root/arch/m68k/fpsp040/decbin.S

/* [<][>][^][v][top][bottom][index][help] */
   1 |
   2 |       decbin.sa 3.3 12/19/90
   3 |
   4 |       Description: Converts normalized packed bcd value pointed to by
   5 |       register A6 to extended-precision value in FP0.
   6 |
   7 |       Input: Normalized packed bcd value in ETEMP(a6).
   8 |
   9 |       Output: Exact floating-point representation of the packed bcd value.
  10 |
  11 |       Saves and Modifies: D2-D5
  12 |
  13 |       Speed: The program decbin takes ??? cycles to execute.
  14 |
  15 |       Object Size:
  16 |
  17 |       External Reference(s): None.
  18 |
  19 |       Algorithm:
  20 |       Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
  21 |       and NaN operands are dispatched without entering this routine)
  22 |       value in 68881/882 format at location ETEMP(A6).
  23 |
  24 |       A1.     Convert the bcd exponent to binary by successive adds and muls.
  25 |       Set the sign according to SE. Subtract 16 to compensate
  26 |       for the mantissa which is to be interpreted as 17 integer
  27 |       digits, rather than 1 integer and 16 fraction digits.
  28 |       Note: this operation can never overflow.
  29 |
  30 |       A2. Convert the bcd mantissa to binary by successive
  31 |       adds and muls in FP0. Set the sign according to SM.
  32 |       The mantissa digits will be converted with the decimal point
  33 |       assumed following the least-significant digit.
  34 |       Note: this operation can never overflow.
  35 |
  36 |       A3. Count the number of leading/trailing zeros in the
  37 |       bcd string.  If SE is positive, count the leading zeros;
  38 |       if negative, count the trailing zeros.  Set the adjusted
  39 |       exponent equal to the exponent from A1 and the zero count
  40 |       added if SM = 1 and subtracted if SM = 0.  Scale the
  41 |       mantissa the equivalent of forcing in the bcd value:
  42 |
  43 |       SM = 0  a non-zero digit in the integer position
  44 |       SM = 1  a non-zero digit in Mant0, lsd of the fraction
  45 |
  46 |       this will insure that any value, regardless of its
  47 |       representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
  48 |       consistently.
  49 |
  50 |       A4. Calculate the factor 10^exp in FP1 using a table of
  51 |       10^(2^n) values.  To reduce the error in forming factors
  52 |       greater than 10^27, a directed rounding scheme is used with
  53 |       tables rounded to RN, RM, and RP, according to the table
  54 |       in the comments of the pwrten section.
  55 |
  56 |       A5. Form the final binary number by scaling the mantissa by
  57 |       the exponent factor.  This is done by multiplying the
  58 |       mantissa in FP0 by the factor in FP1 if the adjusted
  59 |       exponent sign is positive, and dividing FP0 by FP1 if
  60 |       it is negative.
  61 |
  62 |       Clean up and return.  Check if the final mul or div resulted
  63 |       in an inex2 exception.  If so, set inex1 in the fpsr and
  64 |       check if the inex1 exception is enabled.  If so, set d7 upper
  65 |       word to $0100.  This will signal unimp.sa that an enabled inex1
  66 |       exception occurred.  Unimp will fix the stack.
  67 |
  68 
  69 |               Copyright (C) Motorola, Inc. 1990
  70 |                       All Rights Reserved
  71 |
  72 |       For details on the license for this file, please see the
  73 |       file, README, in this same directory.
  74 
  75 |DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
  76 
  77         |section        8
  78 
  79 #include "fpsp.h"
  80 
  81 |
  82 |       PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
  83 |       to nearest, minus, and plus, respectively.  The tables include
  84 |       10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
  85 |       is required until the power is greater than 27, however, all
  86 |       tables include the first 5 for ease of indexing.
