1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * Performance events: 4 * 5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 8 * 9 * Data type definitions, declarations, prototypes. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * For licencing details see kernel-base/COPYING 14 */ 15 #ifndef _UAPI_LINUX_PERF_EVENT_H 16 #define _UAPI_LINUX_PERF_EVENT_H 17 18 #include <linux/types.h> 19 #include <linux/ioctl.h> 20 #include <asm/byteorder.h> 21 22 /* 23 * User-space ABI bits: 24 */ 25 26 /* 27 * attr.type 28 */ 29 enum perf_type_id { 30 PERF_TYPE_HARDWARE = 0, 31 PERF_TYPE_SOFTWARE = 1, 32 PERF_TYPE_TRACEPOINT = 2, 33 PERF_TYPE_HW_CACHE = 3, 34 PERF_TYPE_RAW = 4, 35 PERF_TYPE_BREAKPOINT = 5, 36 37 PERF_TYPE_MAX, /* non-ABI */ 38 }; 39 40 /* 41 * Generalized performance event event_id types, used by the 42 * attr.event_id parameter of the sys_perf_event_open() 43 * syscall: 44 */ 45 enum perf_hw_id { 46 /* 47 * Common hardware events, generalized by the kernel: 48 */ 49 PERF_COUNT_HW_CPU_CYCLES = 0, 50 PERF_COUNT_HW_INSTRUCTIONS = 1, 51 PERF_COUNT_HW_CACHE_REFERENCES = 2, 52 PERF_COUNT_HW_CACHE_MISSES = 3, 53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 54 PERF_COUNT_HW_BRANCH_MISSES = 5, 55 PERF_COUNT_HW_BUS_CYCLES = 6, 56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 58 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 59 60 PERF_COUNT_HW_MAX, /* non-ABI */ 61 }; 62 63 /* 64 * Generalized hardware cache events: 65 * 66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 67 * { read, write, prefetch } x 68 * { accesses, misses } 69 */ 70 enum perf_hw_cache_id { 71 PERF_COUNT_HW_CACHE_L1D = 0, 72 PERF_COUNT_HW_CACHE_L1I = 1, 73 PERF_COUNT_HW_CACHE_LL = 2, 74 PERF_COUNT_HW_CACHE_DTLB = 3, 75 PERF_COUNT_HW_CACHE_ITLB = 4, 76 PERF_COUNT_HW_CACHE_BPU = 5, 77 PERF_COUNT_HW_CACHE_NODE = 6, 78 79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 80 }; 81 82 enum perf_hw_cache_op_id { 83 PERF_COUNT_HW_CACHE_OP_READ = 0, 84 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 86 87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 88 }; 89 90 enum perf_hw_cache_op_result_id { 91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 93 94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 95 }; 96 97 /* 98 * Special "software" events provided by the kernel, even if the hardware 99 * does not support performance events. These events measure various 100 * physical and sw events of the kernel (and allow the profiling of them as 101 * well): 102 */ 103 enum perf_sw_ids { 104 PERF_COUNT_SW_CPU_CLOCK = 0, 105 PERF_COUNT_SW_TASK_CLOCK = 1, 106 PERF_COUNT_SW_PAGE_FAULTS = 2, 107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 108 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 112 PERF_COUNT_SW_EMULATION_FAULTS = 8, 113 PERF_COUNT_SW_DUMMY = 9, 114 PERF_COUNT_SW_BPF_OUTPUT = 10, 115 116 PERF_COUNT_SW_MAX, /* non-ABI */ 117 }; 118 119 /* 120 * Bits that can be set in attr.sample_type to request information 121 * in the overflow packets. 122 */ 123 enum perf_event_sample_format { 124 PERF_SAMPLE_IP = 1U << 0, 125 PERF_SAMPLE_TID = 1U << 1, 126 PERF_SAMPLE_TIME = 1U << 2, 127 PERF_SAMPLE_ADDR = 1U << 3, 128 PERF_SAMPLE_READ = 1U << 4, 129 PERF_SAMPLE_CALLCHAIN = 1U << 5, 130 PERF_SAMPLE_ID = 1U << 6, 131 PERF_SAMPLE_CPU = 1U << 7, 132 PERF_SAMPLE_PERIOD = 1U << 8, 133 PERF_SAMPLE_STREAM_ID = 1U << 9, 134 PERF_SAMPLE_RAW = 1U << 10, 135 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 136 PERF_SAMPLE_REGS_USER = 1U << 12, 137 PERF_SAMPLE_STACK_USER = 1U << 13, 138 PERF_SAMPLE_WEIGHT = 1U << 14, 139 PERF_SAMPLE_DATA_SRC = 1U << 15, 140 PERF_SAMPLE_IDENTIFIER = 1U << 16, 141 PERF_SAMPLE_TRANSACTION = 1U << 17, 142 PERF_SAMPLE_REGS_INTR = 1U << 18, 143 PERF_SAMPLE_PHYS_ADDR = 1U << 19, 144 145 PERF_SAMPLE_MAX = 1U << 20, /* non-ABI */ 146 147 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */ 148 }; 149 150 /* 151 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 152 * 153 * If the user does not pass priv level information via branch_sample_type, 154 * the kernel uses the event's priv level. Branch and event priv levels do 155 * not have to match. Branch priv level is checked for permissions. 156 * 157 * The branch types can be combined, however BRANCH_ANY covers all types 158 * of branches and therefore it supersedes all the other types. 