root/arch/m68k/fpsp040/bindec.S

/* [<][>][^][v][top][bottom][index][help] */
   1 |
   2 |       bindec.sa 3.4 1/3/91
   3 |
   4 |       bindec
   5 |
   6 |       Description:
   7 |               Converts an input in extended precision format
   8 |               to bcd format.
   9 |
  10 |       Input:
  11 |               a0 points to the input extended precision value
  12 |               value in memory; d0 contains the k-factor sign-extended
  13 |               to 32-bits.  The input may be either normalized,
  14 |               unnormalized, or denormalized.
  15 |
  16 |       Output: result in the FP_SCR1 space on the stack.
  17 |
  18 |       Saves and Modifies: D2-D7,A2,FP2
  19 |
  20 |       Algorithm:
  21 |
  22 |       A1.     Set RM and size ext;  Set SIGMA = sign of input.
  23 |               The k-factor is saved for use in d7. Clear the
  24 |               BINDEC_FLG for separating normalized/denormalized
  25 |               input.  If input is unnormalized or denormalized,
  26 |               normalize it.
  27 |
  28 |       A2.     Set X = abs(input).
  29 |
  30 |       A3.     Compute ILOG.
  31 |               ILOG is the log base 10 of the input value.  It is
  32 |               approximated by adding e + 0.f when the original
  33 |               value is viewed as 2^^e * 1.f in extended precision.
  34 |               This value is stored in d6.
  35 |
  36 |       A4.     Clr INEX bit.
  37 |               The operation in A3 above may have set INEX2.
  38 |
  39 |       A5.     Set ICTR = 0;
  40 |               ICTR is a flag used in A13.  It must be set before the
  41 |               loop entry A6.
  42 |
  43 |       A6.     Calculate LEN.
  44 |               LEN is the number of digits to be displayed.  The
  45 |               k-factor can dictate either the total number of digits,
  46 |               if it is a positive number, or the number of digits
  47 |               after the decimal point which are to be included as
  48 |               significant.  See the 68882 manual for examples.
  49 |               If LEN is computed to be greater than 17, set OPERR in
  50 |               USER_FPSR.  LEN is stored in d4.
  51 |
  52 |       A7.     Calculate SCALE.
  53 |               SCALE is equal to 10^ISCALE, where ISCALE is the number
  54 |               of decimal places needed to insure LEN integer digits
  55 |               in the output before conversion to bcd. LAMBDA is the
  56 |               sign of ISCALE, used in A9. Fp1 contains
  57 |               10^^(abs(ISCALE)) using a rounding mode which is a
  58 |               function of the original rounding mode and the signs
  59 |               of ISCALE and X.  A table is given in the code.
  60 |
  61 |       A8.     Clr INEX; Force RZ.
  62 |               The operation in A3 above may have set INEX2.
  63 |               RZ mode is forced for the scaling operation to insure
  64 |               only one rounding error.  The grs bits are collected in
  65 |               the INEX flag for use in A10.
  66 |
  67 |       A9.     Scale X -> Y.
  68 |               The mantissa is scaled to the desired number of
  69 |               significant digits.  The excess digits are collected
  70 |               in INEX2.
  71 |
  72 |       A10.    Or in INEX.
  73 |               If INEX is set, round error occurred.  This is
  74 |               compensated for by 'or-ing' in the INEX2 flag to
  75 |               the lsb of Y.
  76 |
  77 |       A11.    Restore original FPCR; set size ext.
  78 |               Perform FINT operation in the user's rounding mode.
  79 |               Keep the size to extended.
  80 |
  81 |       A12.    Calculate YINT = FINT(Y) according to user's rounding
  82 |               mode.  The FPSP routine sintd0 is used.  The output
  83 |               is in fp0.
  84 |
  85 |       A13.    Check for LEN digits.
  86 |               If the int operation results in more than LEN digits,
  87 |               or less than LEN -1 digits, adjust ILOG and repeat from
  88 |               A6.  This test occurs only on the first pass.  If the
  89 |               result is exactly 10^LEN, decrement ILOG and divide
  90 |               the mantissa by 10.
  91 |
  92 |       A14.    Convert the mantissa to bcd.
  93 |               The binstr routine is used to convert the LEN digit
  94 |               mantissa to bcd in memory.  The input to binstr is
  95 |               to be a fraction; i.e. (mantissa)/10^LEN and adjusted
  96 |               such that the decimal point is to the left of bit 63.
  97 |               The bcd digits are stored in the correct position in
  98 |               the final string area in memory.
  99 |
 100 |       A15.    Convert the exponent to bcd.
 101 |               As in A14 above, the exp is converted to bcd and the
 102 |               digits are stored in the final string.
 103 |               Test the length of the final exponent string.  If the
 104 |               length is 4, set operr.
 105 |
 106 |       A16.    Write sign bits to final string.
 107 |
 108 |       Implementation Notes:
 109 |
 110 |       The registers are used as follows:
 111 |
 112 |               d0: scratch; LEN input to binstr
 113 |               d1: scratch
 114 |               d2: upper 32-bits of mantissa for binstr
 115 |               d3: scratch;lower 32-bits of mantissa for binstr
 116 |               d4: LEN
 117 |               d5: LAMBDA/ICTR
 118 |               d6: ILOG
 119 |               d7: k-factor
 120 |               a0: ptr for original operand/final result
 121 |               a1: scratch pointer
 122 |               a2: pointer to FP_X; abs(original value) in ext
 123 |               fp0: scratch
 124 |               fp1: scratch
 125 |               fp2: scratch
 126 |               F_SCR1:
 127 |               F_SCR2:
 128 |               L_SCR1:
 129 |               L_SCR2:
 130 
 131 |               Copyright (C) Motorola, Inc. 1990
 132 |                       All Rights Reserved
 133 |
 134 |       For details on the license for this file, please see the
 135 |       file, README, in this same directory.
