root/tools/perf/bench/numa.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nr_numa_nodes
  2. is_node_present
  3. node_has_cpus
  4. bind_to_cpu
  5. bind_to_node
  6. bind_to_cpumask
  7. mempol_restore
  8. bind_to_memnode
  9. alloc_data
  10. free_data
  11. zalloc_shared_data
  12. setup_shared_data
  13. setup_private_data
  14. init_global_mutex
  15. parse_cpu_list
  16. parse_setup_cpu_list
  17. parse_cpus_opt
  18. parse_node_list
  19. parse_setup_node_list
  20. parse_nodes_opt
  21. lfsr_32
  22. access_data
  23. do_work
  24. update_curr_cpu
  25. count_process_nodes
  26. count_node_processes
  27. calc_convergence_compression
  28. calc_convergence
  29. show_summary
  30. worker_thread
  31. worker_process
  32. print_summary
  33. init_thread_data
  34. deinit_thread_data
  35. init
  36. deinit
  37. print_res
  38. __bench_numa
  39. command_size
  40. init_params
  41. run_bench_numa
  42. bench_all
  43. bench_numa

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * numa.c
   4  *
   5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6  */
   7 
   8 #include <inttypes.h>
   9 /* For the CLR_() macros */
  10 #include <pthread.h>
  11 
  12 #include <subcmd/parse-options.h>
  13 #include "../util/cloexec.h"
  14 
  15 #include "bench.h"
  16 
  17 #include <errno.h>
  18 #include <sched.h>
  19 #include <stdio.h>
  20 #include <assert.h>
  21 #include <malloc.h>
  22 #include <signal.h>
  23 #include <stdlib.h>
  24 #include <string.h>
  25 #include <unistd.h>
  26 #include <sys/mman.h>
  27 #include <sys/time.h>
  28 #include <sys/resource.h>
  29 #include <sys/wait.h>
  30 #include <sys/prctl.h>
  31 #include <sys/types.h>
  32 #include <linux/kernel.h>
  33 #include <linux/time64.h>
  34 #include <linux/numa.h>
  35 #include <linux/zalloc.h>
  36 
  37 #include <numa.h>
  38 #include <numaif.h>
  39 
  40 #ifndef RUSAGE_THREAD
  41 # define RUSAGE_THREAD 1
  42 #endif
  43 
  44 /*
  45  * Regular printout to the terminal, supressed if -q is specified:
  46  */
  47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48 
  49 /*
  50  * Debug printf:
  51  */
  52 #undef dprintf
  53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54 
  55 struct thread_data {
  56         int                     curr_cpu;
  57         cpu_set_t               bind_cpumask;
  58         int                     bind_node;
  59         u8                      *process_data;
  60         int                     process_nr;
  61         int                     thread_nr;
  62         int                     task_nr;
  63         unsigned int            loops_done;
  64         u64                     val;
  65         u64                     runtime_ns;
  66         u64                     system_time_ns;
  67         u64                     user_time_ns;
  68         double                  speed_gbs;
  69         pthread_mutex_t         *process_lock;
  70 };
  71 
  72 /* Parameters set by options: */
  73 
  74 struct params {
  75         /* Startup synchronization: */
  76         bool                    serialize_startup;
  77 
  78         /* Task hierarchy: */
  79         int                     nr_proc;
  80         int                     nr_threads;
  81 
  82         /* Working set sizes: */
  83         const char              *mb_global_str;
  84         const char              *mb_proc_str;
  85         const char              *mb_proc_locked_str;
  86         const char              *mb_thread_str;
  87 
  88         double                  mb_global;
  89         double                  mb_proc;
  90         double                  mb_proc_locked;
  91         double                  mb_thread;
  92 
  93         /* Access patterns to the working set: */
  94         bool                    data_reads;
  95         bool                    data_writes;
  96         bool                    data_backwards;
  97         bool                    data_zero_memset;
  98         bool                    data_rand_walk;
  99         u32                     nr_loops;
 100         u32                     nr_secs;
 101         u32                     sleep_usecs;
 102 
 103         /* Working set initialization: */
 104         bool                    init_zero;
 105         bool                    init_random;
 106         bool                    init_cpu0;
 107 
 108         /* Misc options: */
 109         int                     show_details;
 110         int                     run_all;
 111         int                     thp;
 112 
 113         long                    bytes_global;
 114         long                    bytes_process;
 115         long                    bytes_process_locked;
 116         long                    bytes_thread;
 117 
 118         int                     nr_tasks;
 119         bool                    show_quiet;
 120 
 121         bool                    show_convergence;
 122         bool                    measure_convergence;
 123 
 124         int                     perturb_secs;
 125         int                     nr_cpus;
 126         int                     nr_nodes;
 127 
 128         /* Affinity options -C and -N: */
 129         char                    *cpu_list_str;
 130         char                    *node_list_str;
 131 };
 132 
 133 
 134 /* Global, read-writable area, accessible to all processes and threads: */
 135 
 136 struct global_info {
 137         u8                      *data;
 138 
 139         pthread_mutex_t         startup_mutex;
 140         int                     nr_tasks_started;
 141 
 142         pthread_mutex_t         startup_done_mutex;
 143 
 144         pthread_mutex_t         start_work_mutex;
 145         int                     nr_tasks_working;
 146 
 147         pthread_mutex_t         stop_work_mutex;
 148         u64                     bytes_done;
 149 
 150         struct thread_data      *threads;
 151 
 152         /* Convergence latency measurement: */
 153         bool                    all_converged;
 154         bool                    stop_work;
 155 
 156         int                     print_once;
 157 
 158         struct params           p;
 159 };
 160 
 161 static struct global_info       *g = NULL;
 162 
 163 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 164 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 165 
 166 struct params p0;
 167 
 168 static const struct option options[] = {
 169         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 170         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 171 
 172         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 173         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 174         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 175         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 176 
 177         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 178         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 179         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 180 
 181         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
 182         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 183         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 184         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 185         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 186 
 187 
 188         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 189         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 190         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 191         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 192 
 193         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 194         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 195         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 196         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 197                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 198         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 199         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 200         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 201 
 202         /* Special option string parsing callbacks: */
 203         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 204                         "bind the first N tasks to these specific cpus (the rest is unbound)",
 205                         parse_cpus_opt),
 206         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 207                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 208                         parse_nodes_opt),
 209         OPT_END()
 210 };
 211 
 212 static const char * const bench_numa_usage[] = {
 213         "perf bench numa <options>",
 214         NULL
 215 };
 216 
 217 static const char * const numa_usage[] = {
 218         "perf bench numa mem [<options>]",
 219         NULL
 220 };
 221 
 222 /*
 223  * To get number of numa nodes present.