159 */ 160 enum perf_branch_sample_type_shift { 161 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ 162 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ 163 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ 164 165 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ 166 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ 167 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ 168 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ 169 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ 170 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ 171 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ 172 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ 173 174 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */ 175 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ 176 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */ 177 178 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */ 179 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */ 180 181 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */ 182 183 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ 184 }; 185 186 enum perf_branch_sample_type { 187 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, 188 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, 189 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, 190 191 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, 192 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, 193 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, 194 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, 195 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, 196 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, 197 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, 198 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, 199 200 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, 201 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, 202 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT, 203 204 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT, 205 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT, 206 207 PERF_SAMPLE_BRANCH_TYPE_SAVE = 208 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT, 209 210 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, 211 }; 212 213 /* 214 * Common flow change classification 215 */ 216 enum { 217 PERF_BR_UNKNOWN = 0, /* unknown */ 218 PERF_BR_COND = 1, /* conditional */ 219 PERF_BR_UNCOND = 2, /* unconditional */ 220 PERF_BR_IND = 3, /* indirect */ 221 PERF_BR_CALL = 4, /* function call */ 222 PERF_BR_IND_CALL = 5, /* indirect function call */ 223 PERF_BR_RET = 6, /* function return */ 224 PERF_BR_SYSCALL = 7, /* syscall */ 225 PERF_BR_SYSRET = 8, /* syscall return */ 226 PERF_BR_COND_CALL = 9, /* conditional function call */ 227 PERF_BR_COND_RET = 10, /* conditional function return */ 228 PERF_BR_MAX, 229 }; 230 231 #define PERF_SAMPLE_BRANCH_PLM_ALL \ 232 (PERF_SAMPLE_BRANCH_USER|\ 233 PERF_SAMPLE_BRANCH_KERNEL|\ 234 PERF_SAMPLE_BRANCH_HV) 235 236 /* 237 * Values to determine ABI of the registers dump. 238 */ 239 enum perf_sample_regs_abi { 240 PERF_SAMPLE_REGS_ABI_NONE = 0, 241 PERF_SAMPLE_REGS_ABI_32 = 1, 242 PERF_SAMPLE_REGS_ABI_64 = 2, 243 }; 244 245 /* 246 * Values for the memory transaction event qualifier, mostly for 247 * abort events. Multiple bits can be set. 248 */ 249 enum { 250 PERF_TXN_ELISION = (1 << 0), /* From elision */ 251 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ 252 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ 253 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ 254 PERF_TXN_RETRY = (1 << 4), /* Retry possible */ 255 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ 256 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ 257 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ 258 259 PERF_TXN_MAX = (1 << 8), /* non-ABI */ 260 261 /* bits 32..63 are reserved for the abort code */ 262 263 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), 264 PERF_TXN_ABORT_SHIFT = 32, 265 }; 266 267 /* 268 * The format of the data returned by read() on a perf event fd, 269 * as specified by attr.read_format: 270 * 271 * struct read_format { 272 * { u64 value; 273 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 274 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 275 * { u64 id; } && PERF_FORMAT_ID 276 * } && !PERF_FORMAT_GROUP 277 * 278 * { u64 nr; 279 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 280 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 281 * { u64 value; 282 * { u64 id; } && PERF_FORMAT_ID 