root/lib/decompress_unlzma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. read_int
  2. nofill
  3. rc_read
  4. rc_init
  5. rc_init_code
  6. rc_do_normalize
  7. rc_normalize
  8. rc_is_bit_0_helper
  9. rc_is_bit_0
  10. rc_update_bit_0
  11. rc_update_bit_1
  12. rc_get_bit
  13. rc_direct_bit
  14. rc_bit_tree_decode
  15. get_pos
  16. peek_old_byte
  17. write_byte
  18. copy_byte
  19. copy_bytes
  20. process_bit0
  21. process_bit1
  22. unlzma
  23. __decompress

   1 /* Lzma decompressor for Linux kernel. Shamelessly snarfed
   2  *from busybox 1.1.1
   3  *
   4  *Linux kernel adaptation
   5  *Copyright (C) 2006  Alain < alain@knaff.lu >
   6  *
   7  *Based on small lzma deflate implementation/Small range coder
   8  *implementation for lzma.
   9  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
  10  *
  11  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
  12  *Copyright (C) 1999-2005  Igor Pavlov
  13  *
  14  *Copyrights of the parts, see headers below.
  15  *
  16  *
  17  *This program is free software; you can redistribute it and/or
  18  *modify it under the terms of the GNU Lesser General Public
  19  *License as published by the Free Software Foundation; either
  20  *version 2.1 of the License, or (at your option) any later version.
  21  *
  22  *This program is distributed in the hope that it will be useful,
  23  *but WITHOUT ANY WARRANTY; without even the implied warranty of
  24  *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  25  *Lesser General Public License for more details.
  26  *
  27  *You should have received a copy of the GNU Lesser General Public
  28  *License along with this library; if not, write to the Free Software
  29  *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  30  */
  31 
  32 #ifdef STATIC
  33 #define PREBOOT
  34 #else
  35 #include <linux/decompress/unlzma.h>
  36 #endif /* STATIC */
  37 
  38 #include <linux/decompress/mm.h>
  39 
  40 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
  41 
  42 static long long INIT read_int(unsigned char *ptr, int size)
  43 {
  44         int i;
  45         long long ret = 0;
  46 
  47         for (i = 0; i < size; i++)
  48                 ret = (ret << 8) | ptr[size-i-1];
  49         return ret;
  50 }
  51 
  52 #define ENDIAN_CONVERT(x) \
  53   x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
  54 
  55 
  56 /* Small range coder implementation for lzma.
  57  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
  58  *
  59  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
  60  *Copyright (c) 1999-2005  Igor Pavlov
  61  */
  62 
  63 #include <linux/compiler.h>
  64 
  65 #define LZMA_IOBUF_SIZE 0x10000
  66 
  67 struct rc {
  68         long (*fill)(void*, unsigned long);
  69         uint8_t *ptr;
  70         uint8_t *buffer;
  71         uint8_t *buffer_end;
  72         long buffer_size;
  73         uint32_t code;
  74         uint32_t range;
  75         uint32_t bound;
  76         void (*error)(char *);
  77 };
  78 
  79 
  80 #define RC_TOP_BITS 24
  81 #define RC_MOVE_BITS 5
  82 #define RC_MODEL_TOTAL_BITS 11
  83 
  84 
  85 static long INIT nofill(void *buffer, unsigned long len)
  86 {
  87         return -1;
  88 }
  89 
  90 /* Called twice: once at startup and once in rc_normalize() */
  91 static void INIT rc_read(struct rc *rc)
  92 {
  93         rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
  94         if (rc->buffer_size <= 0)
  95                 rc->error("unexpected EOF");
  96         rc->ptr = rc->buffer;
  97         rc->buffer_end = rc->buffer + rc->buffer_size;
  98 }
  99 
 100 /* Called once */
 101 static inline void INIT rc_init(struct rc *rc,
 102                                        long (*fill)(void*, unsigned long),
 103                                        char *buffer, long buffer_size)
 104 {
 105         if (fill)
 106                 rc->fill = fill;
 107         else