 224  */
 225 static int nr_numa_nodes(void)
 226 {
 227         int i, nr_nodes = 0;
 228 
 229         for (i = 0; i < g->p.nr_nodes; i++) {
 230                 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 231                         nr_nodes++;
 232         }
 233 
 234         return nr_nodes;
 235 }
 236 
 237 /*
 238  * To check if given numa node is present.
 239  */
 240 static int is_node_present(int node)
 241 {
 242         return numa_bitmask_isbitset(numa_nodes_ptr, node);
 243 }
 244 
 245 /*
 246  * To check given numa node has cpus.
 247  */
 248 static bool node_has_cpus(int node)
 249 {
 250         struct bitmask *cpu = numa_allocate_cpumask();
 251         unsigned int i;
 252 
 253         if (cpu && !numa_node_to_cpus(node, cpu)) {
 254                 for (i = 0; i < cpu->size; i++) {
 255                         if (numa_bitmask_isbitset(cpu, i))
 256                                 return true;
 257                 }
 258         }
 259 
 260         return false; /* lets fall back to nocpus safely */
 261 }
 262 
 263 static cpu_set_t bind_to_cpu(int target_cpu)
 264 {
 265         cpu_set_t orig_mask, mask;
 266         int ret;
 267 
 268         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 269         BUG_ON(ret);
 270 
 271         CPU_ZERO(&mask);
 272 
 273         if (target_cpu == -1) {
 274                 int cpu;
 275 
 276                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 277                         CPU_SET(cpu, &mask);
 278         } else {
 279                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 280                 CPU_SET(target_cpu, &mask);
 281         }
 282 
 283         ret = sched_setaffinity(0, sizeof(mask), &mask);
 284         BUG_ON(ret);
 285 
 286         return orig_mask;
 287 }
 288 
 289 static cpu_set_t bind_to_node(int target_node)
 290 {
 291         int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
 292         cpu_set_t orig_mask, mask;
 293         int cpu;
 294         int ret;
 295 
 296         BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
 297         BUG_ON(!cpus_per_node);
 298 
 299         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 300         BUG_ON(ret);
 301 
 302         CPU_ZERO(&mask);
 303 
 304         if (target_node == NUMA_NO_NODE) {
 305                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 306                         CPU_SET(cpu, &mask);
 307         } else {
 308                 int cpu_start = (target_node + 0) * cpus_per_node;
 309                 int cpu_stop  = (target_node + 1) * cpus_per_node;
 310 
 311                 BUG_ON(cpu_stop > g->p.nr_cpus);
 312 
 313                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 314                         CPU_SET(cpu, &mask);
 315         }
 316 
 317         ret = sched_setaffinity(0, sizeof(mask), &mask);
 318         BUG_ON(ret);
 319 
 320         return orig_mask;
 321 }
 322 
 323 static void bind_to_cpumask(cpu_set_t mask)
 324 {
 325         int ret;
 326 
 327         ret = sched_setaffinity(0, sizeof(mask), &mask);
 328         BUG_ON(ret);
 329 }
 330 
 331 static void mempol_restore(void)
 332 {
 333         int ret;
 334 
 335         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 336 
 337         BUG_ON(ret);
 338 }
 339 
 340 static void bind_to_memnode(int node)
 341 {
 342         unsigned long nodemask;
 343         int ret;
 344 
 345         if (node == NUMA_NO_NODE)
 346                 return;
 347 
 348         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 349         nodemask = 1L << node;
 350 
 351         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 352         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 353 
 354         BUG_ON(ret);
 355 }
 356 
 357 #define HPSIZE (2*1024*1024)
 358 
 359 #define set_taskname(fmt...)                            \
 360 do {                                                    \
 361         char name[20];                                  \
 362                                                         \
 363         snprintf(name, 20, fmt);                        \
 364         prctl(PR_SET_NAME, name);                       \
 365 } while (0)
 366 
 367 static u8 *alloc_data(ssize_t bytes0, int map_flags,
 368                       int init_zero, int init_cpu0, int thp, int init_random)
 369 {
 370         cpu_set_t orig_mask;
 371         ssize_t bytes;
 372         u8 *buf;
 373         int ret;
 374 
 375         if (!bytes0)
 376                 return NULL;
 377 
 378         /* Allocate and initialize all memory on CPU#0: */
 379         if (init_cpu0) {
 380                 int node = numa_node_of_cpu(0);
 381 
 382                 orig_mask = bind_to_node(node);
 383                 bind_to_memnode(node);
 384         }
 385 
 386         bytes = bytes0 + HPSIZE;
 387 
 388         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 389         BUG_ON(buf == (void *)-1);
 390 
 391         if (map_flags == MAP_PRIVATE) {
 392                 if (thp > 0) {
 393                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
 394                         if (ret && !g->print_once) {
 395                                 g->print_once = 1;
 396                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 397                         }
 398                 }
 399                 if (thp < 0) {
 400                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 401                         if (ret && !g->print_once) {
 402                                 g->print_once = 1;
 403                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 404                         }
 405                 }
 406         }
 407 
 408         if (init_zero) {
 409                 bzero(buf, bytes);
 410         } else {
 411                 /* Initialize random contents, different in each word: */
 412                 if (init_random) {
 413                         u64 *wbuf = (void *)buf;
 414                         long off = rand();
 415                         long i;
 416 
 417                         for (i = 0; i < bytes/8; i++)
 418                                 wbuf[i] = i + off;
 419                 }
 420         }
 421 
 422         /* Align to 2MB boundary: */
 423         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 424 
 425         /* Restore affinity: */
 426         if (init_cpu0) {
 427                 bind_to_cpumask(orig_mask);
 428                 mempol_restore();
 429         }
 430 
 431         return buf;
 432 }
 433 
 434 static void free_data(void *data, ssize_t bytes)
 435 {
 436         int ret;
 437 
 438         if (!data)
 439                 return;
 440 
 441         ret = munmap(data, bytes);
 442         BUG_ON(ret);
 443 }
 444 
 445 /*
 446  * Create a shared memory buffer that can be shared between processes, zeroed:
 447  */
 448 static void * zalloc_shared_data(ssize_t bytes)
 449 {
 450         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 451 }
 452 
 453 /*
 454  * Create a shared memory buffer that can be shared between processes:
 455  */
 456 static void * setup_shared_data(ssize_t bytes)
 457 {
 458         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 459 }
 460 
 461 /*
 462  * Allocate process-local memory - this will either be shared between
 463  * threads of this process, or only be accessed by this thread:
 464  */
 465 static void * setup_private_data(ssize_t bytes)
 466 {
 467         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 468 }
 469 
 470 /*
 471  * Return a process-shared (global) mutex:
 472  */
 473 static void init_global_mutex(pthread_mutex_t *mutex)
 474 {
 475         pthread_mutexattr_t attr;
 476 
 477         pthread_mutexattr_init(&attr);
 478         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 479         pthread_mutex_init(mutex, &attr);
 480 }
 481 
 482 static int parse_cpu_list(const char *arg)
 483 {
 484         p0.cpu_list_str = strdup(arg);
 485 
 486         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 487 
 488         return 0;
 489 }
 490 
 491 static int parse_setup_cpu_list(void)
 492 {
 493         struct thread_data *td;
 494         char *str0, *str;
 495         int t;
 496 
 497         if (!g->p.cpu_list_str)
 498                 return 0;
 499 
 500         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 501 
 502         str0 = str = strdup(g->p.cpu_list_str);
 503         t = 0;
 504 
 505         BUG_ON(!str);
 506 
 507         tprintf("# binding tasks to CPUs:\n");
 508         tprintf("#  ");
 509 
 510         while (true) {
 511                 int bind_cpu, bind_cpu_0, bind_cpu_1;
 512                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 513                 int bind_len;
 514                 int step;
 515                 int mul;
