root/tools/perf/util/machine.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dsos__init
  2. machine__threads_init
  3. machine__set_mmap_name
  4. machine__init
  5. machine__new_host
  6. machine__new_kallsyms
  7. dsos__purge
  8. dsos__exit
  9. machine__delete_threads
  10. machine__exit
  11. machine__delete
  12. machines__init
  13. machines__exit
  14. machines__add
  15. machines__set_comm_exec
  16. machines__find
  17. machines__findnew
  18. machines__process_guests
  19. machines__set_id_hdr_size
  20. machine__update_thread_pid
  21. __threads__get_last_match
  22. threads__get_last_match
  23. __threads__set_last_match
  24. threads__set_last_match
  25. ____machine__findnew_thread
  26. __machine__findnew_thread
  27. machine__findnew_thread
  28. machine__find_thread
  29. machine__thread_exec_comm
  30. machine__process_comm_event
  31. machine__process_namespaces_event
  32. machine__process_lost_event
  33. machine__process_lost_samples_event
  34. machine__findnew_module_dso
  35. machine__process_aux_event
  36. machine__process_itrace_start_event
  37. machine__process_switch_event
  38. machine__process_ksymbol_register
  39. machine__process_ksymbol_unregister
  40. machine__process_ksymbol
  41. machine__findnew_module_map
  42. machines__fprintf_dsos
  43. machine__fprintf_dsos_buildid
  44. machines__fprintf_dsos_buildid
  45. machine__fprintf_vmlinux_path
  46. machine__fprintf
  47. machine__get_kernel
  48. machine__get_kallsyms_filename
  49. machine__get_running_kernel_start
  50. machine__create_extra_kernel_map
  51. find_entry_trampoline
  52. machine__map_x86_64_entry_trampolines
  53. machine__create_extra_kernel_maps
  54. __machine__create_kernel_maps
  55. machine__destroy_kernel_maps
  56. machines__create_guest_kernel_maps
  57. machines__destroy_kernel_maps
  58. machines__create_kernel_maps
  59. machine__load_kallsyms
  60. machine__load_vmlinux_path
  61. get_kernel_version
  62. is_kmod_dso
  63. map_groups__set_module_path
  64. map_groups__set_modules_path_dir
  65. machine__set_modules_path
  66. arch__fix_module_text_start
  67. machine__create_module
  68. machine__create_modules
  69. machine__set_kernel_mmap
  70. machine__update_kernel_mmap
  71. machine__create_kernel_maps
  72. machine__uses_kcore
  73. perf_event__is_extra_kernel_mmap
  74. machine__process_extra_kernel_map
  75. machine__process_kernel_mmap_event
  76. machine__process_mmap2_event
  77. machine__process_mmap_event
  78. __machine__remove_thread
  79. machine__remove_thread
  80. machine__process_fork_event
  81. machine__process_exit_event
  82. machine__process_event
  83. symbol__match_regex
  84. ip__resolve_ams
  85. ip__resolve_data
  86. sample__resolve_mem
  87. callchain_srcline
  88. add_callchain_ip
  89. sample__resolve_bstack
  90. save_iterations
  91. remove_loops
  92. resolve_lbr_callchain_sample
  93. find_prev_cpumode
  94. thread__resolve_callchain_sample
  95. append_inlines
  96. unwind_entry
  97. thread__resolve_callchain_unwind
  98. thread__resolve_callchain
  99. machine__for_each_thread
  100. machines__for_each_thread
  101. machine__get_current_tid
  102. machine__set_current_tid
  103. machine__is
  104. machine__nr_cpus_avail
  105. machine__get_kernel_start
  106. machine__addr_cpumode
  107. machine__findnew_dso
  108. machine__resolve_kernel_addr

   1 // SPDX-License-Identifier: GPL-2.0
   2 #include <dirent.h>
   3 #include <errno.h>
   4 #include <inttypes.h>
   5 #include <regex.h>
   6 #include <stdlib.h>
   7 #include "callchain.h"
   8 #include "debug.h"
   9 #include "dso.h"
  10 #include "env.h"
  11 #include "event.h"
  12 #include "evsel.h"
  13 #include "hist.h"
  14 #include "machine.h"
  15 #include "map.h"
  16 #include "map_symbol.h"
  17 #include "branch.h"
  18 #include "mem-events.h"
  19 #include "srcline.h"
  20 #include "symbol.h"
  21 #include "sort.h"
  22 #include "strlist.h"
  23 #include "target.h"
  24 #include "thread.h"
  25 #include "util.h"
  26 #include "vdso.h"
  27 #include <stdbool.h>
  28 #include <sys/types.h>
  29 #include <sys/stat.h>
  30 #include <unistd.h>
  31 #include "unwind.h"
  32 #include "linux/hash.h"
  33 #include "asm/bug.h"
  34 #include "bpf-event.h"
  35 #include <internal/lib.h> // page_size
  36 
  37 #include <linux/ctype.h>
  38 #include <symbol/kallsyms.h>
  39 #include <linux/mman.h>
  40 #include <linux/string.h>
  41 #include <linux/zalloc.h>
  42 
  43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44 
  45 static void dsos__init(struct dsos *dsos)
  46 {
  47         INIT_LIST_HEAD(&dsos->head);
  48         dsos->root = RB_ROOT;
  49         init_rwsem(&dsos->lock);
  50 }
  51 
  52 static void machine__threads_init(struct machine *machine)
  53 {
  54         int i;
  55 
  56         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57                 struct threads *threads = &machine->threads[i];
  58                 threads->entries = RB_ROOT_CACHED;
  59                 init_rwsem(&threads->lock);
  60                 threads->nr = 0;
  61                 INIT_LIST_HEAD(&threads->dead);
  62                 threads->last_match = NULL;
  63         }
  64 }
  65 
  66 static int machine__set_mmap_name(struct machine *machine)
  67 {
  68         if (machine__is_host(machine))
  69                 machine->mmap_name = strdup("[kernel.kallsyms]");
  70         else if (machine__is_default_guest(machine))
  71                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73                           machine->pid) < 0)
  74                 machine->mmap_name = NULL;
  75 
  76         return machine->mmap_name ? 0 : -ENOMEM;
  77 }
  78 
  79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80 {
  81         int err = -ENOMEM;
  82 
  83         memset(machine, 0, sizeof(*machine));
  84         map_groups__init(&machine->kmaps, machine);
  85         RB_CLEAR_NODE(&machine->rb_node);
  86         dsos__init(&machine->dsos);
  87 
  88         machine__threads_init(machine);
  89 
  90         machine->vdso_info = NULL;
  91         machine->env = NULL;
  92 
  93         machine->pid = pid;
  94 
  95         machine->id_hdr_size = 0;
  96         machine->kptr_restrict_warned = false;
  97         machine->comm_exec = false;
  98         machine->kernel_start = 0;
  99         machine->vmlinux_map = NULL;
 100 
 101         machine->root_dir = strdup(root_dir);
 102         if (machine->root_dir == NULL)
 103                 return -ENOMEM;
 104 
 105         if (machine__set_mmap_name(machine))
 106                 goto out;
 107 
 108         if (pid != HOST_KERNEL_ID) {
 109                 struct thread *thread = machine__findnew_thread(machine, -1,
 110                                                                 pid);
 111                 char comm[64];
 112 
 113                 if (thread == NULL)
 114                         goto out;
 115 
 116                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117                 thread__set_comm(thread, comm, 0);
 118                 thread__put(thread);
 119         }
 120 
 121         machine->current_tid = NULL;
 122         err = 0;
 123 
 124 out:
 125         if (err) {
 126                 zfree(&machine->root_dir);
 127                 zfree(&machine->mmap_name);
 128         }
 129         return 0;
 130 }
 131 
 132 struct machine *machine__new_host(void)
 133 {
 134         struct machine *machine = malloc(sizeof(*machine));
 135 
 136         if (machine != NULL) {
 137                 machine__init(machine, "", HOST_KERNEL_ID);
 138 
 139                 if (machine__create_kernel_maps(machine) < 0)
 140                         goto out_delete;
 141         }
 142 
 143         return machine;
 144 out_delete:
 145         free(machine);
 146         return NULL;
 147 }
 148 
 149 struct machine *machine__new_kallsyms(void)
 150 {
 151         struct machine *machine = machine__new_host();
 152         /*
 153          * FIXME:
 154          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 155          *    ask for not using the kcore parsing code, once this one is fixed
 156          *    to create a map per module.
 157          */
 158         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159                 machine__delete(machine);
 160                 machine = NULL;
 161         }
 162 
 163         return machine;
 164 }
 165 
 166 static void dsos__purge(struct dsos *dsos)
 167 {
 168         struct dso *pos, *n;
 169 
 170         down_write(&dsos->lock);
 171 
 172         list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173                 RB_CLEAR_NODE(&pos->rb_node);
 174                 pos->root = NULL;
 175                 list_del_init(&pos->node);
 176                 dso__put(pos);
 177         }
 178 
 179         up_write(&dsos->lock);
 180 }
 181 
 182 static void dsos__exit(struct dsos *dsos)
 183 {
 184         dsos__purge(dsos);
 185         exit_rwsem(&dsos->lock);
 186 }
 187 
 188 void machine__delete_threads(struct machine *machine)
 189 {
 190         struct rb_node *nd;
 191         int i;
 192 
 193         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194                 struct threads *threads = &machine->threads[i];
 195                 down_write(&threads->lock);
 196                 nd = rb_first_cached(&threads->entries);
 197                 while (nd) {
 198                         struct thread *t = rb_entry(nd, struct thread, rb_node);
 199 
 200                         nd = rb_next(nd);
 201                         __machine__remove_thread(machine, t, false);
 202                 }
 203                 up_write(&threads->lock);
 204         }
 205 }
 206 
 207 void machine__exit(struct machine *machine)
 208 {
 209         int i;
 210 
 211         if (machine == NULL)
 212                 return;
 213 
 214         machine__destroy_kernel_maps(machine);
 215         map_groups__exit(&machine->kmaps);
 216         dsos__exit(&machine->dsos);
 217         machine__exit_vdso(machine);
 218         zfree(&machine->root_dir);
 219         zfree(&machine->mmap_name);
 220         zfree(&machine->current_tid);
 221 
 222         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223                 struct threads *threads = &machine->threads[i];
 224                 struct thread *thread, *n;
 225                 /*
 226                  * Forget about the dead, at this point whatever threads were
 227                  * left in the dead lists better have a reference count taken
 228                  * by who is using them, and then, when they drop those references
 229                  * and it finally hits zero, thread__put() will check and see that
 230                  * its not in the dead threads list and will not try to remove it
 231                  * from there, just calling thread__delete() straight away.