 136 
 137 |BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
 138 
 139 #include "fpsp.h"
 140 
 141         |section        8
 142 
 143 | Constants in extended precision
 144 LOG2:   .long   0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
 145 LOG2UP1:        .long   0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
 146 
 147 | Constants in single precision
 148 FONE:   .long   0x3F800000,0x00000000,0x00000000,0x00000000
 149 FTWO:   .long   0x40000000,0x00000000,0x00000000,0x00000000
 150 FTEN:   .long   0x41200000,0x00000000,0x00000000,0x00000000
 151 F4933:  .long   0x459A2800,0x00000000,0x00000000,0x00000000
 152 
 153 RBDTBL: .byte   0,0,0,0
 154         .byte   3,3,2,2
 155         .byte   3,2,2,3
 156         .byte   2,3,3,2
 157 
 158         |xref   binstr
 159         |xref   sintdo
 160         |xref   ptenrn,ptenrm,ptenrp
 161 
 162         .global bindec
 163         .global sc_mul
 164 bindec:
 165         moveml  %d2-%d7/%a2,-(%a7)
 166         fmovemx %fp0-%fp2,-(%a7)
 167 
 168 | A1. Set RM and size ext. Set SIGMA = sign input;
 169 |     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
 170 |     separating  normalized/denormalized input.  If the input
 171 |     is a denormalized number, set the BINDEC_FLG memory word
 172 |     to signal denorm.  If the input is unnormalized, normalize
 173 |     the input and test for denormalized result.
 174 |
 175         fmovel  #rm_mode,%FPCR  |set RM and ext
 176         movel   (%a0),L_SCR2(%a6)       |save exponent for sign check
 177         movel   %d0,%d7         |move k-factor to d7
 178         clrb    BINDEC_FLG(%a6) |clr norm/denorm flag
 179         movew   STAG(%a6),%d0   |get stag
 180         andiw   #0xe000,%d0     |isolate stag bits
 181         beq     A2_str          |if zero, input is norm
 182 |
 183 | Normalize the denorm
 184 |
 185 un_de_norm:
 186         movew   (%a0),%d0
 187         andiw   #0x7fff,%d0     |strip sign of normalized exp
 188         movel   4(%a0),%d1
 189         movel   8(%a0),%d2
 190 norm_loop:
 191         subw    #1,%d0
 192         lsll    #1,%d2
 193         roxll   #1,%d1
 194         tstl    %d1
 195         bges    norm_loop
 196 |
 197 | Test if the normalized input is denormalized
 198 |
 199         tstw    %d0
 200         bgts    pos_exp         |if greater than zero, it is a norm
 201         st      BINDEC_FLG(%a6) |set flag for denorm
 202 pos_exp:
 203         andiw   #0x7fff,%d0     |strip sign of normalized exp
 204         movew   %d0,(%a0)
 205         movel   %d1,4(%a0)
 206         movel   %d2,8(%a0)
 207 
 208 | A2. Set X = abs(input).
 209 |
 210 A2_str:
 211         movel   (%a0),FP_SCR2(%a6) | move input to work space
 212         movel   4(%a0),FP_SCR2+4(%a6) | move input to work space
 213         movel   8(%a0),FP_SCR2+8(%a6) | move input to work space
 214         andil   #0x7fffffff,FP_SCR2(%a6) |create abs(X)
 215 
 216 | A3. Compute ILOG.
 217 |     ILOG is the log base 10 of the input value.  It is approx-
 218 |     imated by adding e + 0.f when the original value is viewed
 219 |     as 2^^e * 1.f in extended precision.  This value is stored
 220 |     in d6.
 221 |
 222 | Register usage:
 223 |       Input/Output
 224 |       d0: k-factor/exponent
 225 |       d2: x/x
 226 |       d3: x/x
 227 |       d4: x/x
 228 |       d5: x/x
 229 |       d6: x/ILOG
 230 |       d7: k-factor/Unchanged
 231 |       a0: ptr for original operand/final result
 232 |       a1: x/x
 233 |       a2: x/x
 234 |       fp0: x/float(ILOG)
 235 |       fp1: x/x
 236 |       fp2: x/x
 237 |       F_SCR1:x/x
 238 |       F_SCR2:Abs(X)/Abs(X) with $3fff exponent
 239 |       L_SCR1:x/x
 240 |       L_SCR2:first word of X packed/Unchanged
 241 
 242         tstb    BINDEC_FLG(%a6) |check for denorm
 243         beqs    A3_cont         |if clr, continue with norm
 244         movel   #-4933,%d6      |force ILOG = -4933
 245         bras    A4_str
 246 A3_cont:
 247         movew   FP_SCR2(%a6),%d0        |move exp to d0
 248         movew   #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
 249         fmovex  FP_SCR2(%a6),%fp0       |now fp0 has 1.f
 250         subw    #0x3fff,%d0     |strip off bias
 251         faddw   %d0,%fp0                |add in exp
 252         fsubs   FONE,%fp0       |subtract off 1.0
 253         fbge    pos_res         |if pos, branch
 254         fmulx   LOG2UP1,%fp0    |if neg, mul by LOG2UP1
 255         fmovel  %fp0,%d6                |put ILOG in d6 as a lword
 256         bras    A4_str          |go move out ILOG
 257 pos_res:
 258         fmulx   LOG2,%fp0       |if pos, mul by LOG2
 259         fmovel  %fp0,%d6                |put ILOG in d6 as a lword
 260 
 261 
 262 | A4. Clr INEX bit.