  87 |
  88         |xref   PTENRN
  89         |xref   PTENRM
  90         |xref   PTENRP
  91 
  92 RTABLE: .byte   0,0,0,0
  93         .byte   2,3,2,3
  94         .byte   2,3,3,2
  95         .byte   3,2,2,3
  96 
  97         .global decbin
  98         .global calc_e
  99         .global pwrten
 100         .global calc_m
 101         .global norm
 102         .global ap_st_z
 103         .global ap_st_n
 104 |
 105         .set    FNIBS,7
 106         .set    FSTRT,0
 107 |
 108         .set    ESTRT,4
 109         .set    EDIGITS,2       |
 110 |
 111 | Constants in single precision
 112 FZERO:  .long   0x00000000
 113 FONE:   .long   0x3F800000
 114 FTEN:   .long   0x41200000
 115 
 116         .set    TEN,10
 117 
 118 |
 119 decbin:
 120         | fmovel        #0,FPCR         ;clr real fpcr
 121         moveml  %d2-%d5,-(%a7)
 122 |
 123 | Calculate exponent:
 124 |  1. Copy bcd value in memory for use as a working copy.
 125 |  2. Calculate absolute value of exponent in d1 by mul and add.
 126 |  3. Correct for exponent sign.
 127 |  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
 128 |     (i.e., all digits assumed left of the decimal point.)
 129 |
 130 | Register usage:
 131 |
 132 |  calc_e:
 133 |       (*)  d0: temp digit storage
 134 |       (*)  d1: accumulator for binary exponent
 135 |       (*)  d2: digit count
 136 |       (*)  d3: offset pointer
 137 |       ( )  d4: first word of bcd
 138 |       ( )  a0: pointer to working bcd value
 139 |       ( )  a6: pointer to original bcd value
 140 |       (*)  FP_SCR1: working copy of original bcd value
 141 |       (*)  L_SCR1: copy of original exponent word
 142 |
 143 calc_e:
 144         movel   #EDIGITS,%d2    |# of nibbles (digits) in fraction part
 145         moveql  #ESTRT,%d3      |counter to pick up digits
 146         leal    FP_SCR1(%a6),%a0        |load tmp bcd storage address
 147         movel   ETEMP(%a6),(%a0)        |save input bcd value
 148         movel   ETEMP_HI(%a6),4(%a0) |save words 2 and 3
 149         movel   ETEMP_LO(%a6),8(%a0) |and work with these
 150         movel   (%a0),%d4       |get first word of bcd
 151         clrl    %d1             |zero d1 for accumulator
 152 e_gd:
 153         mulul   #TEN,%d1        |mul partial product by one digit place
 154         bfextu  %d4{%d3:#4},%d0 |get the digit and zero extend into d0
 155         addl    %d0,%d1         |d1 = d1 + d0
 156         addqb   #4,%d3          |advance d3 to the next digit
 157         dbf     %d2,e_gd        |if we have used all 3 digits, exit loop
 158         btst    #30,%d4         |get SE
 159         beqs    e_pos           |don't negate if pos
 160         negl    %d1             |negate before subtracting
 161 e_pos:
 162         subl    #16,%d1         |sub to compensate for shift of mant
 163         bges    e_save          |if still pos, do not neg
 164         negl    %d1             |now negative, make pos and set SE
 165         orl     #0x40000000,%d4 |set SE in d4,
 166         orl     #0x40000000,(%a0)       |and in working bcd
 167 e_save:
 168         movel   %d1,L_SCR1(%a6) |save exp in memory
 169 |
 170 |
 171 | Calculate mantissa:
 172 |  1. Calculate absolute value of mantissa in fp0 by mul and add.
 173 |  2. Correct for mantissa sign.
 174 |     (i.e., all digits assumed left of the decimal point.)