283 * } cntr[nr]; 284 * } && PERF_FORMAT_GROUP 285 * }; 286 */ 287 enum perf_event_read_format { 288 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 289 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 290 PERF_FORMAT_ID = 1U << 2, 291 PERF_FORMAT_GROUP = 1U << 3, 292 293 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 294 }; 295 296 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 297 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 298 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 299 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ 300 /* add: sample_stack_user */ 301 #define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */ 302 #define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */ 303 304 /* 305 * Hardware event_id to monitor via a performance monitoring event: 306 * 307 * @sample_max_stack: Max number of frame pointers in a callchain, 308 * should be < /proc/sys/kernel/perf_event_max_stack 309 */ 310 struct perf_event_attr { 311 312 /* 313 * Major type: hardware/software/tracepoint/etc. 314 */ 315 __u32 type; 316 317 /* 318 * Size of the attr structure, for fwd/bwd compat. 319 */ 320 __u32 size; 321 322 /* 323 * Type specific configuration information. 324 */ 325 __u64 config; 326 327 union { 328 __u64 sample_period; 329 __u64 sample_freq; 330 }; 331 332 __u64 sample_type; 333 __u64 read_format; 334 335 __u64 disabled : 1, /* off by default */ 336 inherit : 1, /* children inherit it */ 337 pinned : 1, /* must always be on PMU */ 338 exclusive : 1, /* only group on PMU */ 339 exclude_user : 1, /* don't count user */ 340 exclude_kernel : 1, /* ditto kernel */ 341 exclude_hv : 1, /* ditto hypervisor */ 342 exclude_idle : 1, /* don't count when idle */ 343 mmap : 1, /* include mmap data */ 344 comm : 1, /* include comm data */ 345 freq : 1, /* use freq, not period */ 346 inherit_stat : 1, /* per task counts */ 347 enable_on_exec : 1, /* next exec enables */ 348 task : 1, /* trace fork/exit */ 349 watermark : 1, /* wakeup_watermark */ 350 /* 351 * precise_ip: 352 * 353 * 0 - SAMPLE_IP can have arbitrary skid 354 * 1 - SAMPLE_IP must have constant skid 355 * 2 - SAMPLE_IP requested to have 0 skid 356 * 3 - SAMPLE_IP must have 0 skid 357 * 358 * See also PERF_RECORD_MISC_EXACT_IP 359 */ 360 precise_ip : 2, /* skid constraint */ 361 mmap_data : 1, /* non-exec mmap data */ 362 sample_id_all : 1, /* sample_type all events */ 363 364 exclude_host : 1, /* don't count in host */ 365 exclude_guest : 1, /* don't count in guest */ 366 367 exclude_callchain_kernel : 1, /* exclude kernel callchains */ 368 exclude_callchain_user : 1, /* exclude user callchains */ 369 mmap2 : 1, /* include mmap with inode data */ 370 comm_exec : 1, /* flag comm events that are due to an exec */ 371 use_clockid : 1, /* use @clockid for time fields */ 372 context_switch : 1, /* context switch data */ 373 write_backward : 1, /* Write ring buffer from end to beginning */ 374 namespaces : 1, /* include namespaces data */ 375 ksymbol : 1, /* include ksymbol events */ 376 bpf_event : 1, /* include bpf events */ 377 aux_output : 1, /* generate AUX records instead of events */ 378 __reserved_1 : 32; 379 380 union { 381 __u32 wakeup_events; /* wakeup every n events */ 382 __u32 wakeup_watermark; /* bytes before wakeup */ 383 }; 384 385 __u32 bp_type; 386 union { 387 __u64 bp_addr; 388 __u64 kprobe_func; /* for perf_kprobe */ 389 __u64 uprobe_path; /* for perf_uprobe */ 390 __u64 config1; /* extension of config */ 391 }; 392 union { 393 __u64 bp_len; 394 __u64 kprobe_addr; /* when kprobe_func == NULL */ 395 __u64 probe_offset; /* for perf_[k,u]probe */ 396 __u64 config2; /* extension of config1 */ 397 }; 398 __u64 branch_sample_type; /* enum perf_branch_sample_type */ 399 400 /* 401 * Defines set of user regs to dump on samples. 402 * See asm/perf_regs.h for details. 403 */ 404 __u64 sample_regs_user; 405 406 /* 407 * Defines size of the user stack to dump on samples. 408 */ 409 __u32 sample_stack_user; 410 411 __s32 clockid; 412 /* 413 * Defines set of regs to dump for each sample 414 * state captured on: 415 * - precise = 0: PMU interrupt 416 * - precise > 0: sampled instruction 417 * 418 * See asm/perf_regs.h for details. 419 */ 420 __u64 sample_regs_intr; 421 422 /* 423 * Wakeup watermark for AUX area 424 */ 425 __u32 aux_watermark; 426 __u16 sample_max_stack; 427 __u16 __reserved_2; /* align to __u64 */ 428 }; 429 430 /* 431 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command 432 * to query bpf programs attached to the same perf tracepoint 433 * as the given perf event. 