 516 
 517                 tok = strsep(&str, ",");
 518                 if (!tok)
 519                         break;
 520 
 521                 tok_end = strstr(tok, "-");
 522 
 523                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 524                 if (!tok_end) {
 525                         /* Single CPU specified: */
 526                         bind_cpu_0 = bind_cpu_1 = atol(tok);
 527                 } else {
 528                         /* CPU range specified (for example: "5-11"): */
 529                         bind_cpu_0 = atol(tok);
 530                         bind_cpu_1 = atol(tok_end + 1);
 531                 }
 532 
 533                 step = 1;
 534                 tok_step = strstr(tok, "#");
 535                 if (tok_step) {
 536                         step = atol(tok_step + 1);
 537                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 538                 }
 539 
 540                 /*
 541                  * Mask length.
 542                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 543                  * where the _4 means the next 4 CPUs are allowed.
 544                  */
 545                 bind_len = 1;
 546                 tok_len = strstr(tok, "_");
 547                 if (tok_len) {
 548                         bind_len = atol(tok_len + 1);
 549                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 550                 }
 551 
 552                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 553                 mul = 1;
 554                 tok_mul = strstr(tok, "x");
 555                 if (tok_mul) {
 556                         mul = atol(tok_mul + 1);
 557                         BUG_ON(mul <= 0);
 558                 }
 559 
 560                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 561 
 562                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 563                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 564                         return -1;
 565                 }
 566 
 567                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 568                 BUG_ON(bind_cpu_0 > bind_cpu_1);
 569 
 570                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 571                         int i;
 572 
 573                         for (i = 0; i < mul; i++) {
 574                                 int cpu;
 575 
 576                                 if (t >= g->p.nr_tasks) {
 577                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 578                                         goto out;
 579                                 }
 580                                 td = g->threads + t;
 581 
 582                                 if (t)
 583                                         tprintf(",");
 584                                 if (bind_len > 1) {
 585                                         tprintf("%2d/%d", bind_cpu, bind_len);
 586                                 } else {
 587                                         tprintf("%2d", bind_cpu);
 588                                 }
 589 
 590                                 CPU_ZERO(&td->bind_cpumask);
 591                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 592                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 593                                         CPU_SET(cpu, &td->bind_cpumask);
 594                                 }
 595                                 t++;
 596                         }
 597                 }
 598         }
 599 out:
 600 
 601         tprintf("\n");
 602 
 603         if (t < g->p.nr_tasks)
 604                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 605 
 606         free(str0);
 607         return 0;
 608 }
 609 
 610 static int parse_cpus_opt(const struct option *opt __maybe_unused,
 611                           const char *arg, int unset __maybe_unused)
 612 {
 613         if (!arg)
 614                 return -1;
 615 
 616         return parse_cpu_list(arg);
 617 }
 618 
 619 static int parse_node_list(const char *arg)
 620 {
 621         p0.node_list_str = strdup(arg);
 622 
 623         dprintf("got NODE list: {%s}\n", p0.node_list_str);
 624 
 625         return 0;
 626 }
 627 
 628 static int parse_setup_node_list(void)
 629 {
 630         struct thread_data *td;
 631         char *str0, *str;
 632         int t;
 633 
 634         if (!g->p.node_list_str)
 635                 return 0;
 636 
 637         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 638 
 639         str0 = str = strdup(g->p.node_list_str);
 640         t = 0;
 641 
 642         BUG_ON(!str);
 643 
 644         tprintf("# binding tasks to NODEs:\n");
 645         tprintf("# ");
 646 
 647         while (true) {
 648                 int bind_node, bind_node_0, bind_node_1;
 649                 char *tok, *tok_end, *tok_step, *tok_mul;
 650                 int step;
 651                 int mul;
 652 
 653                 tok = strsep(&str, ",");
 654                 if (!tok)
 655                         break;
 656 
 657                 tok_end = strstr(tok, "-");
 658 
 659                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 660                 if (!tok_end) {
 661                         /* Single NODE specified: */
 662                         bind_node_0 = bind_node_1 = atol(tok);
 663                 } else {
 664                         /* NODE range specified (for example: "5-11"): */
 665                         bind_node_0 = atol(tok);
 666                         bind_node_1 = atol(tok_end + 1);
 667                 }
 668 
 669                 step = 1;
 670                 tok_step = strstr(tok, "#");
 671                 if (tok_step) {
 672                         step = atol(tok_step + 1);
 673                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 674                 }
 675 
 676                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 677                 mul = 1;
 678                 tok_mul = strstr(tok, "x");
 679                 if (tok_mul) {
 680                         mul = atol(tok_mul + 1);
 681                         BUG_ON(mul <= 0);
 682                 }
 683 
 684                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 685 
 686                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 687                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 688                         return -1;
 689                 }
 690 
 691                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 692                 BUG_ON(bind_node_0 > bind_node_1);
 693 
 694                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 695                         int i;
 696 
 697                         for (i = 0; i < mul; i++) {
 698                                 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 699                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 700                                         goto out;
 701                                 }
 702                                 td = g->threads + t;
 703 
 704                                 if (!t)
 705                                         tprintf(" %2d", bind_node);
 706                                 else
 707                                         tprintf(",%2d", bind_node);
 708 
 709                                 td->bind_node = bind_node;
 710                                 t++;
 711                         }
 712                 }
 713         }
 714 out:
 715 
 716         tprintf("\n");
 717 
 718         if (t < g->p.nr_tasks)
 719                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 720 
 721         free(str0);
 722         return 0;
 723 }
 724 
 725 static int parse_nodes_opt(const struct option *opt __maybe_unused,
 726                           const char *arg, int unset __maybe_unused)
 727 {
 728         if (!arg)
 729                 return -1;
 730 
 731         return parse_node_list(arg);
 732 
 733         return 0;
 734 }
 735 
 736 #define BIT(x) (1ul << x)
 737 
 738 static inline uint32_t lfsr_32(uint32_t lfsr)
 739 {
 740         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 741         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 742 }
 743 
 744 /*
 745  * Make sure there's real data dependency to RAM (when read
 746  * accesses are enabled), so the compiler, the CPU and the
 747  * kernel (KSM, zero page, etc.) cannot optimize away RAM
 748  * accesses:
 749  */
 750 static inline u64 access_data(u64 *data, u64 val)
 751 {
 752         if (g->p.data_reads)
 753                 val += *data;
 754         if (g->p.data_writes)
 755                 *data = val + 1;
 756         return val;
 757 }
 758 
 759 /*
 760  * The worker process does two types of work, a forwards going
 761  * loop and a backwards going loop.