 263 |     The operation in A3 above may have set INEX2.
 264 
 265 A4_str:
 266         fmovel  #0,%FPSR                |zero all of fpsr - nothing needed
 267 
 268 
 269 | A5. Set ICTR = 0;
 270 |     ICTR is a flag used in A13.  It must be set before the
 271 |     loop entry A6. The lower word of d5 is used for ICTR.
 272 
 273         clrw    %d5             |clear ICTR
 274 
 275 
 276 | A6. Calculate LEN.
 277 |     LEN is the number of digits to be displayed.  The k-factor
 278 |     can dictate either the total number of digits, if it is
 279 |     a positive number, or the number of digits after the
 280 |     original decimal point which are to be included as
 281 |     significant.  See the 68882 manual for examples.
 282 |     If LEN is computed to be greater than 17, set OPERR in
 283 |     USER_FPSR.  LEN is stored in d4.
 284 |
 285 | Register usage:
 286 |       Input/Output
 287 |       d0: exponent/Unchanged
 288 |       d2: x/x/scratch
 289 |       d3: x/x
 290 |       d4: exc picture/LEN
 291 |       d5: ICTR/Unchanged
 292 |       d6: ILOG/Unchanged
 293 |       d7: k-factor/Unchanged
 294 |       a0: ptr for original operand/final result
 295 |       a1: x/x
 296 |       a2: x/x
 297 |       fp0: float(ILOG)/Unchanged
 298 |       fp1: x/x
 299 |       fp2: x/x
 300 |       F_SCR1:x/x
 301 |       F_SCR2:Abs(X) with $3fff exponent/Unchanged
 302 |       L_SCR1:x/x
 303 |       L_SCR2:first word of X packed/Unchanged
 304 
 305 A6_str:
 306         tstl    %d7             |branch on sign of k
 307         bles    k_neg           |if k <= 0, LEN = ILOG + 1 - k
 308         movel   %d7,%d4         |if k > 0, LEN = k
 309         bras    len_ck          |skip to LEN check
 310 k_neg:
 311         movel   %d6,%d4         |first load ILOG to d4
 312         subl    %d7,%d4         |subtract off k
 313         addql   #1,%d4          |add in the 1
 314 len_ck:
 315         tstl    %d4             |LEN check: branch on sign of LEN
 316         bles    LEN_ng          |if neg, set LEN = 1
 317         cmpl    #17,%d4         |test if LEN > 17
 318         bles    A7_str          |if not, forget it
 319         movel   #17,%d4         |set max LEN = 17
 320         tstl    %d7             |if negative, never set OPERR
 321         bles    A7_str          |if positive, continue
 322         orl     #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
 323         bras    A7_str          |finished here
 324 LEN_ng:
 325         moveql  #1,%d4          |min LEN is 1
 326 
 327 
 328 | A7. Calculate SCALE.
 329 |     SCALE is equal to 10^ISCALE, where ISCALE is the number
 330 |     of decimal places needed to insure LEN integer digits
 331 |     in the output before conversion to bcd. LAMBDA is the sign
 332 |     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
 333 |     the rounding mode as given in the following table (see
 334 |     Coonen, p. 7.23 as ref.; however, the SCALE variable is
 335 |     of opposite sign in bindec.sa from Coonen).
 336 |
 337 |       Initial                                 USE
 338 |       FPCR[6:5]       LAMBDA  SIGN(X)         FPCR[6:5]
 339 |       ----------------------------------------------
 340 |        RN     00         0       0            00/0    RN
 341 |        RN     00         0       1            00/0    RN
 342 |        RN     00         1       0            00/0    RN
 343 |        RN     00         1       1            00/0    RN
 344 |        RZ     01         0       0            11/3    RP
 345 |        RZ     01         0       1            11/3    RP
 346 |        RZ     01         1       0            10/2    RM
 347 |        RZ     01         1       1            10/2    RM
 348 |        RM     10         0       0            11/3    RP
 349 |        RM     10         0       1            10/2    RM
 350 |        RM     10         1       0            10/2    RM
 351 |        RM     10         1       1            11/3    RP
 352 |        RP     11         0       0            10/2    RM
 353 |        RP     11         0       1            11/3    RP
 354 |        RP     11         1       0            11/3    RP
 355 |        RP     11         1       1            10/2    RM
 356 |
 357 | Register usage:
 358 |       Input/Output
 359 |       d0: exponent/scratch - final is 0
 360 |       d2: x/0 or 24 for A9
 361 |       d3: x/scratch - offset ptr into PTENRM array
 362 |       d4: LEN/Unchanged
 363 |       d5: 0/ICTR:LAMBDA
 364 |       d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
 365 |       d7: k-factor/Unchanged