 232                  */
 233                 list_for_each_entry_safe(thread, n, &threads->dead, node)
 234                         list_del_init(&thread->node);
 235 
 236                 exit_rwsem(&threads->lock);
 237         }
 238 }
 239 
 240 void machine__delete(struct machine *machine)
 241 {
 242         if (machine) {
 243                 machine__exit(machine);
 244                 free(machine);
 245         }
 246 }
 247 
 248 void machines__init(struct machines *machines)
 249 {
 250         machine__init(&machines->host, "", HOST_KERNEL_ID);
 251         machines->guests = RB_ROOT_CACHED;
 252 }
 253 
 254 void machines__exit(struct machines *machines)
 255 {
 256         machine__exit(&machines->host);
 257         /* XXX exit guest */
 258 }
 259 
 260 struct machine *machines__add(struct machines *machines, pid_t pid,
 261                               const char *root_dir)
 262 {
 263         struct rb_node **p = &machines->guests.rb_root.rb_node;
 264         struct rb_node *parent = NULL;
 265         struct machine *pos, *machine = malloc(sizeof(*machine));
 266         bool leftmost = true;
 267 
 268         if (machine == NULL)
 269                 return NULL;
 270 
 271         if (machine__init(machine, root_dir, pid) != 0) {
 272                 free(machine);
 273                 return NULL;
 274         }
 275 
 276         while (*p != NULL) {
 277                 parent = *p;
 278                 pos = rb_entry(parent, struct machine, rb_node);
 279                 if (pid < pos->pid)
 280                         p = &(*p)->rb_left;
 281                 else {
 282                         p = &(*p)->rb_right;
 283                         leftmost = false;
 284                 }
 285         }
 286 
 287         rb_link_node(&machine->rb_node, parent, p);
 288         rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289 
 290         return machine;
 291 }
 292 
 293 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294 {
 295         struct rb_node *nd;
 296 
 297         machines->host.comm_exec = comm_exec;
 298 
 299         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301 
 302                 machine->comm_exec = comm_exec;
 303         }
 304 }
 305 
 306 struct machine *machines__find(struct machines *machines, pid_t pid)
 307 {
 308         struct rb_node **p = &machines->guests.rb_root.rb_node;
 309         struct rb_node *parent = NULL;
 310         struct machine *machine;
 311         struct machine *default_machine = NULL;
 312 
 313         if (pid == HOST_KERNEL_ID)
 314                 return &machines->host;
 315 
 316         while (*p != NULL) {
 317                 parent = *p;
 318                 machine = rb_entry(parent, struct machine, rb_node);
 319                 if (pid < machine->pid)
 320                         p = &(*p)->rb_left;
 321                 else if (pid > machine->pid)
 322                         p = &(*p)->rb_right;
 323                 else
 324                         return machine;
 325                 if (!machine->pid)
 326                         default_machine = machine;
 327         }
 328 
 329         return default_machine;
 330 }
 331 
 332 struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333 {
 334         char path[PATH_MAX];
 335         const char *root_dir = "";
 336         struct machine *machine = machines__find(machines, pid);
 337 
 338         if (machine && (machine->pid == pid))
 339                 goto out;
 340 
 341         if ((pid != HOST_KERNEL_ID) &&
 342             (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343             (symbol_conf.guestmount)) {
 344                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345                 if (access(path, R_OK)) {
 346                         static struct strlist *seen;
 347 
 348                         if (!seen)
 349                                 seen = strlist__new(NULL, NULL);
 350 
 351                         if (!strlist__has_entry(seen, path)) {
 352                                 pr_err("Can't access file %s\n", path);
 353                                 strlist__add(seen, path);
 354                         }
 355                         machine = NULL;
 356                         goto out;
 357                 }
 358                 root_dir = path;
 359         }
 360 
 361         machine = machines__add(machines, pid, root_dir);
 362 out:
 363         return machine;
 364 }
 365 
 366 void machines__process_guests(struct machines *machines,
 367                               machine__process_t process, void *data)
 368 {
 369         struct rb_node *nd;
 370 
 371         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373                 process(pos, data);
 374         }
 375 }
 376 
 377 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378 {
 379         struct rb_node *node;
 380         struct machine *machine;
 381 
 382         machines->host.id_hdr_size = id_hdr_size;
 383 
 384         for (node = rb_first_cached(&machines->guests); node;
 385              node = rb_next(node)) {
 386                 machine = rb_entry(node, struct machine, rb_node);
 387                 machine->id_hdr_size = id_hdr_size;
 388         }
 389 
 390         return;
 391 }
 392 
 393 static void machine__update_thread_pid(struct machine *machine,
 394                                        struct thread *th, pid_t pid)
 395 {
 396         struct thread *leader;
 397 
 398         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399                 return;
 400 
 401         th->pid_ = pid;
 402 
 403         if (th->pid_ == th->tid)
 404                 return;
 405 
 406         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407         if (!leader)
 408                 goto out_err;
 409 
 410         if (!leader->mg)
 411                 leader->mg = map_groups__new(machine);
 412 
 413         if (!leader->mg)
 414                 goto out_err;
 415 
 416         if (th->mg == leader->mg)
 417                 return;
 418 
 419         if (th->mg) {
 420                 /*
 421                  * Maps are created from MMAP events which provide the pid and
 422                  * tid.  Consequently there never should be any maps on a thread
 423                  * with an unknown pid.  Just print an error if there are.
 424                  */
 425                 if (!map_groups__empty(th->mg))
 426                         pr_err("Discarding thread maps for %d:%d\n",
 427                                th->pid_, th->tid);
 428                 map_groups__put(th->mg);
 429         }
 430 
 431         th->mg = map_groups__get(leader->mg);
 432 out_put:
 433         thread__put(leader);
 434         return;
 435 out_err:
 436         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437         goto out_put;
 438 }
 439 
 440 /*
 441  * Front-end cache - TID lookups come in blocks,
 442  * so most of the time we dont have to look up
 443  * the full rbtree:
 444  */
 445 static struct thread*
 446 __threads__get_last_match(struct threads *threads, struct machine *machine,
 447                           int pid, int tid)
 448 {
 449         struct thread *th;
 450 
 451         th = threads->last_match;
 452         if (th != NULL) {
 453                 if (th->tid == tid) {
 454                         machine__update_thread_pid(machine, th, pid);
 455                         return thread__get(th);
 456                 }
 457 
 458                 threads->last_match = NULL;
 459         }
 460 
 461         return NULL;
 462 }
 463 
 464 static struct thread*
 465 threads__get_last_match(struct threads *threads, struct machine *machine,
 466                         int pid, int tid)
 467 {
 468         struct thread *th = NULL;
 469 
 470         if (perf_singlethreaded)
 471                 th = __threads__get_last_match(threads, machine, pid, tid);
 472 
 473         return th;
 474 }
 475 
 476 static void
 477 __threads__set_last_match(struct threads *threads, struct thread *th)
 478 {
 479         threads->last_match = th;
 480 }
 481 
 482 static void
 483 threads__set_last_match(struct threads *threads, struct thread *th)
 484 {
 485         if (perf_singlethreaded)
 486                 __threads__set_last_match(threads, th);
 487 }
 488 
 489 /*
 490  * Caller must eventually drop thread->refcnt returned with a successful
 491  * lookup/new thread inserted.
 492  */
 493 static struct thread *____machine__findnew_thread(struct machine *machine,
 494                                                   struct threads *threads,
 495                                                   pid_t pid, pid_t tid,
 496                                                   bool create)
 497 {
 498         struct rb_node **p = &threads->entries.rb_root.rb_node;
 499         struct rb_node *parent = NULL;
 500         struct thread *th;
 501         bool leftmost = true;
 502 
 503         th = threads__get_last_match(threads, machine, pid, tid);
 504         if (th)
 505                 return th;
 506 
 507         while (*p != NULL) {
 508                 parent = *p;
 509                 th = rb_entry(parent, struct thread, rb_node);
 510 
 511                 if (th->tid == tid) {
 512                         threads__set_last_match(threads, th);
 513                         machine__update_thread_pid(machine, th, pid);
 514                         return thread__get(th);
 515                 }
 516 
 517                 if (tid < th->tid)
 518                         p = &(*p)->rb_left;
 519                 else {
 520                         p = &(*p)->rb_right;
 521                         leftmost = false;
 522                 }
 523         }
 524 
 525         if (!create)
 526                 return NULL;
 527 
 528         th = thread__new(pid, tid);
 529         if (th != NULL) {
 530                 rb_link_node(&th->rb_node, parent, p);
 531                 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532 
 533                 /*
 534                  * We have to initialize map_groups separately
 535                  * after rb tree is updated.
 536                  *
 537                  * The reason is that we call machine__findnew_thread
 538                  * within thread__init_map_groups to find the thread
 539                  * leader and that would screwed the rb tree.
