root/tools/perf/builtin-timechart.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. find_create_pid
  2. pid_set_comm
  3. pid_fork
  4. pid_exit
  5. pid_put_sample
  6. process_comm_event
  7. process_fork_event
  8. process_exit_event
  9. c_state_start
  10. c_state_end
  11. p_state_change
  12. sched_wakeup
  13. sched_switch
  14. cat_backtrace
  15. process_sample_event
  16. process_sample_cpu_idle
  17. process_sample_cpu_frequency
  18. process_sample_sched_wakeup
  19. process_sample_sched_switch
  20. process_sample_power_start
  21. process_sample_power_end
  22. process_sample_power_frequency
  23. end_sample_processing
  24. pid_begin_io_sample
  25. pid_end_io_sample
  26. process_enter_read
  27. process_exit_read
  28. process_enter_write
  29. process_exit_write
  30. process_enter_sync
  31. process_exit_sync
  32. process_enter_tx
  33. process_exit_tx
  34. process_enter_rx
  35. process_exit_rx
  36. process_enter_poll
  37. process_exit_poll
  38. sort_pids
  39. draw_c_p_states
  40. draw_wakeups
  41. draw_cpu_usage
  42. draw_io_bars
  43. draw_process_bars
  44. add_process_filter
  45. passes_filter
  46. determine_display_tasks_filtered
  47. determine_display_tasks
  48. determine_display_io_tasks
  49. write_svg_file
  50. process_header
  51. __cmd_timechart
  52. timechart__io_record
  53. timechart__record
  54. parse_process
  55. parse_highlight
  56. parse_time
  57. cmd_timechart

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * builtin-timechart.c - make an svg timechart of system activity
   4  *
   5  * (C) Copyright 2009 Intel Corporation
   6  *
   7  * Authors:
   8  *     Arjan van de Ven <arjan@linux.intel.com>
   9  */
  10 
  11 #include <errno.h>
  12 #include <inttypes.h>
  13 
  14 #include "builtin.h"
  15 #include "util/color.h"
  16 #include <linux/list.h>
  17 #include "util/evlist.h" // for struct evsel_str_handler
  18 #include "util/evsel.h"
  19 #include <linux/kernel.h>
  20 #include <linux/rbtree.h>
  21 #include <linux/time64.h>
  22 #include <linux/zalloc.h>
  23 #include "util/symbol.h"
  24 #include "util/thread.h"
  25 #include "util/callchain.h"
  26 
  27 #include "perf.h"
  28 #include "util/header.h"
  29 #include <subcmd/pager.h>
  30 #include <subcmd/parse-options.h>
  31 #include "util/parse-events.h"
  32 #include "util/event.h"
  33 #include "util/session.h"
  34 #include "util/svghelper.h"
  35 #include "util/tool.h"
  36 #include "util/data.h"
  37 #include "util/debug.h"
  38 #include <linux/err.h>
  39 
  40 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  41 FILE *open_memstream(char **ptr, size_t *sizeloc);
  42 #endif
  43 
  44 #define SUPPORT_OLD_POWER_EVENTS 1
  45 #define PWR_EVENT_EXIT -1
  46 
  47 struct per_pid;
  48 struct power_event;
  49 struct wake_event;
  50 
  51 struct timechart {
  52         struct perf_tool        tool;
  53         struct per_pid          *all_data;
  54         struct power_event      *power_events;
  55         struct wake_event       *wake_events;
  56         int                     proc_num;
  57         unsigned int            numcpus;
  58         u64                     min_freq,       /* Lowest CPU frequency seen */
  59                                 max_freq,       /* Highest CPU frequency seen */
  60                                 turbo_frequency,
  61                                 first_time, last_time;
  62         bool                    power_only,
  63                                 tasks_only,
  64                                 with_backtrace,
  65                                 topology;
  66         bool                    force;
  67         /* IO related settings */
  68         bool                    io_only,
  69                                 skip_eagain;
  70         u64                     io_events;
  71         u64                     min_time,
  72                                 merge_dist;
  73 };
  74 
  75 struct per_pidcomm;
  76 struct cpu_sample;
  77 struct io_sample;
  78 
  79 /*
  80  * Datastructure layout:
  81  * We keep an list of "pid"s, matching the kernels notion of a task struct.
  82  * Each "pid" entry, has a list of "comm"s.
  83  *      this is because we want to track different programs different, while
  84  *      exec will reuse the original pid (by design).
  85  * Each comm has a list of samples that will be used to draw
  86  * final graph.
  87  */
  88 
  89 struct per_pid {
  90         struct per_pid *next;
  91 
  92         int             pid;
  93         int             ppid;
  94 
  95         u64             start_time;
  96         u64             end_time;
  97         u64             total_time;
  98         u64             total_bytes;
  99         int             display;
 100 
 101         struct per_pidcomm *all;
 102         struct per_pidcomm *current;
 103 };
 104 
 105 
 106 struct per_pidcomm {
 107         struct per_pidcomm *next;
 108 
 109         u64             start_time;
 110         u64             end_time;
 111         u64             total_time;
 112         u64             max_bytes;
 113         u64             total_bytes;
 114 
 115         int             Y;
 116         int             display;
 117 
 118         long            state;
 119         u64             state_since;
 120 
 121         char            *comm;
 122 
 123         struct cpu_sample *samples;
 124         struct io_sample  *io_samples;
 125 };
 126 
 127 struct sample_wrapper {
 128         struct sample_wrapper *next;
 129 
 130         u64             timestamp;
 131         unsigned char   data[0];
 132 };
 133 
 134 #define TYPE_NONE       0
 135 #define TYPE_RUNNING    1
 136 #define TYPE_WAITING    2
 137 #define TYPE_BLOCKED    3
 138 
 139 struct cpu_sample {
 140         struct cpu_sample *next;
 141 
 142         u64 start_time;
 143         u64 end_time;
 144         int type;
 145         int cpu;
 146         const char *backtrace;
 147 };
 148 
 149 enum {
 150         IOTYPE_READ,
 151         IOTYPE_WRITE,
 152         IOTYPE_SYNC,
 153         IOTYPE_TX,
 154         IOTYPE_RX,
 155         IOTYPE_POLL,
 156 };
 157 
 158 struct io_sample {
 159         struct io_sample *next;
 160 
 161         u64 start_time;
 162         u64 end_time;
 163         u64 bytes;
 164         int type;
 165         int fd;
 166         int err;
 167         int merges;
 168 };
 169 
 170 #define CSTATE 1
 171 #define PSTATE 2
 172 
 173 struct power_event {
 174         struct power_event *next;
 175         int type;
 176         int state;
 177         u64 start_time;
 178         u64 end_time;
 179         int cpu;
 180 };
 181 
 182 struct wake_event {
 183         struct wake_event *next;
 184         int waker;
 185         int wakee;
 186         u64 time;
 187         const char *backtrace;
 188 };
 189 
 190 struct process_filter {
 191         char                    *name;
 192         int                     pid;
 193         struct process_filter   *next;
 194 };
 195 
 196 static struct process_filter *process_filter;
 197 
 198 
 199 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 200 {
 201         struct per_pid *cursor = tchart->all_data;
 202 
 203         while (cursor) {
 204                 if (cursor->pid == pid)
 205                         return cursor;
 206                 cursor = cursor->next;
 207         }
 208         cursor = zalloc(sizeof(*cursor));
 209         assert(cursor != NULL);
 210         cursor->pid = pid;
 211         cursor->next = tchart->all_data;
 212         tchart->all_data = cursor;
 213         return cursor;
 214 }
 215 
 216 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 217 {
 218         struct per_pid *p;
 219         struct per_pidcomm *c;
 220         p = find_create_pid(tchart, pid);
 221         c = p->all;
 222         while (c) {
 223                 if (c->comm && strcmp(c->comm, comm) == 0) {
 224                         p->current = c;
 225                         return;
 226                 }
 227                 if (!c->comm) {
 228                         c->comm = strdup(comm);
 229                         p->current = c;
 230                         return;
 231                 }
 232                 c = c->next;
 233         }
 234         c = zalloc(sizeof(*c));
 235         assert(c != NULL);
 236         c->comm = strdup(comm);
 237         p->current = c;
 238         c->next = p->all;
 239         p->all = c;
 240 }
 241 
 242 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 243 {
 244         struct per_pid *p, *pp;
 245         p = find_create_pid(tchart, pid);
 246         pp = find_create_pid(tchart, ppid);
 247         p->ppid = ppid;
 248         if (pp->current && pp->current->comm && !p->current)
 249                 pid_set_comm(tchart, pid, pp->current->comm);
 250 
 251         p->start_time = timestamp;
 252         if (p->current && !p->current->start_time) {
 253                 p->current->start_time = timestamp;
 254                 p->current->state_since = timestamp;
 255         }
 256 }
 257 
 258 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 259 {
 260         struct per_pid *p;
 261         p = find_create_pid(tchart, pid);
 262         p->end_time = timestamp;
 263         if (p->current)
 264                 p->current->end_time = timestamp;
 265 }
 266 
 267 static void pid_put_sample(struct timechart *tchart, int pid, int type,
 268                            unsigned int cpu, u64 start, u64 end,
 269                            const char *backtrace)
 270 {
 271         struct per_pid *p;
 272         struct per_pidcomm *c;