 762  *
 763  * We do this so that on multiprocessor systems we do not create
 764  * a 'train' of processing, with highly synchronized processes,
 765  * skewing the whole benchmark.
 766  */
 767 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 768 {
 769         long words = bytes/sizeof(u64);
 770         u64 *data = (void *)__data;
 771         long chunk_0, chunk_1;
 772         u64 *d0, *d, *d1;
 773         long off;
 774         long i;
 775 
 776         BUG_ON(!data && words);
 777         BUG_ON(data && !words);
 778 
 779         if (!data)
 780                 return val;
 781 
 782         /* Very simple memset() work variant: */
 783         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 784                 bzero(data, bytes);
 785                 return val;
 786         }
 787 
 788         /* Spread out by PID/TID nr and by loop nr: */
 789         chunk_0 = words/nr_max;
 790         chunk_1 = words/g->p.nr_loops;
 791         off = nr*chunk_0 + loop*chunk_1;
 792 
 793         while (off >= words)
 794                 off -= words;
 795 
 796         if (g->p.data_rand_walk) {
 797                 u32 lfsr = nr + loop + val;
 798                 int j;
 799 
 800                 for (i = 0; i < words/1024; i++) {
 801                         long start, end;
 802 
 803                         lfsr = lfsr_32(lfsr);
 804 
 805                         start = lfsr % words;
 806                         end = min(start + 1024, words-1);
 807 
 808                         if (g->p.data_zero_memset) {
 809                                 bzero(data + start, (end-start) * sizeof(u64));
 810                         } else {
 811                                 for (j = start; j < end; j++)
 812                                         val = access_data(data + j, val);
 813                         }
 814                 }
 815         } else if (!g->p.data_backwards || (nr + loop) & 1) {
 816 
 817                 d0 = data + off;
 818                 d  = data + off + 1;
 819                 d1 = data + words;
 820 
 821                 /* Process data forwards: */
 822                 for (;;) {
 823                         if (unlikely(d >= d1))
 824                                 d = data;
 825                         if (unlikely(d == d0))
 826                                 break;
 827 
 828                         val = access_data(d, val);
 829 
 830                         d++;
 831                 }
 832         } else {
 833                 /* Process data backwards: */
 834 
 835                 d0 = data + off;
 836                 d  = data + off - 1;
 837                 d1 = data + words;
 838 
 839                 /* Process data forwards: */
 840                 for (;;) {
 841                         if (unlikely(d < data))
 842                                 d = data + words-1;
 843                         if (unlikely(d == d0))
 844                                 break;
 845 
 846                         val = access_data(d, val);
 847 
 848                         d--;
 849                 }
 850         }
 851 
 852         return val;
 853 }
 854 
 855 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 856 {
 857         unsigned int cpu;
 858 
 859         cpu = sched_getcpu();
 860 
 861         g->threads[task_nr].curr_cpu = cpu;
 862         prctl(0, bytes_worked);
 863 }
 864 
 865 #define MAX_NR_NODES    64
 866 
 867 /*
 868  * Count the number of nodes a process's threads
 869  * are spread out on.
 870  *
 871  * A count of 1 means that the process is compressed
 872  * to a single node. A count of g->p.nr_nodes means it's
 873  * spread out on the whole system.
 874  */
 875 static int count_process_nodes(int process_nr)
 876 {
 877         char node_present[MAX_NR_NODES] = { 0, };
 878         int nodes;
 879         int n, t;
 880 
 881         for (t = 0; t < g->p.nr_threads; t++) {
 882                 struct thread_data *td;
 883                 int task_nr;
 884                 int node;
 885 
 886                 task_nr = process_nr*g->p.nr_threads + t;
 887                 td = g->threads + task_nr;
 888 
 889                 node = numa_node_of_cpu(td->curr_cpu);
 890                 if (node < 0) /* curr_cpu was likely still -1 */
 891                         return 0;
 892 
 893                 node_present[node] = 1;
 894         }
 895 
 896         nodes = 0;
 897 
 898         for (n = 0; n < MAX_NR_NODES; n++)
 899                 nodes += node_present[n];
 900 
 901         return nodes;
 902 }
 903 
 904 /*
 905  * Count the number of distinct process-threads a node contains.
 906  *
 907  * A count of 1 means that the node contains only a single
 908  * process. If all nodes on the system contain at most one
 909  * process then we are well-converged.