 540                  */
 541                 if (thread__init_map_groups(th, machine)) {
 542                         rb_erase_cached(&th->rb_node, &threads->entries);
 543                         RB_CLEAR_NODE(&th->rb_node);
 544                         thread__put(th);
 545                         return NULL;
 546                 }
 547                 /*
 548                  * It is now in the rbtree, get a ref
 549                  */
 550                 thread__get(th);
 551                 threads__set_last_match(threads, th);
 552                 ++threads->nr;
 553         }
 554 
 555         return th;
 556 }
 557 
 558 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559 {
 560         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561 }
 562 
 563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564                                        pid_t tid)
 565 {
 566         struct threads *threads = machine__threads(machine, tid);
 567         struct thread *th;
 568 
 569         down_write(&threads->lock);
 570         th = __machine__findnew_thread(machine, pid, tid);
 571         up_write(&threads->lock);
 572         return th;
 573 }
 574 
 575 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576                                     pid_t tid)
 577 {
 578         struct threads *threads = machine__threads(machine, tid);
 579         struct thread *th;
 580 
 581         down_read(&threads->lock);
 582         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583         up_read(&threads->lock);
 584         return th;
 585 }
 586 
 587 struct comm *machine__thread_exec_comm(struct machine *machine,
 588                                        struct thread *thread)
 589 {
 590         if (machine->comm_exec)
 591                 return thread__exec_comm(thread);
 592         else
 593                 return thread__comm(thread);
 594 }
 595 
 596 int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597                                 struct perf_sample *sample)
 598 {
 599         struct thread *thread = machine__findnew_thread(machine,
 600                                                         event->comm.pid,
 601                                                         event->comm.tid);
 602         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603         int err = 0;
 604 
 605         if (exec)
 606                 machine->comm_exec = true;
 607 
 608         if (dump_trace)
 609                 perf_event__fprintf_comm(event, stdout);
 610 
 611         if (thread == NULL ||
 612             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614                 err = -1;
 615         }
 616 
 617         thread__put(thread);
 618 
 619         return err;
 620 }
 621 
 622 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623                                       union perf_event *event,
 624                                       struct perf_sample *sample __maybe_unused)
 625 {
 626         struct thread *thread = machine__findnew_thread(machine,
 627                                                         event->namespaces.pid,
 628                                                         event->namespaces.tid);
 629         int err = 0;
 630 
 631         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632                   "\nWARNING: kernel seems to support more namespaces than perf"
 633                   " tool.\nTry updating the perf tool..\n\n");
 634 
 635         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636                   "\nWARNING: perf tool seems to support more namespaces than"
 637                   " the kernel.\nTry updating the kernel..\n\n");
 638 
 639         if (dump_trace)
 640                 perf_event__fprintf_namespaces(event, stdout);
 641 
 642         if (thread == NULL ||
 643             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645                 err = -1;
 646         }
 647 
 648         thread__put(thread);
 649 
 650         return err;
 651 }
 652 
 653 int machine__process_lost_event(struct machine *machine __maybe_unused,
 654                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
 655 {
 656         dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657                     event->lost.id, event->lost.lost);
 658         return 0;
 659 }
 660 
 661 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662                                         union perf_event *event, struct perf_sample *sample)
 663 {
 664         dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665                     sample->id, event->lost_samples.lost);
 666         return 0;
 667 }
 668 
 669 static struct dso *machine__findnew_module_dso(struct machine *machine,
 670                                                struct kmod_path *m,
 671                                                const char *filename)
 672 {
 673         struct dso *dso;
 674 
 675         down_write(&machine->dsos.lock);
 676 
 677         dso = __dsos__find(&machine->dsos, m->name, true);
 678         if (!dso) {
 679                 dso = __dsos__addnew(&machine->dsos, m->name);
 680                 if (dso == NULL)
 681                         goto out_unlock;
 682 
 683                 dso__set_module_info(dso, m, machine);
 684                 dso__set_long_name(dso, strdup(filename), true);
 685         }
 686 
 687         dso__get(dso);
 688 out_unlock:
 689         up_write(&machine->dsos.lock);
 690         return dso;
 691 }
 692 
 693 int machine__process_aux_event(struct machine *machine __maybe_unused,
 694                                union perf_event *event)
 695 {
 696         if (dump_trace)
 697                 perf_event__fprintf_aux(event, stdout);
 698         return 0;
 699 }
 700 
 701 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702                                         union perf_event *event)
 703 {
 704         if (dump_trace)
 705                 perf_event__fprintf_itrace_start(event, stdout);
 706         return 0;
 707 }
 708 
 709 int machine__process_switch_event(struct machine *machine __maybe_unused,
 710                                   union perf_event *event)
 711 {
 712         if (dump_trace)
 713                 perf_event__fprintf_switch(event, stdout);
 714         return 0;
 715 }
 716 
 717 static int machine__process_ksymbol_register(struct machine *machine,
 718                                              union perf_event *event,
 719                                              struct perf_sample *sample __maybe_unused)
 720 {
 721         struct symbol *sym;
 722         struct map *map;
 723 
 724         map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725         if (!map) {
 726                 map = dso__new_map(event->ksymbol.name);
 727                 if (!map)
 728                         return -ENOMEM;
 729 
 730                 map->start = event->ksymbol.addr;
 731                 map->end = map->start + event->ksymbol.len;
 732                 map_groups__insert(&machine->kmaps, map);
 733         }
 734 
 735         sym = symbol__new(map->map_ip(map, map->start),
 736                           event->ksymbol.len,
 737                           0, 0, event->ksymbol.name);
 738         if (!sym)
 739                 return -ENOMEM;
 740         dso__insert_symbol(map->dso, sym);
 741         return 0;
 742 }
 743 
 744 static int machine__process_ksymbol_unregister(struct machine *machine,
 745                                                union perf_event *event,
 746                                                struct perf_sample *sample __maybe_unused)
 747 {
 748         struct map *map;
 749 
 750         map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751         if (map)
 752                 map_groups__remove(&machine->kmaps, map);
 753 
 754         return 0;
 755 }
 756 
 757 int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758                              union perf_event *event,
 759                              struct perf_sample *sample)
 760 {
 761         if (dump_trace)
 762                 perf_event__fprintf_ksymbol(event, stdout);
 763 
 764         if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765                 return machine__process_ksymbol_unregister(machine, event,
 766                                                            sample);
 767         return machine__process_ksymbol_register(machine, event, sample);
 768 }
 769 
 770 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 771                                         const char *filename)
 772 {
 773         struct map *map = NULL;
 774         struct dso *dso = NULL;
 775         struct kmod_path m;
 776 
 777         if (kmod_path__parse_name(&m, filename))
 778                 return NULL;
 779 
 780         map = map_groups__find_by_name(&machine->kmaps, m.name);
 781         if (map)
 782                 goto out;
 783 
 784         dso = machine__findnew_module_dso(machine, &m, filename);
 785         if (dso == NULL)
 786                 goto out;
 787 
 788         map = map__new2(start, dso);
 789         if (map == NULL)
 790                 goto out;
 791 
 792         map_groups__insert(&machine->kmaps, map);
 793 
 794         /* Put the map here because map_groups__insert alread got it */
 795         map__put(map);
 796 out:
 797         /* put the dso here, corresponding to  machine__findnew_module_dso */
 798         dso__put(dso);
 799         zfree(&m.name);
 800         return map;
 801 }
 802 
 803 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 804 {
 805         struct rb_node *nd;
 806         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 807 
 808         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 809                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
 810                 ret += __dsos__fprintf(&pos->dsos.head, fp);
 811         }
 812 
 813         return ret;
 814 }
 815 
 816 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 817                                      bool (skip)(struct dso *dso, int parm), int parm)
 818 {
 819         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 820 }
 821 
 822 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 823                                      bool (skip)(struct dso *dso, int parm), int parm)
 824 {
 825         struct rb_node *nd;
 826         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 827 
 828         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 829                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
 830                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 831         }
 832         return ret;
 833 }
 834 
 835 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 836 {
 837         int i;
 838         size_t printed = 0;
 839         struct dso *kdso = machine__kernel_map(machine)->dso;
 840 
 841         if (kdso->has_build_id) {
 842                 char filename[PATH_MAX];
 843                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
 844                                            false))
 845                         printed += fprintf(fp, "[0] %s\n", filename);
 846         }
 847 
 848         for (i = 0; i < vmlinux_path__nr_entries; ++i)
 849                 printed += fprintf(fp, "[%d] %s\n",
 850                                    i + kdso->has_build_id, vmlinux_path[i]);
 851 
 852         return printed;
 853 }
 854 
 855 size_t machine__fprintf(struct machine *machine, FILE *fp)
 856 {
 857         struct rb_node *nd;
 858         size_t ret;
 859         int i;
 860 
 861         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 862                 struct threads *threads = &machine->threads[i];
 863 
 864                 down_read(&threads->lock);
 865 
 866                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
 867 
 868                 for (nd = rb_first_cached(&threads->entries); nd;
 869                      nd = rb_next(nd)) {
 870                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
 871 
 872                         ret += thread__fprintf(pos, fp);
 873                 }
 874 
 875                 up_read(&threads->lock);
 876         }
 877         return ret;
 878 }
 879 
 880 static struct dso *machine__get_kernel(struct machine *machine)
 881 {
 882         const char *vmlinux_name = machine->mmap_name;
 883         struct dso *kernel;
 884 
 885         if (machine__is_host(machine)) {
 886                 if (symbol_conf.vmlinux_name)
 887                         vmlinux_name = symbol_conf.vmlinux_name;
 888 
 889                 kernel = machine__findnew_kernel(machine, vmlinux_name,
 890                                                  "[kernel]", DSO_TYPE_KERNEL);
 891         } else {
 892                 if (symbol_conf.default_guest_vmlinux_name)
 893                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 894 
 895                 kernel = machine__findnew_kernel(machine, vmlinux_name,
 896                                                  "[guest.kernel]",
 897                                                  DSO_TYPE_GUEST_KERNEL);
 898         }
 899 
 900         if (kernel != NULL && (!kernel->has_build_id))
 901                 dso__read_running_kernel_build_id(kernel, machine);
 902 
 903         return kernel;
 904 }
 905 
 906 struct process_args {
 907         u64 start;
 908 };
 909 
 910 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 911                                     size_t bufsz)
 912 {
 913         if (machine__is_default_guest(machine))
 914                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 915         else
 916                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 917 }
 918 
 919 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 920 
 921 /* Figure out the start address of kernel map from /proc/kallsyms.
 922  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 923  * symbol_name if it's not that important.
 924  */
 925 static int machine__get_running_kernel_start(struct machine *machine,
 926                                              const char **symbol_name,
 927                                              u64 *start, u64 *end)
 928 {
 929         char filename[PATH_MAX];
 930         int i, err = -1;
 931         const char *name;
 932         u64 addr = 0;
 933 
 934         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 935 
 936         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 937                 return 0;
 938 
 939         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 940                 err = kallsyms__get_function_start(filename, name, &addr);
 941                 if (!err)
 942                         break;
 943         }
 944 
 945         if (err)
 946                 return -1;
 947 
 948         if (symbol_name)
 949                 *symbol_name = name;
 950 
 951         *start = addr;
 952 
 953         err = kallsyms__get_function_start(filename, "_etext", &addr);
 954         if (!err)
 955                 *end = addr;
 956 
 957         return 0;
 958 }
 959 
 960 int machine__create_extra_kernel_map(struct machine *machine,
 961                                      struct dso *kernel,
 962                                      struct extra_kernel_map *xm)
 963 {
 964         struct kmap *kmap;
 965         struct map *map;
 966 
 967         map = map__new2(xm->start, kernel);
 968         if (!map)
 969                 return -1;
 970 
 971         map->end   = xm->end;
 972         map->pgoff = xm->pgoff;
 973 
 974         kmap = map__kmap(map);
 975 
 976         kmap->kmaps = &machine->kmaps;
 977         strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
 978 
 979         map_groups__insert(&machine->kmaps, map);
 980 
 981         pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
 982                   kmap->name, map->start, map->end);
 983 
 984         map__put(map);
 985 
 986         return 0;
 987 }
 988 
 989 static u64 find_entry_trampoline(struct dso *dso)
 990 {
 991         /* Duplicates are removed so lookup all aliases */
 992         const char *syms[] = {
 993                 "_entry_trampoline",
 994                 "__entry_trampoline_start",
 995                 "entry_SYSCALL_64_trampoline",
 996         };
 997         struct symbol *sym = dso__first_symbol(dso);
 998         unsigned int i;
 999 
1000         for (; sym; sym = dso__next_symbol(sym)) {
1001                 if (sym->binding != STB_GLOBAL)
1002                         continue;
1003                 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1004                         if (!strcmp(sym->name, syms[i]))
1005                                 return sym->start;
1006                 }
1007         }
1008 
1009         return 0;
1010 }
1011 
1012 /*
1013  * These values can be used for kernels that do not have symbols for the entry
1014  * trampolines in kallsyms.
