recovery
  50. ocfs2_complete_quota_recovery
  51. __ocfs2_recovery_thread
  52. ocfs2_recovery_thread
  53. ocfs2_read_journal_inode
  54. ocfs2_replay_journal
  55. ocfs2_recover_node
  56. ocfs2_trylock_journal
  57. ocfs2_mark_dead_nodes
  58. ocfs2_orphan_scan_timeout
  59. ocfs2_queue_orphan_scan
  60. ocfs2_orphan_scan_work
  61. ocfs2_orphan_scan_stop
  62. ocfs2_orphan_scan_init
  63. ocfs2_orphan_scan_start
  64. ocfs2_orphan_filldir
  65. ocfs2_queue_orphans
  66. ocfs2_orphan_recovery_can_continue
  67. ocfs2_mark_recovering_orphan_dir
  68. ocfs2_clear_recovering_orphan_dir
  69. ocfs2_recover_orphans
  70. __ocfs2_wait_on_mount
  71. ocfs2_commit_thread
  72. ocfs2_check_journals_nolocks

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* -*- mode: c; c-basic-offset: 8; -*-
   3  * vim: noexpandtab sw=8 ts=8 sts=0:
   4  *
   5  * journal.c
   6  *
   7  * Defines functions of journalling api
   8  *
   9  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
  10  */
  11 
  12 #include <linux/fs.h>
  13 #include <linux/types.h>
  14 #include <linux/slab.h>
  15 #include <linux/highmem.h>
  16 #include <linux/kthread.h>
  17 #include <linux/time.h>
  18 #include <linux/random.h>
  19 #include <linux/delay.h>
  20 
  21 #include <cluster/masklog.h>
  22 
  23 #include "ocfs2.h"
  24 
  25 #include "alloc.h"
  26 #include "blockcheck.h"
  27 #include "dir.h"
  28 #include "dlmglue.h"
  29 #include "extent_map.h"
  30 #include "heartbeat.h"
  31 #include "inode.h"
  32 #include "journal.h"
  33 #include "localalloc.h"
  34 #include "slot_map.h"
  35 #include "super.h"
  36 #include "sysfile.h"
  37 #include "uptodate.h"
  38 #include "quota.h"
  39 #include "file.h"
  40 #include "namei.h"
  41 
  42 #include "buffer_head_io.h"
  43 #include "ocfs2_trace.h"
  44 
  45 DEFINE_SPINLOCK(trans_inc_lock);
  46 
  47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  48 
  49 static int ocfs2_force_read_journal(struct inode *inode);
  50 static int ocfs2_recover_node(struct ocfs2_super *osb,
  51                               int node_num, int slot_num);
  52 static int __ocfs2_recovery_thread(void *arg);
  53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
  54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  56                                       int dirty, int replayed);
  57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  58                                  int slot_num);
  59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  60                                  int slot,
  61                                  enum ocfs2_orphan_reco_type orphan_reco_type);
  62 static int ocfs2_commit_thread(void *arg);
  63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  64                                             int slot_num,
  65                                             struct ocfs2_dinode *la_dinode,
  66                                             struct ocfs2_dinode *tl_dinode,
  67                                             struct ocfs2_quota_recovery *qrec,
  68                                             enum ocfs2_orphan_reco_type orphan_reco_type);
  69 
  70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  71 {
  72         return __ocfs2_wait_on_mount(osb, 0);
  73 }
  74 
  75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  76 {
  77         return __ocfs2_wait_on_mount(osb, 1);
  78 }
  79 
  80 /*
  81  * This replay_map is to track online/offline slots, so we could recover
  82  * offline slots during recovery and mount
  83  */
  84 
  85 enum ocfs2_replay_state {
  86         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
  87         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
  88         REPLAY_DONE             /* Replay was already queued */
  89 };
  90 
  91 struct ocfs2_replay_map {
  92         unsigned int rm_slots;
  93         enum ocfs2_replay_state rm_state;
  94         unsigned char rm_replay_slots[0];
  95 };
  96 
  97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
  98 {
  99         if (!osb->replay_map)
 100                 return;
 101 
 102         /* If we've already queued the replay, we don't have any more to do */
 103         if (osb->replay_map->rm_state == REPLAY_DONE)
 104                 return;
 105 
 106         osb->replay_map->rm_state = state;
 107 }
 108 
 109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 110 {
 111         struct ocfs2_replay_map *replay_map;
 112         int i, node_num;
 113 
 114         /* If replay map is already set, we don't do it again */
 115         if (osb->replay_map)
 116                 return 0;
 117 
 118         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 119                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
 120 
 121         if (!replay_map) {
 122                 mlog_errno(-ENOMEM);
 123                 return -ENOMEM;
 124         }
 125 
 126         spin_lock(&osb->osb_lock);
 127 
 128         replay_map->rm_slots = osb->max_slots;
 129         replay_map->rm_state = REPLAY_UNNEEDED;
 130 
 131         /* set rm_replay_slots for offline slot(s) */
 132         for (i = 0; i < replay_map->rm_slots; i++) {
 133                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 134                         replay_map->rm_replay_slots[i] = 1;
 135         }
 136 
 137         osb->replay_map = replay_map;
 138         spin_unlock(&osb->osb_lock);
 139         return 0;
 140 }
 141 
 142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 143                 enum ocfs2_orphan_reco_type orphan_reco_type)
 144 {
 145         struct ocfs2_replay_map *replay_map = osb->replay_map;
 146         int i;
 147 
 148         if (!replay_map)
 149                 return;
 150 
 151         if (replay_map->rm_state != REPLAY_NEEDED)
 152                 return;
 153 
 154         for (i = 0; i < replay_map->rm_slots; i++)
 155                 if (replay_map->rm_replay_slots[i])
 156                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 157                                                         NULL, NULL,
 158                                                         orphan_reco_type);
 159         replay_map->rm_state = REPLAY_DONE;
 160 }
 161 
 162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 163 {
 164         struct ocfs2_replay_map *replay_map = osb->replay_map;
 165 
 166         if (!osb->replay_map)
 167                 return;
 168 
 169         kfree(replay_map);
 170         osb->replay_map = NULL;
 171 }
 172 
 173 int ocfs2_recovery_init(struct ocfs2_super *osb)
 174 {
 175         struct ocfs2_recovery_map *rm;
 176 
 177         mutex_init(&osb->recovery_lock);
 178         osb->disable_recovery = 0;
 179         osb->recovery_thread_task = NULL;
 180         init_waitqueue_head(&osb->recovery_event);
 181 
 182         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 183                      osb->max_slots * sizeof(unsigned int),
 184                      GFP_KERNEL);
 185         if (!rm) {
 186                 mlog_errno(-ENOMEM);
 187                 return -ENOMEM;
 188         }
 189 
 190         rm->rm_entries = (unsigned int *)((char *)rm +
 191                                           sizeof(struct ocfs2_recovery_map));
 192         osb->recovery_map = rm;
 193 
 194         return 0;
 195 }
 196 
 197 /* we can't grab the goofy sem lock from inside wait_event, so we use
 198  * memory barriers to make sure that we'll see the null task before
 199  * being woken up */
 200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 201 {
 202         mb();
 203         return osb->recovery_thread_task != NULL;
 204 }
 205 
 206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
 207 {
 208         struct ocfs2_recovery_map *rm;
 209 
 210         /* disable any new recovery threads and wait for any currently
 211          * running ones to exit. Do this before setting the vol_state. */
 212         mutex_lock(&osb->recovery_lock);
 213         osb->disable_recovery = 1;
 214         mutex_unlock(&osb->recovery_lock);
 215         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 216 
 217         /* At this point, we know that no more recovery threads can be
 218          * launched, so wait for any recovery completion work to
 219          * complete. */
 220         if (osb->ocfs2_wq)
 221                 flush_workqueue(osb->ocfs2_wq);
 222 
 223         /*
 224          * Now that recovery is shut down, and the osb is about to be
 225          * freed,  the osb_lock is not taken here.