 910  */
 911 static int count_node_processes(int node)
 912 {
 913         int processes = 0;
 914         int t, p;
 915 
 916         for (p = 0; p < g->p.nr_proc; p++) {
 917                 for (t = 0; t < g->p.nr_threads; t++) {
 918                         struct thread_data *td;
 919                         int task_nr;
 920                         int n;
 921 
 922                         task_nr = p*g->p.nr_threads + t;
 923                         td = g->threads + task_nr;
 924 
 925                         n = numa_node_of_cpu(td->curr_cpu);
 926                         if (n == node) {
 927                                 processes++;
 928                                 break;
 929                         }
 930                 }
 931         }
 932 
 933         return processes;
 934 }
 935 
 936 static void calc_convergence_compression(int *strong)
 937 {
 938         unsigned int nodes_min, nodes_max;
 939         int p;
 940 
 941         nodes_min = -1;
 942         nodes_max =  0;
 943 
 944         for (p = 0; p < g->p.nr_proc; p++) {
 945                 unsigned int nodes = count_process_nodes(p);
 946 
 947                 if (!nodes) {
 948                         *strong = 0;
 949                         return;
 950                 }
 951 
 952                 nodes_min = min(nodes, nodes_min);
 953                 nodes_max = max(nodes, nodes_max);
 954         }
 955 
 956         /* Strong convergence: all threads compress on a single node: */
 957         if (nodes_min == 1 && nodes_max == 1) {
 958                 *strong = 1;
 959         } else {
 960                 *strong = 0;
 961                 tprintf(" {%d-%d}", nodes_min, nodes_max);
 962         }
 963 }
 964 
 965 static void calc_convergence(double runtime_ns_max, double *convergence)
 966 {
 967         unsigned int loops_done_min, loops_done_max;
 968         int process_groups;
 969         int nodes[MAX_NR_NODES];
 970         int distance;
 971         int nr_min;
 972         int nr_max;
 973         int strong;
 974         int sum;
 975         int nr;
 976         int node;
 977         int cpu;
 978         int t;
 979 
 980         if (!g->p.show_convergence && !g->p.measure_convergence)
 981                 return;
 982 
 983         for (node = 0; node < g->p.nr_nodes; node++)
 984                 nodes[node] = 0;
 985 
 986         loops_done_min = -1;
 987         loops_done_max = 0;
 988 
 989         for (t = 0; t < g->p.nr_tasks; t++) {
 990                 struct thread_data *td = g->threads + t;
 991                 unsigned int loops_done;
 992 
 993                 cpu = td->curr_cpu;
 994 
 995                 /* Not all threads have written it yet: */
 996                 if (cpu < 0)
 997                         continue;
 998 
 999                 node = numa_node_of_cpu(cpu);
1000 
1001                 nodes[node]++;
1002 
1003                 loops_done = td->loops_done;
1004                 loops_done_min = min(loops_done, loops_done_min);
1005                 loops_done_max = max(loops_done, loops_done_max);
1006         }
1007 
1008         nr_max = 0;
1009         nr_min = g->p.nr_tasks;
1010         sum = 0;
1011 
1012         for (node = 0; node < g->p.nr_nodes; node++) {
1013                 if (!is_node_present(node))
1014                         continue;
1015                 nr = nodes[node];
1016                 nr_min = min(nr, nr_min);
1017                 nr_max = max(nr, nr_max);
1018                 sum += nr;
1019         }
1020         BUG_ON(nr_min > nr_max);
1021 
1022         BUG_ON(sum > g->p.nr_tasks);
1023 
1024         if (0 && (sum < g->p.nr_tasks))
1025                 return;
1026 
1027         /*
1028          * Count the number of distinct process groups present
1029          * on nodes - when we are converged this will decrease
1030          * to g->p.nr_proc:
1031          */
1032         process_groups = 0;
1033 
1034         for (node = 0; node < g->p.nr_nodes; node++) {
1035                 int processes;
1036 
1037                 if (!is_node_present(node))
1038                         continue;
1039                 processes = count_node_processes(node);
1040                 nr = nodes[node];
1041                 tprintf(" %2d/%-2d", nr, processes);
1042 
1043                 process_groups += processes;
1044         }
1045 
1046         distance = nr_max - nr_min;
1047 
1048         tprintf(" [%2d/%-2d]", distance, process_groups);
1049 
1050         tprintf(" l:%3d-%-3d (%3d)",
1051                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1052 
1053         if (loops_done_min && loops_done_max) {
1054                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1055 
1056                 tprintf(" [%4.1f%%]", skew * 100.0);
1057         }
1058 
1059         calc_convergence_compression(&strong);
1060 
1061         if (strong && process_groups == g->p.nr_proc) {
1062                 if (!*convergence) {
1063                         *convergence = runtime_ns_max;
1064                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1065                         if (g->p.measure_convergence) {
1066                                 g->all_converged = true;
1067                                 g->stop_work = true;
1068                         }
1069                 }
1070         } else {
1071                 if (*convergence) {
1072                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1073                         *convergence = 0;
1074                 }
1075                 tprintf("\n");
1076         }
1077 }
1078 
1079 static void show_summary(double runtime_ns_max, int l, double *convergence)
1080 {
1081         tprintf("\r #  %5.1f%%  [%.1f mins]",
1082                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1083 
1084         calc_convergence(runtime_ns_max, convergence);
1085 
1086         if (g->p.show_details >= 0)
1087                 fflush(stdout);
1088 }
1089 
1090 static void *worker_thread(void *__tdata)
1091 {
1092         struct thread_data *td = __tdata;
1093         struct timeval start0, start, stop, diff;
1094         int process_nr = td->process_nr;
1095         int thread_nr = td->thread_nr;
1096         unsigned long last_perturbance;
1097         int task_nr = td->task_nr;
1098         int details = g->p.show_details;
1099         int first_task, last_task;
1100         double convergence = 0;
1101         u64 val = td->val;
1102         double runtime_ns_max;
1103         u8 *global_data;
1104         u8 *process_data;
1105         u8 *thread_data;
1106         u64 bytes_done, secs;
1107         long work_done;
1108         u32 l;
1109         struct rusage rusage;
1110 
1111         bind_to_cpumask(td->bind_cpumask);
1112         bind_to_memnode(td->bind_node);
1113 
1114         set_taskname("thread %d/%d", process_nr, thread_nr);
1115 
1116         global_data = g->data;
1117         process_data = td->process_data;
1118         thread_data = setup_private_data(g->p.bytes_thread);
1119 
1120         bytes_done = 0;
1121 
1122         last_task = 0;
1123         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1124                 last_task = 1;
1125 
1126         first_task = 0;
1127         if (process_nr == 0 && thread_nr == 0)
1128                 first_task = 1;
1129 
1130         if (details >= 2) {
1131                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132                         process_nr, thread_nr, global_data, process_data, thread_data);
1133         }
1134 
1135         if (g->p.serialize_startup) {
1136                 pthread_mutex_lock(&g->startup_mutex);
1137                 g->nr_tasks_started++;
1138                 pthread_mutex_unlock(&g->startup_mutex);
1139 
1140                 /* Here we will wait for the main process to start us all at once: */
1141                 pthread_mutex_lock(&g->start_work_mutex);
1142                 g->nr_tasks_working++;
1143 
1144                 /* Last one wake the main process: */
1145                 if (g->nr_tasks_working == g->p.nr_tasks)
1146                         pthread_mutex_unlock(&g->startup_done_mutex);
1147 
1148                 pthread_mutex_unlock(&g->start_work_mutex);
1149         }
1150 
1151         gettimeofday(&start0, NULL);
1152 
1153         start = stop = start0;
1154         last_perturbance = start.tv_sec;
1155 
1156         for (l = 0; l < g->p.nr_loops; l++) {
1157                 start = stop;
1158 
1159                 if (g->stop_work)
1160                         break;