1015  */
1016 #define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1017 #define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1018 #define X86_64_ENTRY_TRAMPOLINE         0x6000
1019 
1020 /* Map x86_64 PTI entry trampolines */
1021 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1022                                           struct dso *kernel)
1023 {
1024         struct map_groups *kmaps = &machine->kmaps;
1025         struct maps *maps = &kmaps->maps;
1026         int nr_cpus_avail, cpu;
1027         bool found = false;
1028         struct map *map;
1029         u64 pgoff;
1030 
1031         /*
1032          * In the vmlinux case, pgoff is a virtual address which must now be
1033          * mapped to a vmlinux offset.
1034          */
1035         for (map = maps__first(maps); map; map = map__next(map)) {
1036                 struct kmap *kmap = __map__kmap(map);
1037                 struct map *dest_map;
1038 
1039                 if (!kmap || !is_entry_trampoline(kmap->name))
1040                         continue;
1041 
1042                 dest_map = map_groups__find(kmaps, map->pgoff);
1043                 if (dest_map != map)
1044                         map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1045                 found = true;
1046         }
1047         if (found || machine->trampolines_mapped)
1048                 return 0;
1049 
1050         pgoff = find_entry_trampoline(kernel);
1051         if (!pgoff)
1052                 return 0;
1053 
1054         nr_cpus_avail = machine__nr_cpus_avail(machine);
1055 
1056         /* Add a 1 page map for each CPU's entry trampoline */
1057         for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1058                 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1059                          cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1060                          X86_64_ENTRY_TRAMPOLINE;
1061                 struct extra_kernel_map xm = {
1062                         .start = va,
1063                         .end   = va + page_size,
1064                         .pgoff = pgoff,
1065                 };
1066 
1067                 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1068 
1069                 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1070                         return -1;
1071         }
1072 
1073         machine->trampolines_mapped = nr_cpus_avail;
1074 
1075         return 0;
1076 }
1077 
1078 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1079                                              struct dso *kernel __maybe_unused)
1080 {
1081         return 0;
1082 }
1083 
1084 static int
1085 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1086 {
1087         struct kmap *kmap;
1088         struct map *map;
1089 
1090         /* In case of renewal the kernel map, destroy previous one */
1091         machine__destroy_kernel_maps(machine);
1092 
1093         machine->vmlinux_map = map__new2(0, kernel);
1094         if (machine->vmlinux_map == NULL)
1095                 return -1;
1096 
1097         machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1098         map = machine__kernel_map(machine);
1099         kmap = map__kmap(map);
1100         if (!kmap)
1101                 return -1;
1102 
1103         kmap->kmaps = &machine->kmaps;
1104         map_groups__insert(&machine->kmaps, map);
1105 
1106         return 0;
1107 }
1108 
1109 void machine__destroy_kernel_maps(struct machine *machine)
1110 {
1111         struct kmap *kmap;
1112         struct map *map = machine__kernel_map(machine);
1113 
1114         if (map == NULL)
1115                 return;
1116 
1117         kmap = map__kmap(map);
1118         map_groups__remove(&machine->kmaps, map);
1119         if (kmap && kmap->ref_reloc_sym) {
1120                 zfree((char **)&kmap->ref_reloc_sym->name);
1121                 zfree(&kmap->ref_reloc_sym);
1122         }
1123 
1124         map__zput(machine->vmlinux_map);
1125 }
1126 
1127 int machines__create_guest_kernel_maps(struct machines *machines)
1128 {
1129         int ret = 0;
1130         struct dirent **namelist = NULL;
1131         int i, items = 0;
1132         char path[PATH_MAX];
1133         pid_t pid;
1134         char *endp;
1135 
1136         if (symbol_conf.default_guest_vmlinux_name ||
1137             symbol_conf.default_guest_modules ||
1138             symbol_conf.default_guest_kallsyms) {
1139                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1140         }
1141 
1142         if (symbol_conf.guestmount) {
1143                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1144                 if (items <= 0)
1145                         return -ENOENT;
1146                 for (i = 0; i < items; i++) {
1147                         if (!isdigit(namelist[i]->d_name[0])) {
1148                                 /* Filter out . and .. */
1149                                 continue;
1150                         }
1151                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1152                         if ((*endp != '\0') ||
1153                             (endp == namelist[i]->d_name) ||
1154                             (errno == ERANGE)) {
1155                                 pr_debug("invalid directory (%s). Skipping.\n",
1156                                          namelist[i]->d_name);
1157                                 continue;
1158                         }
1159                         sprintf(path, "%s/%s/proc/kallsyms",
1160                                 symbol_conf.guestmount,
1161                                 namelist[i]->d_name);
1162                         ret = access(path, R_OK);
1163                         if (ret) {
1164                                 pr_debug("Can't access file %s\n", path);
1165                                 goto failure;
1166                         }
1167                         machines__create_kernel_maps(machines, pid);
1168                 }
1169 failure:
1170                 free(namelist);
1171         }
1172 
1173         return ret;
1174 }
1175 
1176 void machines__destroy_kernel_maps(struct machines *machines)
1177 {
1178         struct rb_node *next = rb_first_cached(&machines->guests);
1179 
1180         machine__destroy_kernel_maps(&machines->host);
1181 
1182         while (next) {
1183                 struct machine *pos = rb_entry(next, struct machine, rb_node);
1184 
1185                 next = rb_next(&pos->rb_node);
1186                 rb_erase_cached(&pos->rb_node, &machines->guests);
1187                 machine__delete(pos);
1188         }
1189 }
1190 
1191 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1192 {
1193         struct machine *machine = machines__findnew(machines, pid);
1194 
1195         if (machine == NULL)
1196                 return -1;
1197 
1198         return machine__create_kernel_maps(machine);
1199 }
1200 
1201 int machine__load_kallsyms(struct machine *machine, const char *filename)
1202 {
1203         struct map *map = machine__kernel_map(machine);
1204         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1205 
1206         if (ret > 0) {
1207                 dso__set_loaded(map->dso);
1208                 /*
1209                  * Since /proc/kallsyms will have multiple sessions for the
1210                  * kernel, with modules between them, fixup the end of all
1211                  * sections.
1212                  */
1213                 map_groups__fixup_end(&machine->kmaps);
1214         }
1215 
1216         return ret;
1217 }
1218 
1219 int machine__load_vmlinux_path(struct machine *machine)
1220 {
1221         struct map *map = machine__kernel_map(machine);
1222         int ret = dso__load_vmlinux_path(map->dso, map);
1223 
1224         if (ret > 0)
1225                 dso__set_loaded(map->dso);
1226 
1227         return ret;
1228 }
1229 
1230 static char *get_kernel_version(const char *root_dir)
1231 {
1232         char version[PATH_MAX];
1233         FILE *file;
1234         char *name, *tmp;
1235         const char *prefix = "Linux version ";
1236 
1237         sprintf(version, "%s/proc/version", root_dir);
1238         file = fopen(version, "r");
1239         if (!file)
1240                 return NULL;
1241 
1242         tmp = fgets(version, sizeof(version), file);
1243         fclose(file);
1244         if (!tmp)
1245                 return NULL;
1246 
1247         name = strstr(version, prefix);
1248         if (!name)
1249                 return NULL;
1250         name += strlen(prefix);
1251         tmp = strchr(name, ' ');
1252         if (tmp)
1253                 *tmp = '\0';
1254 
1255         return strdup(name);
1256 }
1257 
1258 static bool is_kmod_dso(struct dso *dso)
1259 {
1260         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1261                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1262 }
1263 
1264 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1265                                        struct kmod_path *m)
1266 {
1267         char *long_name;
1268         struct map *map = map_groups__find_by_name(mg, m->name);
1269 
1270         if (map == NULL)
1271                 return 0;
1272 
1273         long_name = strdup(path);
1274         if (long_name == NULL)
1275                 return -ENOMEM;
1276 
1277         dso__set_long_name(map->dso, long_name, true);
1278         dso__kernel_module_get_build_id(map->dso, "");
1279 
1280         /*
1281          * Full name could reveal us kmod compression, so
1282          * we need to update the symtab_type if needed.
1283          */
1284         if (m->comp && is_kmod_dso(map->dso)) {
1285                 map->dso->symtab_type++;
1286                 map->dso->comp = m->comp;
1287         }
1288 
1289         return 0;
1290 }
1291 
1292 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1293                                 const char *dir_name, int depth)
1294 {
1295         struct dirent *dent;
1296         DIR *dir = opendir(dir_name);
1297         int ret = 0;
1298 
1299         if (!dir) {
1300                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1301                 return -1;
1302         }
1303 
1304         while ((dent = readdir(dir)) != NULL) {
1305                 char path[PATH_MAX];
1306                 struct stat st;
1307 
1308                 /*sshfs might return bad dent->d_type, so we have to stat*/
1309                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1310                 if (stat(path, &st))
1311                         continue;
1312 
1313                 if (S_ISDIR(st.st_mode)) {
1314                         if (!strcmp(dent->d_name, ".") ||
1315                             !strcmp(dent->d_name, ".."))