 273         struct cpu_sample *sample;
 274 
 275         p = find_create_pid(tchart, pid);
 276         c = p->current;
 277         if (!c) {
 278                 c = zalloc(sizeof(*c));
 279                 assert(c != NULL);
 280                 p->current = c;
 281                 c->next = p->all;
 282                 p->all = c;
 283         }
 284 
 285         sample = zalloc(sizeof(*sample));
 286         assert(sample != NULL);
 287         sample->start_time = start;
 288         sample->end_time = end;
 289         sample->type = type;
 290         sample->next = c->samples;
 291         sample->cpu = cpu;
 292         sample->backtrace = backtrace;
 293         c->samples = sample;
 294 
 295         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 296                 c->total_time += (end-start);
 297                 p->total_time += (end-start);
 298         }
 299 
 300         if (c->start_time == 0 || c->start_time > start)
 301                 c->start_time = start;
 302         if (p->start_time == 0 || p->start_time > start)
 303                 p->start_time = start;
 304 }
 305 
 306 #define MAX_CPUS 4096
 307 
 308 static u64 cpus_cstate_start_times[MAX_CPUS];
 309 static int cpus_cstate_state[MAX_CPUS];
 310 static u64 cpus_pstate_start_times[MAX_CPUS];
 311 static u64 cpus_pstate_state[MAX_CPUS];
 312 
 313 static int process_comm_event(struct perf_tool *tool,
 314                               union perf_event *event,
 315                               struct perf_sample *sample __maybe_unused,
 316                               struct machine *machine __maybe_unused)
 317 {
 318         struct timechart *tchart = container_of(tool, struct timechart, tool);
 319         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 320         return 0;
 321 }
 322 
 323 static int process_fork_event(struct perf_tool *tool,
 324                               union perf_event *event,
 325                               struct perf_sample *sample __maybe_unused,
 326                               struct machine *machine __maybe_unused)
 327 {
 328         struct timechart *tchart = container_of(tool, struct timechart, tool);
 329         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 330         return 0;
 331 }
 332 
 333 static int process_exit_event(struct perf_tool *tool,
 334                               union perf_event *event,
 335                               struct perf_sample *sample __maybe_unused,
 336                               struct machine *machine __maybe_unused)
 337 {
 338         struct timechart *tchart = container_of(tool, struct timechart, tool);
 339         pid_exit(tchart, event->fork.pid, event->fork.time);
 340         return 0;
 341 }
 342 
 343 #ifdef SUPPORT_OLD_POWER_EVENTS
 344 static int use_old_power_events;
 345 #endif
 346 
 347 static void c_state_start(int cpu, u64 timestamp, int state)
 348 {
 349         cpus_cstate_start_times[cpu] = timestamp;
 350         cpus_cstate_state[cpu] = state;
 351 }
 352 
 353 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 354 {
 355         struct power_event *pwr = zalloc(sizeof(*pwr));
 356 
 357         if (!pwr)
 358                 return;
 359 
 360         pwr->state = cpus_cstate_state[cpu];
 361         pwr->start_time = cpus_cstate_start_times[cpu];
 362         pwr->end_time = timestamp;
 363         pwr->cpu = cpu;
 364         pwr->type = CSTATE;
 365         pwr->next = tchart->power_events;
 366 
 367         tchart->power_events = pwr;
 368 }
 369 
 370 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 371 {
 372         struct power_event *pwr;
 373 
 374         if (new_freq > 8000000) /* detect invalid data */
 375                 return;
 376 
 377         pwr = zalloc(sizeof(*pwr));
 378         if (!pwr)
 379                 return;
 380 
 381         pwr->state = cpus_pstate_state[cpu];
 382         pwr->start_time = cpus_pstate_start_times[cpu];
 383         pwr->end_time = timestamp;
 384         pwr->cpu = cpu;
 385         pwr->type = PSTATE;
 386         pwr->next = tchart->power_events;
 387 
 388         if (!pwr->start_time)
 389                 pwr->start_time = tchart->first_time;
 390 
 391         tchart->power_events = pwr;
 392 
 393         cpus_pstate_state[cpu] = new_freq;
 394         cpus_pstate_start_times[cpu] = timestamp;
 395 
 396         if ((u64)new_freq > tchart->max_freq)
 397                 tchart->max_freq = new_freq;
 398 
 399         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 400                 tchart->min_freq = new_freq;
 401 
 402         if (new_freq == tchart->max_freq - 1000)
 403                 tchart->turbo_frequency = tchart->max_freq;
 404 }
 405 
 406 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 407                          int waker, int wakee, u8 flags, const char *backtrace)
 408 {
 409         struct per_pid *p;
 410         struct wake_event *we = zalloc(sizeof(*we));
 411 
 412         if (!we)
 413                 return;
 414 
 415         we->time = timestamp;
 416         we->waker = waker;
 417         we->backtrace = backtrace;
 418 
 419         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 420                 we->waker = -1;
 421 
 422         we->wakee = wakee;
 423         we->next = tchart->wake_events;
 424         tchart->wake_events = we;
 425         p = find_create_pid(tchart, we->wakee);
 426 
 427         if (p && p->current && p->current->state == TYPE_NONE) {
 428                 p->current->state_since = timestamp;
 429                 p->current->state = TYPE_WAITING;
 430         }
 431         if (p && p->current && p->current->state == TYPE_BLOCKED) {
 432                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
 433                                p->current->state_since, timestamp, NULL);
 434                 p->current->state_since = timestamp;
 435                 p->current->state = TYPE_WAITING;
 436         }
 437 }
 438 
 439 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 440                          int prev_pid, int next_pid, u64 prev_state,
 441                          const char *backtrace)
 442 {
 443         struct per_pid *p = NULL, *prev_p;
 444 
 445         prev_p = find_create_pid(tchart, prev_pid);
 446 
 447         p = find_create_pid(tchart, next_pid);
 448 
 449         if (prev_p->current && prev_p->current->state != TYPE_NONE)
 450                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 451                                prev_p->current->state_since, timestamp,
 452                                backtrace);
 453         if (p && p->current) {
 454                 if (p->current->state != TYPE_NONE)
 455                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
 456                                        p->current->state_since, timestamp,
 457                                        backtrace);
 458 
 459                 p->current->state_since = timestamp;
 460                 p->current->state = TYPE_RUNNING;
 461         }
 462 
 463         if (prev_p->current) {
 464                 prev_p->current->state = TYPE_NONE;
 465                 prev_p->current->state_since = timestamp;
 466                 if (prev_state & 2)
 467                         prev_p->current->state = TYPE_BLOCKED;
 468                 if (prev_state == 0)
 469                         prev_p->current->state = TYPE_WAITING;
 470         }
 471 }
 472 
 473 static const char *cat_backtrace(union perf_event *event,
 474                                  struct perf_sample *sample,
 475                                  struct machine *machine)
 476 {
 477         struct addr_location al;
 478         unsigned int i;
 479         char *p = NULL;
 480         size_t p_len;
 481         u8 cpumode = PERF_RECORD_MISC_USER;
 482         struct addr_location tal;
 483         struct ip_callchain *chain = sample->callchain;
 484         FILE *f = open_memstream(&p, &p_len);
 485 
 486         if (!f) {
 487                 perror("open_memstream error");
 488                 return NULL;
 489         }
 490 
 491         if (!chain)
 492                 goto exit;
 493 
 494         if (machine__resolve(machine, &al, sample) < 0) {
 495                 fprintf(stderr, "problem processing %d event, skipping it.\n",
 496                         event->header.type);
 497                 goto exit;
 498         }
 499 
 500         for (i = 0; i < chain->nr; i++) {
 501                 u64 ip;
 502 
 503                 if (callchain_param.order == ORDER_CALLEE)
 504                         ip = chain->ips[i];
 505                 else
 506                         ip = chain->ips[chain->nr - i - 1];
 507 
 508                 if (ip >= PERF_CONTEXT_MAX) {
 509                         switch (ip) {
 510                         case PERF_CONTEXT_HV:
 511                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
 512                                 break;
 513                         case PERF_CONTEXT_KERNEL:
 514                                 cpumode = PERF_RECORD_MISC_KERNEL;
 515                                 break;
 516                         case PERF_CONTEXT_USER:
 517                                 cpumode = PERF_RECORD_MISC_USER;
 518                                 break;
 519                         default:
 520                                 pr_debug("invalid callchain context: "
 521                                          "%"PRId64"\n", (s64) ip);
 522 
 523                                 /*
 524                                  * It seems the callchain is corrupted.