434 */ 435 struct perf_event_query_bpf { 436 /* 437 * The below ids array length 438 */ 439 __u32 ids_len; 440 /* 441 * Set by the kernel to indicate the number of 442 * available programs 443 */ 444 __u32 prog_cnt; 445 /* 446 * User provided buffer to store program ids 447 */ 448 __u32 ids[0]; 449 }; 450 451 /* 452 * Ioctls that can be done on a perf event fd: 453 */ 454 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 455 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 456 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 457 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 458 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 459 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 460 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 461 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) 462 #define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32) 463 #define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32) 464 #define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *) 465 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *) 466 467 enum perf_event_ioc_flags { 468 PERF_IOC_FLAG_GROUP = 1U << 0, 469 }; 470 471 /* 472 * Structure of the page that can be mapped via mmap 473 */ 474 struct perf_event_mmap_page { 475 __u32 version; /* version number of this structure */ 476 __u32 compat_version; /* lowest version this is compat with */ 477 478 /* 479 * Bits needed to read the hw events in user-space. 480 * 481 * u32 seq, time_mult, time_shift, index, width; 482 * u64 count, enabled, running; 483 * u64 cyc, time_offset; 484 * s64 pmc = 0; 485 * 486 * do { 487 * seq = pc->lock; 488 * barrier() 489 * 490 * enabled = pc->time_enabled; 491 * running = pc->time_running; 492 * 493 * if (pc->cap_usr_time && enabled != running) { 494 * cyc = rdtsc(); 495 * time_offset = pc->time_offset; 496 * time_mult = pc->time_mult; 497 * time_shift = pc->time_shift; 498 * } 499 * 500 * index = pc->index; 501 * count = pc->offset; 502 * if (pc->cap_user_rdpmc && index) { 503 * width = pc->pmc_width; 504 * pmc = rdpmc(index - 1); 505 * } 506 * 507 * barrier(); 508 * } while (pc->lock != seq); 509 * 510 * NOTE: for obvious reason this only works on self-monitoring 511 * processes. 512 */ 513 __u32 lock; /* seqlock for synchronization */ 514 __u32 index; /* hardware event identifier */ 515 __s64 offset; /* add to hardware event value */ 516 __u64 time_enabled; /* time event active */ 517 __u64 time_running; /* time event on cpu */ 518 union { 519 __u64 capabilities; 520 struct { 521 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ 522 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ 523 524 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ 525 cap_user_time : 1, /* The time_* fields are used */ 526 cap_user_time_zero : 1, /* The time_zero field is used */ 527 cap_____res : 59; 528 }; 529 }; 530 531 /* 532 * If cap_user_rdpmc this field provides the bit-width of the value 533 * read using the rdpmc() or equivalent instruction. This can be used 534 * to sign extend the result like: 535 * 536 * pmc <<= 64 - width; 537 * pmc >>= 64 - width; // signed shift right 538 * count += pmc; 539 */ 540 __u16 pmc_width; 541 542 /* 543 * If cap_usr_time the below fields can be used to compute the time 544 * delta since time_enabled (in ns) using rdtsc or similar. 545 * 546 * u64 quot, rem; 547 * u64 delta; 548 * 549 * quot = (cyc >> time_shift); 550 * rem = cyc & (((u64)1 << time_shift) - 1); 551 * delta = time_offset + quot * time_mult + 552 * ((rem * time_mult) >> time_shift); 553 * 554 * Where time_offset,time_mult,time_shift and cyc are read in the 555 * seqcount loop described above. This delta can then be added to 556 * enabled and possible running (if index), improving the scaling: 557 * 558 * enabled += delta; 559 * if (index) 560 * running += delta; 561 * 562 * quot = count / running; 563 * rem = count % running; 564 * count = quot * enabled + (rem * enabled) / running; 565 */ 566 __u16 time_shift; 567 __u32 time_mult; 568 __u64 time_offset; 569 /* 570 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated 571 * from sample timestamps. 