 226          */
 227         rm = osb->recovery_map;
 228         /* XXX: Should we bug if there are dirty entries? */
 229 
 230         kfree(rm);
 231 }
 232 
 233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 234                                      unsigned int node_num)
 235 {
 236         int i;
 237         struct ocfs2_recovery_map *rm = osb->recovery_map;
 238 
 239         assert_spin_locked(&osb->osb_lock);
 240 
 241         for (i = 0; i < rm->rm_used; i++) {
 242                 if (rm->rm_entries[i] == node_num)
 243                         return 1;
 244         }
 245 
 246         return 0;
 247 }
 248 
 249 /* Behaves like test-and-set.  Returns the previous value */
 250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 251                                   unsigned int node_num)
 252 {
 253         struct ocfs2_recovery_map *rm = osb->recovery_map;
 254 
 255         spin_lock(&osb->osb_lock);
 256         if (__ocfs2_recovery_map_test(osb, node_num)) {
 257                 spin_unlock(&osb->osb_lock);
 258                 return 1;
 259         }
 260 
 261         /* XXX: Can this be exploited? Not from o2dlm... */
 262         BUG_ON(rm->rm_used >= osb->max_slots);
 263 
 264         rm->rm_entries[rm->rm_used] = node_num;
 265         rm->rm_used++;
 266         spin_unlock(&osb->osb_lock);
 267 
 268         return 0;
 269 }
 270 
 271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 272                                      unsigned int node_num)
 273 {
 274         int i;
 275         struct ocfs2_recovery_map *rm = osb->recovery_map;
 276 
 277         spin_lock(&osb->osb_lock);
 278 
 279         for (i = 0; i < rm->rm_used; i++) {
 280                 if (rm->rm_entries[i] == node_num)
 281                         break;
 282         }
 283 
 284         if (i < rm->rm_used) {
 285                 /* XXX: be careful with the pointer math */
 286                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 287                         (rm->rm_used - i - 1) * sizeof(unsigned int));
 288                 rm->rm_used--;
 289         }
 290 
 291         spin_unlock(&osb->osb_lock);
 292 }
 293 
 294 static int ocfs2_commit_cache(struct ocfs2_super *osb)
 295 {
 296         int status = 0;
 297         unsigned int flushed;
 298         struct ocfs2_journal *journal = NULL;
 299 
 300         journal = osb->journal;
 301 
 302         /* Flush all pending commits and checkpoint the journal. */
 303         down_write(&journal->j_trans_barrier);
 304 
 305         flushed = atomic_read(&journal->j_num_trans);
 306         trace_ocfs2_commit_cache_begin(flushed);
 307         if (flushed == 0) {
 308                 up_write(&journal->j_trans_barrier);
 309                 goto finally;
 310         }
 311 
 312         jbd2_journal_lock_updates(journal->j_journal);
 313         status = jbd2_journal_flush(journal->j_journal);
 314         jbd2_journal_unlock_updates(journal->j_journal);
 315         if (status < 0) {
 316                 up_write(&journal->j_trans_barrier);
 317                 mlog_errno(status);
 318                 goto finally;
 319         }
 320 
 321         ocfs2_inc_trans_id(journal);
 322 
 323         flushed = atomic_read(&journal->j_num_trans);
 324         atomic_set(&journal->j_num_trans, 0);
 325         up_write(&journal->j_trans_barrier);
 326 
 327         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 328 
 329         ocfs2_wake_downconvert_thread(osb);
 330         wake_up(&journal->j_checkpointed);
 331 finally:
 332         return status;
 333 }
 334 
 335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 336 {
 337         journal_t *journal = osb->journal->j_journal;
 338         handle_t *handle;
 339 
 340         BUG_ON(!osb || !osb->journal->j_journal);
 341 
 342         if (ocfs2_is_hard_readonly(osb))
 343                 return ERR_PTR(-EROFS);
 344 
 345         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 346         BUG_ON(max_buffs <= 0);
 347 
 348         /* Nested transaction? Just return the handle... */
 349         if (journal_current_handle())
 350                 return jbd2_journal_start(journal, max_buffs);
 351 
 352         sb_start_intwrite(osb->sb);
 353 
 354         down_read(&osb->journal->j_trans_barrier);
 355 
 356         handle = jbd2_journal_start(journal, max_buffs);
 357         if (IS_ERR(handle)) {
 358                 up_read(&osb->journal->j_trans_barrier);
 359                 sb_end_intwrite(osb->sb);
 360 
 361                 mlog_errno(PTR_ERR(handle));
 362 
 363                 if (is_journal_aborted(journal)) {
 364                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
 365                         handle = ERR_PTR(-EROFS);
 366                 }
 367         } else {
 368                 if (!ocfs2_mount_local(osb))
 369                         atomic_inc(&(osb->journal->j_num_trans));
 370         }
 371 
 372         return handle;
 373 }
 374 
 375 int ocfs2_commit_trans(struct ocfs2_super *osb,
 376                        handle_t *handle)
 377 {
 378         int ret, nested;
 379         struct ocfs2_journal *journal = osb->journal;
 380 
 381         BUG_ON(!handle);
 382 
 383         nested = handle->h_ref > 1;
 384         ret = jbd2_journal_stop(handle);
 385         if (ret < 0)
 386                 mlog_errno(ret);
 387 
 388         if (!nested) {
 389                 up_read(&journal->j_trans_barrier);
 390                 sb_end_intwrite(osb->sb);
 391         }
 392 
 393         return ret;
 394 }
 395 
 396 /*
 397  * 'nblocks' is what you want to add to the current transaction.
 398  *
 399  * This might call jbd2_journal_restart() which will commit dirty buffers
 400  * and then restart the transaction. Before calling
 401  * ocfs2_extend_trans(), any changed blocks should have been
 402  * dirtied. After calling it, all blocks which need to be changed must
 403  * go through another set of journal_access/journal_dirty calls.
 404  *
 405  * WARNING: This will not release any semaphores or disk locks taken
 406  * during the transaction, so make sure they were taken *before*
 407  * start_trans or we'll have ordering deadlocks.
 408  *
 409  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 410  * good because transaction ids haven't yet been recorded on the
 411  * cluster locks associated with this handle.
 412  */
 413 int ocfs2_extend_trans(handle_t *handle, int nblocks)
 414 {
 415         int status, old_nblocks;
 416 
 417         BUG_ON(!handle);
 418         BUG_ON(nblocks < 0);
 419 
 420         if (!nblocks)
 421                 return 0;
 422 
 423         old_nblocks = handle->h_buffer_credits;
 424 
 425         trace_ocfs2_extend_trans(old_nblocks, nblocks);
 426 
 427 #ifdef CONFIG_OCFS2_DEBUG_FS
 428         status = 1;
 429 #else
 430         status = jbd2_journal_extend(handle, nblocks);
 431         if (status < 0) {
 432                 mlog_errno(status);
 433                 goto bail;
 434         }
 435 #endif
 436 
 437         if (status > 0) {
 438                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 439                 status = jbd2_journal_restart(handle,
 440                                               old_nblocks + nblocks);
 441                 if (status < 0) {
 442                         mlog_errno(status);
 443                         goto bail;
 444                 }
 445         }
 446 
 447         status = 0;
 448 bail:
 449         return status;
 450 }
 451 
 452 /*
 453  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 454  * If that fails, restart the transaction & regain write access for the
 455  * buffer head which is used for metadata modifications.
 456  * Taken from Ext4: extend_or_restart_transaction()
 457  */
 458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 459 {
 460         int status, old_nblks;
 461 
 462         BUG_ON(!handle);
 463 
 464         old_nblks = handle->h_buffer_credits;
 465         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 466 
 467         if (old_nblks < thresh)
 468                 return 0;
 469 
 470         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
 471         if (status < 0) {
 472                 mlog_errno(status);
 473                 goto bail;
 474         }
 475 
 476         if (status > 0) {
 477                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 478                 if (status < 0)
 479                         mlog_errno(status);
 480         }
 481 
 482 bail:
 483         return status;
 484 }
 485 
 486 
 487 struct ocfs2_triggers {
 488         struct jbd2_buffer_trigger_type ot_triggers;
 489         int                             ot_offset;
 490 };
 491 
 492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 493 {
 494         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 495 }
 496 
 497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 498                                  struct buffer_head *bh,
 499                                  void *data, size_t size)
 500 {
 501         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 502 
 503         /*
 504          * We aren't guaranteed to have the superblock here, so we
 505          * must unconditionally compute the ecc data.
 506          * __ocfs2_journal_access() will only set the triggers if
 507          * metaecc is enabled.
 508          */
 509         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 510 }
 511 
 512 /*
 513  * Quota blocks have their own trigger because the struct ocfs2_block_check
 514  * offset depends on the blocksize.
 515  */
 516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 517                                  struct buffer_head *bh,
 518                                  void *data, size_t size)
 519 {
 520         struct ocfs2_disk_dqtrailer *dqt =
 521                 ocfs2_block_dqtrailer(size, data);
 522 
 523         /*
 524          * We aren't guaranteed to have the superblock here, so we
 525          * must unconditionally compute the ecc data.
 526          * __ocfs2_journal_access() will only set the triggers if
 527          * metaecc is enabled.
 528          */
 529         ocfs2_block_check_compute(data, size, &dqt->dq_check);
 530 }
 531 
 532 /*
 533  * Directory blocks also have their own trigger because the
 534  * struct ocfs2_block_check offset depends on the blocksize.
 535  */
 536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 537                                  struct buffer_head *bh,
 538                                  void *data, size_t size)
 539 {
 540         struct ocfs2_dir_block_trailer *trailer =
 541                 ocfs2_dir_trailer_from_size(size, data);
 542 
 543         /*
 544          * We aren't guaranteed to have the superblock here, so we
 545          * must unconditionally compute the ecc data.
 546          * __ocfs2_journal_access() will only set the triggers if
 547          * metaecc is enabled.