1316                                 continue;
1317 
1318                         /* Do not follow top-level source and build symlinks */
1319                         if (depth == 0) {
1320                                 if (!strcmp(dent->d_name, "source") ||
1321                                     !strcmp(dent->d_name, "build"))
1322                                         continue;
1323                         }
1324 
1325                         ret = map_groups__set_modules_path_dir(mg, path,
1326                                                                depth + 1);
1327                         if (ret < 0)
1328                                 goto out;
1329                 } else {
1330                         struct kmod_path m;
1331 
1332                         ret = kmod_path__parse_name(&m, dent->d_name);
1333                         if (ret)
1334                                 goto out;
1335 
1336                         if (m.kmod)
1337                                 ret = map_groups__set_module_path(mg, path, &m);
1338 
1339                         zfree(&m.name);
1340 
1341                         if (ret)
1342                                 goto out;
1343                 }
1344         }
1345 
1346 out:
1347         closedir(dir);
1348         return ret;
1349 }
1350 
1351 static int machine__set_modules_path(struct machine *machine)
1352 {
1353         char *version;
1354         char modules_path[PATH_MAX];
1355 
1356         version = get_kernel_version(machine->root_dir);
1357         if (!version)
1358                 return -1;
1359 
1360         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1361                  machine->root_dir, version);
1362         free(version);
1363 
1364         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1365 }
1366 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1367                                 u64 *size __maybe_unused,
1368                                 const char *name __maybe_unused)
1369 {
1370         return 0;
1371 }
1372 
1373 static int machine__create_module(void *arg, const char *name, u64 start,
1374                                   u64 size)
1375 {
1376         struct machine *machine = arg;
1377         struct map *map;
1378 
1379         if (arch__fix_module_text_start(&start, &size, name) < 0)
1380                 return -1;
1381 
1382         map = machine__findnew_module_map(machine, start, name);
1383         if (map == NULL)
1384                 return -1;
1385         map->end = start + size;
1386 
1387         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1388 
1389         return 0;
1390 }
1391 
1392 static int machine__create_modules(struct machine *machine)
1393 {
1394         const char *modules;
1395         char path[PATH_MAX];
1396 
1397         if (machine__is_default_guest(machine)) {
1398                 modules = symbol_conf.default_guest_modules;
1399         } else {
1400                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1401                 modules = path;
1402         }
1403 
1404         if (symbol__restricted_filename(modules, "/proc/modules"))
1405                 return -1;
1406 
1407         if (modules__parse(modules, machine, machine__create_module))
1408                 return -1;
1409 
1410         if (!machine__set_modules_path(machine))
1411                 return 0;
1412 
1413         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1414 
1415         return 0;
1416 }
1417 
1418 static void machine__set_kernel_mmap(struct machine *machine,
1419                                      u64 start, u64 end)
1420 {
1421         machine->vmlinux_map->start = start;
1422         machine->vmlinux_map->end   = end;
1423         /*
1424          * Be a bit paranoid here, some perf.data file came with
1425          * a zero sized synthesized MMAP event for the kernel.
1426          */
1427         if (start == 0 && end == 0)
1428                 machine->vmlinux_map->end = ~0ULL;
1429 }
1430 
1431 static void machine__update_kernel_mmap(struct machine *machine,
1432                                      u64 start, u64 end)
1433 {
1434         struct map *map = machine__kernel_map(machine);
1435 
1436         map__get(map);
1437         map_groups__remove(&machine->kmaps, map);
1438 
1439         machine__set_kernel_mmap(machine, start, end);
1440 
1441         map_groups__insert(&machine->kmaps, map);
1442         map__put(map);
1443 }
1444 
1445 int machine__create_kernel_maps(struct machine *machine)
1446 {
1447         struct dso *kernel = machine__get_kernel(machine);
1448         const char *name = NULL;
1449         struct map *map;
1450         u64 start = 0, end = ~0ULL;
1451         int ret;
1452 
1453         if (kernel == NULL)
1454                 return -1;
1455 
1456         ret = __machine__create_kernel_maps(machine, kernel);
1457         if (ret < 0)
1458                 goto out_put;
1459 
1460         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1461                 if (machine__is_host(machine))
1462                         pr_debug("Problems creating module maps, "
1463                                  "continuing anyway...\n");
1464                 else
1465                         pr_debug("Problems creating module maps for guest %d, "
1466                                  "continuing anyway...\n", machine->pid);
1467         }
1468 
1469         if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1470                 if (name &&
1471                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1472                         machine__destroy_kernel_maps(machine);
1473                         ret = -1;
1474                         goto out_put;
1475                 }
1476 
1477                 /*
1478                  * we have a real start address now, so re-order the kmaps
1479                  * assume it's the last in the kmaps
1480                  */
1481                 machine__update_kernel_mmap(machine, start, end);
1482         }
1483 
1484         if (machine__create_extra_kernel_maps(machine, kernel))
1485                 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1486 
1487         if (end == ~0ULL) {
1488                 /* update end address of the kernel map using adjacent module address */
1489                 map = map__next(machine__kernel_map(machine));
1490                 if (map)
1491                         machine__set_kernel_mmap(machine, start, map->start);
1492         }
1493 
1494 out_put:
1495         dso__put(kernel);
1496         return ret;
1497 }
1498 
1499 static bool machine__uses_kcore(struct machine *machine)
1500 {
1501         struct dso *dso;
1502 
1503         list_for_each_entry(dso, &machine->dsos.head, node) {
1504                 if (dso__is_kcore(dso))
1505                         return true;
1506         }
1507 
1508         return false;
1509 }
1510 
1511 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1512                                              union perf_event *event)
1513 {
1514         return machine__is(machine, "x86_64") &&
1515                is_entry_trampoline(event->mmap.filename);
1516 }
1517 
1518 static int machine__process_extra_kernel_map(struct machine *machine,
1519                                              union perf_event *event)
1520 {
1521         struct map *kernel_map = machine__kernel_map(machine);
1522         struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1523         struct extra_kernel_map xm = {
1524                 .start = event->mmap.start,
1525                 .end   = event->mmap.start + event->mmap.len,
1526                 .pgoff = event->mmap.pgoff,
1527         };
1528 
1529         if (kernel == NULL)
1530                 return -1;
1531 
1532         strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1533 
1534         return machine__create_extra_kernel_map(machine, kernel, &xm);
1535 }
1536 
1537 static int machine__process_kernel_mmap_event(struct machine *machine,
1538                                               union perf_event *event)
1539 {
1540         struct map *map;
1541         enum dso_kernel_type kernel_type;
1542         bool is_kernel_mmap;
1543 
1544         /* If we have maps from kcore then we do not need or want any others */
1545         if (machine__uses_kcore(machine))
1546                 return 0;
1547 
1548         if (machine__is_host(machine))
1549                 kernel_type = DSO_TYPE_KERNEL;
1550         else
1551                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1552 
1553         is_kernel_mmap = memcmp(event->mmap.filename,
1554                                 machine->mmap_name,
1555                                 strlen(machine->mmap_name) - 1) == 0;
1556         if (event->mmap.filename[0] == '/' ||
1557             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558                 map = machine__findnew_module_map(machine, event->mmap.start,
1559                                                   event->mmap.filename);
1560                 if (map == NULL)
1561                         goto out_problem;
1562 
1563                 map->end = map->start + event->mmap.len;
1564         } else if (is_kernel_mmap) {
1565                 const char *symbol_name = (event->mmap.filename +
1566                                 strlen(machine->mmap_name));
1567                 /*
1568                  * Should be there already, from the build-id table in
1569                  * the header.
1570                  */
1571                 struct dso *kernel = NULL;
1572                 struct dso *dso;
1573 
1574                 down_read(&machine->dsos.lock);
1575 
1576                 list_for_each_entry(dso, &machine->dsos.head, node) {
1577 
1578                         /*
1579                          * The cpumode passed to is_kernel_module is not the
1580                          * cpumode of *this* event. If we insist on passing
1581                          * correct cpumode to is_kernel_module, we should
1582                          * record the cpumode when we adding this dso to the
1583                          * linked list.
1584                          *
1585                          * However we don't really need passing correct
1586                          * cpumode.  We know the correct cpumode must be kernel
1587                          * mode (if not, we should not link it onto kernel_dsos
1588                          * list).
1589                          *
1590                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1591                          * is_kernel_module() treats it as a kernel cpumode.
1592                          */
1593 
1594                         if (!dso->kernel ||
1595                             is_kernel_module(dso->long_name,
1596                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597                                 continue;
1598 
1599 
1600                         kernel = dso;
1601                         break;
1602                 }
1603 
1604                 up_read(&machine->dsos.lock);
1605 
1606                 if (kernel == NULL)
1607                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1608                 if (kernel == NULL)
1609                         goto out_problem;
1610 
1611                 kernel->kernel = kernel_type;
1612                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1613                         dso__put(kernel);
1614                         goto out_problem;
1615                 }
1616 
1617                 if (strstr(kernel->long_name, "vmlinux"))
1618                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619 
1620                 machine__update_kernel_mmap(machine, event->mmap.start,
1621                                          event->mmap.start + event->mmap.len);
1622 
1623                 /*
1624                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1625                  * symbol. Effectively having zero here means that at record
1626                  * time /proc/sys/kernel/kptr_restrict was non zero.
1627                  */
1628                 if (event->mmap.pgoff != 0) {
1629                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1630                                                         symbol_name,
1631                                                         event->mmap.pgoff);
1632                 }
1633 
1634                 if (machine__is_default_guest(machine)) {
1635                         /*
1636                          * preload dso of guest kernel and modules
1637                          */
1638                         dso__load(kernel, machine__kernel_map(machine));
1639                 }
1640         } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1641                 return machine__process_extra_kernel_map(machine, event);
1642         }
1643         return 0;
1644 out_problem:
1645         return -1;
1646 }
1647 
1648 int machine__process_mmap2_event(struct machine *machine,
1649                                  union perf_event *event,
1650                                  struct perf_sample *sample)
1651 {
1652         struct thread *thread;
1653         struct map *map;
1654         int ret = 0;
1655 
1656         if (dump_trace)
1657                 perf_event__fprintf_mmap2(event, stdout);
1658 
1659         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661                 ret = machine__process_kernel_mmap_event(machine, event);
1662                 if (ret < 0)
1663                         goto out_problem;
1664                 return 0;
1665         }
1666 
1667         thread = machine__findnew_thread(machine, event->mmap2.pid,
1668                                         event->mmap2.tid);
1669         if (thread == NULL)
1670                 goto out_problem;
1671 
1672         map = map__new(machine, event->mmap2.start,
1673                         event->mmap2.len, event->mmap2.pgoff,
1674                         event->mmap2.maj,
1675                         event->mmap2.min, event->mmap2.ino,
1676                         event->mmap2.ino_generation,
1677                         event->mmap2.prot,
1678                         event->mmap2.flags,
1679                         event->mmap2.filename, thread);
1680 
1681         if (map == NULL)
1682                 goto out_problem_map;
1683 
1684         ret = thread__insert_map(thread, map);
1685         if (ret)
1686                 goto out_problem_insert;
1687 
1688         thread__put(thread);
1689         map__put(map);
1690         return 0;
1691 
1692 out_problem_insert:
1693         map__put(map);
1694 out_problem_map:
1695         thread__put(thread);
1696 out_problem:
1697         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1698         return 0;
1699 }
1700 
1701 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1702                                 struct perf_sample *sample)
1703 {
1704         struct thread *thread;
1705         struct map *map;
1706         u32 prot = 0;
1707         int ret = 0;
1708 
1709         if (dump_trace)
1710                 perf_event__fprintf_mmap(event, stdout);
1711 
1712         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1713             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714                 ret = machine__process_kernel_mmap_event(machine, event);
1715                 if (ret < 0)
1716                         goto out_problem;
1717                 return 0;
1718         }
1719 
1720         thread = machine__findnew_thread(machine, event->mmap.pid,
1721                                          event->mmap.tid);
1722         if (thread == NULL)
1723                 goto out_problem;
1724 
1725         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1726                 prot = PROT_EXEC;
1727 
1728         map = map__new(machine, event->mmap.start,
1729                         event->mmap.len, event->mmap.pgoff,
1730                         0, 0, 0, 0, prot, 0,
1731                         event->mmap.filename,
1732                         thread);
1733 
1734         if (map == NULL)
1735                 goto out_problem_map;
1736 
1737         ret = thread__insert_map(thread, map);
1738         if (ret)
1739                 goto out_problem_insert;
1740 
1741         thread__put(thread);
1742         map__put(map);
1743         return 0;
1744 
1745 out_problem_insert:
1746         map__put(map);
1747 out_problem_map:
1748         thread__put(thread);
1749 out_problem:
1750         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1751         return 0;
1752 }
1753 
1754 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1755 {
1756         struct threads *threads = machine__threads(machine, th->tid);
1757 
1758         if (threads->last_match == th)
1759                 threads__set_last_match(threads, NULL);
1760 
1761         if (lock)
1762                 down_write(&threads->lock);
1763 
1764         BUG_ON(refcount_read(&th->refcnt) == 0);
1765 
1766         rb_erase_cached(&th->rb_node, &threads->entries);
1767         RB_CLEAR_NODE(&th->rb_node);
1768         --threads->nr;
1769         /*
1770          * Move it first to the dead_threads list, then drop the reference,
1771          * if this is the last reference, then the thread__delete destructor
1772          * will be called and we will remove it from the dead_threads list.