572 * 573 * time = timestamp - time_zero; 574 * quot = time / time_mult; 575 * rem = time % time_mult; 576 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; 577 * 578 * And vice versa: 579 * 580 * quot = cyc >> time_shift; 581 * rem = cyc & (((u64)1 << time_shift) - 1); 582 * timestamp = time_zero + quot * time_mult + 583 * ((rem * time_mult) >> time_shift); 584 */ 585 __u64 time_zero; 586 __u32 size; /* Header size up to __reserved[] fields. */ 587 588 /* 589 * Hole for extension of the self monitor capabilities 590 */ 591 592 __u8 __reserved[118*8+4]; /* align to 1k. */ 593 594 /* 595 * Control data for the mmap() data buffer. 596 * 597 * User-space reading the @data_head value should issue an smp_rmb(), 598 * after reading this value. 599 * 600 * When the mapping is PROT_WRITE the @data_tail value should be 601 * written by userspace to reflect the last read data, after issueing 602 * an smp_mb() to separate the data read from the ->data_tail store. 603 * In this case the kernel will not over-write unread data. 604 * 605 * See perf_output_put_handle() for the data ordering. 606 * 607 * data_{offset,size} indicate the location and size of the perf record 608 * buffer within the mmapped area. 609 */ 610 __u64 data_head; /* head in the data section */ 611 __u64 data_tail; /* user-space written tail */ 612 __u64 data_offset; /* where the buffer starts */ 613 __u64 data_size; /* data buffer size */ 614 615 /* 616 * AUX area is defined by aux_{offset,size} fields that should be set 617 * by the userspace, so that 618 * 619 * aux_offset >= data_offset + data_size 620 * 621 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. 622 * 623 * Ring buffer pointers aux_{head,tail} have the same semantics as 624 * data_{head,tail} and same ordering rules apply. 625 */ 626 __u64 aux_head; 627 __u64 aux_tail; 628 __u64 aux_offset; 629 __u64 aux_size; 630 }; 631 632 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 633 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 634 #define PERF_RECORD_MISC_KERNEL (1 << 0) 635 #define PERF_RECORD_MISC_USER (2 << 0) 636 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 637 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 638 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 639 640 /* 641 * Indicates that /proc/PID/maps parsing are truncated by time out. 642 */ 643 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) 644 /* 645 * Following PERF_RECORD_MISC_* are used on different 646 * events, so can reuse the same bit position: 647 * 648 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events 649 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event 650 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal) 651 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events 652 */ 653 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13) 654 #define PERF_RECORD_MISC_COMM_EXEC (1 << 13) 655 #define PERF_RECORD_MISC_FORK_EXEC (1 << 13) 656 #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) 657 /* 658 * These PERF_RECORD_MISC_* flags below are safely reused 659 * for the following events: 660 * 661 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events 662 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events 663 * 664 * 665 * PERF_RECORD_MISC_EXACT_IP: 666 * Indicates that the content of PERF_SAMPLE_IP points to 667 * the actual instruction that triggered the event. See also 668 * perf_event_attr::precise_ip. 669 * 670 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT: 671 * Indicates that thread was preempted in TASK_RUNNING state. 672 */ 673 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 674 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14) 675 /* 676 * Reserve the last bit to indicate some extended misc field 677 */ 678 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 679 680 struct perf_event_header { 681 __u32 type; 682 __u16 misc; 683 __u16 size; 684 }; 685 686 struct perf_ns_link_info { 687 __u64 dev; 688 __u64 ino; 689 }; 690 691 enum { 692 NET_NS_INDEX = 0, 693 UTS_NS_INDEX = 1, 694 IPC_NS_INDEX = 2, 695 PID_NS_INDEX = 3, 696 USER_NS_INDEX = 4, 697 MNT_NS_INDEX = 5, 698 CGROUP_NS_INDEX = 6, 699 700 NR_NAMESPACES, /* number of available namespaces */ 701 }; 702 703 enum perf_event_type { 704 705 /* 706 * If perf_event_attr.sample_id_all is set then all event types will 707 * have the sample_type selected fields related to where/when 708 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, 709 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed 710 * just after the perf_event_header and the fields already present for 711 * the existing fields, i.e. at the end of the payload. That way a newer 712 * perf.data file will be supported by older perf tools, with these new 713 * optional fields being ignored. 