 548          */
 549         ocfs2_block_check_compute(data, size, &trailer->db_check);
 550 }
 551 
 552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 553                                 struct buffer_head *bh)
 554 {
 555         mlog(ML_ERROR,
 556              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 557              "bh->b_blocknr = %llu\n",
 558              (unsigned long)bh,
 559              (unsigned long long)bh->b_blocknr);
 560 
 561         ocfs2_error(bh->b_bdev->bd_super,
 562                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 563 }
 564 
 565 static struct ocfs2_triggers di_triggers = {
 566         .ot_triggers = {
 567                 .t_frozen = ocfs2_frozen_trigger,
 568                 .t_abort = ocfs2_abort_trigger,
 569         },
 570         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 571 };
 572 
 573 static struct ocfs2_triggers eb_triggers = {
 574         .ot_triggers = {
 575                 .t_frozen = ocfs2_frozen_trigger,
 576                 .t_abort = ocfs2_abort_trigger,
 577         },
 578         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 579 };
 580 
 581 static struct ocfs2_triggers rb_triggers = {
 582         .ot_triggers = {
 583                 .t_frozen = ocfs2_frozen_trigger,
 584                 .t_abort = ocfs2_abort_trigger,
 585         },
 586         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 587 };
 588 
 589 static struct ocfs2_triggers gd_triggers = {
 590         .ot_triggers = {
 591                 .t_frozen = ocfs2_frozen_trigger,
 592                 .t_abort = ocfs2_abort_trigger,
 593         },
 594         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 595 };
 596 
 597 static struct ocfs2_triggers db_triggers = {
 598         .ot_triggers = {
 599                 .t_frozen = ocfs2_db_frozen_trigger,
 600                 .t_abort = ocfs2_abort_trigger,
 601         },
 602 };
 603 
 604 static struct ocfs2_triggers xb_triggers = {
 605         .ot_triggers = {
 606                 .t_frozen = ocfs2_frozen_trigger,
 607                 .t_abort = ocfs2_abort_trigger,
 608         },
 609         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 610 };
 611 
 612 static struct ocfs2_triggers dq_triggers = {
 613         .ot_triggers = {
 614                 .t_frozen = ocfs2_dq_frozen_trigger,
 615                 .t_abort = ocfs2_abort_trigger,
 616         },
 617 };
 618 
 619 static struct ocfs2_triggers dr_triggers = {
 620         .ot_triggers = {
 621                 .t_frozen = ocfs2_frozen_trigger,
 622                 .t_abort = ocfs2_abort_trigger,
 623         },
 624         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 625 };
 626 
 627 static struct ocfs2_triggers dl_triggers = {
 628         .ot_triggers = {
 629                 .t_frozen = ocfs2_frozen_trigger,
 630                 .t_abort = ocfs2_abort_trigger,
 631         },
 632         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 633 };
 634 
 635 static int __ocfs2_journal_access(handle_t *handle,
 636                                   struct ocfs2_caching_info *ci,
 637                                   struct buffer_head *bh,
 638                                   struct ocfs2_triggers *triggers,
 639                                   int type)
 640 {
 641         int status;
 642         struct ocfs2_super *osb =
 643                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 644 
 645         BUG_ON(!ci || !ci->ci_ops);
 646         BUG_ON(!handle);
 647         BUG_ON(!bh);
 648 
 649         trace_ocfs2_journal_access(
 650                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
 651                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
 652 
 653         /* we can safely remove this assertion after testing. */
 654         if (!buffer_uptodate(bh)) {
 655                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 656                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
 657                      (unsigned long long)bh->b_blocknr, bh->b_state);
 658 
 659                 lock_buffer(bh);
 660                 /*
 661                  * A previous transaction with a couple of buffer heads fail
 662                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
 663                  * For current transaction, the bh is just among those error
 664                  * bhs which previous transaction handle. We can't just clear
 665                  * its BH_Write_EIO and reuse directly, since other bhs are
 666                  * not written to disk yet and that will cause metadata
 667                  * inconsistency. So we should set fs read-only to avoid
 668                  * further damage.
 669                  */
 670                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 671                         unlock_buffer(bh);
 672                         return ocfs2_error(osb->sb, "A previous attempt to "
 673                                         "write this buffer head failed\n");
 674                 }
 675                 unlock_buffer(bh);
 676         }
 677 
 678         /* Set the current transaction information on the ci so
 679          * that the locking code knows whether it can drop it's locks
 680          * on this ci or not. We're protected from the commit
 681          * thread updating the current transaction id until
 682          * ocfs2_commit_trans() because ocfs2_start_trans() took
 683          * j_trans_barrier for us. */
 684         ocfs2_set_ci_lock_trans(osb->journal, ci);
 685 
 686         ocfs2_metadata_cache_io_lock(ci);
 687         switch (type) {
 688         case OCFS2_JOURNAL_ACCESS_CREATE:
 689         case OCFS2_JOURNAL_ACCESS_WRITE:
 690                 status = jbd2_journal_get_write_access(handle, bh);
 691                 break;
 692 
 693         case OCFS2_JOURNAL_ACCESS_UNDO:
 694                 status = jbd2_journal_get_undo_access(handle, bh);
 695                 break;
 696 
 697         default:
 698                 status = -EINVAL;
 699                 mlog(ML_ERROR, "Unknown access type!\n");
 700         }
 701         if (!status && ocfs2_meta_ecc(osb) && triggers)
 702                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 703         ocfs2_metadata_cache_io_unlock(ci);
 704 
 705         if (status < 0)
 706                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 707                      status, type);
 708 
 709         return status;
 710 }
 711 
 712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 713                             struct buffer_head *bh, int type)
 714 {
 715         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 716 }
 717 
 718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 719                             struct buffer_head *bh, int type)
 720 {
 721         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 722 }
 723 
 724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 725                             struct buffer_head *bh, int type)
 726 {
 727         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 728                                       type);
 729 }
 730 
 731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 732                             struct buffer_head *bh, int type)
 733 {
 734         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 735 }
 736 
 737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 738                             struct buffer_head *bh, int type)
 739 {
 740         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 741 }
 742 
 743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 744                             struct buffer_head *bh, int type)
 745 {
 746         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 747 }
 748 
 749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 750                             struct buffer_head *bh, int type)
 751 {
 752         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 753 }
 754 
 755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 756                             struct buffer_head *bh, int type)
 757 {
 758         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 759 }
 760 
 761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 762                             struct buffer_head *bh, int type)
 763 {
 764         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 765 }
 766 
 767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 768                          struct buffer_head *bh, int type)
 769 {
 770         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 771 }
 772 
 773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 774 {
 775         int status;
 776 
 777         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 778 
 779         status = jbd2_journal_dirty_metadata(handle, bh);
 780         if (status) {
 781                 mlog_errno(status);
 782                 if (!is_handle_aborted(handle)) {
 783                         journal_t *journal = handle->h_transaction->t_journal;
 784                         struct super_block *sb = bh->b_bdev->bd_super;
 785 
 786                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 787                                         "Aborting transaction and journal.\n");
 788                         handle->h_err = status;
 789                         jbd2_journal_abort_handle(handle);
 790                         jbd2_journal_abort(journal, status);
 791                         ocfs2_abort(sb, "Journal already aborted.\n");
 792                 }
 793         }
 794 }
 795 
 796 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 797 
 798 void ocfs2_set_journal_params(struct ocfs2_super *osb)
 799 {
 800         journal_t *journal = osb->journal->j_journal;
 801         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 802 
 803         if (osb->osb_commit_interval)
 804                 commit_interval = osb->osb_commit_interval;
 805 
 806         write_lock(&journal->j_state_lock);
 807         journal->j_commit_interval = commit_interval;
 808         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 809                 journal->j_flags |= JBD2_BARRIER;
 810         else
 811                 journal->j_flags &= ~JBD2_BARRIER;
 812         write_unlock(&journal->j_state_lock);
 813 }
 814 
 815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 816 {
 817         int status = -1;
 818         struct inode *inode = NULL; /* the journal inode */
 819         journal_t *j_journal = NULL;
 820         struct ocfs2_dinode *di = NULL;
 821         struct buffer_head *bh = NULL;
 822         struct ocfs2_super *osb;
 823         int inode_lock = 0;
 824 
 825         BUG_ON(!journal);
 826 
 827         osb = journal->j_osb;
 828 
 829         /* already have the inode for our journal */
 830         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 831                                             osb->slot_num);
 832         if (inode == NULL) {
 833                 status = -EACCES;
 834                 mlog_errno(status);
 835                 goto done;
 836         }
 837         if (is_bad_inode(inode)) {
 838                 mlog(ML_ERROR, "access error (bad inode)\n");
 839                 iput(inode);
 840                 inode = NULL;
 841                 status = -EACCES;
 842                 goto done;
 843         }
 844 
 845         SET_INODE_JOURNAL(inode);
 846         OCFS2_I(inode)->ip_open_count++;
 847 
 848         /* Skip recovery waits here - journal inode metadata never
 849          * changes in a live cluster so it can be considered an
 850          * exception to the rule. */
 851         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 852         if (status < 0) {
 853                 if (status != -ERESTARTSYS)
 854                         mlog(ML_ERROR, "Could not get lock on journal!\n");
 855                 goto done;
 856         }
 857 
 858         inode_lock = 1;
 859         di = (struct ocfs2_dinode *)bh->b_data;
 860 
 861         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 862                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 863                      i_size_read(inode));
 864                 status = -EINVAL;
 865                 goto done;
 866         }
 867 
 868         trace_ocfs2_journal_init(i_size_read(inode),
 869                                  (unsigned long long)inode->i_blocks,
 870                                  OCFS2_I(inode)->ip_clusters);
 871 
 872         /* call the kernels journal init function now */
 873         j_journal = jbd2_journal_init_inode(inode);
 874         if (j_journal == NULL) {
 875                 mlog(ML_ERROR, "Linux journal layer error\n");
 876                 status = -EINVAL;
 877                 goto done;
 878         }
 879 
 880         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
 881 
 882         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 883                   OCFS2_JOURNAL_DIRTY_FL);
 884 
 885         journal->j_journal = j_journal;
 886         journal->j_inode = inode;
 887         journal->j_bh = bh;
 888 
 889         ocfs2_set_journal_params(osb);
 890 
 891         journal->j_state = OCFS2_JOURNAL_LOADED;
 892 
 893         status = 0;
 894 done:
 895         if (status < 0) {
 896                 if (inode_lock)
 897                         ocfs2_inode_unlock(inode, 1);
 898                 brelse(bh);
 899                 if (inode) {
 900                         OCFS2_I(inode)->ip_open_count--;
 901                         iput(inode);
 902                 }
 903         }
 904 
 905         return status;
 906 }
 907 
 908 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 909 {
 910         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 911 }
 912 
 913 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 914 {
 915         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 916 }
 917 
 918 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 919                                       int dirty, int replayed)
 920 {
 921         int status;
 922         unsigned int flags;
 923         struct ocfs2_journal *journal = osb->journal;
 924         struct buffer_head *bh = journal->j_bh;
 925         struct ocfs2_dinode *fe;
 926 
 927         fe = (struct ocfs2_dinode *)bh->b_data;
 928 
 929         /* The journal bh on the osb always comes from ocfs2_journal_init()
 930          * and was validated there inside ocfs2_inode_lock_full().  It's a
 931          * code bug if we mess it up. */
 932         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 933 
 934         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 935         if (dirty)
 936                 flags |= OCFS2_JOURNAL_DIRTY_FL;
 937         else
 938                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 939         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 940 
 941         if (replayed)
 942                 ocfs2_bump_recovery_generation(fe);
 943 
 944         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 945         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 946         if (status < 0)
 947                 mlog_errno(status);
 948 
 949         return status;
 950 }
 951 
 952 /*
 953  * If the journal has been kmalloc'd it needs to be freed after this
 954  * call.