1161 
1162                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1163                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1164                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1165 
1166                 if (g->p.sleep_usecs) {
1167                         pthread_mutex_lock(td->process_lock);
1168                         usleep(g->p.sleep_usecs);
1169                         pthread_mutex_unlock(td->process_lock);
1170                 }
1171                 /*
1172                  * Amount of work to be done under a process-global lock:
1173                  */
1174                 if (g->p.bytes_process_locked) {
1175                         pthread_mutex_lock(td->process_lock);
1176                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1177                         pthread_mutex_unlock(td->process_lock);
1178                 }
1179 
1180                 work_done = g->p.bytes_global + g->p.bytes_process +
1181                             g->p.bytes_process_locked + g->p.bytes_thread;
1182 
1183                 update_curr_cpu(task_nr, work_done);
1184                 bytes_done += work_done;
1185 
1186                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1187                         continue;
1188 
1189                 td->loops_done = l;
1190 
1191                 gettimeofday(&stop, NULL);
1192 
1193                 /* Check whether our max runtime timed out: */
1194                 if (g->p.nr_secs) {
1195                         timersub(&stop, &start0, &diff);
1196                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1197                                 g->stop_work = true;
1198                                 break;
1199                         }
1200                 }
1201 
1202                 /* Update the summary at most once per second: */
1203                 if (start.tv_sec == stop.tv_sec)
1204                         continue;
1205 
1206                 /*
1207                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208                  * by migrating to CPU#0:
1209                  */
1210                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1211                         cpu_set_t orig_mask;
1212                         int target_cpu;
1213                         int this_cpu;
1214 
1215                         last_perturbance = stop.tv_sec;
1216 
1217                         /*
1218                          * Depending on where we are running, move into
1219                          * the other half of the system, to create some
1220                          * real disturbance:
1221                          */
1222                         this_cpu = g->threads[task_nr].curr_cpu;
1223                         if (this_cpu < g->p.nr_cpus/2)
1224                                 target_cpu = g->p.nr_cpus-1;
1225                         else
1226                                 target_cpu = 0;
1227 
1228                         orig_mask = bind_to_cpu(target_cpu);
1229 
1230                         /* Here we are running on the target CPU already */
1231                         if (details >= 1)
1232                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1233 
1234                         bind_to_cpumask(orig_mask);
1235                 }
1236 
1237                 if (details >= 3) {
1238                         timersub(&stop, &start, &diff);
1239                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1240                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1241 
1242                         if (details >= 0) {
1243                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1244                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1245                         }
1246                         fflush(stdout);
1247                 }
1248                 if (!last_task)
1249                         continue;
1250 
1251                 timersub(&stop, &start0, &diff);
1252                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1253                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1254 
1255                 show_summary(runtime_ns_max, l, &convergence);
1256         }
1257 
1258         gettimeofday(&stop, NULL);
1259         timersub(&stop, &start0, &diff);
1260         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1261         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1262         secs = td->runtime_ns / NSEC_PER_SEC;
1263         td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1264 
1265         getrusage(RUSAGE_THREAD, &rusage);
1266         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1267         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1268         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1269         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1270 
1271         free_data(thread_data, g->p.bytes_thread);
1272 
1273         pthread_mutex_lock(&g->stop_work_mutex);
1274         g->bytes_done += bytes_done;
1275         pthread_mutex_unlock(&g->stop_work_mutex);
1276 
1277         return NULL;
1278 }
1279 
1280 /*
1281  * A worker process starts a couple of threads:
1282  */
1283 static void worker_process(int process_nr)
1284 {
1285         pthread_mutex_t process_lock;
1286         struct thread_data *td;
1287         pthread_t *pthreads;
1288         u8 *process_data;
1289         int task_nr;
1290         int ret;
1291         int t;
1292 
1293         pthread_mutex_init(&process_lock, NULL);
1294         set_taskname("process %d", process_nr);
1295 
1296         /*
1297          * Pick up the memory policy and the CPU binding of our first thread,
1298          * so that we initialize memory accordingly:
1299          */
1300         task_nr = process_nr*g->p.nr_threads;
1301         td = g->threads + task_nr;
1302 
1303         bind_to_memnode(td->bind_node);
1304         bind_to_cpumask(td->bind_cpumask);
1305 
1306         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1307         process_data = setup_private_data(g->p.bytes_process);
1308 
1309         if (g->p.show_details >= 3) {
1310                 printf(" # process %2d global mem: %p, process mem: %p\n",
1311                         process_nr, g->data, process_data);
1312         }
1313 
1314         for (t = 0; t < g->p.nr_threads; t++) {
1315                 task_nr = process_nr*g->p.nr_threads + t;
1316                 td = g->threads + task_nr;
1317 
1318                 td->process_data = process_data;
1319                 td->process_nr   = process_nr;
1320                 td->thread_nr    = t;
1321                 td->task_nr      = task_nr;
1322                 td->val          = rand();
1323                 td->curr_cpu     = -1;
1324                 td->process_lock = &process_lock;
1325 
1326                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1327                 BUG_ON(ret);
1328         }
1329 
1330         for (t = 0; t < g->p.nr_threads; t++) {
1331                 ret = pthread_join(pthreads[t], NULL);
1332                 BUG_ON(ret);
1333         }
1334 
1335         free_data(process_data, g->p.bytes_process);
1336         free(pthreads);
1337 }
1338 
1339 static void print_summary(void)
1340 {
1341         if (g->p.show_details < 0)
1342                 return;
1343 
1344         printf("\n ###\n");
1345         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1347         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1348                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1349         printf(" #      %5dx %5ldMB process shared mem operations\n",
1350                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1351         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1352                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1353 
1354         printf(" ###\n");
1355 
1356         printf("\n ###\n"); fflush(stdout);
1357 }
1358 
1359 static void init_thread_data(void)
1360 {
1361         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1362         int t;
1363 
1364         g->threads = zalloc_shared_data(size);
1365 
1366         for (t = 0; t < g->p.nr_tasks; t++) {
1367                 struct thread_data *td = g->threads + t;
1368                 int cpu;
1369 
1370                 /* Allow all nodes by default: */
1371                 td->bind_node = NUMA_NO_NODE;
1372 
1373                 /* Allow all CPUs by default: */