 175 |
 176 | Register usage:
 177 |
 178 |  calc_m:
 179 |       (*)  d0: temp digit storage
 180 |       (*)  d1: lword counter
 181 |       (*)  d2: digit count
 182 |       (*)  d3: offset pointer
 183 |       ( )  d4: words 2 and 3 of bcd
 184 |       ( )  a0: pointer to working bcd value
 185 |       ( )  a6: pointer to original bcd value
 186 |       (*) fp0: mantissa accumulator
 187 |       ( )  FP_SCR1: working copy of original bcd value
 188 |       ( )  L_SCR1: copy of original exponent word
 189 |
 190 calc_m:
 191         moveql  #1,%d1          |word counter, init to 1
 192         fmoves  FZERO,%fp0      |accumulator
 193 |
 194 |
 195 |  Since the packed number has a long word between the first & second parts,
 196 |  get the integer digit then skip down & get the rest of the
 197 |  mantissa.  We will unroll the loop once.
 198 |
 199         bfextu  (%a0){#28:#4},%d0       |integer part is ls digit in long word
 200         faddb   %d0,%fp0                |add digit to sum in fp0
 201 |
 202 |
 203 |  Get the rest of the mantissa.
 204 |
 205 loadlw:
 206         movel   (%a0,%d1.L*4),%d4       |load mantissa longword into d4
 207         moveql  #FSTRT,%d3      |counter to pick up digits
 208         moveql  #FNIBS,%d2      |reset number of digits per a0 ptr
 209 md2b:
 210         fmuls   FTEN,%fp0       |fp0 = fp0 * 10
 211         bfextu  %d4{%d3:#4},%d0 |get the digit and zero extend
 212         faddb   %d0,%fp0        |fp0 = fp0 + digit
 213 |
 214 |
 215 |  If all the digits (8) in that long word have been converted (d2=0),
 216 |  then inc d1 (=2) to point to the next long word and reset d3 to 0
 217 |  to initialize the digit offset, and set d2 to 7 for the digit count;
 218 |  else continue with this long word.
 219 |
 220         addqb   #4,%d3          |advance d3 to the next digit
 221         dbf     %d2,md2b                |check for last digit in this lw
 222 nextlw:
 223         addql   #1,%d1          |inc lw pointer in mantissa
 224         cmpl    #2,%d1          |test for last lw
 225         ble     loadlw          |if not, get last one
 226 
 227 |
 228 |  Check the sign of the mant and make the value in fp0 the same sign.
 229 |
 230 m_sign:
 231         btst    #31,(%a0)       |test sign of the mantissa
 232         beq     ap_st_z         |if clear, go to append/strip zeros
 233         fnegx   %fp0            |if set, negate fp0
 234 
 235 |
 236 | Append/strip zeros:
 237 |
 238 |  For adjusted exponents which have an absolute value greater than 27*,
 239 |  this routine calculates the amount needed to normalize the mantissa
 240 |  for the adjusted exponent.  That number is subtracted from the exp
 241 |  if the exp was positive, and added if it was negative.  The purpose
 242 |  of this is to reduce the value of the exponent and the possibility
 243 |  of error in calculation of pwrten.
 244 |
 245 |  1. Branch on the sign of the adjusted exponent.
 246 |  2p.(positive exp)
 247 |   2. Check M16 and the digits in lwords 2 and 3 in descending order.
 248 |   3. Add one for each zero encountered until a non-zero digit.
 249 |   4. Subtract the count from the exp.
 250 |   5. Check if the exp has crossed zero in #3 above; make the exp abs
 251 |          and set SE.
 252 |       6. Multiply the mantissa by 10**count.
 253 |  2n.(negative exp)
 254 |   2. Check the digits in lwords 3 and 2 in descending order.
 255 |   3. Add one for each zero encountered until a non-zero digit.
 256 |   4. Add the count to the exp.
 257 |   5. Check if the exp has crossed zero in #3 above; clear SE.
 258 |   6. Divide the mantissa by 10**count.