 366 |       a0: ptr for original operand/final result
 367 |       a1: x/ptr to PTENRM array
 368 |       a2: x/x
 369 |       fp0: float(ILOG)/Unchanged
 370 |       fp1: x/10^ISCALE
 371 |       fp2: x/x
 372 |       F_SCR1:x/x
 373 |       F_SCR2:Abs(X) with $3fff exponent/Unchanged
 374 |       L_SCR1:x/x
 375 |       L_SCR2:first word of X packed/Unchanged
 376 
 377 A7_str:
 378         tstl    %d7             |test sign of k
 379         bgts    k_pos           |if pos and > 0, skip this
 380         cmpl    %d6,%d7         |test k - ILOG
 381         blts    k_pos           |if ILOG >= k, skip this
 382         movel   %d7,%d6         |if ((k<0) & (ILOG < k)) ILOG = k
 383 k_pos:
 384         movel   %d6,%d0         |calc ILOG + 1 - LEN in d0
 385         addql   #1,%d0          |add the 1
 386         subl    %d4,%d0         |sub off LEN
 387         swap    %d5             |use upper word of d5 for LAMBDA
 388         clrw    %d5             |set it zero initially
 389         clrw    %d2             |set up d2 for very small case
 390         tstl    %d0             |test sign of ISCALE
 391         bges    iscale          |if pos, skip next inst
 392         addqw   #1,%d5          |if neg, set LAMBDA true
 393         cmpl    #0xffffecd4,%d0 |test iscale <= -4908
 394         bgts    no_inf          |if false, skip rest
 395         addil   #24,%d0         |add in 24 to iscale
 396         movel   #24,%d2         |put 24 in d2 for A9
 397 no_inf:
 398         negl    %d0             |and take abs of ISCALE
 399 iscale:
 400         fmoves  FONE,%fp1       |init fp1 to 1
 401         bfextu  USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
 402         lslw    #1,%d1          |put them in bits 2:1
 403         addw    %d5,%d1         |add in LAMBDA
 404         lslw    #1,%d1          |put them in bits 3:1
 405         tstl    L_SCR2(%a6)     |test sign of original x
 406         bges    x_pos           |if pos, don't set bit 0
 407         addql   #1,%d1          |if neg, set bit 0
 408 x_pos:
 409         leal    RBDTBL,%a2      |load rbdtbl base
 410         moveb   (%a2,%d1),%d3   |load d3 with new rmode
 411         lsll    #4,%d3          |put bits in proper position
 412         fmovel  %d3,%fpcr               |load bits into fpu
 413         lsrl    #4,%d3          |put bits in proper position
 414         tstb    %d3             |decode new rmode for pten table
 415         bnes    not_rn          |if zero, it is RN
 416         leal    PTENRN,%a1      |load a1 with RN table base
 417         bras    rmode           |exit decode
 418 not_rn:
 419         lsrb    #1,%d3          |get lsb in carry
 420         bccs    not_rp          |if carry clear, it is RM
 421         leal    PTENRP,%a1      |load a1 with RP table base
 422         bras    rmode           |exit decode
 423 not_rp:
 424         leal    PTENRM,%a1      |load a1 with RM table base
 425 rmode:
 426         clrl    %d3             |clr table index
 427 e_loop:
 428         lsrl    #1,%d0          |shift next bit into carry
 429         bccs    e_next          |if zero, skip the mul
 430         fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 431 e_next:
 432         addl    #12,%d3         |inc d3 to next pwrten table entry
 433         tstl    %d0             |test if ISCALE is zero
 434         bnes    e_loop          |if not, loop
 435 
 436 
 437 | A8. Clr INEX; Force RZ.
 438 |     The operation in A3 above may have set INEX2.
 439 |     RZ mode is forced for the scaling operation to insure
 440 |     only one rounding error.  The grs bits are collected in
 441 |     the INEX flag for use in A10.
 442 |
 443 | Register usage:
 444 |       Input/Output
 445 
 446         fmovel  #0,%FPSR                |clr INEX
 447         fmovel  #rz_mode,%FPCR  |set RZ rounding mode
 448 
 449 
 450 | A9. Scale X -> Y.
 451 |     The mantissa is scaled to the desired number of significant
 452 |     digits.  The excess digits are collected in INEX2. If mul,
 453 |     Check d2 for excess 10 exponential value.  If not zero,
 454 |     the iscale value would have caused the pwrten calculation
 455 |     to overflow.  Only a negative iscale can cause this, so
 456 |     multiply by 10^(d2), which is now only allowed to be 24,
 457 |     with a multiply by 10^8 and 10^16, which is exact since
 458 |     10^24 is exact.  If the input was denormalized, we must
 459 |     create a busy stack frame with the mul command and the
 460 |     two operands, and allow the fpu to complete the multiply.