1374                 CPU_ZERO(&td->bind_cpumask);
1375                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1376                         CPU_SET(cpu, &td->bind_cpumask);
1377         }
1378 }
1379 
1380 static void deinit_thread_data(void)
1381 {
1382         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1383 
1384         free_data(g->threads, size);
1385 }
1386 
1387 static int init(void)
1388 {
1389         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1390 
1391         /* Copy over options: */
1392         g->p = p0;
1393 
1394         g->p.nr_cpus = numa_num_configured_cpus();
1395 
1396         g->p.nr_nodes = numa_max_node() + 1;
1397 
1398         /* char array in count_process_nodes(): */
1399         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1400 
1401         if (g->p.show_quiet && !g->p.show_details)
1402                 g->p.show_details = -1;
1403 
1404         /* Some memory should be specified: */
1405         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1406                 return -1;
1407 
1408         if (g->p.mb_global_str) {
1409                 g->p.mb_global = atof(g->p.mb_global_str);
1410                 BUG_ON(g->p.mb_global < 0);
1411         }
1412 
1413         if (g->p.mb_proc_str) {
1414                 g->p.mb_proc = atof(g->p.mb_proc_str);
1415                 BUG_ON(g->p.mb_proc < 0);
1416         }
1417 
1418         if (g->p.mb_proc_locked_str) {
1419                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1420                 BUG_ON(g->p.mb_proc_locked < 0);
1421                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1422         }
1423 
1424         if (g->p.mb_thread_str) {
1425                 g->p.mb_thread = atof(g->p.mb_thread_str);
1426                 BUG_ON(g->p.mb_thread < 0);
1427         }
1428 
1429         BUG_ON(g->p.nr_threads <= 0);
1430         BUG_ON(g->p.nr_proc <= 0);
1431 
1432         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1433 
1434         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1435         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1436         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1437         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1438 
1439         g->data = setup_shared_data(g->p.bytes_global);
1440 
1441         /* Startup serialization: */
1442         init_global_mutex(&g->start_work_mutex);
1443         init_global_mutex(&g->startup_mutex);
1444         init_global_mutex(&g->startup_done_mutex);
1445         init_global_mutex(&g->stop_work_mutex);
1446 
1447         init_thread_data();
1448 
1449         tprintf("#\n");
1450         if (parse_setup_cpu_list() || parse_setup_node_list())
1451                 return -1;
1452         tprintf("#\n");
1453 
1454         print_summary();
1455 
1456         return 0;
1457 }
1458 
1459 static void deinit(void)
1460 {
1461         free_data(g->data, g->p.bytes_global);
1462         g->data = NULL;
1463 
1464         deinit_thread_data();
1465 
1466         free_data(g, sizeof(*g));
1467         g = NULL;
1468 }
1469 
1470 /*
1471  * Print a short or long result, depending on the verbosity setting:
1472  */
1473 static void print_res(const char *name, double val,
1474                       const char *txt_unit, const char *txt_short, const char *txt_long)
1475 {
1476         if (!name)
1477                 name = "main,";
1478 
1479         if (!g->p.show_quiet)
1480                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1481         else
1482                 printf(" %14.3f %s\n", val, txt_long);
1483 }
1484 
1485 static int __bench_numa(const char *name)
1486 {
1487         struct timeval start, stop, diff;
1488         u64 runtime_ns_min, runtime_ns_sum;
1489         pid_t *pids, pid, wpid;
1490         double delta_runtime;
1491         double runtime_avg;
1492         double runtime_sec_max;
1493         double runtime_sec_min;
1494         int wait_stat;
1495         double bytes;
1496         int i, t, p;
1497 
1498         if (init())
1499                 return -1;
1500 
1501         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1502         pid = -1;
1503 
1504         /* All threads try to acquire it, this way we can wait for them to start up: */
1505         pthread_mutex_lock(&g->start_work_mutex);
1506 
1507         if (g->p.serialize_startup) {
1508                 tprintf(" #\n");
1509                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1510         }
1511 
1512         gettimeofday(&start, NULL);
1513 
1514         for (i = 0; i < g->p.nr_proc; i++) {
1515                 pid = fork();
1516                 dprintf(" # process %2d: PID %d\n", i, pid);
1517 
1518                 BUG_ON(pid < 0);
1519                 if (!pid) {
1520                         /* Child process: */
1521                         worker_process(i);
1522 
1523                         exit(0);
1524                 }
1525                 pids[i] = pid;
1526 
1527         }
1528         /* Wait for all the threads to start up: */
1529         while (g->nr_tasks_started != g->p.nr_tasks)
1530                 usleep(USEC_PER_MSEC);
1531 
1532         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1533 
1534         if (g->p.serialize_startup) {
1535                 double startup_sec;
1536 
1537                 pthread_mutex_lock(&g->startup_done_mutex);
1538 
1539                 /* This will start all threads: */
1540                 pthread_mutex_unlock(&g->start_work_mutex);
1541 
1542                 /* This mutex is locked - the last started thread will wake us: */
1543                 pthread_mutex_lock(&g->startup_done_mutex);
1544 
1545                 gettimeofday(&stop, NULL);
1546 
1547                 timersub(&stop, &start, &diff);
1548 
1549                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1550                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1551                 startup_sec /= NSEC_PER_SEC;
1552 
1553                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1554                 tprintf(" #\n");
1555 
1556                 start = stop;
1557                 pthread_mutex_unlock(&g->startup_done_mutex);
1558         } else {
1559                 gettimeofday(&start, NULL);
1560         }
1561 
1562         /* Parent process: */
1563 
1564 
1565         for (i = 0; i < g->p.nr_proc; i++) {
1566                 wpid = waitpid(pids[i], &wait_stat, 0);
1567                 BUG_ON(wpid < 0);
1568                 BUG_ON(!WIFEXITED(wait_stat));
1569 
1570         }
1571 
1572         runtime_ns_sum = 0;
1573         runtime_ns_min = -1LL;
1574 
1575         for (t = 0; t < g->p.nr_tasks; t++) {
1576                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1577 
1578                 runtime_ns_sum += thread_runtime_ns;
1579                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1580         }
1581 
1582         gettimeofday(&stop, NULL);
1583         timersub(&stop, &start, &diff);
1584 
1585         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1586 
1587         tprintf("\n ###\n");
1588         tprintf("\n");
1589 
1590         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1591         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1592         runtime_sec_max /= NSEC_PER_SEC;
1593 
1594         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1595 
1596         bytes = g->bytes_done;
1597         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1598 
1599         if (g->p.measure_convergence) {
1600                 print_res(name, runtime_sec_max,
1601                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1602         }
1603 
1604         print_res(name, runtime_sec_max,
1605                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1606 
1607         print_res(name, runtime_sec_min,
1608                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1609 
1610         print_res(name, runtime_avg,
1611                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1612 
1613         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1614         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1615                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1616 
1617         print_res(name, bytes / g->p.nr_tasks / 1e9,
1618                 "GB,", "data/thread",           "GB data processed, per thread");
1619 
1620         print_res(name, bytes / 1e9,