 955  */
 956 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 957 {
 958         struct ocfs2_journal *journal = NULL;
 959         int status = 0;
 960         struct inode *inode = NULL;
 961         int num_running_trans = 0;
 962 
 963         BUG_ON(!osb);
 964 
 965         journal = osb->journal;
 966         if (!journal)
 967                 goto done;
 968 
 969         inode = journal->j_inode;
 970 
 971         if (journal->j_state != OCFS2_JOURNAL_LOADED)
 972                 goto done;
 973 
 974         /* need to inc inode use count - jbd2_journal_destroy will iput. */
 975         if (!igrab(inode))
 976                 BUG();
 977 
 978         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 979         trace_ocfs2_journal_shutdown(num_running_trans);
 980 
 981         /* Do a commit_cache here. It will flush our journal, *and*
 982          * release any locks that are still held.
 983          * set the SHUTDOWN flag and release the trans lock.
 984          * the commit thread will take the trans lock for us below. */
 985         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 986 
 987         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
 988          * drop the trans_lock (which we want to hold until we
 989          * completely destroy the journal. */
 990         if (osb->commit_task) {
 991                 /* Wait for the commit thread */
 992                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
 993                 kthread_stop(osb->commit_task);
 994                 osb->commit_task = NULL;
 995         }
 996 
 997         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
 998 
 999         if (ocfs2_mount_local(osb)) {
1000                 jbd2_journal_lock_updates(journal->j_journal);
1001                 status = jbd2_journal_flush(journal->j_journal);
1002                 jbd2_journal_unlock_updates(journal->j_journal);
1003                 if (status < 0)
1004                         mlog_errno(status);
1005         }
1006 
1007         /* Shutdown the kernel journal system */
1008         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1009                 /*
1010                  * Do not toggle if flush was unsuccessful otherwise
1011                  * will leave dirty metadata in a "clean" journal
1012                  */
1013                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1014                 if (status < 0)
1015                         mlog_errno(status);
1016         }
1017         journal->j_journal = NULL;
1018 
1019         OCFS2_I(inode)->ip_open_count--;
1020 
1021         /* unlock our journal */
1022         ocfs2_inode_unlock(inode, 1);
1023 
1024         brelse(journal->j_bh);
1025         journal->j_bh = NULL;
1026 
1027         journal->j_state = OCFS2_JOURNAL_FREE;
1028 
1029 //      up_write(&journal->j_trans_barrier);
1030 done:
1031         iput(inode);
1032 }
1033 
1034 static void ocfs2_clear_journal_error(struct super_block *sb,
1035                                       journal_t *journal,
1036                                       int slot)
1037 {
1038         int olderr;
1039 
1040         olderr = jbd2_journal_errno(journal);
1041         if (olderr) {
1042                 mlog(ML_ERROR, "File system error %d recorded in "
1043                      "journal %u.\n", olderr, slot);
1044                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1045                      sb->s_id);
1046 
1047                 jbd2_journal_ack_err(journal);
1048                 jbd2_journal_clear_err(journal);
1049         }
1050 }
1051 
1052 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1053 {
1054         int status = 0;
1055         struct ocfs2_super *osb;
1056 
1057         BUG_ON(!journal);
1058 
1059         osb = journal->j_osb;
1060 
1061         status = jbd2_journal_load(journal->j_journal);
1062         if (status < 0) {
1063                 mlog(ML_ERROR, "Failed to load journal!\n");
1064                 goto done;
1065         }
1066 
1067         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1068 
1069         if (replayed) {
1070                 jbd2_journal_lock_updates(journal->j_journal);
1071                 status = jbd2_journal_flush(journal->j_journal);
1072                 jbd2_journal_unlock_updates(journal->j_journal);
1073                 if (status < 0)
1074                         mlog_errno(status);
1075         }
1076 
1077         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1078         if (status < 0) {
1079                 mlog_errno(status);
1080                 goto done;
1081         }
1082 
1083         /* Launch the commit thread */
1084         if (!local) {
1085                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1086                                 "ocfs2cmt-%s", osb->uuid_str);
1087                 if (IS_ERR(osb->commit_task)) {
1088                         status = PTR_ERR(osb->commit_task);
1089                         osb->commit_task = NULL;
1090                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1091                              "error=%d", status);
1092                         goto done;
1093                 }
1094         } else
1095                 osb->commit_task = NULL;
1096 
1097 done:
1098         return status;
1099 }
1100 
1101 
1102 /* 'full' flag tells us whether we clear out all blocks or if we just
1103  * mark the journal clean */
1104 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1105 {
1106         int status;
1107 
1108         BUG_ON(!journal);
1109 
1110         status = jbd2_journal_wipe(journal->j_journal, full);
1111         if (status < 0) {
1112                 mlog_errno(status);
1113                 goto bail;
1114         }
1115 
1116         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1117         if (status < 0)
1118                 mlog_errno(status);
1119 
1120 bail:
1121         return status;
1122 }
1123 
1124 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1125 {
1126         int empty;
1127         struct ocfs2_recovery_map *rm = osb->recovery_map;
1128 
1129         spin_lock(&osb->osb_lock);
1130         empty = (rm->rm_used == 0);
1131         spin_unlock(&osb->osb_lock);
1132 
1133         return empty;
1134 }
1135 
1136 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1137 {
1138         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1139 }
1140 
1141 /*
1142  * JBD Might read a cached version of another nodes journal file. We
1143  * don't want this as this file changes often and we get no
1144  * notification on those changes. The only way to be sure that we've
1145  * got the most up to date version of those blocks then is to force
1146  * read them off disk. Just searching through the buffer cache won't
1147  * work as there may be pages backing this file which are still marked
1148  * up to date. We know things can't change on this file underneath us
1149  * as we have the lock by now :)
1150  */
1151 static int ocfs2_force_read_journal(struct inode *inode)
1152 {
1153         int status = 0;
1154         int i;
1155         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1156         struct buffer_head *bh = NULL;
1157         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1158 
1159         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1160         v_blkno = 0;
1161         while (v_blkno < num_blocks) {
1162                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1163                                                      &p_blkno, &p_blocks, NULL);
1164                 if (status < 0) {
1165                         mlog_errno(status);
1166                         goto bail;
1167                 }
1168 
1169                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1170                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1171                                         osb->sb->s_blocksize);
1172                         /* block not cached. */
1173                         if (!bh)
1174                                 continue;
1175 
1176                         brelse(bh);
1177                         bh = NULL;
1178                         /* We are reading journal data which should not
1179                          * be put in the uptodate cache.