 461 |
 462 | Register usage:
 463 |       Input/Output
 464 |       d0: FPCR with RZ mode/Unchanged
 465 |       d2: 0 or 24/unchanged
 466 |       d3: x/x
 467 |       d4: LEN/Unchanged
 468 |       d5: ICTR:LAMBDA
 469 |       d6: ILOG/Unchanged
 470 |       d7: k-factor/Unchanged
 471 |       a0: ptr for original operand/final result
 472 |       a1: ptr to PTENRM array/Unchanged
 473 |       a2: x/x
 474 |       fp0: float(ILOG)/X adjusted for SCALE (Y)
 475 |       fp1: 10^ISCALE/Unchanged
 476 |       fp2: x/x
 477 |       F_SCR1:x/x
 478 |       F_SCR2:Abs(X) with $3fff exponent/Unchanged
 479 |       L_SCR1:x/x
 480 |       L_SCR2:first word of X packed/Unchanged
 481 
 482 A9_str:
 483         fmovex  (%a0),%fp0      |load X from memory
 484         fabsx   %fp0            |use abs(X)
 485         tstw    %d5             |LAMBDA is in lower word of d5
 486         bne     sc_mul          |if neg (LAMBDA = 1), scale by mul
 487         fdivx   %fp1,%fp0               |calculate X / SCALE -> Y to fp0
 488         bras    A10_st          |branch to A10
 489 
 490 sc_mul:
 491         tstb    BINDEC_FLG(%a6) |check for denorm
 492         beqs    A9_norm         |if norm, continue with mul
 493         fmovemx %fp1-%fp1,-(%a7)        |load ETEMP with 10^ISCALE
 494         movel   8(%a0),-(%a7)   |load FPTEMP with input arg
 495         movel   4(%a0),-(%a7)
 496         movel   (%a0),-(%a7)
 497         movel   #18,%d3         |load count for busy stack
 498 A9_loop:
 499         clrl    -(%a7)          |clear lword on stack
 500         dbf     %d3,A9_loop
 501         moveb   VER_TMP(%a6),(%a7) |write current version number
 502         moveb   #BUSY_SIZE-4,1(%a7) |write current busy size
 503         moveb   #0x10,0x44(%a7) |set fcefpte[15] bit
 504         movew   #0x0023,0x40(%a7)       |load cmdreg1b with mul command
 505         moveb   #0xfe,0x8(%a7)  |load all 1s to cu savepc
 506         frestore (%a7)+         |restore frame to fpu for completion
 507         fmulx   36(%a1),%fp0    |multiply fp0 by 10^8
 508         fmulx   48(%a1),%fp0    |multiply fp0 by 10^16
 509         bras    A10_st
 510 A9_norm:
 511         tstw    %d2             |test for small exp case
 512         beqs    A9_con          |if zero, continue as normal
 513         fmulx   36(%a1),%fp0    |multiply fp0 by 10^8
 514         fmulx   48(%a1),%fp0    |multiply fp0 by 10^16
 515 A9_con:
 516         fmulx   %fp1,%fp0               |calculate X * SCALE -> Y to fp0
 517 
 518 
 519 | A10. Or in INEX.
 520 |      If INEX is set, round error occurred.  This is compensated
 521 |      for by 'or-ing' in the INEX2 flag to the lsb of Y.
 522 |
 523 | Register usage:
 524 |       Input/Output
 525 |       d0: FPCR with RZ mode/FPSR with INEX2 isolated
 526 |       d2: x/x
 527 |       d3: x/x
 528 |       d4: LEN/Unchanged
 529 |       d5: ICTR:LAMBDA
 530 |       d6: ILOG/Unchanged
 531 |       d7: k-factor/Unchanged
 532 |       a0: ptr for original operand/final result
 533 |       a1: ptr to PTENxx array/Unchanged
 534 |       a2: x/ptr to FP_SCR2(a6)
 535 |       fp0: Y/Y with lsb adjusted
 536 |       fp1: 10^ISCALE/Unchanged
 537 |       fp2: x/x
 538 
 539 A10_st:
 540         fmovel  %FPSR,%d0               |get FPSR
 541         fmovex  %fp0,FP_SCR2(%a6)       |move Y to memory
 542         leal    FP_SCR2(%a6),%a2        |load a2 with ptr to FP_SCR2
 543         btstl   #9,%d0          |check if INEX2 set
 544         beqs    A11_st          |if clear, skip rest
 545         oril    #1,8(%a2)       |or in 1 to lsb of mantissa
 546         fmovex  FP_SCR2(%a6),%fp0       |write adjusted Y back to fpu
 547 
 548 
 549 | A11. Restore original FPCR; set size ext.
 550 |      Perform FINT operation in the user's rounding mode.  Keep
 551 |      the size to extended.  The sintdo entry point in the sint
 552 |      routine expects the FPCR value to be in USER_FPCR for
 553 |      mode and precision.  The original FPCR is saved in L_SCR1.
 554 
 555 A11_st:
 556         movel   USER_FPCR(%a6),L_SCR1(%a6) |save it for later
 557         andil   #0x00000030,USER_FPCR(%a6) |set size to ext,
 558 |                                       ;block exceptions
 559 
 560 
 561 | A12. Calculate YINT = FINT(Y) according to user's rounding mode.
 562 |      The FPSP routine sintd0 is used.  The output is in fp0.
 563 |
 564 | Register usage:
 565 |       Input/Output
 566 |       d0: FPSR with AINEX cleared/FPCR with size set to ext
 567 |       d2: x/x/scratch
 568 |       d3: x/x
 569 |       d4: LEN/Unchanged
 570 |       d5: ICTR:LAMBDA/Unchanged
 571 |       d6: ILOG/Unchanged
 572 |       d7: k-factor/Unchanged
 573 |       a0: ptr for original operand/src ptr for sintdo
 574 |       a1: ptr to PTENxx array/Unchanged
 575 |       a2: ptr to FP_SCR2(a6)/Unchanged
 576 |       a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
 577 |       fp0: Y/YINT
 578 |       fp1: 10^ISCALE/Unchanged
 579 |       fp2: x/x
 580 |       F_SCR1:x/x
 581 |       F_SCR2:Y adjusted for inex/Y with original exponent
 582 |       L_SCR1:x/original USER_FPCR
 583 |       L_SCR2:first word of X packed/Unchanged
 584 
 585 A12_st:
 586         moveml  %d0-%d1/%a0-%a1,-(%a7)  |save regs used by sintd0
 587         movel   L_SCR1(%a6),-(%a7)
 588         movel   L_SCR2(%a6),-(%a7)
 589         leal    FP_SCR2(%a6),%a0                |a0 is ptr to F_SCR2(a6)
 590         fmovex  %fp0,(%a0)              |move Y to memory at FP_SCR2(a6)
 591         tstl    L_SCR2(%a6)             |test sign of original operand
 592         bges    do_fint                 |if pos, use Y
 593         orl     #0x80000000,(%a0)               |if neg, use -Y
 594 do_fint:
 595         movel   USER_FPSR(%a6),-(%a7)
 596         bsr     sintdo                  |sint routine returns int in fp0
 597         moveb   (%a7),USER_FPSR(%a6)
 598         addl    #4,%a7
 599         movel   (%a7)+,L_SCR2(%a6)
 600         movel   (%a7)+,L_SCR1(%a6)
 601         moveml  (%a7)+,%d0-%d1/%a0-%a1  |restore regs used by sint
 602         movel   L_SCR2(%a6),FP_SCR2(%a6)        |restore original exponent
 603         movel   L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
 604 
 605 
 606 | A13. Check for LEN digits.