 525                                  * Discard all.
 526                                  */
 527                                 zfree(&p);
 528                                 goto exit_put;
 529                         }
 530                         continue;
 531                 }
 532 
 533                 tal.filtered = 0;
 534                 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 535                         fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 536                 else
 537                         fprintf(f, "..... %016" PRIx64 "\n", ip);
 538         }
 539 exit_put:
 540         addr_location__put(&al);
 541 exit:
 542         fclose(f);
 543 
 544         return p;
 545 }
 546 
 547 typedef int (*tracepoint_handler)(struct timechart *tchart,
 548                                   struct evsel *evsel,
 549                                   struct perf_sample *sample,
 550                                   const char *backtrace);
 551 
 552 static int process_sample_event(struct perf_tool *tool,
 553                                 union perf_event *event,
 554                                 struct perf_sample *sample,
 555                                 struct evsel *evsel,
 556                                 struct machine *machine)
 557 {
 558         struct timechart *tchart = container_of(tool, struct timechart, tool);
 559 
 560         if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 561                 if (!tchart->first_time || tchart->first_time > sample->time)
 562                         tchart->first_time = sample->time;
 563                 if (tchart->last_time < sample->time)
 564                         tchart->last_time = sample->time;
 565         }
 566 
 567         if (evsel->handler != NULL) {
 568                 tracepoint_handler f = evsel->handler;
 569                 return f(tchart, evsel, sample,
 570                          cat_backtrace(event, sample, machine));
 571         }
 572 
 573         return 0;
 574 }
 575 
 576 static int
 577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 578                         struct evsel *evsel,
 579                         struct perf_sample *sample,
 580                         const char *backtrace __maybe_unused)
 581 {
 582         u32 state = perf_evsel__intval(evsel, sample, "state");
 583         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 584 
 585         if (state == (u32)PWR_EVENT_EXIT)
 586                 c_state_end(tchart, cpu_id, sample->time);
 587         else
 588                 c_state_start(cpu_id, sample->time, state);
 589         return 0;
 590 }
 591 
 592 static int
 593 process_sample_cpu_frequency(struct timechart *tchart,
 594                              struct evsel *evsel,
 595                              struct perf_sample *sample,
 596                              const char *backtrace __maybe_unused)
 597 {
 598         u32 state = perf_evsel__intval(evsel, sample, "state");
 599         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 600 
 601         p_state_change(tchart, cpu_id, sample->time, state);
 602         return 0;
 603 }
 604 
 605 static int
 606 process_sample_sched_wakeup(struct timechart *tchart,
 607                             struct evsel *evsel,
 608                             struct perf_sample *sample,
 609                             const char *backtrace)
 610 {
 611         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 612         int waker = perf_evsel__intval(evsel, sample, "common_pid");
 613         int wakee = perf_evsel__intval(evsel, sample, "pid");
 614 
 615         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 616         return 0;
 617 }
 618 
 619 static int
 620 process_sample_sched_switch(struct timechart *tchart,
 621                             struct evsel *evsel,
 622                             struct perf_sample *sample,
 623                             const char *backtrace)
 624 {
 625         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 626         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 627         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 628 
 629         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 630                      prev_state, backtrace);
 631         return 0;
 632 }
 633 
 634 #ifdef SUPPORT_OLD_POWER_EVENTS
 635 static int
 636 process_sample_power_start(struct timechart *tchart __maybe_unused,
 637                            struct evsel *evsel,
 638                            struct perf_sample *sample,
 639                            const char *backtrace __maybe_unused)
 640 {
 641         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 642         u64 value = perf_evsel__intval(evsel, sample, "value");
 643 
 644         c_state_start(cpu_id, sample->time, value);
 645         return 0;
 646 }
 647 
 648 static int
 649 process_sample_power_end(struct timechart *tchart,
 650                          struct evsel *evsel __maybe_unused,
 651                          struct perf_sample *sample,
 652                          const char *backtrace __maybe_unused)
 653 {
 654         c_state_end(tchart, sample->cpu, sample->time);
 655         return 0;
 656 }
 657 
 658 static int
 659 process_sample_power_frequency(struct timechart *tchart,
 660                                struct evsel *evsel,
 661                                struct perf_sample *sample,
 662                                const char *backtrace __maybe_unused)
 663 {
 664         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 665         u64 value = perf_evsel__intval(evsel, sample, "value");
 666 
 667         p_state_change(tchart, cpu_id, sample->time, value);
 668         return 0;
 669 }
 670 #endif /* SUPPORT_OLD_POWER_EVENTS */
 671 
 672 /*
 673  * After the last sample we need to wrap up the current C/P state
 674  * and close out each CPU for these.