1180                          */
1181                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1182                         if (status < 0) {
1183                                 mlog_errno(status);
1184                                 goto bail;
1185                         }
1186 
1187                         brelse(bh);
1188                         bh = NULL;
1189                 }
1190 
1191                 v_blkno += p_blocks;
1192         }
1193 
1194 bail:
1195         return status;
1196 }
1197 
1198 struct ocfs2_la_recovery_item {
1199         struct list_head        lri_list;
1200         int                     lri_slot;
1201         struct ocfs2_dinode     *lri_la_dinode;
1202         struct ocfs2_dinode     *lri_tl_dinode;
1203         struct ocfs2_quota_recovery *lri_qrec;
1204         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1205 };
1206 
1207 /* Does the second half of the recovery process. By this point, the
1208  * node is marked clean and can actually be considered recovered,
1209  * hence it's no longer in the recovery map, but there's still some
1210  * cleanup we can do which shouldn't happen within the recovery thread
1211  * as locking in that context becomes very difficult if we are to take
1212  * recovering nodes into account.
1213  *
1214  * NOTE: This function can and will sleep on recovery of other nodes
1215  * during cluster locking, just like any other ocfs2 process.
1216  */
1217 void ocfs2_complete_recovery(struct work_struct *work)
1218 {
1219         int ret = 0;
1220         struct ocfs2_journal *journal =
1221                 container_of(work, struct ocfs2_journal, j_recovery_work);
1222         struct ocfs2_super *osb = journal->j_osb;
1223         struct ocfs2_dinode *la_dinode, *tl_dinode;
1224         struct ocfs2_la_recovery_item *item, *n;
1225         struct ocfs2_quota_recovery *qrec;
1226         enum ocfs2_orphan_reco_type orphan_reco_type;
1227         LIST_HEAD(tmp_la_list);
1228 
1229         trace_ocfs2_complete_recovery(
1230                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1231 
1232         spin_lock(&journal->j_lock);
1233         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1234         spin_unlock(&journal->j_lock);
1235 
1236         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1237                 list_del_init(&item->lri_list);
1238 
1239                 ocfs2_wait_on_quotas(osb);
1240 
1241                 la_dinode = item->lri_la_dinode;
1242                 tl_dinode = item->lri_tl_dinode;
1243                 qrec = item->lri_qrec;
1244                 orphan_reco_type = item->lri_orphan_reco_type;
1245 
1246                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1247                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1248                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1249                         qrec);
1250 
1251                 if (la_dinode) {
1252                         ret = ocfs2_complete_local_alloc_recovery(osb,
1253                                                                   la_dinode);
1254                         if (ret < 0)
1255                                 mlog_errno(ret);
1256 
1257                         kfree(la_dinode);
1258                 }
1259 
1260                 if (tl_dinode) {
1261                         ret = ocfs2_complete_truncate_log_recovery(osb,
1262                                                                    tl_dinode);
1263                         if (ret < 0)
1264                                 mlog_errno(ret);
1265 
1266                         kfree(tl_dinode);
1267                 }
1268 
1269                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1270                                 orphan_reco_type);
1271                 if (ret < 0)
1272                         mlog_errno(ret);
1273 
1274                 if (qrec) {
1275                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1276                                                           item->lri_slot);
1277                         if (ret < 0)
1278                                 mlog_errno(ret);
1279                         /* Recovery info is already freed now */
1280                 }
1281 
1282                 kfree(item);
1283         }
1284 
1285         trace_ocfs2_complete_recovery_end(ret);
1286 }
1287 
1288 /* NOTE: This function always eats your references to la_dinode and
1289  * tl_dinode, either manually on error, or by passing them to
1290  * ocfs2_complete_recovery */
1291 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1292                                             int slot_num,
1293                                             struct ocfs2_dinode *la_dinode,
1294                                             struct ocfs2_dinode *tl_dinode,
1295                                             struct ocfs2_quota_recovery *qrec,
1296                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1297 {
1298         struct ocfs2_la_recovery_item *item;
1299 
1300         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1301         if (!item) {
1302                 /* Though we wish to avoid it, we are in fact safe in
1303                  * skipping local alloc cleanup as fsck.ocfs2 is more
1304                  * than capable of reclaiming unused space. */
1305                 kfree(la_dinode);
1306                 kfree(tl_dinode);
1307 
1308                 if (qrec)
1309                         ocfs2_free_quota_recovery(qrec);
1310 
1311                 mlog_errno(-ENOMEM);
1312                 return;
1313         }
1314 
1315         INIT_LIST_HEAD(&item->lri_list);
1316         item->lri_la_dinode = la_dinode;
1317         item->lri_slot = slot_num;
1318         item->lri_tl_dinode = tl_dinode;
1319         item->lri_qrec = qrec;
1320         item->lri_orphan_reco_type = orphan_reco_type;
1321 
1322         spin_lock(&journal->j_lock);
1323         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1324         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1325         spin_unlock(&journal->j_lock);
1326 }
1327 
1328 /* Called by the mount code to queue recovery the last part of
1329  * recovery for it's own and offline slot(s). */
1330 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1331 {
1332         struct ocfs2_journal *journal = osb->journal;
1333 
1334         if (ocfs2_is_hard_readonly(osb))
1335                 return;
1336 
1337         /* No need to queue up our truncate_log as regular cleanup will catch
1338          * that */
1339         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1340                                         osb->local_alloc_copy, NULL, NULL,
1341                                         ORPHAN_NEED_TRUNCATE);
1342         ocfs2_schedule_truncate_log_flush(osb, 0);
1343 
1344         osb->local_alloc_copy = NULL;
1345 
1346         /* queue to recover orphan slots for all offline slots */
1347         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1348         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1349         ocfs2_free_replay_slots(osb);
1350 }
1351 
1352 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1353 {
1354         if (osb->quota_rec) {
1355                 ocfs2_queue_recovery_completion(osb->journal,
1356                                                 osb->slot_num,
1357                                                 NULL,
1358                                                 NULL,
1359                                                 osb->quota_rec,
1360                                                 ORPHAN_NEED_TRUNCATE);
1361                 osb->quota_rec = NULL;
1362         }
1363 }
1364 
1365 static int __ocfs2_recovery_thread(void *arg)
1366 {
1367         int status, node_num, slot_num;
1368         struct ocfs2_super *osb = arg;
1369         struct ocfs2_recovery_map *rm = osb->recovery_map;
1370         int *rm_quota = NULL;
1371         int rm_quota_used = 0, i;
1372         struct ocfs2_quota_recovery *qrec;
1373 
1374         /* Whether the quota supported. */
1375         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1376                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1377                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1378                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1379 
1380         status = ocfs2_wait_on_mount(osb);
1381         if (status < 0) {
1382                 goto bail;
1383         }
1384 
1385         if (quota_enabled) {
1386                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1387                 if (!rm_quota) {
1388                         status = -ENOMEM;
1389                         goto bail;
1390                 }
1391         }
1392 restart:
1393         status = ocfs2_super_lock(osb, 1);
1394         if (status < 0) {
1395                 mlog_errno(status);
1396                 goto bail;
1397         }
1398 
1399         status = ocfs2_compute_replay_slots(osb);
1400         if (status < 0)
1401                 mlog_errno(status);
1402 
1403         /* queue recovery for our own slot */
1404         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1405                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1406 
1407         spin_lock(&osb->osb_lock);
1408         while (rm->rm_used) {
1409                 /* It's always safe to remove entry zero, as we won't
1410                  * clear it until ocfs2_recover_node() has succeeded. */
1411                 node_num = rm->rm_entries[0];
1412                 spin_unlock(&osb->osb_lock);
1413                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1414                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1415                 if (slot_num == -ENOENT) {
1416                         status = 0;
1417                         goto skip_recovery;
1418                 }
1419 
1420                 /* It is a bit subtle with quota recovery. We cannot do it
1421                  * immediately because we have to obtain cluster locks from
1422                  * quota files and we also don't want to just skip it because
1423                  * then quota usage would be out of sync until some node takes
1424                  * the slot. So we remember which nodes need quota recovery
1425                  * and when everything else is done, we recover quotas. */
1426                 if (quota_enabled) {
1427                         for (i = 0; i < rm_quota_used
1428                                         && rm_quota[i] != slot_num; i++)
1429                                 ;
1430 
1431                         if (i == rm_quota_used)
1432                                 rm_quota[rm_quota_used++] = slot_num;
1433                 }
1434 
1435                 status = ocfs2_recover_node(osb, node_num, slot_num);
1436 skip_recovery:
1437                 if (!status) {
1438                         ocfs2_recovery_map_clear(osb, node_num);
1439                 } else {
1440                         mlog(ML_ERROR,
1441                              "Error %d recovering node %d on device (%u,%u)!\n",
1442                              status, node_num,
1443                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1444                         mlog(ML_ERROR, "Volume requires unmount.\n");
1445                 }
1446 
1447                 spin_lock(&osb->osb_lock);
1448         }
1449         spin_unlock(&osb->osb_lock);
1450         trace_ocfs2_recovery_thread_end(status);
1451 
1452         /* Refresh all journal recovery generations from disk */
1453         status = ocfs2_check_journals_nolocks(osb);
1454         status = (status == -EROFS) ? 0 : status;
1455         if (status < 0)
1456                 mlog_errno(status);
1457 
1458         /* Now it is right time to recover quotas... We have to do this under
1459          * superblock lock so that no one can start using the slot (and crash)
1460          * before we recover it */
1461         if (quota_enabled) {
1462                 for (i = 0; i < rm_quota_used; i++) {
1463                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1464                         if (IS_ERR(qrec)) {
1465                                 status = PTR_ERR(qrec);
1466                                 mlog_errno(status);
1467                                 continue;
1468                         }
1469                         ocfs2_queue_recovery_completion(osb->journal,
1470                                         rm_quota[i],
1471                                         NULL, NULL, qrec,
1472                                         ORPHAN_NEED_TRUNCATE);
1473                 }
1474         }
1475 
1476         ocfs2_super_unlock(osb, 1);
1477 
1478         /* queue recovery for offline slots */
1479         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1480 
1481 bail:
1482         mutex_lock(&osb->recovery_lock);
1483         if (!status && !ocfs2_recovery_completed(osb)) {
1484                 mutex_unlock(&osb->recovery_lock);
1485                 goto restart;
1486         }
1487 
1488         ocfs2_free_replay_slots(osb);
1489         osb->recovery_thread_task = NULL;
1490         mb(); /* sync with ocfs2_recovery_thread_running */
1491         wake_up(&osb->recovery_event);
1492 
1493         mutex_unlock(&osb->recovery_lock);
1494 
1495         if (quota_enabled)
1496                 kfree(rm_quota);
1497 
1498         /* no one is callint kthread_stop() for us so the kthread() api
1499          * requires that we call do_exit().  And it isn't exported, but
1500          * complete_and_exit() seems to be a minimal wrapper around it. */
1501         complete_and_exit(NULL, status);
1502 }
1503 
1504 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1505 {
1506         mutex_lock(&osb->recovery_lock);
1507 
1508         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1509                 osb->disable_recovery, osb->recovery_thread_task,
1510                 osb->disable_recovery ?