1773          */
1774         list_add_tail(&th->node, &threads->dead);
1775 
1776         /*
1777          * We need to do the put here because if this is the last refcount,
1778          * then we will be touching the threads->dead head when removing the
1779          * thread.
1780          */
1781         thread__put(th);
1782 
1783         if (lock)
1784                 up_write(&threads->lock);
1785 }
1786 
1787 void machine__remove_thread(struct machine *machine, struct thread *th)
1788 {
1789         return __machine__remove_thread(machine, th, true);
1790 }
1791 
1792 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1793                                 struct perf_sample *sample)
1794 {
1795         struct thread *thread = machine__find_thread(machine,
1796                                                      event->fork.pid,
1797                                                      event->fork.tid);
1798         struct thread *parent = machine__findnew_thread(machine,
1799                                                         event->fork.ppid,
1800                                                         event->fork.ptid);
1801         bool do_maps_clone = true;
1802         int err = 0;
1803 
1804         if (dump_trace)
1805                 perf_event__fprintf_task(event, stdout);
1806 
1807         /*
1808          * There may be an existing thread that is not actually the parent,
1809          * either because we are processing events out of order, or because the
1810          * (fork) event that would have removed the thread was lost. Assume the
1811          * latter case and continue on as best we can.
1812          */
1813         if (parent->pid_ != (pid_t)event->fork.ppid) {
1814                 dump_printf("removing erroneous parent thread %d/%d\n",
1815                             parent->pid_, parent->tid);
1816                 machine__remove_thread(machine, parent);
1817                 thread__put(parent);
1818                 parent = machine__findnew_thread(machine, event->fork.ppid,
1819                                                  event->fork.ptid);
1820         }
1821 
1822         /* if a thread currently exists for the thread id remove it */
1823         if (thread != NULL) {
1824                 machine__remove_thread(machine, thread);
1825                 thread__put(thread);
1826         }
1827 
1828         thread = machine__findnew_thread(machine, event->fork.pid,
1829                                          event->fork.tid);
1830         /*
1831          * When synthesizing FORK events, we are trying to create thread
1832          * objects for the already running tasks on the machine.
1833          *
1834          * Normally, for a kernel FORK event, we want to clone the parent's
1835          * maps because that is what the kernel just did.
1836          *
1837          * But when synthesizing, this should not be done.  If we do, we end up
1838          * with overlapping maps as we process the sythesized MMAP2 events that
1839          * get delivered shortly thereafter.
1840          *
1841          * Use the FORK event misc flags in an internal way to signal this
1842          * situation, so we can elide the map clone when appropriate.
1843          */
1844         if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1845                 do_maps_clone = false;
1846 
1847         if (thread == NULL || parent == NULL ||
1848             thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1849                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1850                 err = -1;
1851         }
1852         thread__put(thread);
1853         thread__put(parent);
1854 
1855         return err;
1856 }
1857 
1858 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1859                                 struct perf_sample *sample __maybe_unused)
1860 {
1861         struct thread *thread = machine__find_thread(machine,
1862                                                      event->fork.pid,
1863                                                      event->fork.tid);
1864 
1865         if (dump_trace)
1866                 perf_event__fprintf_task(event, stdout);
1867 
1868         if (thread != NULL) {
1869                 thread__exited(thread);
1870                 thread__put(thread);
1871         }
1872 
1873         return 0;
1874 }
1875 
1876 int machine__process_event(struct machine *machine, union perf_event *event,
1877                            struct perf_sample *sample)
1878 {
1879         int ret;
1880 
1881         switch (event->header.type) {
1882         case PERF_RECORD_COMM:
1883                 ret = machine__process_comm_event(machine, event, sample); break;
1884         case PERF_RECORD_MMAP:
1885                 ret = machine__process_mmap_event(machine, event, sample); break;
1886         case PERF_RECORD_NAMESPACES:
1887                 ret = machine__process_namespaces_event(machine, event, sample); break;
1888         case PERF_RECORD_MMAP2:
1889                 ret = machine__process_mmap2_event(machine, event, sample); break;
1890         case PERF_RECORD_FORK:
1891                 ret = machine__process_fork_event(machine, event, sample); break;
1892         case PERF_RECORD_EXIT:
1893                 ret = machine__process_exit_event(machine, event, sample); break;
1894         case PERF_RECORD_LOST:
1895                 ret = machine__process_lost_event(machine, event, sample); break;
1896         case PERF_RECORD_AUX:
1897                 ret = machine__process_aux_event(machine, event); break;
1898         case PERF_RECORD_ITRACE_START:
1899                 ret = machine__process_itrace_start_event(machine, event); break;
1900         case PERF_RECORD_LOST_SAMPLES:
1901                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1902         case PERF_RECORD_SWITCH:
1903         case PERF_RECORD_SWITCH_CPU_WIDE:
1904                 ret = machine__process_switch_event(machine, event); break;
1905         case PERF_RECORD_KSYMBOL:
1906                 ret = machine__process_ksymbol(machine, event, sample); break;
1907         case PERF_RECORD_BPF_EVENT:
1908                 ret = machine__process_bpf(machine, event, sample); break;
1909         default:
1910                 ret = -1;
1911                 break;
1912         }
1913 
1914         return ret;
1915 }
1916 
1917 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1918 {
1919         if (!regexec(regex, sym->name, 0, NULL, 0))
1920                 return 1;
1921         return 0;
1922 }
1923 
1924 static void ip__resolve_ams(struct thread *thread,
1925                             struct addr_map_symbol *ams,
1926                             u64 ip)
1927 {
1928         struct addr_location al;
1929 
1930         memset(&al, 0, sizeof(al));
1931         /*
1932          * We cannot use the header.misc hint to determine whether a
1933          * branch stack address is user, kernel, guest, hypervisor.
1934          * Branches may straddle the kernel/user/hypervisor boundaries.
1935          * Thus, we have to try consecutively until we find a match
1936          * or else, the symbol is unknown
1937          */
1938         thread__find_cpumode_addr_location(thread, ip, &al);
1939 
1940         ams->addr = ip;
1941         ams->al_addr = al.addr;
1942         ams->sym = al.sym;
1943         ams->map = al.map;
1944         ams->phys_addr = 0;
1945 }
1946 
1947 static void ip__resolve_data(struct thread *thread,
1948                              u8 m, struct addr_map_symbol *ams,
1949                              u64 addr, u64 phys_addr)
1950 {
1951         struct addr_location al;
1952 
1953         memset(&al, 0, sizeof(al));
1954 
1955         thread__find_symbol(thread, m, addr, &al);
1956 
1957         ams->addr = addr;
1958         ams->al_addr = al.addr;
1959         ams->sym = al.sym;
1960         ams->map = al.map;
1961         ams->phys_addr = phys_addr;
1962 }
1963 
1964 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1965                                      struct addr_location *al)
1966 {
1967         struct mem_info *mi = mem_info__new();
1968 
1969         if (!mi)
1970                 return NULL;
1971 
1972         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1973         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1974                          sample->addr, sample->phys_addr);
1975         mi->data_src.val = sample->data_src;
1976 
1977         return mi;
1978 }
1979 
1980 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1981 {
1982         char *srcline = NULL;
1983 
1984         if (!map || callchain_param.key == CCKEY_FUNCTION)
1985                 return srcline;
1986 
1987         srcline = srcline__tree_find(&map->dso->srclines, ip);
1988         if (!srcline) {
1989                 bool show_sym = false;
1990                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1991 
1992                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1993                                       sym, show_sym, show_addr, ip);
1994                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1995         }
1996 
1997         return srcline;
1998 }
1999 
2000 struct iterations {
2001         int nr_loop_iter;
2002         u64 cycles;
2003 };
2004 
2005 static int add_callchain_ip(struct thread *thread,
2006                             struct callchain_cursor *cursor,
2007                             struct symbol **parent,
2008                             struct addr_location *root_al,
2009                             u8 *cpumode,
2010                             u64 ip,
2011                             bool branch,
2012                             struct branch_flags *flags,
2013                             struct iterations *iter,
2014                             u64 branch_from)
2015 {
2016         struct addr_location al;
2017         int nr_loop_iter = 0;
2018         u64 iter_cycles = 0;
2019         const char *srcline = NULL;
2020 
2021         al.filtered = 0;
2022         al.sym = NULL;
2023         if (!cpumode) {
2024                 thread__find_cpumode_addr_location(thread, ip, &al);
2025         } else {
2026                 if (ip >= PERF_CONTEXT_MAX) {
2027                         switch (ip) {
2028                         case PERF_CONTEXT_HV:
2029                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2030                                 break;
2031                         case PERF_CONTEXT_KERNEL:
2032                                 *cpumode = PERF_RECORD_MISC_KERNEL;
2033                                 break;
2034                         case PERF_CONTEXT_USER:
2035                                 *cpumode = PERF_RECORD_MISC_USER;
2036                                 break;
2037                         default:
2038                                 pr_debug("invalid callchain context: "
2039                                          "%"PRId64"\n", (s64) ip);
2040                                 /*
2041                                  * It seems the callchain is corrupted.
2042                                  * Discard all.