 675  */
 676 static void end_sample_processing(struct timechart *tchart)
 677 {
 678         u64 cpu;
 679         struct power_event *pwr;
 680 
 681         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 682                 /* C state */
 683 #if 0
 684                 pwr = zalloc(sizeof(*pwr));
 685                 if (!pwr)
 686                         return;
 687 
 688                 pwr->state = cpus_cstate_state[cpu];
 689                 pwr->start_time = cpus_cstate_start_times[cpu];
 690                 pwr->end_time = tchart->last_time;
 691                 pwr->cpu = cpu;
 692                 pwr->type = CSTATE;
 693                 pwr->next = tchart->power_events;
 694 
 695                 tchart->power_events = pwr;
 696 #endif
 697                 /* P state */
 698 
 699                 pwr = zalloc(sizeof(*pwr));
 700                 if (!pwr)
 701                         return;
 702 
 703                 pwr->state = cpus_pstate_state[cpu];
 704                 pwr->start_time = cpus_pstate_start_times[cpu];
 705                 pwr->end_time = tchart->last_time;
 706                 pwr->cpu = cpu;
 707                 pwr->type = PSTATE;
 708                 pwr->next = tchart->power_events;
 709 
 710                 if (!pwr->start_time)
 711                         pwr->start_time = tchart->first_time;
 712                 if (!pwr->state)
 713                         pwr->state = tchart->min_freq;
 714                 tchart->power_events = pwr;
 715         }
 716 }
 717 
 718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 719                                u64 start, int fd)
 720 {
 721         struct per_pid *p = find_create_pid(tchart, pid);
 722         struct per_pidcomm *c = p->current;
 723         struct io_sample *sample;
 724         struct io_sample *prev;
 725 
 726         if (!c) {
 727                 c = zalloc(sizeof(*c));
 728                 if (!c)
 729                         return -ENOMEM;
 730                 p->current = c;
 731                 c->next = p->all;
 732                 p->all = c;
 733         }
 734 
 735         prev = c->io_samples;
 736 
 737         if (prev && prev->start_time && !prev->end_time) {
 738                 pr_warning("Skip invalid start event: "
 739                            "previous event already started!\n");
 740 
 741                 /* remove previous event that has been started,
 742                  * we are not sure we will ever get an end for it */
 743                 c->io_samples = prev->next;
 744                 free(prev);
 745                 return 0;
 746         }
 747 
 748         sample = zalloc(sizeof(*sample));
 749         if (!sample)
 750                 return -ENOMEM;
 751         sample->start_time = start;
 752         sample->type = type;
 753         sample->fd = fd;
 754         sample->next = c->io_samples;
 755         c->io_samples = sample;
 756 
 757         if (c->start_time == 0 || c->start_time > start)
 758                 c->start_time = start;
 759 
 760         return 0;
 761 }
 762 
 763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 764                              u64 end, long ret)
 765 {
 766         struct per_pid *p = find_create_pid(tchart, pid);
 767         struct per_pidcomm *c = p->current;
 768         struct io_sample *sample, *prev;
 769 
 770         if (!c) {
 771                 pr_warning("Invalid pidcomm!\n");
 772                 return -1;
 773         }
 774 
 775         sample = c->io_samples;
 776 
 777         if (!sample) /* skip partially captured events */
 778                 return 0;
 779 
 780         if (sample->end_time) {
 781                 pr_warning("Skip invalid end event: "
 782                            "previous event already ended!\n");
 783                 return 0;
 784         }
 785 
 786         if (sample->type != type) {
 787                 pr_warning("Skip invalid end event: invalid event type!\n");
 788                 return 0;
 789         }
 790 
 791         sample->end_time = end;
 792         prev = sample->next;
 793 
 794         /* we want to be able to see small and fast transfers, so make them
 795          * at least min_time long, but don't overlap them */
 796         if (sample->end_time - sample->start_time < tchart->min_time)
 797                 sample->end_time = sample->start_time + tchart->min_time;
 798         if (prev && sample->start_time < prev->end_time) {
 799                 if (prev->err) /* try to make errors more visible */
 800                         sample->start_time = prev->end_time;
 801                 else
 802                         prev->end_time = sample->start_time;
 803         }
 804 
 805         if (ret < 0) {
 806                 sample->err = ret;
 807         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 808                    type == IOTYPE_TX || type == IOTYPE_RX) {
 809 
 810                 if ((u64)ret > c->max_bytes)
 811                         c->max_bytes = ret;
 812 
 813                 c->total_bytes += ret;
 814                 p->total_bytes += ret;
 815                 sample->bytes = ret;
 816         }
 817 
 818         /* merge two requests to make svg smaller and render-friendly */
 819         if (prev &&
 820             prev->type == sample->type &&
 821             prev->err == sample->err &&
 822             prev->fd == sample->fd &&
 823             prev->end_time + tchart->merge_dist >= sample->start_time) {
 824 
 825                 sample->bytes += prev->bytes;
 826                 sample->merges += prev->merges + 1;
 827 
 828                 sample->start_time = prev->start_time;
 829                 sample->next = prev->next;
 830                 free(prev);
 831 
 832                 if (!sample->err && sample->bytes > c->max_bytes)
 833                         c->max_bytes = sample->bytes;
 834         }
 835 
 836         tchart->io_events++;
 837 
 838         return 0;
 839 }
 840 
 841 static int
 842 process_enter_read(struct timechart *tchart,
 843                    struct evsel *evsel,
 844                    struct perf_sample *sample)
 845 {
 846         long fd = perf_evsel__intval(evsel, sample, "fd");
 847         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 848                                    sample->time, fd);
 849 }
 850 
 851 static int
 852 process_exit_read(struct timechart *tchart,
 853                   struct evsel *evsel,
 854                   struct perf_sample *sample)
 855 {
 856         long ret = perf_evsel__intval(evsel, sample, "ret");
 857         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 858                                  sample->time, ret);
 859 }
 860 
 861 static int
 862 process_enter_write(struct timechart *tchart,
 863                     struct evsel *evsel,
 864                     struct perf_sample *sample)
 865 {
 866         long fd = perf_evsel__intval(evsel, sample, "fd");
 867         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 868                                    sample->time, fd);
 869 }
 870 
 871 static int
 872 process_exit_write(struct timechart *tchart,
 873                    struct evsel *evsel,
 874                    struct perf_sample *sample)
 875 {
 876         long ret = perf_evsel__intval(evsel, sample, "ret");
 877         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 878                                  sample->time, ret);
 879 }
 880 
 881 static int
 882 process_enter_sync(struct timechart *tchart,
 883                    struct evsel *evsel,
 884                    struct perf_sample *sample)
 885 {
 886         long fd = perf_evsel__intval(evsel, sample, "fd");
 887         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 888                                    sample->time, fd);
 889 }
 890 
 891 static int
 892 process_exit_sync(struct timechart *tchart,
 893                   struct evsel *evsel,
 894                   struct perf_sample *sample)
 895 {
 896         long ret = perf_evsel__intval(evsel, sample, "ret");
 897         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 898                                  sample->time, ret);
 899 }
 900 
 901 static int
 902 process_enter_tx(struct timechart *tchart,
 903                  struct evsel *evsel,
 904                  struct perf_sample *sample)
 905 {
 906         long fd = perf_evsel__intval(evsel, sample, "fd");
 907         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 908                                    sample->time, fd);
 909 }
 910 
 911 static int
 912 process_exit_tx(struct timechart *tchart,
 913                 struct evsel *evsel,
 914                 struct perf_sample *sample)
 915 {
 916         long ret = perf_evsel__intval(evsel, sample, "ret");
 917         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 918                                  sample->time, ret);
 919 }
 920 
 921 static int
 922 process_enter_rx(struct timechart *tchart,
 923                  struct evsel *evsel,
 924                  struct perf_sample *sample)
 925 {
 926         long fd = perf_evsel__intval(evsel, sample, "fd");
 927         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 928                                    sample->time, fd);
 929 }
 930 
 931 static int
 932 process_exit_rx(struct timechart *tchart,
 933                 struct evsel *evsel,
 934                 struct perf_sample *sample)
 935 {
 936         long ret = perf_evsel__intval(evsel, sample, "ret");
 937         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 938                                  sample->time, ret);
 939 }
 940 
 941 static int
 942 process_enter_poll(struct timechart *tchart,
 943                    struct evsel *evsel,
 944                    struct perf_sample *sample)
 945 {
 946         long fd = perf_evsel__intval(evsel, sample, "fd");
 947         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 948                                    sample->time, fd);
 949 }
 950 
 951 static int
 952 process_exit_poll(struct timechart *tchart,
 953                   struct evsel *evsel,
 954                   struct perf_sample *sample)
 955 {
 956         long ret = perf_evsel__intval(evsel, sample, "ret");
 957         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 958                                  sample->time, ret);
 959 }
 960 
 961 /*
 962  * Sort the pid datastructure
 963  */
 964 static void sort_pids(struct timechart *tchart)
 965 {
 966         struct per_pid *new_list, *p, *cursor, *prev;
 967         /* sort by ppid first, then by pid, lowest to highest */
 968 
 969         new_list = NULL;
 970 
 971         while (tchart->all_data) {
 972                 p = tchart->all_data;
 973                 tchart->all_data = p->next;