1511                 -1 : ocfs2_recovery_map_set(osb, node_num));
1512 
1513         if (osb->disable_recovery)
1514                 goto out;
1515 
1516         if (osb->recovery_thread_task)
1517                 goto out;
1518 
1519         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1520                         "ocfs2rec-%s", osb->uuid_str);
1521         if (IS_ERR(osb->recovery_thread_task)) {
1522                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1523                 osb->recovery_thread_task = NULL;
1524         }
1525 
1526 out:
1527         mutex_unlock(&osb->recovery_lock);
1528         wake_up(&osb->recovery_event);
1529 }
1530 
1531 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1532                                     int slot_num,
1533                                     struct buffer_head **bh,
1534                                     struct inode **ret_inode)
1535 {
1536         int status = -EACCES;
1537         struct inode *inode = NULL;
1538 
1539         BUG_ON(slot_num >= osb->max_slots);
1540 
1541         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1542                                             slot_num);
1543         if (!inode || is_bad_inode(inode)) {
1544                 mlog_errno(status);
1545                 goto bail;
1546         }
1547         SET_INODE_JOURNAL(inode);
1548 
1549         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1550         if (status < 0) {
1551                 mlog_errno(status);
1552                 goto bail;
1553         }
1554 
1555         status = 0;
1556 
1557 bail:
1558         if (inode) {
1559                 if (status || !ret_inode)
1560                         iput(inode);
1561                 else
1562                         *ret_inode = inode;
1563         }
1564         return status;
1565 }
1566 
1567 /* Does the actual journal replay and marks the journal inode as
1568  * clean. Will only replay if the journal inode is marked dirty. */
1569 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1570                                 int node_num,
1571                                 int slot_num)
1572 {
1573         int status;
1574         int got_lock = 0;
1575         unsigned int flags;
1576         struct inode *inode = NULL;
1577         struct ocfs2_dinode *fe;
1578         journal_t *journal = NULL;
1579         struct buffer_head *bh = NULL;
1580         u32 slot_reco_gen;
1581 
1582         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1583         if (status) {
1584                 mlog_errno(status);
1585                 goto done;
1586         }
1587 
1588         fe = (struct ocfs2_dinode *)bh->b_data;
1589         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1590         brelse(bh);
1591         bh = NULL;
1592 
1593         /*
1594          * As the fs recovery is asynchronous, there is a small chance that
1595          * another node mounted (and recovered) the slot before the recovery
1596          * thread could get the lock. To handle that, we dirty read the journal
1597          * inode for that slot to get the recovery generation. If it is
1598          * different than what we expected, the slot has been recovered.
1599          * If not, it needs recovery.
1600          */
1601         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1602                 trace_ocfs2_replay_journal_recovered(slot_num,
1603                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1604                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1605                 status = -EBUSY;
1606                 goto done;
1607         }
1608 
1609         /* Continue with recovery as the journal has not yet been recovered */
1610 
1611         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1612         if (status < 0) {
1613                 trace_ocfs2_replay_journal_lock_err(status);
1614                 if (status != -ERESTARTSYS)
1615                         mlog(ML_ERROR, "Could not lock journal!\n");
1616                 goto done;
1617         }
1618         got_lock = 1;
1619 
1620         fe = (struct ocfs2_dinode *) bh->b_data;
1621 
1622         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1623         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1624 
1625         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1626                 trace_ocfs2_replay_journal_skip(node_num);
1627                 /* Refresh recovery generation for the slot */
1628                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1629                 goto done;
1630         }
1631 
1632         /* we need to run complete recovery for offline orphan slots */
1633         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1634 
1635         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1636                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1637                MINOR(osb->sb->s_dev));
1638 
1639         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1640 
1641         status = ocfs2_force_read_journal(inode);
1642         if (status < 0) {
1643                 mlog_errno(status);
1644                 goto done;
1645         }
1646 
1647         journal = jbd2_journal_init_inode(inode);
1648         if (journal == NULL) {
1649                 mlog(ML_ERROR, "Linux journal layer error\n");
1650                 status = -EIO;
1651                 goto done;
1652         }
1653 
1654         status = jbd2_journal_load(journal);
1655         if (status < 0) {
1656                 mlog_errno(status);
1657                 if (!igrab(inode))
1658                         BUG();
1659                 jbd2_journal_destroy(journal);
1660                 goto done;
1661         }
1662 
1663         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1664 
1665         /* wipe the journal */
1666         jbd2_journal_lock_updates(journal);
1667         status = jbd2_journal_flush(journal);
1668         jbd2_journal_unlock_updates(journal);
1669         if (status < 0)
1670                 mlog_errno(status);
1671 
1672         /* This will mark the node clean */
1673         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1674         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1675         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1676 
1677         /* Increment recovery generation to indicate successful recovery */
1678         ocfs2_bump_recovery_generation(fe);
1679         osb->slot_recovery_generations[slot_num] =
1680                                         ocfs2_get_recovery_generation(fe);
1681 
1682         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1683         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1684         if (status < 0)
1685                 mlog_errno(status);
1686 
1687         if (!igrab(inode))
1688                 BUG();
1689 
1690         jbd2_journal_destroy(journal);
1691 
1692         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1693                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1694                MINOR(osb->sb->s_dev));
1695 done:
1696         /* drop the lock on this nodes journal */
1697         if (got_lock)
1698                 ocfs2_inode_unlock(inode, 1);
1699 
1700         iput(inode);
1701         brelse(bh);
1702 
1703         return status;
1704 }
1705 
1706 /*
1707  * Do the most important parts of node recovery:
1708  *  - Replay it's journal
1709  *  - Stamp a clean local allocator file
1710  *  - Stamp a clean truncate log
1711  *  - Mark the node clean
1712  *
1713  * If this function completes without error, a node in OCFS2 can be
1714  * said to have been safely recovered. As a result, failure during the
1715  * second part of a nodes recovery process (local alloc recovery) is
1716  * far less concerning.