714 * 715 * struct sample_id { 716 * { u32 pid, tid; } && PERF_SAMPLE_TID 717 * { u64 time; } && PERF_SAMPLE_TIME 718 * { u64 id; } && PERF_SAMPLE_ID 719 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 720 * { u32 cpu, res; } && PERF_SAMPLE_CPU 721 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 722 * } && perf_event_attr::sample_id_all 723 * 724 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The 725 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed 726 * relative to header.size. 727 */ 728 729 /* 730 * The MMAP events record the PROT_EXEC mappings so that we can 731 * correlate userspace IPs to code. They have the following structure: 732 * 733 * struct { 734 * struct perf_event_header header; 735 * 736 * u32 pid, tid; 737 * u64 addr; 738 * u64 len; 739 * u64 pgoff; 740 * char filename[]; 741 * struct sample_id sample_id; 742 * }; 743 */ 744 PERF_RECORD_MMAP = 1, 745 746 /* 747 * struct { 748 * struct perf_event_header header; 749 * u64 id; 750 * u64 lost; 751 * struct sample_id sample_id; 752 * }; 753 */ 754 PERF_RECORD_LOST = 2, 755 756 /* 757 * struct { 758 * struct perf_event_header header; 759 * 760 * u32 pid, tid; 761 * char comm[]; 762 * struct sample_id sample_id; 763 * }; 764 */ 765 PERF_RECORD_COMM = 3, 766 767 /* 768 * struct { 769 * struct perf_event_header header; 770 * u32 pid, ppid; 771 * u32 tid, ptid; 772 * u64 time; 773 * struct sample_id sample_id; 774 * }; 775 */ 776 PERF_RECORD_EXIT = 4, 777 778 /* 779 * struct { 780 * struct perf_event_header header; 781 * u64 time; 782 * u64 id; 783 * u64 stream_id; 784 * struct sample_id sample_id; 785 * }; 786 */ 787 PERF_RECORD_THROTTLE = 5, 788 PERF_RECORD_UNTHROTTLE = 6, 789 790 /* 791 * struct { 792 * struct perf_event_header header; 793 * u32 pid, ppid; 794 * u32 tid, ptid; 795 * u64 time; 796 * struct sample_id sample_id; 797 * }; 798 */ 799 PERF_RECORD_FORK = 7, 800 801 /* 802 * struct { 803 * struct perf_event_header header; 804 * u32 pid, tid; 805 * 806 * struct read_format values; 807 * struct sample_id sample_id; 808 * }; 809 */ 810 PERF_RECORD_READ = 8, 811 812 /* 813 * struct { 814 * struct perf_event_header header; 815 * 816 * # 817 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. 818 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position 819 * # is fixed relative to header. 820 * # 821 * 822 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 823 * { u64 ip; } && PERF_SAMPLE_IP 824 * { u32 pid, tid; } && PERF_SAMPLE_TID 825 * { u64 time; } && PERF_SAMPLE_TIME 826 * { u64 addr; } && PERF_SAMPLE_ADDR 827 * { u64 id; } && PERF_SAMPLE_ID 828 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 829 * { u32 cpu, res; } && PERF_SAMPLE_CPU 830 * { u64 period; } && PERF_SAMPLE_PERIOD 831 * 832 * { struct read_format values; } && PERF_SAMPLE_READ 833 * 834 * { u64 nr, 835 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 836 * 837 * # 838 * # The RAW record below is opaque data wrt the ABI 839 * # 840 * # That is, the ABI doesn't make any promises wrt to 841 * # the stability of its content, it may vary depending 842 * # on event, hardware, kernel version and phase of 843 * # the moon. 844 * # 845 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 846 * # 847 * 848 * { u32 size; 849 * char data[size];}&& PERF_SAMPLE_RAW 850 * 851 * { u64 nr; 852 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 853 * 854 * { u64 abi; # enum perf_sample_regs_abi 855 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER 856 * 857 * { u64 size; 858 * char data[size]; 859 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER 860 * 861 * { u64 weight; } && PERF_SAMPLE_WEIGHT 862 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC 863 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION 864 * { u64 abi; # enum perf_sample_regs_abi 865 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR 866 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR 867 * }; 868 */ 869 PERF_RECORD_SAMPLE = 9, 870 871 /* 872 * The MMAP2 records are an augmented version of MMAP, they add 873 * maj, min, ino numbers to be used to uniquely identify each mapping 874 * 875 * struct { 876 * struct perf_event_header header; 877 * 878 * u32 pid, tid; 879 * u64 addr; 880 * u64 len; 881 * u64 pgoff; 882 * u32 maj; 883 * u32 min; 884 * u64 ino; 885 * u64 ino_generation; 886 * u32 