 974                 p->next = NULL;
 975 
 976                 if (new_list == NULL) {
 977                         new_list = p;
 978                         p->next = NULL;
 979                         continue;
 980                 }
 981                 prev = NULL;
 982                 cursor = new_list;
 983                 while (cursor) {
 984                         if (cursor->ppid > p->ppid ||
 985                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 986                                 /* must insert before */
 987                                 if (prev) {
 988                                         p->next = prev->next;
 989                                         prev->next = p;
 990                                         cursor = NULL;
 991                                         continue;
 992                                 } else {
 993                                         p->next = new_list;
 994                                         new_list = p;
 995                                         cursor = NULL;
 996                                         continue;
 997                                 }
 998                         }
 999 
1000                         prev = cursor;
1001                         cursor = cursor->next;
1002                         if (!cursor)
1003                                 prev->next = p;
1004                 }
1005         }
1006         tchart->all_data = new_list;
1007 }
1008 
1009 
1010 static void draw_c_p_states(struct timechart *tchart)
1011 {
1012         struct power_event *pwr;
1013         pwr = tchart->power_events;
1014 
1015         /*
1016          * two pass drawing so that the P state bars are on top of the C state blocks
1017          */
1018         while (pwr) {
1019                 if (pwr->type == CSTATE)
1020                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021                 pwr = pwr->next;
1022         }
1023 
1024         pwr = tchart->power_events;
1025         while (pwr) {
1026                 if (pwr->type == PSTATE) {
1027                         if (!pwr->state)
1028                                 pwr->state = tchart->min_freq;
1029                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030                 }
1031                 pwr = pwr->next;
1032         }
1033 }
1034 
1035 static void draw_wakeups(struct timechart *tchart)
1036 {
1037         struct wake_event *we;
1038         struct per_pid *p;
1039         struct per_pidcomm *c;
1040 
1041         we = tchart->wake_events;
1042         while (we) {
1043                 int from = 0, to = 0;
1044                 char *task_from = NULL, *task_to = NULL;
1045 
1046                 /* locate the column of the waker and wakee */
1047                 p = tchart->all_data;
1048                 while (p) {
1049                         if (p->pid == we->waker || p->pid == we->wakee) {
1050                                 c = p->all;
1051                                 while (c) {
1052                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053                                                 if (p->pid == we->waker && !from) {
1054                                                         from = c->Y;
1055                                                         task_from = strdup(c->comm);
1056                                                 }
1057                                                 if (p->pid == we->wakee && !to) {
1058                                                         to = c->Y;
1059                                                         task_to = strdup(c->comm);
1060                                                 }
1061                                         }
1062                                         c = c->next;
1063                                 }
1064                                 c = p->all;
1065                                 while (c) {
1066                                         if (p->pid == we->waker && !from) {
1067                                                 from = c->Y;
1068                                                 task_from = strdup(c->comm);
1069                                         }
1070                                         if (p->pid == we->wakee && !to) {
1071                                                 to = c->Y;
1072                                                 task_to = strdup(c->comm);
1073                                         }
1074                                         c = c->next;
1075                                 }
1076                         }
1077                         p = p->next;
1078                 }
1079 
1080                 if (!task_from) {
1081                         task_from = malloc(40);
1082                         sprintf(task_from, "[%i]", we->waker);
1083                 }
1084                 if (!task_to) {
1085                         task_to = malloc(40);
1086                         sprintf(task_to, "[%i]", we->wakee);
1087                 }
1088 
1089                 if (we->waker == -1)
1090                         svg_interrupt(we->time, to, we->backtrace);
1091                 else if (from && to && abs(from - to) == 1)
1092                         svg_wakeline(we->time, from, to, we->backtrace);
1093                 else
1094                         svg_partial_wakeline(we->time, from, task_from, to,
1095                                              task_to, we->backtrace);
1096                 we = we->next;
1097 
1098                 free(task_from);
1099                 free(task_to);
1100         }
1101 }
1102 
1103 static void draw_cpu_usage(struct timechart *tchart)
1104 {
1105         struct per_pid *p;
1106         struct per_pidcomm *c;
1107         struct cpu_sample *sample;
1108         p = tchart->all_data;
1109         while (p) {
1110                 c = p->all;
1111                 while (c) {
1112                         sample = c->samples;
1113                         while (sample) {
1114                                 if (sample->type == TYPE_RUNNING) {
1115                                         svg_process(sample->cpu,
1116                                                     sample->start_time,
1117                                                     sample->end_time,
1118                                                     p->pid,
1119                                                     c->comm,
1120                                                     sample->backtrace);
1121                                 }
1122 
1123                                 sample = sample->next;
1124                         }
1125                         c = c->next;
1126                 }
1127                 p = p->next;
1128         }
1129 }
1130 
1131 static void draw_io_bars(struct timechart *tchart)
1132 {
1133         const char *suf;
1134         double bytes;
1135         char comm[256];
1136         struct per_pid *p;
1137         struct per_pidcomm *c;
1138         struct io_sample *sample;
1139         int Y = 1;
1140 
1141         p = tchart->all_data;
1142         while (p) {
1143                 c = p->all;
1144                 while (c) {
1145                         if (!c->display) {
1146                                 c->Y = 0;
1147                                 c = c->next;
1148                                 continue;
1149                         }
1150 
1151                         svg_box(Y, c->start_time, c->end_time, "process3");
1152                         sample = c->io_samples;
1153                         for (sample = c->io_samples; sample; sample = sample->next) {
1154                                 double h = (double)sample->bytes / c->max_bytes;
1155 
1156                                 if (tchart->skip_eagain &&
1157                                     sample->err == -EAGAIN)
1158                                         continue;
1159 
1160                                 if (sample->err)
1161                                         h = 1;
1162 
1163                                 if (sample->type == IOTYPE_SYNC)
1164                                         svg_fbox(Y,
1165                                                 sample->start_time,
1166                                                 sample->end_time,
1167                                                 1,
1168                                                 sample->err ? "error" : "sync",
1169                                                 sample->fd,
1170                                                 sample->err,
1171                                                 sample->merges);
1172                                 else if (sample->type == IOTYPE_POLL)
1173                                         svg_fbox(Y,
1174                                                 sample->start_time,
1175                                                 sample->end_time,
1176                                                 1,
1177                                                 sample->err ? "error" : "poll",
1178                                                 sample->fd,
1179                                                 sample->err,
1180                                                 sample->merges);
1181                                 else if (sample->type == IOTYPE_READ)
1182                                         svg_ubox(Y,
1183                                                 sample->start_time,
1184                                                 sample->end_time,
1185                                                 h,
1186                                                 sample->err ? "error" : "disk",
1187                                                 sample->fd,
1188                                                 sample->err,
1189                                                 sample->merges);
1190                                 else if (sample->type == IOTYPE_WRITE)
1191                                         svg_lbox(Y,
1192                                                 sample->start_time,
1193                                                 sample->end_time,
1194                                                 h,
1195                                                 sample->err ? "error" : "disk",
1196                                                 sample->fd,
1197                                                 sample->err,
1198                                                 sample->merges);
1199                                 else if (sample->type == IOTYPE_RX)
1200                                         svg_ubox(Y,
1201                                                 sample->start_time,
1202                                                 sample->end_time,
1203                                                 h,