1621                 "GB,", "data-total",            "GB data processed, total");
1622 
1623         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1624                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1625 
1626         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1627                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1628 
1629         print_res(name, bytes / runtime_sec_max / 1e9,
1630                 "GB/sec,", "total-speed",       "GB/sec total speed");
1631 
1632         if (g->p.show_details >= 2) {
1633                 char tname[14 + 2 * 10 + 1];
1634                 struct thread_data *td;
1635                 for (p = 0; p < g->p.nr_proc; p++) {
1636                         for (t = 0; t < g->p.nr_threads; t++) {
1637                                 memset(tname, 0, sizeof(tname));
1638                                 td = g->threads + p*g->p.nr_threads + t;
1639                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1640                                 print_res(tname, td->speed_gbs,
1641                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1642                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1643                                         "secs", "thread-system-time", "system CPU time/thread");
1644                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1645                                         "secs", "thread-user-time", "user CPU time/thread");
1646                         }
1647                 }
1648         }
1649 
1650         free(pids);
1651 
1652         deinit();
1653 
1654         return 0;
1655 }
1656 
1657 #define MAX_ARGS 50
1658 
1659 static int command_size(const char **argv)
1660 {
1661         int size = 0;
1662 
1663         while (*argv) {
1664                 size++;
1665                 argv++;
1666         }
1667 
1668         BUG_ON(size >= MAX_ARGS);
1669 
1670         return size;
1671 }
1672 
1673 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1674 {
1675         int i;
1676 
1677         printf("\n # Running %s \"perf bench numa", name);
1678 
1679         for (i = 0; i < argc; i++)
1680                 printf(" %s", argv[i]);
1681 
1682         printf("\"\n");
1683 
1684         memset(p, 0, sizeof(*p));
1685 
1686         /* Initialize nonzero defaults: */
1687 
1688         p->serialize_startup            = 1;
1689         p->data_reads                   = true;
1690         p->data_writes                  = true;
1691         p->data_backwards               = true;
1692         p->data_rand_walk               = true;
1693         p->nr_loops                     = -1;
1694         p->init_random                  = true;
1695         p->mb_global_str                = "1";
1696         p->nr_proc                      = 1;
1697         p->nr_threads                   = 1;
1698         p->nr_secs                      = 5;
1699         p->run_all                      = argc == 1;
1700 }
1701 
1702 static int run_bench_numa(const char *name, const char **argv)
1703 {
1704         int argc = command_size(argv);
1705 
1706         init_params(&p0, name, argc, argv);
1707         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1708         if (argc)
1709                 goto err;
1710 
1711         if (__bench_numa(name))
1712                 goto err;
1713 
1714         return 0;
1715 
1716 err:
1717         return -1;
1718 }
1719 
1720 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1721 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1722 
1723 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1724 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1725 
1726 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1727 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1728 
1729 /*
1730  * The built-in test-suite executed by "perf bench numa -a".
1731  *
1732  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1733  */
1734 static const char *tests[][MAX_ARGS] = {
1735    /* Basic single-stream NUMA bandwidth measurements: */
1736    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1737                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1738    { "RAM-bw-local-NOTHP,",
1739                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1740                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1741    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1743 
1744    /* 2-stream NUMA bandwidth measurements: */
1745    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1747    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1749 
1750    /* Cross-stream NUMA bandwidth measurement: */
1751    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1752                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1753 
1754    /* Convergence latency measurements: */
1755    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1756    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1757    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1758    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1759    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1760    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1761    { " 4x4-convergence-NOTHP,",
1762                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1763    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1764    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1765    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1766    { " 8x4-convergence-NOTHP,",
1767                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1768    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1769    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1770    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1771    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1772    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1773 
1774    /* Various NUMA process/thread layout bandwidth measurements: */
1775    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1776    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1777    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1778    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1779    { " 8x1-bw-process-NOTHP,",
1780                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1781    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1782 
1783    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1784    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1785    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1786    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1787 
1788    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1789    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1790    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1791    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1792    { " 4x8-bw-thread-NOTHP,",
1793                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1794    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1795    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1796 
1797    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1798    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1799 
1800    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1801    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1802    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1803    { "numa01-bw-thread-NOTHP,",
1804                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1805 };
1806 
1807 static int bench_all(void)
1808 {
1809         int nr = ARRAY_SIZE(tests);
1810         int ret;
1811         int i;
1812 
1813         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1814         BUG_ON(ret < 0);
1815 
1816         for (i = 0; i < nr; i++) {
1817                 run_bench_numa(tests[i][0], tests[i] + 1);
1818         }
1819 
1820         printf("\n");
1821 
1822         return 0;
1823 }
1824 
1825 int bench_numa(int argc, const char **argv)
1826 {
1827         init_params(&p0, "main,", argc, argv);
1828         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1829         if (argc)
1830                 goto err;
1831 
1832         if (p0.run_all)
1833                 return bench_all();
1834 
1835         if (__bench_numa(NULL))
1836                 goto err;
1837 
1838         return 0;
1839 
1840 err:
1841         usage_with_options(numa_usage, options);
1842         return -1;
1843 }

/* [<][>][^][v][top][bottom][index][help] */