 607 |      If the int operation results in more than LEN digits,
 608 |      or less than LEN -1 digits, adjust ILOG and repeat from
 609 |      A6.  This test occurs only on the first pass.  If the
 610 |      result is exactly 10^LEN, decrement ILOG and divide
 611 |      the mantissa by 10.  The calculation of 10^LEN cannot
 612 |      be inexact, since all powers of ten up to 10^27 are exact
 613 |      in extended precision, so the use of a previous power-of-ten
 614 |      table will introduce no error.
 615 |
 616 |
 617 | Register usage:
 618 |       Input/Output
 619 |       d0: FPCR with size set to ext/scratch final = 0
 620 |       d2: x/x
 621 |       d3: x/scratch final = x
 622 |       d4: LEN/LEN adjusted
 623 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
 624 |       d6: ILOG/ILOG adjusted
 625 |       d7: k-factor/Unchanged
 626 |       a0: pointer into memory for packed bcd string formation
 627 |       a1: ptr to PTENxx array/Unchanged
 628 |       a2: ptr to FP_SCR2(a6)/Unchanged
 629 |       fp0: int portion of Y/abs(YINT) adjusted
 630 |       fp1: 10^ISCALE/Unchanged
 631 |       fp2: x/10^LEN
 632 |       F_SCR1:x/x
 633 |       F_SCR2:Y with original exponent/Unchanged
 634 |       L_SCR1:original USER_FPCR/Unchanged
 635 |       L_SCR2:first word of X packed/Unchanged
 636 
 637 A13_st:
 638         swap    %d5             |put ICTR in lower word of d5
 639         tstw    %d5             |check if ICTR = 0
 640         bne     not_zr          |if non-zero, go to second test
 641 |
 642 | Compute 10^(LEN-1)
 643 |
 644         fmoves  FONE,%fp2       |init fp2 to 1.0
 645         movel   %d4,%d0         |put LEN in d0
 646         subql   #1,%d0          |d0 = LEN -1
 647         clrl    %d3             |clr table index
 648 l_loop:
 649         lsrl    #1,%d0          |shift next bit into carry
 650         bccs    l_next          |if zero, skip the mul
 651         fmulx   (%a1,%d3),%fp2  |mul by 10**(d3_bit_no)
 652 l_next:
 653         addl    #12,%d3         |inc d3 to next pwrten table entry
 654         tstl    %d0             |test if LEN is zero
 655         bnes    l_loop          |if not, loop
 656 |
 657 | 10^LEN-1 is computed for this test and A14.  If the input was
 658 | denormalized, check only the case in which YINT > 10^LEN.
 659 |
 660         tstb    BINDEC_FLG(%a6) |check if input was norm
 661         beqs    A13_con         |if norm, continue with checking
 662         fabsx   %fp0            |take abs of YINT
 663         bra     test_2
 664 |
 665 | Compare abs(YINT) to 10^(LEN-1) and 10^LEN
 666 |
 667 A13_con:
 668         fabsx   %fp0            |take abs of YINT
 669         fcmpx   %fp2,%fp0               |compare abs(YINT) with 10^(LEN-1)
 670         fbge    test_2          |if greater, do next test
 671         subql   #1,%d6          |subtract 1 from ILOG
 672         movew   #1,%d5          |set ICTR
 673         fmovel  #rm_mode,%FPCR  |set rmode to RM
 674         fmuls   FTEN,%fp2       |compute 10^LEN
 675         bra     A6_str          |return to A6 and recompute YINT
 676 test_2:
 677         fmuls   FTEN,%fp2       |compute 10^LEN
 678         fcmpx   %fp2,%fp0               |compare abs(YINT) with 10^LEN
 679         fblt    A14_st          |if less, all is ok, go to A14
 680         fbgt    fix_ex          |if greater, fix and redo
 681         fdivs   FTEN,%fp0       |if equal, divide by 10
 682         addql   #1,%d6          | and inc ILOG
 683         bras    A14_st          | and continue elsewhere
 684 fix_ex:
 685         addql   #1,%d6          |increment ILOG by 1
 686         movew   #1,%d5          |set ICTR
 687         fmovel  #rm_mode,%FPCR  |set rmode to RM
 688         bra     A6_str          |return to A6 and recompute YINT
 689 |
 690 | Since ICTR <> 0, we have already been through one adjustment,
 691 | and shouldn't have another; this is to check if abs(YINT) = 10^LEN
 692 | 10^LEN is again computed using whatever table is in a1 since the
 693 | value calculated cannot be inexact.