1204                                                 sample->err ? "error" : "net",
1205                                                 sample->fd,
1206                                                 sample->err,
1207                                                 sample->merges);
1208                                 else if (sample->type == IOTYPE_TX)
1209                                         svg_lbox(Y,
1210                                                 sample->start_time,
1211                                                 sample->end_time,
1212                                                 h,
1213                                                 sample->err ? "error" : "net",
1214                                                 sample->fd,
1215                                                 sample->err,
1216                                                 sample->merges);
1217                         }
1218 
1219                         suf = "";
1220                         bytes = c->total_bytes;
1221                         if (bytes > 1024) {
1222                                 bytes = bytes / 1024;
1223                                 suf = "K";
1224                         }
1225                         if (bytes > 1024) {
1226                                 bytes = bytes / 1024;
1227                                 suf = "M";
1228                         }
1229                         if (bytes > 1024) {
1230                                 bytes = bytes / 1024;
1231                                 suf = "G";
1232                         }
1233 
1234 
1235                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236                         svg_text(Y, c->start_time, comm);
1237 
1238                         c->Y = Y;
1239                         Y++;
1240                         c = c->next;
1241                 }
1242                 p = p->next;
1243         }
1244 }
1245 
1246 static void draw_process_bars(struct timechart *tchart)
1247 {
1248         struct per_pid *p;
1249         struct per_pidcomm *c;
1250         struct cpu_sample *sample;
1251         int Y = 0;
1252 
1253         Y = 2 * tchart->numcpus + 2;
1254 
1255         p = tchart->all_data;
1256         while (p) {
1257                 c = p->all;
1258                 while (c) {
1259                         if (!c->display) {
1260                                 c->Y = 0;
1261                                 c = c->next;
1262                                 continue;
1263                         }
1264 
1265                         svg_box(Y, c->start_time, c->end_time, "process");
1266                         sample = c->samples;
1267                         while (sample) {
1268                                 if (sample->type == TYPE_RUNNING)
1269                                         svg_running(Y, sample->cpu,
1270                                                     sample->start_time,
1271                                                     sample->end_time,
1272                                                     sample->backtrace);
1273                                 if (sample->type == TYPE_BLOCKED)
1274                                         svg_blocked(Y, sample->cpu,
1275                                                     sample->start_time,
1276                                                     sample->end_time,
1277                                                     sample->backtrace);
1278                                 if (sample->type == TYPE_WAITING)
1279                                         svg_waiting(Y, sample->cpu,
1280                                                     sample->start_time,
1281                                                     sample->end_time,
1282                                                     sample->backtrace);
1283                                 sample = sample->next;
1284                         }
1285 
1286                         if (c->comm) {
1287                                 char comm[256];
1288                                 if (c->total_time > 5000000000) /* 5 seconds */
1289                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1290                                 else
1291                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1292 
1293                                 svg_text(Y, c->start_time, comm);
1294                         }
1295                         c->Y = Y;
1296                         Y++;
1297                         c = c->next;
1298                 }
1299                 p = p->next;
1300         }
1301 }
1302 
1303 static void add_process_filter(const char *string)
1304 {
1305         int pid = strtoull(string, NULL, 10);
1306         struct process_filter *filt = malloc(sizeof(*filt));
1307 
1308         if (!filt)
1309                 return;
1310 
1311         filt->name = strdup(string);
1312         filt->pid  = pid;
1313         filt->next = process_filter;
1314 
1315         process_filter = filt;
1316 }
1317 
1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319 {
1320         struct process_filter *filt;
1321         if (!process_filter)
1322                 return 1;
1323 
1324         filt = process_filter;
1325         while (filt) {
1326                 if (filt->pid && p->pid == filt->pid)
1327                         return 1;
1328                 if (strcmp(filt->name, c->comm) == 0)
1329                         return 1;
1330                 filt = filt->next;
1331         }
1332         return 0;
1333 }
1334 
1335 static int determine_display_tasks_filtered(struct timechart *tchart)
1336 {
1337         struct per_pid *p;
1338         struct per_pidcomm *c;
1339         int count = 0;
1340 
1341         p = tchart->all_data;
1342         while (p) {
1343                 p->display = 0;
1344                 if (p->start_time == 1)
1345                         p->start_time = tchart->first_time;
1346 
1347                 /* no exit marker, task kept running to the end */
1348                 if (p->end_time == 0)
1349                         p->end_time = tchart->last_time;
1350 
1351                 c = p->all;
1352 
1353                 while (c) {
1354                         c->display = 0;
1355 
1356                         if (c->start_time == 1)
1357                                 c->start_time = tchart->first_time;
1358 
1359                         if (passes_filter(p, c)) {
1360                                 c->display = 1;
1361                                 p->display = 1;
1362                                 count++;
1363                         }
1364 
1365                         if (c->end_time == 0)
1366                                 c->end_time = tchart->last_time;
1367 
1368                         c = c->next;
1369                 }
1370                 p = p->next;
1371         }
1372         return count;
1373 }
1374 
1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376 {
1377         struct per_pid *p;
1378         struct per_pidcomm *c;
1379         int count = 0;
1380 
1381         p = tchart->all_data;
1382         while (p) {
1383                 p->display = 0;
1384                 if (p->start_time == 1)
1385                         p->start_time = tchart->first_time;
1386 
1387                 /* no exit marker, task kept running to the end */
1388                 if (p->end_time == 0)
1389                         p->end_time = tchart->last_time;
1390                 if (p->total_time >= threshold)
1391                         p->display = 1;
1392 
1393                 c = p->all;
1394 
1395                 while (c) {
1396                         c->display = 0;
1397 
1398                         if (c->start_time == 1)
1399                                 c->start_time = tchart->first_time;
1400 
1401                         if (c->total_time >= threshold) {
1402                                 c->display = 1;
1403                                 count++;
1404                         }
1405 
1406                         if (c->end_time == 0)
1407                                 c->end_time = tchart->last_time;
1408 
1409                         c = c->next;
1410                 }
1411                 p = p->next;
1412         }
1413         return count;
1414 }
1415 
1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417 {
1418         struct per_pid *p;
1419         struct per_pidcomm *c;
1420         int count = 0;
1421 
1422         p = timechart->all_data;
1423         while (p) {
1424                 /* no exit marker, task kept running to the end */
1425                 if (p->end_time == 0)
1426                         p->end_time = timechart->last_time;
1427 
1428                 c = p->all;
1429 
1430                 while (c) {
1431                         c->display = 0;
1432 
1433                         if (c->total_bytes >= threshold) {
1434                                 c->display = 1;
1435                                 count++;
1436                         }
1437 
1438                         if (c->end_time == 0)
1439                                 c->end_time = timechart->last_time;
1440 
1441                         c = c->next;
1442                 }
1443                 p = p->next;
1444         }
1445         return count;
1446 }
1447 
1448 #define BYTES_THRESH (1 * 1024 * 1024)
1449 #define TIME_THRESH 10000000
1450 
1451 static void write_svg_file(struct timechart *tchart, const char *filename)
1452 {
1453         u64 i;
1454         int count;
1455         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456 
1457         if (tchart->power_only)
1458                 tchart->proc_num = 0;
1459 
1460         /* We'd like to show at least proc_num tasks;
1461          * be less picky if we have fewer */
1462         do {
1463                 if (process_filter)
1464                         count = determine_display_tasks_filtered(tchart);
1465                 else if (tchart->io_events)
1466                         count = determine_display_io_tasks(tchart, thresh);
1467                 else
1468                         count = determine_display_tasks(tchart, thresh);
1469                 thresh /= 10;
1470         } while (!process_filter && thresh && count < tchart->proc_num);
1471 
1472         if (!tchart->proc_num)
1473                 count = 0;
1474 
1475         if (tchart->io_events) {
1476                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477 
1478                 svg_time_grid(0.5);
1479                 svg_io_legenda();
1480 
1481                 draw_io_bars(tchart);
1482         } else {
1483                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484 
1485                 svg_time_grid(0);
1486 
1487                 svg_legenda();
1488 