 259 |
 260 |  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
 261 |   any adjustment due to append/strip zeros will drive the resultant
 262 |   exponent towards zero.  Since all pwrten constants with a power
 263 |   of 27 or less are exact, there is no need to use this routine to
 264 |   attempt to lessen the resultant exponent.
 265 |
 266 | Register usage:
 267 |
 268 |  ap_st_z:
 269 |       (*)  d0: temp digit storage
 270 |       (*)  d1: zero count
 271 |       (*)  d2: digit count
 272 |       (*)  d3: offset pointer
 273 |       ( )  d4: first word of bcd
 274 |       (*)  d5: lword counter
 275 |       ( )  a0: pointer to working bcd value
 276 |       ( )  FP_SCR1: working copy of original bcd value
 277 |       ( )  L_SCR1: copy of original exponent word
 278 |
 279 |
 280 | First check the absolute value of the exponent to see if this
 281 | routine is necessary.  If so, then check the sign of the exponent
 282 | and do append (+) or strip (-) zeros accordingly.
 283 | This section handles a positive adjusted exponent.
 284 |
 285 ap_st_z:
 286         movel   L_SCR1(%a6),%d1 |load expA for range test
 287         cmpl    #27,%d1         |test is with 27
 288         ble     pwrten          |if abs(expA) <28, skip ap/st zeros
 289         btst    #30,(%a0)       |check sign of exp
 290         bne     ap_st_n         |if neg, go to neg side
 291         clrl    %d1             |zero count reg
 292         movel   (%a0),%d4               |load lword 1 to d4
 293         bfextu  %d4{#28:#4},%d0 |get M16 in d0
 294         bnes    ap_p_fx         |if M16 is non-zero, go fix exp
 295         addql   #1,%d1          |inc zero count
 296         moveql  #1,%d5          |init lword counter
 297         movel   (%a0,%d5.L*4),%d4       |get lword 2 to d4
 298         bnes    ap_p_cl         |if lw 2 is zero, skip it
 299         addql   #8,%d1          |and inc count by 8
 300         addql   #1,%d5          |inc lword counter
 301         movel   (%a0,%d5.L*4),%d4       |get lword 3 to d4
 302 ap_p_cl:
 303         clrl    %d3             |init offset reg
 304         moveql  #7,%d2          |init digit counter
 305 ap_p_gd:
 306         bfextu  %d4{%d3:#4},%d0 |get digit
 307         bnes    ap_p_fx         |if non-zero, go to fix exp
 308         addql   #4,%d3          |point to next digit
 309         addql   #1,%d1          |inc digit counter
 310         dbf     %d2,ap_p_gd     |get next digit
 311 ap_p_fx:
 312         movel   %d1,%d0         |copy counter to d2
 313         movel   L_SCR1(%a6),%d1 |get adjusted exp from memory
 314         subl    %d0,%d1         |subtract count from exp
 315         bges    ap_p_fm         |if still pos, go to pwrten
 316         negl    %d1             |now its neg; get abs
 317         movel   (%a0),%d4               |load lword 1 to d4
 318         orl     #0x40000000,%d4 | and set SE in d4
 319         orl     #0x40000000,(%a0)       | and in memory
 320 |
 321 | Calculate the mantissa multiplier to compensate for the striping of
 322 | zeros from the mantissa.
 323 |
 324 ap_p_fm:
 325         movel   #PTENRN,%a1     |get address of power-of-ten table
 326         clrl    %d3             |init table index
 327         fmoves  FONE,%fp1       |init fp1 to 1
 328         moveql  #3,%d2          |init d2 to count bits in counter
 329 ap_p_el:
 330         asrl    #1,%d0          |shift lsb into carry
 331         bccs    ap_p_en         |if 1, mul fp1 by pwrten factor
 332         fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 333 ap_p_en:
 334         addl    #12,%d3         |inc d3 to next rtable entry
 335         tstl    %d0             |check if d0 is zero
 336         bnes    ap_p_el         |if not, get next bit
 337         fmulx   %fp1,%fp0               |mul mantissa by 10**(no_bits_shifted)
 338         bra     pwrten          |go calc pwrten
 339 |
 340 | This section handles a negative adjusted exponent.