2043                                  */
2044                                 callchain_cursor_reset(cursor);
2045                                 return 1;
2046                         }
2047                         return 0;
2048                 }
2049                 thread__find_symbol(thread, *cpumode, ip, &al);
2050         }
2051 
2052         if (al.sym != NULL) {
2053                 if (perf_hpp_list.parent && !*parent &&
2054                     symbol__match_regex(al.sym, &parent_regex))
2055                         *parent = al.sym;
2056                 else if (have_ignore_callees && root_al &&
2057                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2058                         /* Treat this symbol as the root,
2059                            forgetting its callees. */
2060                         *root_al = al;
2061                         callchain_cursor_reset(cursor);
2062                 }
2063         }
2064 
2065         if (symbol_conf.hide_unresolved && al.sym == NULL)
2066                 return 0;
2067 
2068         if (iter) {
2069                 nr_loop_iter = iter->nr_loop_iter;
2070                 iter_cycles = iter->cycles;
2071         }
2072 
2073         srcline = callchain_srcline(al.map, al.sym, al.addr);
2074         return callchain_cursor_append(cursor, ip, al.map, al.sym,
2075                                        branch, flags, nr_loop_iter,
2076                                        iter_cycles, branch_from, srcline);
2077 }
2078 
2079 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2080                                            struct addr_location *al)
2081 {
2082         unsigned int i;
2083         const struct branch_stack *bs = sample->branch_stack;
2084         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2085 
2086         if (!bi)
2087                 return NULL;
2088 
2089         for (i = 0; i < bs->nr; i++) {
2090                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2091                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2092                 bi[i].flags = bs->entries[i].flags;
2093         }
2094         return bi;
2095 }
2096 
2097 static void save_iterations(struct iterations *iter,
2098                             struct branch_entry *be, int nr)
2099 {
2100         int i;
2101 
2102         iter->nr_loop_iter++;
2103         iter->cycles = 0;
2104 
2105         for (i = 0; i < nr; i++)
2106                 iter->cycles += be[i].flags.cycles;
2107 }
2108 
2109 #define CHASHSZ 127
2110 #define CHASHBITS 7
2111 #define NO_ENTRY 0xff
2112 
2113 #define PERF_MAX_BRANCH_DEPTH 127
2114 
2115 /* Remove loops. */
2116 static int remove_loops(struct branch_entry *l, int nr,
2117                         struct iterations *iter)
2118 {
2119         int i, j, off;
2120         unsigned char chash[CHASHSZ];
2121 
2122         memset(chash, NO_ENTRY, sizeof(chash));
2123 
2124         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2125 
2126         for (i = 0; i < nr; i++) {
2127                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2128 
2129                 /* no collision handling for now */
2130                 if (chash[h] == NO_ENTRY) {
2131                         chash[h] = i;
2132                 } else if (l[chash[h]].from == l[i].from) {
2133                         bool is_loop = true;
2134                         /* check if it is a real loop */
2135                         off = 0;
2136                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
2137                                 if (l[j].from != l[i + off].from) {
2138                                         is_loop = false;
2139                                         break;
2140                                 }
2141                         if (is_loop) {
2142                                 j = nr - (i + off);
2143                                 if (j > 0) {
2144                                         save_iterations(iter + i + off,
2145                                                 l + i, off);
2146 
2147                                         memmove(iter + i, iter + i + off,
2148                                                 j * sizeof(*iter));
2149 
2150                                         memmove(l + i, l + i + off,
2151                                                 j * sizeof(*l));
2152                                 }
2153 
2154                                 nr -= off;
2155                         }
2156                 }
2157         }
2158         return nr;
2159 }
2160 
2161 /*
2162  * Recolve LBR callstack chain sample
2163  * Return:
2164  * 1 on success get LBR callchain information
2165  * 0 no available LBR callchain information, should try fp
2166  * negative error code on other errors.
2167  */
2168 static int resolve_lbr_callchain_sample(struct thread *thread,
2169                                         struct callchain_cursor *cursor,
2170                                         struct perf_sample *sample,
2171                                         struct symbol **parent,
2172                                         struct addr_location *root_al,
2173                                         int max_stack)
2174 {
2175         struct ip_callchain *chain = sample->callchain;
2176         int chain_nr = min(max_stack, (int)chain->nr), i;
2177         u8 cpumode = PERF_RECORD_MISC_USER;
2178         u64 ip, branch_from = 0;
2179 
2180         for (i = 0; i < chain_nr; i++) {
2181                 if (chain->ips[i] == PERF_CONTEXT_USER)
2182                         break;
2183         }
2184 
2185         /* LBR only affects the user callchain */
2186         if (i != chain_nr) {
2187                 struct branch_stack *lbr_stack = sample->branch_stack;
2188                 int lbr_nr = lbr_stack->nr, j, k;
2189                 bool branch;
2190                 struct branch_flags *flags;
2191                 /*
2192                  * LBR callstack can only get user call chain.
2193                  * The mix_chain_nr is kernel call chain
2194                  * number plus LBR user call chain number.
2195                  * i is kernel call chain number,
2196                  * 1 is PERF_CONTEXT_USER,
2197                  * lbr_nr + 1 is the user call chain number.
2198                  * For details, please refer to the comments
2199                  * in callchain__printf
2200                  */
2201                 int mix_chain_nr = i + 1 + lbr_nr + 1;
2202 
2203                 for (j = 0; j < mix_chain_nr; j++) {
2204                         int err;
2205                         branch = false;
2206                         flags = NULL;
2207 
2208                         if (callchain_param.order == ORDER_CALLEE) {
2209                                 if (j < i + 1)
2210                                         ip = chain->ips[j];
2211                                 else if (j > i + 1) {
2212                                         k = j - i - 2;
2213                                         ip = lbr_stack->entries[k].from;
2214                                         branch = true;
2215                                         flags = &lbr_stack->entries[k].flags;
2216                                 } else {
2217                                         ip = lbr_stack->entries[0].to;
2218                                         branch = true;
2219                                         flags = &lbr_stack->entries[0].flags;
2220                                         branch_from =
2221                                                 lbr_stack->entries[0].from;
2222                                 }
2223                         } else {
2224                                 if (j < lbr_nr) {
2225                                         k = lbr_nr - j - 1;
2226                                         ip = lbr_stack->entries[k].from;
2227                                         branch = true;
2228                                         flags = &lbr_stack->entries[k].flags;
2229                                 }
2230                                 else if (j > lbr_nr)
2231                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
2232                                 else {
2233                                         ip = lbr_stack->entries[0].to;
2234                                         branch = true;
2235                                         flags = &lbr_stack->entries[0].flags;
2236                                         branch_from =
2237                                                 lbr_stack->entries[0].from;
2238                                 }
2239                         }
2240 
2241                         err = add_callchain_ip(thread, cursor, parent,
2242                                                root_al, &cpumode, ip,
2243                                                branch, flags, NULL,
2244                                                branch_from);
2245                         if (err)
2246                                 return (err < 0) ? err : 0;
2247                 }
2248                 return 1;
2249         }
2250 
2251         return 0;
2252 }
2253 
2254 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2255                              struct callchain_cursor *cursor,
2256                              struct symbol **parent,
2257                              struct addr_location *root_al,
2258                              u8 *cpumode, int ent)
2259 {
2260         int err = 0;
2261 
2262         while (--ent >= 0) {
2263                 u64 ip = chain->ips[ent];
2264 
2265                 if (ip >= PERF_CONTEXT_MAX) {
2266                         err = add_callchain_ip(thread, cursor, parent,
2267                                                root_al, cpumode, ip,
2268                                                false, NULL, NULL, 0);
2269                         break;
2270                 }
2271         }
2272         return err;
2273 }
2274 
2275 static int thread__resolve_callchain_sample(struct thread *thread,
2276                                             struct callchain_cursor *cursor,
2277                                             struct evsel *evsel,
2278                                             struct perf_sample *sample,
2279                                             struct symbol **parent,
2280                                             struct addr_location *root_al,
2281                                             int max_stack)
2282 {
2283         struct branch_stack *branch = sample->branch_stack;
2284         struct ip_callchain *chain = sample->callchain;
2285         int chain_nr = 0;
2286         u8 cpumode = PERF_RECORD_MISC_USER;
2287         int i, j, err, nr_entries;
2288         int skip_idx = -1;
2289         int first_call = 0;
2290 
2291         if (chain)
2292                 chain_nr = chain->nr;
2293 
2294         if (perf_evsel__has_branch_callstack(evsel)) {
2295                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2296                                                    root_al, max_stack);
2297                 if (err)
2298                         return (err < 0) ? err : 0;
2299         }
2300 
2301         /*
2302          * Based on DWARF debug information, some architectures skip
2303          * a callchain entry saved by the kernel.
2304          */
2305         skip_idx = arch_skip_callchain_idx(thread, chain);
2306 
2307         /*
2308          * Add branches to call stack for easier browsing. This gives
2309          * more context for a sample than just the callers.
2310          *
2311          * This uses individual histograms of paths compared to the
2312          * aggregated histograms the normal LBR mode uses.
2313          *
2314          * Limitations for now:
2315          * - No extra filters
2316          * - No annotations (should annotate somehow)
2317          */
2318 
2319         if (branch && callchain_param.branch_callstack) {
2320                 int nr = min(max_stack, (int)branch->nr);
2321                 struct branch_entry be[nr];
2322                 struct iterations iter[nr];
2323 
2324                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2325                         pr_warning("corrupted branch chain. skipping...\n");
2326                         goto check_calls;
2327                 }
2328 
2329                 for (i = 0; i < nr; i++) {
2330                         if (callchain_param.order == ORDER_CALLEE) {
2331                                 be[i] = branch->entries[i];
2332 
2333                                 if (chain == NULL)
2334                                         continue;
2335 
2336                                 /*
2337                                  * Check for overlap into the callchain.
2338                                  * The return address is one off compared to
2339                                  * the branch entry. To adjust for this
2340                                  * assume the calling instruction is not longer
2341                                  * than 8 bytes.