1489                 for (i = 0; i < tchart->numcpus; i++)
1490                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491 
1492                 draw_cpu_usage(tchart);
1493                 if (tchart->proc_num)
1494                         draw_process_bars(tchart);
1495                 if (!tchart->tasks_only)
1496                         draw_c_p_states(tchart);
1497                 if (tchart->proc_num)
1498                         draw_wakeups(tchart);
1499         }
1500 
1501         svg_close();
1502 }
1503 
1504 static int process_header(struct perf_file_section *section __maybe_unused,
1505                           struct perf_header *ph,
1506                           int feat,
1507                           int fd __maybe_unused,
1508                           void *data)
1509 {
1510         struct timechart *tchart = data;
1511 
1512         switch (feat) {
1513         case HEADER_NRCPUS:
1514                 tchart->numcpus = ph->env.nr_cpus_avail;
1515                 break;
1516 
1517         case HEADER_CPU_TOPOLOGY:
1518                 if (!tchart->topology)
1519                         break;
1520 
1521                 if (svg_build_topology_map(&ph->env))
1522                         fprintf(stderr, "problem building topology\n");
1523                 break;
1524 
1525         default:
1526                 break;
1527         }
1528 
1529         return 0;
1530 }
1531 
1532 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1533 {
1534         const struct evsel_str_handler power_tracepoints[] = {
1535                 { "power:cpu_idle",             process_sample_cpu_idle },
1536                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1537                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1538                 { "sched:sched_switch",         process_sample_sched_switch },
1539 #ifdef SUPPORT_OLD_POWER_EVENTS
1540                 { "power:power_start",          process_sample_power_start },
1541                 { "power:power_end",            process_sample_power_end },
1542                 { "power:power_frequency",      process_sample_power_frequency },
1543 #endif
1544 
1545                 { "syscalls:sys_enter_read",            process_enter_read },
1546                 { "syscalls:sys_enter_pread64",         process_enter_read },
1547                 { "syscalls:sys_enter_readv",           process_enter_read },
1548                 { "syscalls:sys_enter_preadv",          process_enter_read },
1549                 { "syscalls:sys_enter_write",           process_enter_write },
1550                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1551                 { "syscalls:sys_enter_writev",          process_enter_write },
1552                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1553                 { "syscalls:sys_enter_sync",            process_enter_sync },
1554                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1555                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1556                 { "syscalls:sys_enter_msync",           process_enter_sync },
1557                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1558                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1559                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1560                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1561                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1562                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1563                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1564                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1565                 { "syscalls:sys_enter_poll",            process_enter_poll },
1566                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1567                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1568                 { "syscalls:sys_enter_select",          process_enter_poll },
1569 
1570                 { "syscalls:sys_exit_read",             process_exit_read },
1571                 { "syscalls:sys_exit_pread64",          process_exit_read },
1572                 { "syscalls:sys_exit_readv",            process_exit_read },
1573                 { "syscalls:sys_exit_preadv",           process_exit_read },
1574                 { "syscalls:sys_exit_write",            process_exit_write },
1575                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1576                 { "syscalls:sys_exit_writev",           process_exit_write },
1577                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1578                 { "syscalls:sys_exit_sync",             process_exit_sync },
1579                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1580                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1581                 { "syscalls:sys_exit_msync",            process_exit_sync },
1582                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1583                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1584                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1585                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1586                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1587                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1588                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1589                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1590                 { "syscalls:sys_exit_poll",             process_exit_poll },
1591                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1592                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1593                 { "syscalls:sys_exit_select",           process_exit_poll },
1594         };
1595         struct perf_data data = {
1596                 .path  = input_name,
1597                 .mode  = PERF_DATA_MODE_READ,
1598                 .force = tchart->force,
1599         };
1600 
1601         struct perf_session *session = perf_session__new(&data, false,
1602                                                          &tchart->tool);
1603         int ret = -EINVAL;
1604 
1605         if (IS_ERR(session))
1606                 return PTR_ERR(session);
1607 
1608         symbol__init(&session->header.env);
1609 
1610         (void)perf_header__process_sections(&session->header,
1611                                             perf_data__fd(session->data),
1612                                             tchart,
1613                                             process_header);
1614 
1615         if (!perf_session__has_traces(session, "timechart record"))
1616                 goto out_delete;
1617 
1618         if (perf_session__set_tracepoints_handlers(session,
1619                                                    power_tracepoints)) {
1620                 pr_err("Initializing session tracepoint handlers failed\n");
1621                 goto out_delete;
1622         }
1623 
1624         ret = perf_session__process_events(session);
1625         if (ret)
1626                 goto out_delete;
1627 
1628         end_sample_processing(tchart);
1629 
1630         sort_pids(tchart);
1631 
1632         write_svg_file(tchart, output_name);
1633 
1634         pr_info("Written %2.1f seconds of trace to %s.\n",
1635                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636 out_delete:
1637         perf_session__delete(session);
1638         return ret;
1639 }
1640 
1641 static int timechart__io_record(int argc, const char **argv)
1642 {
1643         unsigned int rec_argc, i;
1644         const char **rec_argv;
1645         const char **p;
1646         char *filter = NULL;
1647 
1648         const char * const common_args[] = {
1649                 "record", "-a", "-R", "-c", "1",
1650         };
1651         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652 
1653         const char * const disk_events[] = {
1654                 "syscalls:sys_enter_read",
1655                 "syscalls:sys_enter_pread64",
1656                 "syscalls:sys_enter_readv",
1657                 "syscalls:sys_enter_preadv",
1658                 "syscalls:sys_enter_write",
1659                 "syscalls:sys_enter_pwrite64",
1660                 "syscalls:sys_enter_writev",
1661                 "syscalls:sys_enter_pwritev",
1662                 "syscalls:sys_enter_sync",
1663                 "syscalls:sys_enter_sync_file_range",
1664                 "syscalls:sys_enter_fsync",
1665                 "syscalls:sys_enter_msync",
1666 
1667                 "syscalls:sys_exit_read",
1668                 "syscalls:sys_exit_pread64",
1669                 "syscalls:sys_exit_readv",
1670                 "syscalls:sys_exit_preadv",
1671                 "syscalls:sys_exit_write",
1672                 "syscalls:sys_exit_pwrite64",
1673                 "syscalls:sys_exit_writev",
1674                 "syscalls:sys_exit_pwritev",
1675                 "syscalls:sys_exit_sync",
1676                 "syscalls:sys_exit_sync_file_range",
1677                 "syscalls:sys_exit_fsync",
1678                 "syscalls:sys_exit_msync",
1679         };
1680         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681 
1682         const char * const net_events[] = {
1683                 "syscalls:sys_enter_recvfrom",
1684                 "syscalls:sys_enter_recvmmsg",
1685                 "syscalls:sys_enter_recvmsg",
1686                 "syscalls:sys_enter_sendto",
1687                 "syscalls:sys_enter_sendmsg",
1688                 "syscalls:sys_enter_sendmmsg",
1689 
1690                 "syscalls:sys_exit_recvfrom",
1691                 "syscalls:sys_exit_recvmmsg",
1692                 "syscalls:sys_exit_recvmsg",
1693                 "syscalls:sys_exit_sendto",
1694                 "syscalls:sys_exit_sendmsg",
1695                 "syscalls:sys_exit_sendmmsg",
1696         };
1697         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698 
1699         const char * const poll_events[] = {
1700                 "syscalls:sys_enter_epoll_pwait",
1701                 "syscalls:sys_enter_epoll_wait",
1702                 "syscalls:sys_enter_poll",
1703                 "syscalls:sys_enter_ppoll",
1704                 "syscalls:sys_enter_pselect6",
1705                 "syscalls:sys_enter_select",
1706 
1707                 "syscalls:sys_exit_epoll_pwait",
1708                 "syscalls:sys_exit_epoll_wait",
1709                 "syscalls:sys_exit_poll",
1710                 "syscalls:sys_exit_ppoll",
1711                 "syscalls:sys_exit_pselect6",
1712                 "syscalls:sys_exit_select",
1713         };
1714         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715 