 694 |
 695 not_zr:
 696         fmoves  FONE,%fp2       |init fp2 to 1.0
 697         movel   %d4,%d0         |put LEN in d0
 698         clrl    %d3             |clr table index
 699 z_loop:
 700         lsrl    #1,%d0          |shift next bit into carry
 701         bccs    z_next          |if zero, skip the mul
 702         fmulx   (%a1,%d3),%fp2  |mul by 10**(d3_bit_no)
 703 z_next:
 704         addl    #12,%d3         |inc d3 to next pwrten table entry
 705         tstl    %d0             |test if LEN is zero
 706         bnes    z_loop          |if not, loop
 707         fabsx   %fp0            |get abs(YINT)
 708         fcmpx   %fp2,%fp0               |check if abs(YINT) = 10^LEN
 709         fbne    A14_st          |if not, skip this
 710         fdivs   FTEN,%fp0       |divide abs(YINT) by 10
 711         addql   #1,%d6          |and inc ILOG by 1
 712         addql   #1,%d4          | and inc LEN
 713         fmuls   FTEN,%fp2       | if LEN++, the get 10^^LEN
 714 
 715 
 716 | A14. Convert the mantissa to bcd.
 717 |      The binstr routine is used to convert the LEN digit
 718 |      mantissa to bcd in memory.  The input to binstr is
 719 |      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
 720 |      such that the decimal point is to the left of bit 63.
 721 |      The bcd digits are stored in the correct position in
 722 |      the final string area in memory.
 723 |
 724 |
 725 | Register usage:
 726 |       Input/Output
 727 |       d0: x/LEN call to binstr - final is 0
 728 |       d1: x/0
 729 |       d2: x/ms 32-bits of mant of abs(YINT)
 730 |       d3: x/ls 32-bits of mant of abs(YINT)
 731 |       d4: LEN/Unchanged
 732 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
 733 |       d6: ILOG
 734 |       d7: k-factor/Unchanged
 735 |       a0: pointer into memory for packed bcd string formation
 736 |           /ptr to first mantissa byte in result string
 737 |       a1: ptr to PTENxx array/Unchanged
 738 |       a2: ptr to FP_SCR2(a6)/Unchanged
 739 |       fp0: int portion of Y/abs(YINT) adjusted
 740 |       fp1: 10^ISCALE/Unchanged
 741 |       fp2: 10^LEN/Unchanged
 742 |       F_SCR1:x/Work area for final result
 743 |       F_SCR2:Y with original exponent/Unchanged
 744 |       L_SCR1:original USER_FPCR/Unchanged
 745 |       L_SCR2:first word of X packed/Unchanged
 746 
 747 A14_st:
 748         fmovel  #rz_mode,%FPCR  |force rz for conversion
 749         fdivx   %fp2,%fp0               |divide abs(YINT) by 10^LEN
 750         leal    FP_SCR1(%a6),%a0
 751         fmovex  %fp0,(%a0)      |move abs(YINT)/10^LEN to memory
 752         movel   4(%a0),%d2      |move 2nd word of FP_RES to d2
 753         movel   8(%a0),%d3      |move 3rd word of FP_RES to d3
 754         clrl    4(%a0)          |zero word 2 of FP_RES
 755         clrl    8(%a0)          |zero word 3 of FP_RES
 756         movel   (%a0),%d0               |move exponent to d0
 757         swap    %d0             |put exponent in lower word
 758         beqs    no_sft          |if zero, don't shift
 759         subil   #0x3ffd,%d0     |sub bias less 2 to make fract
 760         tstl    %d0             |check if > 1
 761         bgts    no_sft          |if so, don't shift
 762         negl    %d0             |make exp positive
 763 m_loop:
 764         lsrl    #1,%d2          |shift d2:d3 right, add 0s
 765         roxrl   #1,%d3          |the number of places
 766         dbf     %d0,m_loop      |given in d0
 767 no_sft:
 768         tstl    %d2             |check for mantissa of zero
 769         bnes    no_zr           |if not, go on
 770         tstl    %d3             |continue zero check
 771         beqs    zer_m           |if zero, go directly to binstr
 772 no_zr:
 773         clrl    %d1             |put zero in d1 for addx
 774         addil   #0x00000080,%d3 |inc at bit 7
 775         addxl   %d1,%d2         |continue inc
 776         andil   #0xffffff80,%d3 |strip off lsb not used by 882
 777 zer_m:
 778         movel   %d4,%d0         |put LEN in d0 for binstr call
 779         addql   #3,%a0          |a0 points to M16 byte in result
 780         bsr     binstr          |call binstr to convert mant
 781 
 782 
 783 | A15. Convert the exponent to bcd.
 784 |      As in A14 above, the exp is converted to bcd and the
 785 |      digits are stored in the final string.
 786 |
 787 |      Digits are stored in L_SCR1(a6) on return from BINDEC as:
 788 |
 789 |        32               16 15                0
 790 |       -----------------------------------------
 791 |       |  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
 792 |       -----------------------------------------
 793 |
 794 | And are moved into their proper places in FP_SCR1.  If digit e4
 795 | is non-zero, OPERR is signaled.  In all cases, all 4 digits are
 796 | written as specified in the 881/882 manual for packed decimal.