2342                                  */
2343                                 if (i == skip_idx ||
2344                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2345                                         first_call++;
2346                                 else if (be[i].from < chain->ips[first_call] &&
2347                                     be[i].from >= chain->ips[first_call] - 8)
2348                                         first_call++;
2349                         } else
2350                                 be[i] = branch->entries[branch->nr - i - 1];
2351                 }
2352 
2353                 memset(iter, 0, sizeof(struct iterations) * nr);
2354                 nr = remove_loops(be, nr, iter);
2355 
2356                 for (i = 0; i < nr; i++) {
2357                         err = add_callchain_ip(thread, cursor, parent,
2358                                                root_al,
2359                                                NULL, be[i].to,
2360                                                true, &be[i].flags,
2361                                                NULL, be[i].from);
2362 
2363                         if (!err)
2364                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2365                                                        NULL, be[i].from,
2366                                                        true, &be[i].flags,
2367                                                        &iter[i], 0);
2368                         if (err == -EINVAL)
2369                                 break;
2370                         if (err)
2371                                 return err;
2372                 }
2373 
2374                 if (chain_nr == 0)
2375                         return 0;
2376 
2377                 chain_nr -= nr;
2378         }
2379 
2380 check_calls:
2381         if (chain && callchain_param.order != ORDER_CALLEE) {
2382                 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2383                                         &cpumode, chain->nr - first_call);
2384                 if (err)
2385                         return (err < 0) ? err : 0;
2386         }
2387         for (i = first_call, nr_entries = 0;
2388              i < chain_nr && nr_entries < max_stack; i++) {
2389                 u64 ip;
2390 
2391                 if (callchain_param.order == ORDER_CALLEE)
2392                         j = i;
2393                 else
2394                         j = chain->nr - i - 1;
2395 
2396 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2397                 if (j == skip_idx)
2398                         continue;
2399 #endif
2400                 ip = chain->ips[j];
2401                 if (ip < PERF_CONTEXT_MAX)
2402                        ++nr_entries;
2403                 else if (callchain_param.order != ORDER_CALLEE) {
2404                         err = find_prev_cpumode(chain, thread, cursor, parent,
2405                                                 root_al, &cpumode, j);
2406                         if (err)
2407                                 return (err < 0) ? err : 0;
2408                         continue;
2409                 }
2410 
2411                 err = add_callchain_ip(thread, cursor, parent,
2412                                        root_al, &cpumode, ip,
2413                                        false, NULL, NULL, 0);
2414 
2415                 if (err)
2416                         return (err < 0) ? err : 0;
2417         }
2418 
2419         return 0;
2420 }
2421 
2422 static int append_inlines(struct callchain_cursor *cursor,
2423                           struct map *map, struct symbol *sym, u64 ip)
2424 {
2425         struct inline_node *inline_node;
2426         struct inline_list *ilist;
2427         u64 addr;
2428         int ret = 1;
2429 
2430         if (!symbol_conf.inline_name || !map || !sym)
2431                 return ret;
2432 
2433         addr = map__map_ip(map, ip);
2434         addr = map__rip_2objdump(map, addr);
2435 
2436         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2437         if (!inline_node) {
2438                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2439                 if (!inline_node)
2440                         return ret;
2441                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2442         }
2443 
2444         list_for_each_entry(ilist, &inline_node->val, list) {
2445                 ret = callchain_cursor_append(cursor, ip, map,
2446                                               ilist->symbol, false,
2447                                               NULL, 0, 0, 0, ilist->srcline);
2448 
2449                 if (ret != 0)
2450                         return ret;
2451         }
2452 
2453         return ret;
2454 }
2455 
2456 static int unwind_entry(struct unwind_entry *entry, void *arg)
2457 {
2458         struct callchain_cursor *cursor = arg;
2459         const char *srcline = NULL;
2460         u64 addr = entry->ip;
2461 
2462         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2463                 return 0;
2464 
2465         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2466                 return 0;
2467 
2468         /*
2469          * Convert entry->ip from a virtual address to an offset in
2470          * its corresponding binary.
2471          */
2472         if (entry->map)
2473                 addr = map__map_ip(entry->map, entry->ip);
2474 
2475         srcline = callchain_srcline(entry->map, entry->sym, addr);
2476         return callchain_cursor_append(cursor, entry->ip,
2477                                        entry->map, entry->sym,
2478                                        false, NULL, 0, 0, 0, srcline);
2479 }
2480 
2481 static int thread__resolve_callchain_unwind(struct thread *thread,
2482                                             struct callchain_cursor *cursor,
2483                                             struct evsel *evsel,
2484                                             struct perf_sample *sample,
2485                                             int max_stack)
2486 {
2487         /* Can we do dwarf post unwind? */
2488         if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2489               (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2490                 return 0;
2491 
2492         /* Bail out if nothing was captured. */
2493         if ((!sample->user_regs.regs) ||
2494             (!sample->user_stack.size))
2495                 return 0;
2496 
2497         return unwind__get_entries(unwind_entry, cursor,
2498                                    thread, sample, max_stack);
2499 }
2500 
2501 int thread__resolve_callchain(struct thread *thread,
2502                               struct callchain_cursor *cursor,
2503                               struct evsel *evsel,
2504                               struct perf_sample *sample,
2505                               struct symbol **parent,
2506                               struct addr_location *root_al,
2507                               int max_stack)
2508 {
2509         int ret = 0;
2510 
2511         callchain_cursor_reset(cursor);
2512 
2513         if (callchain_param.order == ORDER_CALLEE) {
2514                 ret = thread__resolve_callchain_sample(thread, cursor,
2515                                                        evsel, sample,
2516                                                        parent, root_al,
2517                                                        max_stack);
2518                 if (ret)
2519                         return ret;
2520                 ret = thread__resolve_callchain_unwind(thread, cursor,
2521                                                        evsel, sample,
2522                                                        max_stack);
2523         } else {
2524                 ret = thread__resolve_callchain_unwind(thread, cursor,
2525                                                        evsel, sample,
2526                                                        max_stack);
2527                 if (ret)
2528                         return ret;
2529                 ret = thread__resolve_callchain_sample(thread, cursor,
2530                                                        evsel, sample,
2531                                                        parent, root_al,
2532                                                        max_stack);
2533         }
2534 
2535         return ret;
2536 }
2537 
2538 int machine__for_each_thread(struct machine *machine,
2539                              int (*fn)(struct thread *thread, void *p),
2540                              void *priv)
2541 {
2542         struct threads *threads;
2543         struct rb_node *nd;
2544         struct thread *thread;
2545         int rc = 0;
2546         int i;
2547 
2548         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2549                 threads = &machine->threads[i];
2550                 for (nd = rb_first_cached(&threads->entries); nd;
2551                      nd = rb_next(nd)) {
2552                         thread = rb_entry(nd, struct thread, rb_node);
2553                         rc = fn(thread, priv);
2554                         if (rc != 0)
2555                                 return rc;
2556                 }
2557 
2558                 list_for_each_entry(thread, &threads->dead, node) {
2559                         rc = fn(thread, priv);
2560                         if (rc != 0)
2561                                 return rc;
2562                 }
2563         }
2564         return rc;
2565 }
2566 
2567 int machines__for_each_thread(struct machines *machines,
2568                               int (*fn)(struct thread *thread, void *p),
2569                               void *priv)
2570 {
2571         struct rb_node *nd;
2572         int rc = 0;
2573 
2574         rc = machine__for_each_thread(&machines->host, fn, priv);
2575         if (rc != 0)
2576                 return rc;
2577 
2578         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2579                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2580 
2581                 rc = machine__for_each_thread(machine, fn, priv);
2582                 if (rc != 0)
2583                         return rc;
2584         }
2585         return rc;
2586 }
2587 
2588 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2589 {
2590         int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2591 
2592         if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2593                 return -1;
2594 
2595         return machine->current_tid[cpu];
2596 }
2597 
2598 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2599                              pid_t tid)
2600 {
2601         struct thread *thread;
2602         int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2603 
2604         if (cpu < 0)
2605                 return -EINVAL;
2606 
2607         if (!machine->current_tid) {
2608                 int i;
2609 
2610                 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2611                 if (!machine->current_tid)
2612                         return -ENOMEM;
2613                 for (i = 0; i < nr_cpus; i++)
2614                         machine->current_tid[i] = -1;
2615         }
2616 
2617         if (cpu >= nr_cpus) {
2618                 pr_err("Requested CPU %d too large. ", cpu);
2619                 pr_err("Consider raising MAX_NR_CPUS\n");
2620                 return -EINVAL;
2621         }
2622 
2623         machine->current_tid[cpu] = tid;
2624 
2625         thread = machine__findnew_thread(machine, pid, tid);
2626         if (!thread)
2627                 return -ENOMEM;
2628 
2629         thread->cpu = cpu;
2630         thread__put(thread);
2631 
2632         return 0;
2633 }
2634 
2635 /*
2636  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2637  * normalized arch is needed.
2638  */
2639 bool machine__is(struct machine *machine, const char *arch)
2640 {
2641         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2642 }
2643 
2644 int machine__nr_cpus_avail(struct machine *machine)
2645 {
2646         return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2647 }
2648 
2649 int machine__get_kernel_start(struct machine *machine)
2650 {
2651         struct map *map = machine__kernel_map(machine);
2652         int err = 0;
2653 
2654         /*
2655          * The only addresses above 2^63 are kernel addresses of a 64-bit
2656          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2657          * all addresses including kernel addresses are less than 2^32.  In
2658          * that case (32-bit system), if the kernel mapping is unknown, all
2659          * addresses will be assumed to be in user space - see
2660          * machine__kernel_ip().
2661          */
2662         machine->kernel_start = 1ULL << 63;
2663         if (map) {
2664                 err = map__load(map);
2665                 /*
2666                  * On x86_64, PTI entry trampolines are less than the
2667                  * start of kernel text, but still above 2^63. So leave
2668                  * kernel_start = 1ULL << 63 for x86_64.
2669                  */
2670                 if (!err && !machine__is(machine, "x86_64"))
2671                         machine->kernel_start = map->start;
2672         }
2673         return err;
2674 }
2675 
2676 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2677 {
2678         u8 addr_cpumode = cpumode;
2679         bool kernel_ip;
2680 
2681         if (!machine->single_address_space)
2682                 goto out;
2683 
2684         kernel_ip = machine__kernel_ip(machine, addr);
2685         switch (cpumode) {
2686         case PERF_RECORD_MISC_KERNEL:
2687         case PERF_RECORD_MISC_USER:
2688                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2689                                            PERF_RECORD_MISC_USER;
2690                 break;
2691         case PERF_RECORD_MISC_GUEST_KERNEL:
2692         case PERF_RECORD_MISC_GUEST_USER:
2693                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2694                                            PERF_RECORD_MISC_GUEST_USER;
2695                 break;
2696         default:
2697                 break;
2698         }
2699 out:
2700         return addr_cpumode;
2701 }
2702 
2703 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2704 {
2705         return dsos__findnew(&machine->dsos, filename);
2706 }
2707 
2708 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2709 {
2710         struct machine *machine = vmachine;
2711         struct map *map;
2712         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2713 
2714         if (sym == NULL)
2715                 return NULL;
2716 
2717         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2718         *addrp = map->unmap_ip(map, sym->start);
2719         return sym->name;
2720 }

/* [<][>][^][v][top][bottom][index][help] */