1716         rec_argc = common_args_nr +
1717                 disk_events_nr * 4 +
1718                 net_events_nr * 4 +
1719                 poll_events_nr * 4 +
1720                 argc;
1721         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722 
1723         if (rec_argv == NULL)
1724                 return -ENOMEM;
1725 
1726         if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727                 free(rec_argv);
1728                 return -ENOMEM;
1729         }
1730 
1731         p = rec_argv;
1732         for (i = 0; i < common_args_nr; i++)
1733                 *p++ = strdup(common_args[i]);
1734 
1735         for (i = 0; i < disk_events_nr; i++) {
1736                 if (!is_valid_tracepoint(disk_events[i])) {
1737                         rec_argc -= 4;
1738                         continue;
1739                 }
1740 
1741                 *p++ = "-e";
1742                 *p++ = strdup(disk_events[i]);
1743                 *p++ = "--filter";
1744                 *p++ = filter;
1745         }
1746         for (i = 0; i < net_events_nr; i++) {
1747                 if (!is_valid_tracepoint(net_events[i])) {
1748                         rec_argc -= 4;
1749                         continue;
1750                 }
1751 
1752                 *p++ = "-e";
1753                 *p++ = strdup(net_events[i]);
1754                 *p++ = "--filter";
1755                 *p++ = filter;
1756         }
1757         for (i = 0; i < poll_events_nr; i++) {
1758                 if (!is_valid_tracepoint(poll_events[i])) {
1759                         rec_argc -= 4;
1760                         continue;
1761                 }
1762 
1763                 *p++ = "-e";
1764                 *p++ = strdup(poll_events[i]);
1765                 *p++ = "--filter";
1766                 *p++ = filter;
1767         }
1768 
1769         for (i = 0; i < (unsigned int)argc; i++)
1770                 *p++ = argv[i];
1771 
1772         return cmd_record(rec_argc, rec_argv);
1773 }
1774 
1775 
1776 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777 {
1778         unsigned int rec_argc, i, j;
1779         const char **rec_argv;
1780         const char **p;
1781         unsigned int record_elems;
1782 
1783         const char * const common_args[] = {
1784                 "record", "-a", "-R", "-c", "1",
1785         };
1786         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787 
1788         const char * const backtrace_args[] = {
1789                 "-g",
1790         };
1791         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792 
1793         const char * const power_args[] = {
1794                 "-e", "power:cpu_frequency",
1795                 "-e", "power:cpu_idle",
1796         };
1797         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798 
1799         const char * const old_power_args[] = {
1800 #ifdef SUPPORT_OLD_POWER_EVENTS
1801                 "-e", "power:power_start",
1802                 "-e", "power:power_end",
1803                 "-e", "power:power_frequency",
1804 #endif
1805         };
1806         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807 
1808         const char * const tasks_args[] = {
1809                 "-e", "sched:sched_wakeup",
1810                 "-e", "sched:sched_switch",
1811         };
1812         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813 
1814 #ifdef SUPPORT_OLD_POWER_EVENTS
1815         if (!is_valid_tracepoint("power:cpu_idle") &&
1816             is_valid_tracepoint("power:power_start")) {
1817                 use_old_power_events = 1;
1818                 power_args_nr = 0;
1819         } else {
1820                 old_power_args_nr = 0;
1821         }
1822 #endif
1823 
1824         if (tchart->power_only)
1825                 tasks_args_nr = 0;
1826 
1827         if (tchart->tasks_only) {
1828                 power_args_nr = 0;
1829                 old_power_args_nr = 0;
1830         }
1831 
1832         if (!tchart->with_backtrace)
1833                 backtrace_args_no = 0;
1834 
1835         record_elems = common_args_nr + tasks_args_nr +
1836                 power_args_nr + old_power_args_nr + backtrace_args_no;
1837 
1838         rec_argc = record_elems + argc;
1839         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840 
1841         if (rec_argv == NULL)
1842                 return -ENOMEM;
1843 
1844         p = rec_argv;
1845         for (i = 0; i < common_args_nr; i++)
1846                 *p++ = strdup(common_args[i]);
1847 
1848         for (i = 0; i < backtrace_args_no; i++)
1849                 *p++ = strdup(backtrace_args[i]);
1850 
1851         for (i = 0; i < tasks_args_nr; i++)
1852                 *p++ = strdup(tasks_args[i]);
1853 
1854         for (i = 0; i < power_args_nr; i++)
1855                 *p++ = strdup(power_args[i]);
1856 
1857         for (i = 0; i < old_power_args_nr; i++)
1858                 *p++ = strdup(old_power_args[i]);
1859 
1860         for (j = 0; j < (unsigned int)argc; j++)
1861                 *p++ = argv[j];
1862 
1863         return cmd_record(rec_argc, rec_argv);
1864 }
1865 
1866 static int
1867 parse_process(const struct option *opt __maybe_unused, const char *arg,
1868               int __maybe_unused unset)
1869 {
1870         if (arg)
1871                 add_process_filter(arg);
1872         return 0;
1873 }
1874 
1875 static int
1876 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877                 int __maybe_unused unset)
1878 {
1879         unsigned long duration = strtoul(arg, NULL, 0);
1880 
1881         if (svg_highlight || svg_highlight_name)
1882                 return -1;
1883 
1884         if (duration)
1885                 svg_highlight = duration;
1886         else
1887                 svg_highlight_name = strdup(arg);
1888 
1889         return 0;
1890 }
1891 
1892 static int
1893 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894 {
1895         char unit = 'n';
1896         u64 *value = opt->value;
1897 
1898         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899                 switch (unit) {
1900                 case 'm':
1901                         *value *= NSEC_PER_MSEC;
1902                         break;
1903                 case 'u':
1904                         *value *= NSEC_PER_USEC;
1905                         break;
1906                 case 'n':
1907                         break;
1908                 default:
1909                         return -1;
1910                 }
1911         }
1912 
1913         return 0;
1914 }
1915 
1916 int cmd_timechart(int argc, const char **argv)
1917 {
1918         struct timechart tchart = {
1919                 .tool = {
1920                         .comm            = process_comm_event,
1921                         .fork            = process_fork_event,
1922                         .exit            = process_exit_event,
1923                         .sample          = process_sample_event,
1924                         .ordered_events  = true,
1925                 },
1926                 .proc_num = 15,
1927                 .min_time = NSEC_PER_MSEC,
1928                 .merge_dist = 1000,
1929         };
1930         const char *output_name = "output.svg";
1931         const struct option timechart_common_options[] = {
1932         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934         OPT_END()
1935         };
1936         const struct option timechart_options[] = {
1937         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941                       "highlight tasks. Pass duration in ns or process name.",
1942                        parse_highlight),
1943         OPT_CALLBACK('p', "process", NULL, "process",
1944                       "process selector. Pass a pid or process name.",
1945                        parse_process),
1946         OPT_CALLBACK(0, "symfs", NULL, "directory",
1947                      "Look for files with symbols relative to this directory",
1948                      symbol__config_symfs),
1949         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950                     "min. number of tasks to print"),
1951         OPT_BOOLEAN('t', "topology", &tchart.topology,
1952                     "sort CPUs according to topology"),
1953         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954                     "skip EAGAIN errors"),
1955         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956                      "all IO faster than min-time will visually appear longer",
1957                      parse_time),
1958         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959                      "merge events that are merge-dist us apart",
1960                      parse_time),
1961         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962         OPT_PARENT(timechart_common_options),
1963         };
1964         const char * const timechart_subcommands[] = { "record", NULL };
1965         const char *timechart_usage[] = {
1966                 "perf timechart [<options>] {record}",
1967                 NULL
1968         };
1969         const struct option timechart_record_options[] = {
1970         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971                     "record only IO data"),
1972         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973         OPT_PARENT(timechart_common_options),
1974         };
1975         const char * const timechart_record_usage[] = {
1976                 "perf timechart record [<options>]",
1977                 NULL
1978         };
1979         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981 
1982         if (tchart.power_only && tchart.tasks_only) {
1983                 pr_err("-P and -T options cannot be used at the same time.\n");
1984                 return -1;
1985         }
1986 
1987         if (argc && !strncmp(argv[0], "rec", 3)) {
1988                 argc = parse_options(argc, argv, timechart_record_options,
1989                                      timechart_record_usage,
1990                                      PARSE_OPT_STOP_AT_NON_OPTION);
1991 
1992                 if (tchart.power_only && tchart.tasks_only) {
1993                         pr_err("-P and -T options cannot be used at the same time.\n");
1994                         return -1;
1995                 }
1996 
1997                 if (tchart.io_only)
1998                         return timechart__io_record(argc, argv);
1999                 else
2000                         return timechart__record(&tchart, argc, argv);
2001         } else if (argc)
2002                 usage_with_options(timechart_usage, timechart_options);
2003 
2004         setup_pager();
2005 
2006         return __cmd_timechart(&tchart, output_name);
2007 }

/* [<][>][^][v][top][bottom][index][help] */