prot, flags; 887 * char filename[]; 888 * struct sample_id sample_id; 889 * }; 890 */ 891 PERF_RECORD_MMAP2 = 10, 892 893 /* 894 * Records that new data landed in the AUX buffer part. 895 * 896 * struct { 897 * struct perf_event_header header; 898 * 899 * u64 aux_offset; 900 * u64 aux_size; 901 * u64 flags; 902 * struct sample_id sample_id; 903 * }; 904 */ 905 PERF_RECORD_AUX = 11, 906 907 /* 908 * Indicates that instruction trace has started 909 * 910 * struct { 911 * struct perf_event_header header; 912 * u32 pid; 913 * u32 tid; 914 * struct sample_id sample_id; 915 * }; 916 */ 917 PERF_RECORD_ITRACE_START = 12, 918 919 /* 920 * Records the dropped/lost sample number. 921 * 922 * struct { 923 * struct perf_event_header header; 924 * 925 * u64 lost; 926 * struct sample_id sample_id; 927 * }; 928 */ 929 PERF_RECORD_LOST_SAMPLES = 13, 930 931 /* 932 * Records a context switch in or out (flagged by 933 * PERF_RECORD_MISC_SWITCH_OUT). See also 934 * PERF_RECORD_SWITCH_CPU_WIDE. 935 * 936 * struct { 937 * struct perf_event_header header; 938 * struct sample_id sample_id; 939 * }; 940 */ 941 PERF_RECORD_SWITCH = 14, 942 943 /* 944 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and 945 * next_prev_tid that are the next (switching out) or previous 946 * (switching in) pid/tid. 947 * 948 * struct { 949 * struct perf_event_header header; 950 * u32 next_prev_pid; 951 * u32 next_prev_tid; 952 * struct sample_id sample_id; 953 * }; 954 */ 955 PERF_RECORD_SWITCH_CPU_WIDE = 15, 956 957 /* 958 * struct { 959 * struct perf_event_header header; 960 * u32 pid; 961 * u32 tid; 962 * u64 nr_namespaces; 963 * { u64 dev, inode; } [nr_namespaces]; 964 * struct sample_id sample_id; 965 * }; 966 */ 967 PERF_RECORD_NAMESPACES = 16, 968 969 /* 970 * Record ksymbol register/unregister events: 971 * 972 * struct { 973 * struct perf_event_header header; 974 * u64 addr; 975 * u32 len; 976 * u16 ksym_type; 977 * u16 flags; 978 * char name[]; 979 * struct sample_id sample_id; 980 * }; 981 */ 982 PERF_RECORD_KSYMBOL = 17, 983 984 /* 985 * Record bpf events: 986 * enum perf_bpf_event_type { 987 * PERF_BPF_EVENT_UNKNOWN = 0, 988 * PERF_BPF_EVENT_PROG_LOAD = 1, 989 * PERF_BPF_EVENT_PROG_UNLOAD = 2, 990 * }; 991 * 992 * struct { 993 * struct perf_event_header header; 994 * u16 type; 995 * u16 flags; 996 * u32 id; 997 * u8 tag[BPF_TAG_SIZE]; 998 * struct sample_id sample_id; 999 * }; 1000 */ 1001 PERF_RECORD_BPF_EVENT = 18, 1002 1003 PERF_RECORD_MAX, /* non-ABI */ 1004 }; 1005 1006 enum perf_record_ksymbol_type { 1007 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0, 1008 PERF_RECORD_KSYMBOL_TYPE_BPF = 1, 1009 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */ 1010 }; 1011 1012 #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0) 1013 1014 enum perf_bpf_event_type { 1015 PERF_BPF_EVENT_UNKNOWN = 0, 1016 PERF_BPF_EVENT_PROG_LOAD = 1, 1017 PERF_BPF_EVENT_PROG_UNLOAD = 2, 1018 PERF_BPF_EVENT_MAX, /* non-ABI */ 1019 }; 1020 1021 #define PERF_MAX_STACK_DEPTH 127 1022 #define PERF_MAX_CONTEXTS_PER_STACK 8 1023 1024 enum perf_callchain_context { 1025 PERF_CONTEXT_HV = (__u64)-32, 1026 PERF_CONTEXT_KERNEL = (__u64)-128, 1027 PERF_CONTEXT_USER = (__u64)-512, 1028 1029 PERF_CONTEXT_GUEST = (__u64)-2048, 1030 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 1031 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 1032 1033 PERF_CONTEXT_MAX = (__u64)-4095, 1034 }; 1035 1036 /** 1037 * PERF_RECORD_AUX::flags bits 1038 */ 1039 #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ 1040 #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ 1041 #define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */ 1042 #define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */ 1043 1044 #define PERF_FLAG_FD_NO_GROUP (1UL << 0) 1045 #define PERF_FLAG_FD_OUTPUT (1UL << 1) 1046 #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ 1047 #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ 1048 1049 #if defined(__LITTLE_ENDIAN_BITFIELD) 1050 union perf_mem_data_src { 1051 __u64 val; 1052 struct { 1053 __u64 mem_op:5, /* type of opcode */ 1054 mem_lvl:14, /* memory hierarchy level */ 1055 mem_snoop:5, /* snoop mode */ 1056 mem_lock:2, /* lock instr */ 1057 mem_dtlb:7, /* tlb access */ 1058 mem_lvl_num:4, /* memory hierarchy level number */ 1059 mem_remote:1, /* remote */ 1060 mem_snoopx:2, /* snoop mode, ext */ 1061 mem_rsvd:24; 1062 }; 1063 }; 1064 #elif defined(__BIG_ENDIAN_BITFIELD) 1065 union perf_mem_data_src { 1066 __u64 val; 1067 struct { 1068 __u64 mem_rsvd:24, 1069 mem_snoopx:2, /* snoop mode, ext */ 1070 mem_remote:1, /* remote */ 1071 mem_lvl_num:4, /* memory hierarchy level number */ 1072 mem_dtlb:7, /* tlb access */ 1073 mem_lock:2, /* lock instr */ 1074 mem_snoop:5, /* snoop mode */ 1075 mem_lvl:14, /* memory hierarchy level */ 1076 mem_op:5; /* type of opcode */ 1077 }; 1078 }; 1079 #else 1080 #error "Unknown endianness" 1081 #endif 1082 1083 /* type of opcode (load/store/prefetch,code) */ 1084 #define PERF_MEM_OP_NA 0x01 /* not available */ 1085 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */ 1086 #define PERF_MEM_OP_STORE 0x04 /* store instruction */ 1087 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ 1088 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ 1089 #define PERF_MEM_OP_SHIFT 0 1090 1091 /* memory hierarchy (memory level, hit or miss) */ 1092 #define PERF_MEM_LVL_NA 0x01 /* not available */ 1093 #define PERF_MEM_LVL_HIT 0x02 /* hit level */ 1094 #define PERF_MEM_LVL_MISS 0x04 /* miss level */ 1095 #define PERF_MEM_LVL_L1 0x08 /* L1 */ 1096 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ 1097 #define PERF_MEM_LVL_L2 0x20 /* L2 */ 1098 #define PERF_MEM_LVL_L3 0x40 /* L3 */ 1099 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ 1100 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ 1101 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ 1102 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ 1103 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ 1104 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ 1105 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ 1106 #define PERF_MEM_LVL_SHIFT 5 1107 1108 #define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */ 1109 #define PERF_MEM_REMOTE_SHIFT 37 1110 1111 #define PERF_MEM_LVLNUM_L1 0x01 /* L1 */ 1112 #define PERF_MEM_LVLNUM_L2 0x02 /* L2 */ 1113 #define PERF_MEM_LVLNUM_L3 0x03 /* L3 */ 1114 #define PERF_MEM_LVLNUM_L4 0x04 /* L4 */ 1115 /* 5-0xa available */ 1116 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */ 1117 #define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */ 1118 #define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */ 1119 #define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */ 1120 #define PERF_MEM_LVLNUM_NA 0x0f /* N/A */ 1121 1122 #define PERF_MEM_LVLNUM_SHIFT 33 1123 1124 /* snoop mode */ 1125 #define PERF_MEM_SNOOP_NA 0x01 /* not available */ 1126 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ 1127 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ 1128 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ 1129 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ 1130 #define PERF_MEM_SNOOP_SHIFT 19 1131 1132 #define PERF_MEM_SNOOPX_FWD 0x01 /* forward */ 1133 /* 1 free */ 1134 #define PERF_MEM_SNOOPX_SHIFT 37 1135 1136 /* locked instruction */ 1137 #define PERF_MEM_LOCK_NA 0x01 /* not available */ 1138 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ 1139 #define PERF_MEM_LOCK_SHIFT 24 1140 1141 /* TLB access */ 1142 #define PERF_MEM_TLB_NA 0x01 /* not available */ 1143 #define PERF_MEM_TLB_HIT 0x02 /* hit level */ 1144 #define PERF_MEM_TLB_MISS 0x04 /* miss level */ 1145 #define PERF_MEM_TLB_L1 0x08 /* L1 */ 1146 #define PERF_MEM_TLB_L2 0x10 /* L2 */ 1147 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ 1148 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ 1149 #define PERF_MEM_TLB_SHIFT 26 1150 1151 #define PERF_MEM_S(a, s) \ 1152 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) 1153 1154 /* 1155 * single taken branch record layout: 1156 * 1157 * from: source instruction (may not always be a branch insn) 1158 * to: branch target 1159 * mispred: branch target was mispredicted 1160 * predicted: branch target was predicted 1161 * 1162 * support for mispred, predicted is optional. In case it 1163 * is not supported mispred = predicted = 0. 1164 * 1165 * in_tx: running in a hardware transaction 1166 * abort: aborting a hardware transaction 1167 * cycles: cycles from last branch (or 0 if not supported) 1168 * type: branch type 1169 */ 1170 struct perf_branch_entry { 1171 __u64 from; 1172 __u64 to; 1173 __u64 mispred:1, /* target mispredicted */ 1174 predicted:1,/* target predicted */ 1175 in_tx:1, /* in transaction */ 1176 abort:1, /* transaction abort */ 1177 cycles:16, /* cycle count to last branch */ 1178 type:4, /* branch type */ 1179 reserved:40; 1180 }; 1181 1182 #endif /* _UAPI_LINUX_PERF_EVENT_H */