 797 |
 798 | Register usage:
 799 |       Input/Output
 800 |       d0: x/LEN call to binstr - final is 0
 801 |       d1: x/scratch (0);shift count for final exponent packing
 802 |       d2: x/ms 32-bits of exp fraction/scratch
 803 |       d3: x/ls 32-bits of exp fraction
 804 |       d4: LEN/Unchanged
 805 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
 806 |       d6: ILOG
 807 |       d7: k-factor/Unchanged
 808 |       a0: ptr to result string/ptr to L_SCR1(a6)
 809 |       a1: ptr to PTENxx array/Unchanged
 810 |       a2: ptr to FP_SCR2(a6)/Unchanged
 811 |       fp0: abs(YINT) adjusted/float(ILOG)
 812 |       fp1: 10^ISCALE/Unchanged
 813 |       fp2: 10^LEN/Unchanged
 814 |       F_SCR1:Work area for final result/BCD result
 815 |       F_SCR2:Y with original exponent/ILOG/10^4
 816 |       L_SCR1:original USER_FPCR/Exponent digits on return from binstr
 817 |       L_SCR2:first word of X packed/Unchanged
 818 
 819 A15_st:
 820         tstb    BINDEC_FLG(%a6) |check for denorm
 821         beqs    not_denorm
 822         ftstx   %fp0            |test for zero
 823         fbeq    den_zero        |if zero, use k-factor or 4933
 824         fmovel  %d6,%fp0                |float ILOG
 825         fabsx   %fp0            |get abs of ILOG
 826         bras    convrt
 827 den_zero:
 828         tstl    %d7             |check sign of the k-factor
 829         blts    use_ilog        |if negative, use ILOG
 830         fmoves  F4933,%fp0      |force exponent to 4933
 831         bras    convrt          |do it
 832 use_ilog:
 833         fmovel  %d6,%fp0                |float ILOG
 834         fabsx   %fp0            |get abs of ILOG
 835         bras    convrt
 836 not_denorm:
 837         ftstx   %fp0            |test for zero
 838         fbne    not_zero        |if zero, force exponent
 839         fmoves  FONE,%fp0       |force exponent to 1
 840         bras    convrt          |do it
 841 not_zero:
 842         fmovel  %d6,%fp0                |float ILOG
 843         fabsx   %fp0            |get abs of ILOG
 844 convrt:
 845         fdivx   24(%a1),%fp0    |compute ILOG/10^4
 846         fmovex  %fp0,FP_SCR2(%a6)       |store fp0 in memory
 847         movel   4(%a2),%d2      |move word 2 to d2
 848         movel   8(%a2),%d3      |move word 3 to d3
 849         movew   (%a2),%d0               |move exp to d0
 850         beqs    x_loop_fin      |if zero, skip the shift
 851         subiw   #0x3ffd,%d0     |subtract off bias
 852         negw    %d0             |make exp positive
 853 x_loop:
 854         lsrl    #1,%d2          |shift d2:d3 right
 855         roxrl   #1,%d3          |the number of places
 856         dbf     %d0,x_loop      |given in d0
 857 x_loop_fin:
 858         clrl    %d1             |put zero in d1 for addx
 859         addil   #0x00000080,%d3 |inc at bit 6
 860         addxl   %d1,%d2         |continue inc
 861         andil   #0xffffff80,%d3 |strip off lsb not used by 882
 862         movel   #4,%d0          |put 4 in d0 for binstr call
 863         leal    L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits
 864         bsr     binstr          |call binstr to convert exp
 865         movel   L_SCR1(%a6),%d0 |load L_SCR1 lword to d0
 866         movel   #12,%d1         |use d1 for shift count
 867         lsrl    %d1,%d0         |shift d0 right by 12
 868         bfins   %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
 869         lsrl    %d1,%d0         |shift d0 right by 12
 870         bfins   %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
 871         tstb    %d0             |check if e4 is zero
 872         beqs    A16_st          |if zero, skip rest
 873         orl     #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
 874 
 875 
 876 | A16. Write sign bits to final string.
 877 |          Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
 878 |
 879 | Register usage:
 880 |       Input/Output
 881 |       d0: x/scratch - final is x
 882 |       d2: x/x
 883 |       d3: x/x
 884 |       d4: LEN/Unchanged
 885 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
 886 |       d6: ILOG/ILOG adjusted
 887 |       d7: k-factor/Unchanged
 888 |       a0: ptr to L_SCR1(a6)/Unchanged
 889 |       a1: ptr to PTENxx array/Unchanged
 890 |       a2: ptr to FP_SCR2(a6)/Unchanged
 891 |       fp0: float(ILOG)/Unchanged
 892 |       fp1: 10^ISCALE/Unchanged
 893 |       fp2: 10^LEN/Unchanged
 894 |       F_SCR1:BCD result with correct signs
 895 |       F_SCR2:ILOG/10^4
 896 |       L_SCR1:Exponent digits on return from binstr
 897 |       L_SCR2:first word of X packed/Unchanged
 898 
 899 A16_st:
 900         clrl    %d0             |clr d0 for collection of signs
 901         andib   #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
 902         tstl    L_SCR2(%a6)     |check sign of original mantissa
 903         bges    mant_p          |if pos, don't set SM
 904         moveql  #2,%d0          |move 2 in to d0 for SM
 905 mant_p:
 906         tstl    %d6             |check sign of ILOG
 907         bges    wr_sgn          |if pos, don't set SE
 908         addql   #1,%d0          |set bit 0 in d0 for SE
 909 wr_sgn:
 910         bfins   %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
 911 
 912 | Clean up and restore all registers used.
 913 
 914         fmovel  #0,%FPSR                |clear possible inex2/ainex bits
 915         fmovemx (%a7)+,%fp0-%fp2
 916         moveml  (%a7)+,%d2-%d7/%a2
 917         rts
 918 
 919         |end

/* [<][>][^][v][top][bottom][index][help] */