 341 |
 342 ap_st_n:
 343         clrl    %d1             |clr counter
 344         moveql  #2,%d5          |set up d5 to point to lword 3
 345         movel   (%a0,%d5.L*4),%d4       |get lword 3
 346         bnes    ap_n_cl         |if not zero, check digits
 347         subl    #1,%d5          |dec d5 to point to lword 2
 348         addql   #8,%d1          |inc counter by 8
 349         movel   (%a0,%d5.L*4),%d4       |get lword 2
 350 ap_n_cl:
 351         movel   #28,%d3         |point to last digit
 352         moveql  #7,%d2          |init digit counter
 353 ap_n_gd:
 354         bfextu  %d4{%d3:#4},%d0 |get digit
 355         bnes    ap_n_fx         |if non-zero, go to exp fix
 356         subql   #4,%d3          |point to previous digit
 357         addql   #1,%d1          |inc digit counter
 358         dbf     %d2,ap_n_gd     |get next digit
 359 ap_n_fx:
 360         movel   %d1,%d0         |copy counter to d0
 361         movel   L_SCR1(%a6),%d1 |get adjusted exp from memory
 362         subl    %d0,%d1         |subtract count from exp
 363         bgts    ap_n_fm         |if still pos, go fix mantissa
 364         negl    %d1             |take abs of exp and clr SE
 365         movel   (%a0),%d4               |load lword 1 to d4
 366         andl    #0xbfffffff,%d4 | and clr SE in d4
 367         andl    #0xbfffffff,(%a0)       | and in memory
 368 |
 369 | Calculate the mantissa multiplier to compensate for the appending of
 370 | zeros to the mantissa.
 371 |
 372 ap_n_fm:
 373         movel   #PTENRN,%a1     |get address of power-of-ten table
 374         clrl    %d3             |init table index
 375         fmoves  FONE,%fp1       |init fp1 to 1
 376         moveql  #3,%d2          |init d2 to count bits in counter
 377 ap_n_el:
 378         asrl    #1,%d0          |shift lsb into carry
 379         bccs    ap_n_en         |if 1, mul fp1 by pwrten factor
 380         fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 381 ap_n_en:
 382         addl    #12,%d3         |inc d3 to next rtable entry
 383         tstl    %d0             |check if d0 is zero
 384         bnes    ap_n_el         |if not, get next bit
 385         fdivx   %fp1,%fp0               |div mantissa by 10**(no_bits_shifted)
 386 |
 387 |
 388 | Calculate power-of-ten factor from adjusted and shifted exponent.