1717  */
1718 static int ocfs2_recover_node(struct ocfs2_super *osb,
1719                               int node_num, int slot_num)
1720 {
1721         int status = 0;
1722         struct ocfs2_dinode *la_copy = NULL;
1723         struct ocfs2_dinode *tl_copy = NULL;
1724 
1725         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1726 
1727         /* Should not ever be called to recover ourselves -- in that
1728          * case we should've called ocfs2_journal_load instead. */
1729         BUG_ON(osb->node_num == node_num);
1730 
1731         status = ocfs2_replay_journal(osb, node_num, slot_num);
1732         if (status < 0) {
1733                 if (status == -EBUSY) {
1734                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1735                         status = 0;
1736                         goto done;
1737                 }
1738                 mlog_errno(status);
1739                 goto done;
1740         }
1741 
1742         /* Stamp a clean local alloc file AFTER recovering the journal... */
1743         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1744         if (status < 0) {
1745                 mlog_errno(status);
1746                 goto done;
1747         }
1748 
1749         /* An error from begin_truncate_log_recovery is not
1750          * serious enough to warrant halting the rest of
1751          * recovery. */
1752         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1753         if (status < 0)
1754                 mlog_errno(status);
1755 
1756         /* Likewise, this would be a strange but ultimately not so
1757          * harmful place to get an error... */
1758         status = ocfs2_clear_slot(osb, slot_num);
1759         if (status < 0)
1760                 mlog_errno(status);
1761 
1762         /* This will kfree the memory pointed to by la_copy and tl_copy */
1763         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1764                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1765 
1766         status = 0;
1767 done:
1768 
1769         return status;
1770 }
1771 
1772 /* Test node liveness by trylocking his journal. If we get the lock,
1773  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1774  * still alive (we couldn't get the lock) and < 0 on error. */
1775 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1776                                  int slot_num)
1777 {
1778         int status, flags;
1779         struct inode *inode = NULL;
1780 
1781         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1782                                             slot_num);
1783         if (inode == NULL) {
1784                 mlog(ML_ERROR, "access error\n");
1785                 status = -EACCES;
1786                 goto bail;
1787         }
1788         if (is_bad_inode(inode)) {
1789                 mlog(ML_ERROR, "access error (bad inode)\n");
1790                 iput(inode);
1791                 inode = NULL;
1792                 status = -EACCES;
1793                 goto bail;
1794         }
1795         SET_INODE_JOURNAL(inode);
1796 
1797         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1798         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1799         if (status < 0) {
1800                 if (status != -EAGAIN)
1801                         mlog_errno(status);
1802                 goto bail;
1803         }
1804 
1805         ocfs2_inode_unlock(inode, 1);
1806 bail:
1807         iput(inode);
1808 
1809         return status;
1810 }
1811 
1812 /* Call this underneath ocfs2_super_lock. It also assumes that the
1813  * slot info struct has been updated from disk. */
1814 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1815 {
1816         unsigned int node_num;
1817         int status, i;
1818         u32 gen;
1819         struct buffer_head *bh = NULL;
1820         struct ocfs2_dinode *di;
1821 
1822         /* This is called with the super block cluster lock, so we
1823          * know that the slot map can't change underneath us. */
1824 
1825         for (i = 0; i < osb->max_slots; i++) {
1826                 /* Read journal inode to get the recovery generation */
1827                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1828                 if (status) {
1829                         mlog_errno(status);
1830                         goto bail;
1831                 }
1832                 di = (struct ocfs2_dinode *)bh->b_data;
1833                 gen = ocfs2_get_recovery_generation(di);
1834                 brelse(bh);
1835                 bh = NULL;
1836 
1837                 spin_lock(&osb->osb_lock);
1838                 osb->slot_recovery_generations[i] = gen;
1839 
1840                 trace_ocfs2_mark_dead_nodes(i,
1841                                             osb->slot_recovery_generations[i]);
1842 
1843                 if (i == osb->slot_num) {
1844                         spin_unlock(&osb->osb_lock);
1845                         continue;
1846                 }
1847 
1848                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1849                 if (status == -ENOENT) {
1850                         spin_unlock(&osb->osb_lock);
1851                         continue;
1852                 }
1853 
1854                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1855                         spin_unlock(&osb->osb_lock);
1856                         continue;
1857                 }
1858                 spin_unlock(&osb->osb_lock);
1859 
1860                 /* Ok, we have a slot occupied by another node which
1861                  * is not in the recovery map. We trylock his journal
1862                  * file here to test if he's alive. */
1863                 status = ocfs2_trylock_journal(osb, i);
1864                 if (!status) {
1865                         /* Since we're called from mount, we know that
1866                          * the recovery thread can't race us on
1867                          * setting / checking the recovery bits. */
1868                         ocfs2_recovery_thread(osb, node_num);
1869                 } else if ((status < 0) && (status != -EAGAIN)) {
1870                         mlog_errno(status);
1871                         goto bail;
1872                 }
1873         }
1874 
1875         status = 0;
1876 bail:
1877         return status;
1878 }
1879 
1880 /*
1881  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1882  * randomness to the timeout to minimize multple nodes firing the timer at the
1883  * same time.
1884  */
1885 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1886 {
1887         unsigned long time;
1888 
1889         get_random_bytes(&time, sizeof(time));
1890         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1891         return msecs_to_jiffies(time);
1892 }
1893 
1894 /*
1895  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1896  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1897  * is done to catch any orphans that are left over in orphan directories.
1898  *
1899  * It scans all slots, even ones that are in use. It does so to handle the
1900  * case described below:
1901  *
1902  *   Node 1 has an inode it was using. The dentry went away due to memory
1903  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1904  *   has the open lock.
1905  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1906  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1907  *   open lock, sees that another node has a PR, and does nothing.
1908  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1909  *   open lock, sees the PR still, and does nothing.
1910  *   Basically, we have to trigger an orphan iput on node 1. The only way
1911  *   for this to happen is if node 1 runs node 2's orphan dir.
1912  *
1913  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1914  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1915  * stored in LVB. If the sequence number has changed, it means some other
1916  * node has done the scan.  This node skips the scan and tracks the
1917  * sequence number.  If the sequence number didn't change, it means a scan
1918  * hasn't happened.  The node queues a scan and increments the
1919  * sequence number in the LVB.
1920  */
1921 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1922 {
1923         struct ocfs2_orphan_scan *os;
1924         int status, i;
1925         u32 seqno = 0;
1926 
1927         os = &osb->osb_orphan_scan;
1928 
1929         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1930                 goto out;
1931 
1932         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1933                                             atomic_read(&os->os_state));
1934 
1935         status = ocfs2_orphan_scan_lock(osb, &seqno);
1936         if (status < 0) {
1937                 if (status != -EAGAIN)
1938                         mlog_errno(status);
1939                 goto out;
1940         }
1941 
1942         /* Do no queue the tasks if the volume is being umounted */
1943         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1944                 goto unlock;
1945 
1946         if (os->os_seqno != seqno) {
1947                 os->os_seqno = seqno;
1948                 goto unlock;
1949         }
1950 
1951         for (i = 0; i < osb->max_slots; i++)
1952                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1953                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1954         /*
1955          * We queued a recovery on orphan slots, increment the sequence
1956          * number and update LVB so other node will skip the scan for a while
1957          */
1958         seqno++;
1959         os->os_count++;
1960         os->os_scantime = ktime_get_seconds();
1961 unlock:
1962         ocfs2_orphan_scan_unlock(osb, seqno);
1963 out:
1964         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1965                                           atomic_read(&os->os_state));
1966         return;
1967 }
1968 
1969 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1970 static void ocfs2_orphan_scan_work(struct work_struct *work)
1971 {
1972         struct ocfs2_orphan_scan *os;
1973         struct ocfs2_super *osb;
1974 
1975         os = container_of(work, struct ocfs2_orphan_scan,
1976                           os_orphan_scan_work.work);
1977         osb = os->os_osb;
1978 
1979         mutex_lock(&os->os_lock);
1980         ocfs2_queue_orphan_scan(osb);
1981         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1982                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1983                                       ocfs2_orphan_scan_timeout());
1984         mutex_unlock(&os->os_lock);
1985 }
1986 
1987 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1988 {
1989         struct ocfs2_orphan_scan *os;
1990 
1991         os = &osb->osb_orphan_scan;
1992         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1993                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1994                 mutex_lock(&os->os_lock);
1995                 cancel_delayed_work(&os->os_orphan_scan_work);
1996                 mutex_unlock(&os->os_lock);
1997         }
1998 }
1999 
2000 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2001 {
2002         struct ocfs2_orphan_scan *os;
2003 
2004         os = &osb->osb_orphan_scan;
2005         os->os_osb = osb;
2006         os->os_count = 0;
2007         os->os_seqno = 0;
2008         mutex_init(&os->os_lock);
2009         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2010 }
2011 
2012 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2013 {
2014         struct ocfs2_orphan_scan *os;
2015 
2016         os = &osb->osb_orphan_scan;
2017         os->os_scantime = ktime_get_seconds();
2018         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2019                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2020         else {
2021                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2022                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2023                                    ocfs2_orphan_scan_timeout());
2024         }
2025 }
2026 
2027 struct ocfs2_orphan_filldir_priv {
2028         struct dir_context      ctx;
2029         struct inode            *head;
2030         struct ocfs2_super      *osb;
2031         enum ocfs2_orphan_reco_type orphan_reco_type;
2032 };
2033 
2034 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2035                                 int name_len, loff_t pos, u64 ino,
2036                                 unsigned type)
2037 {
2038         struct ocfs2_orphan_filldir_priv *p =
2039                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2040         struct inode *iter;
2041 
2042         if (name_len == 1 && !strncmp(".", name, 1))
2043                 return 0;
2044         if (name_len == 2 && !strncmp("..", name, 2))
2045                 return 0;
2046 
2047         /* do not include dio entry in case of orphan scan */
2048         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2049                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2051                 return 0;
2052 
2053         /* Skip bad inodes so that recovery can continue */
2054         iter = ocfs2_iget(p->osb, ino,
2055                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2056         if (IS_ERR(iter))
2057                 return 0;
2058 
2059         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2060                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2061                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2062 
2063         /* Skip inodes which are already added to recover list, since dio may
2064          * happen concurrently with unlink/rename */
2065         if (OCFS2_I(iter)->ip_next_orphan) {
2066                 iput(iter);
2067                 return 0;
2068         }
2069 
2070         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2071         /* No locking is required for the next_orphan queue as there
2072          * is only ever a single process doing orphan recovery. */
2073         OCFS2_I(iter)->ip_next_orphan = p->head;
2074         p->head = iter;
2075 
2076         return 0;
2077 }
2078 
2079 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2080                                int slot,
2081                                struct inode **head,
2082                                enum ocfs2_orphan_reco_type orphan_reco_type)
2083 {
2084         int status;
2085         struct inode *orphan_dir_inode = NULL;
2086         struct ocfs2_orphan_filldir_priv priv = {
2087                 .ctx.actor = ocfs2_orphan_filldir,
2088                 .osb = osb,
2089                 .head = *head,
2090                 .orphan_reco_type = orphan_reco_type
2091         };
2092 
2093         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2094                                                        ORPHAN_DIR_SYSTEM_INODE,
2095                                                        slot);
2096         if  (!orphan_dir_inode) {
2097                 status = -ENOENT;
2098                 mlog_errno(status);
2099                 return status;
2100         }
2101 
2102         inode_lock(orphan_dir_inode);
2103         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2104         if (status < 0) {
2105                 mlog_errno(status);
2106                 goto out;
2107         }
2108 
2109         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2110         if (status) {
2111                 mlog_errno(status);
2112                 goto out_cluster;
2113         }
2114 
2115         *head = priv.head;
2116 
2117 out_cluster:
2118         ocfs2_inode_unlock(orphan_dir_inode, 0);
2119 out:
2120         inode_unlock(orphan_dir_inode);
2121         iput(orphan_dir_inode);
2122         return status;
2123 }
2124 
2125 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2126                                               int slot)
2127 {
2128         int ret;
2129 
2130         spin_lock(&osb->osb_lock);
2131         ret = !osb->osb_orphan_wipes[slot];
2132         spin_unlock(&osb->osb_lock);
2133         return ret;
2134 }
2135 
2136 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2137                                              int slot)
2138 {
2139         spin_lock(&osb->osb_lock);
2140         /* Mark ourselves such that new processes in delete_inode()
2141          * know to quit early. */
2142         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2143         while (osb->osb_orphan_wipes[slot]) {
2144                 /* If any processes are already in the middle of an
2145                  * orphan wipe on this dir, then we need to wait for
2146                  * them. */
2147                 spin_unlock(&osb->osb_lock);
2148                 wait_event_interruptible(osb->osb_wipe_event,
2149                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2150                 spin_lock(&osb->osb_lock);
2151         }
2152         spin_unlock(&osb->osb_lock);
2153 }
2154 
2155 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2156                                               int slot)
2157 {
2158         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2159 }
2160 
2161 /*
2162  * Orphan recovery. Each mounted node has it's own orphan dir which we
2163  * must run during recovery. Our strategy here is to build a list of
2164  * the inodes in the orphan dir and iget/iput them. The VFS does
2165  * (most) of the rest of the work.