 389 |
 390 | Register usage:
 391 |
 392 |  pwrten:
 393 |       (*)  d0: temp
 394 |       ( )  d1: exponent
 395 |       (*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
 396 |       (*)  d3: FPCR work copy
 397 |       ( )  d4: first word of bcd
 398 |       (*)  a1: RTABLE pointer
 399 |  calc_p:
 400 |       (*)  d0: temp
 401 |       ( )  d1: exponent
 402 |       (*)  d3: PWRTxx table index
 403 |       ( )  a0: pointer to working copy of bcd
 404 |       (*)  a1: PWRTxx pointer
 405 |       (*) fp1: power-of-ten accumulator
 406 |
 407 | Pwrten calculates the exponent factor in the selected rounding mode
 408 | according to the following table:
 409 |
 410 |       Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
 411 |
 412 |       ANY       ANY   RN      RN
 413 |
 414 |        +         +    RP      RP
 415 |        -         +    RP      RM
 416 |        +         -    RP      RM
 417 |        -         -    RP      RP
 418 |
 419 |        +         +    RM      RM
 420 |        -         +    RM      RP
 421 |        +         -    RM      RP
 422 |        -         -    RM      RM
 423 |
 424 |        +         +    RZ      RM
 425 |        -         +    RZ      RM
 426 |        +         -    RZ      RP
 427 |        -         -    RZ      RP
 428 |
 429 |
 430 pwrten:
 431         movel   USER_FPCR(%a6),%d3 |get user's FPCR
 432         bfextu  %d3{#26:#2},%d2 |isolate rounding mode bits
 433         movel   (%a0),%d4               |reload 1st bcd word to d4
 434         asll    #2,%d2          |format d2 to be
 435         bfextu  %d4{#0:#2},%d0  | {FPCR[6],FPCR[5],SM,SE}
 436         addl    %d0,%d2         |in d2 as index into RTABLE
 437         leal    RTABLE,%a1      |load rtable base
 438         moveb   (%a1,%d2),%d0   |load new rounding bits from table
 439         clrl    %d3                     |clear d3 to force no exc and extended
 440         bfins   %d0,%d3{#26:#2} |stuff new rounding bits in FPCR
 441         fmovel  %d3,%FPCR               |write new FPCR
 442         asrl    #1,%d0          |write correct PTENxx table
 443         bccs    not_rp          |to a1
 444         leal    PTENRP,%a1      |it is RP
 445         bras    calc_p          |go to init section
 446 not_rp:
 447         asrl    #1,%d0          |keep checking
 448         bccs    not_rm
 449         leal    PTENRM,%a1      |it is RM
 450         bras    calc_p          |go to init section
 451 not_rm:
 452         leal    PTENRN,%a1      |it is RN
 453 calc_p:
 454         movel   %d1,%d0         |copy exp to d0;use d0
 455         bpls    no_neg          |if exp is negative,
 456         negl    %d0             |invert it
 457         orl     #0x40000000,(%a0)       |and set SE bit
 458 no_neg:
 459         clrl    %d3             |table index
 460         fmoves  FONE,%fp1       |init fp1 to 1
 461 e_loop:
 462         asrl    #1,%d0          |shift next bit into carry
 463         bccs    e_next          |if zero, skip the mul
 464         fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 465 e_next:
 466         addl    #12,%d3         |inc d3 to next rtable entry
 467         tstl    %d0             |check if d0 is zero
 468         bnes    e_loop          |not zero, continue shifting
 469 |
 470 |
 471 |  Check the sign of the adjusted exp and make the value in fp0 the
 472 |  same sign. If the exp was pos then multiply fp1*fp0;
 473 |  else divide fp0/fp1.
 474 |
 475 | Register Usage:
 476 |  norm:
 477 |       ( )  a0: pointer to working bcd value
 478 |       (*) fp0: mantissa accumulator
 479 |       ( ) fp1: scaling factor - 10**(abs(exp))
 480 |
 481 norm:
 482         btst    #30,(%a0)       |test the sign of the exponent
 483         beqs    mul             |if clear, go to multiply
 484 div:
 485         fdivx   %fp1,%fp0               |exp is negative, so divide mant by exp
 486         bras    end_dec
 487 mul:
 488         fmulx   %fp1,%fp0               |exp is positive, so multiply by exp
 489 |
 490 |
 491 | Clean up and return with result in fp0.
 492 |
 493 | If the final mul/div in decbin incurred an inex exception,
 494 | it will be inex2, but will be reported as inex1 by get_op.
 495 |
 496 end_dec:
 497         fmovel  %FPSR,%d0               |get status register
 498         bclrl   #inex2_bit+8,%d0        |test for inex2 and clear it
 499         fmovel  %d0,%FPSR               |return status reg w/o inex2
 500         beqs    no_exc          |skip this if no exc
 501         orl     #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
 502 no_exc:
 503         moveml  (%a7)+,%d2-%d5
 504         rts
 505         |end

/* [<][>][^][v][top][bottom][index][help] */