2166  *
2167  * Orphan recovery can happen at any time, not just mount so we have a
2168  * couple of extra considerations.
2169  *
2170  * - We grab as many inodes as we can under the orphan dir lock -
2171  *   doing iget() outside the orphan dir risks getting a reference on
2172  *   an invalid inode.
2173  * - We must be sure not to deadlock with other processes on the
2174  *   system wanting to run delete_inode(). This can happen when they go
2175  *   to lock the orphan dir and the orphan recovery process attempts to
2176  *   iget() inside the orphan dir lock. This can be avoided by
2177  *   advertising our state to ocfs2_delete_inode().
2178  */
2179 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2180                                  int slot,
2181                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2182 {
2183         int ret = 0;
2184         struct inode *inode = NULL;
2185         struct inode *iter;
2186         struct ocfs2_inode_info *oi;
2187         struct buffer_head *di_bh = NULL;
2188         struct ocfs2_dinode *di = NULL;
2189 
2190         trace_ocfs2_recover_orphans(slot);
2191 
2192         ocfs2_mark_recovering_orphan_dir(osb, slot);
2193         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2194         ocfs2_clear_recovering_orphan_dir(osb, slot);
2195 
2196         /* Error here should be noted, but we want to continue with as
2197          * many queued inodes as we've got. */
2198         if (ret)
2199                 mlog_errno(ret);
2200 
2201         while (inode) {
2202                 oi = OCFS2_I(inode);
2203                 trace_ocfs2_recover_orphans_iput(
2204                                         (unsigned long long)oi->ip_blkno);
2205 
2206                 iter = oi->ip_next_orphan;
2207                 oi->ip_next_orphan = NULL;
2208 
2209                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2210                         inode_lock(inode);
2211                         ret = ocfs2_rw_lock(inode, 1);
2212                         if (ret < 0) {
2213                                 mlog_errno(ret);
2214                                 goto unlock_mutex;
2215                         }
2216                         /*
2217                          * We need to take and drop the inode lock to
2218                          * force read inode from disk.
2219                          */
2220                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2221                         if (ret) {
2222                                 mlog_errno(ret);
2223                                 goto unlock_rw;
2224                         }
2225 
2226                         di = (struct ocfs2_dinode *)di_bh->b_data;
2227 
2228                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2229                                 ret = ocfs2_truncate_file(inode, di_bh,
2230                                                 i_size_read(inode));
2231                                 if (ret < 0) {
2232                                         if (ret != -ENOSPC)
2233                                                 mlog_errno(ret);
2234                                         goto unlock_inode;
2235                                 }
2236 
2237                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2238                                                 di_bh, 0, 0);
2239                                 if (ret)
2240                                         mlog_errno(ret);
2241                         }
2242 unlock_inode:
2243                         ocfs2_inode_unlock(inode, 1);
2244                         brelse(di_bh);
2245                         di_bh = NULL;
2246 unlock_rw:
2247                         ocfs2_rw_unlock(inode, 1);
2248 unlock_mutex:
2249                         inode_unlock(inode);
2250 
2251                         /* clear dio flag in ocfs2_inode_info */
2252                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2253                 } else {
2254                         spin_lock(&oi->ip_lock);
2255                         /* Set the proper information to get us going into
2256                          * ocfs2_delete_inode. */
2257                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2258                         spin_unlock(&oi->ip_lock);
2259                 }
2260 
2261                 iput(inode);
2262                 inode = iter;
2263         }
2264 
2265         return ret;
2266 }
2267 
2268 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2269 {
2270         /* This check is good because ocfs2 will wait on our recovery
2271          * thread before changing it to something other than MOUNTED
2272          * or DISABLED. */
2273         wait_event(osb->osb_mount_event,
2274                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2275                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2276                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2277 
2278         /* If there's an error on mount, then we may never get to the
2279          * MOUNTED flag, but this is set right before
2280          * dismount_volume() so we can trust it. */
2281         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2282                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2283                 mlog(0, "mount error, exiting!\n");
2284                 return -EBUSY;
2285         }
2286 
2287         return 0;
2288 }
2289 
2290 static int ocfs2_commit_thread(void *arg)
2291 {
2292         int status;
2293         struct ocfs2_super *osb = arg;
2294         struct ocfs2_journal *journal = osb->journal;
2295 
2296         /* we can trust j_num_trans here because _should_stop() is only set in
2297          * shutdown and nobody other than ourselves should be able to start
2298          * transactions.  committing on shutdown might take a few iterations
2299          * as final transactions put deleted inodes on the list */
2300         while (!(kthread_should_stop() &&
2301                  atomic_read(&journal->j_num_trans) == 0)) {
2302 
2303                 wait_event_interruptible(osb->checkpoint_event,
2304                                          atomic_read(&journal->j_num_trans)
2305                                          || kthread_should_stop());
2306 
2307                 status = ocfs2_commit_cache(osb);
2308                 if (status < 0) {
2309                         static unsigned long abort_warn_time;
2310 
2311                         /* Warn about this once per minute */
2312                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2313                                 mlog(ML_ERROR, "status = %d, journal is "
2314                                                 "already aborted.\n", status);
2315                         /*
2316                          * After ocfs2_commit_cache() fails, j_num_trans has a
2317                          * non-zero value.  Sleep here to avoid a busy-wait
2318                          * loop.
2319                          */
2320                         msleep_interruptible(1000);
2321                 }
2322 
2323                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2324                         mlog(ML_KTHREAD,
2325                              "commit_thread: %u transactions pending on "
2326                              "shutdown\n",
2327                              atomic_read(&journal->j_num_trans));
2328                 }
2329         }
2330 
2331         return 0;
2332 }
2333 
2334 /* Reads all the journal inodes without taking any cluster locks. Used
2335  * for hard readonly access to determine whether any journal requires
2336  * recovery. Also used to refresh the recovery generation numbers after
2337  * a journal has been recovered by another node.
2338  */
2339 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2340 {
2341         int ret = 0;
2342         unsigned int slot;
2343         struct buffer_head *di_bh = NULL;
2344         struct ocfs2_dinode *di;
2345         int journal_dirty = 0;
2346 
2347         for(slot = 0; slot < osb->max_slots; slot++) {
2348                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2349                 if (ret) {
2350                         mlog_errno(ret);
2351                         goto out;
2352                 }
2353 
2354                 di = (struct ocfs2_dinode *) di_bh->b_data;
2355 
2356                 osb->slot_recovery_generations[slot] =
2357                                         ocfs2_get_recovery_generation(di);
2358 
2359                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2360                     OCFS2_JOURNAL_DIRTY_FL)
2361                         journal_dirty = 1;
2362 
2363                 brelse(di_bh);
2364                 di_bh = NULL;
2365         }
2366 
2367 out:
2368         if (journal_dirty)
2369                 ret = -EROFS;
2370         return ret;
2371 }

/* [<][>][^][v][top][bottom][index][help] */