 108                 rc->fill = nofill;
 109         rc->buffer = (uint8_t *)buffer;
 110         rc->buffer_size = buffer_size;
 111         rc->buffer_end = rc->buffer + rc->buffer_size;
 112         rc->ptr = rc->buffer;
 113 
 114         rc->code = 0;
 115         rc->range = 0xFFFFFFFF;
 116 }
 117 
 118 static inline void INIT rc_init_code(struct rc *rc)
 119 {
 120         int i;
 121 
 122         for (i = 0; i < 5; i++) {
 123                 if (rc->ptr >= rc->buffer_end)
 124                         rc_read(rc);
 125                 rc->code = (rc->code << 8) | *rc->ptr++;
 126         }
 127 }
 128 
 129 
 130 /* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
 131 static void INIT rc_do_normalize(struct rc *rc)
 132 {
 133         if (rc->ptr >= rc->buffer_end)
 134                 rc_read(rc);
 135         rc->range <<= 8;
 136         rc->code = (rc->code << 8) | *rc->ptr++;
 137 }
 138 static inline void INIT rc_normalize(struct rc *rc)
 139 {
 140         if (rc->range < (1 << RC_TOP_BITS))
 141                 rc_do_normalize(rc);
 142 }
 143 
 144 /* Called 9 times */
 145 /* Why rc_is_bit_0_helper exists?
 146  *Because we want to always expose (rc->code < rc->bound) to optimizer
 147  */
 148 static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
 149 {
 150         rc_normalize(rc);
 151         rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
 152         return rc->bound;
 153 }
 154 static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
 155 {
 156         uint32_t t = rc_is_bit_0_helper(rc, p);
 157         return rc->code < t;
 158 }
 159 
 160 /* Called ~10 times, but very small, thus inlined */
 161 static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
 162 {
 163         rc->range = rc->bound;
 164         *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
 165 }
 166 static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p)
 167 {
 168         rc->range -= rc->bound;
 169         rc->code -= rc->bound;
 170         *p -= *p >> RC_MOVE_BITS;
 171 }
 172 
 173 /* Called 4 times in unlzma loop */
 174 static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
 175 {
 176         if (rc_is_bit_0(rc, p)) {
 177                 rc_update_bit_0(rc, p);
 178                 *symbol *= 2;
 179                 return 0;
 180         } else {
 181                 rc_update_bit_1(rc, p);
 182                 *symbol = *symbol * 2 + 1;
 183                 return 1;
 184         }
 185 }
 186 
 187 /* Called once */
 188 static inline int INIT rc_direct_bit(struct rc *rc)
 189 {
 190         rc_normalize(rc);
 191         rc->range >>= 1;
 192         if (rc->code >= rc->range) {
 193                 rc->code -= rc->range;
 194                 return 1;
 195         }
 196         return 0;
 197 }
 198 
 199 /* Called twice */
 200 static inline void INIT
 201 rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
 202 {
 203         int i = num_levels;
 204 
 205         *symbol = 1;
 206         while (i--)
 207                 rc_get_bit(rc, p + *symbol, symbol);
 208         *symbol -= 1 << num_levels;
 209 }
 210 
 211 
 212 /*
 213  * Small lzma deflate implementation.
 214  * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
 215  *
 216  * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
 217  * Copyright (C) 1999-2005  Igor Pavlov
 218  */
 219 
 220 
 221 struct lzma_header {
 222         uint8_t pos;
 223         uint32_t dict_size;
 224         uint64_t dst_size;
 225 } __attribute__ ((packed)) ;
 226 
 227 
 228 #define LZMA_BASE_SIZE 1846
 229 #define LZMA_LIT_SIZE 768
 230 
 231 #define LZMA_NUM_POS_BITS_MAX 4
 232 
 233 #define LZMA_LEN_NUM_LOW_BITS 3
 234 #define LZMA_LEN_NUM_MID_BITS 3
 235 #define LZMA_LEN_NUM_HIGH_BITS 8
 236 
 237 #define LZMA_LEN_CHOICE 0
 238 #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
 239 #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
 240 #define LZMA_LEN_MID (LZMA_LEN_LOW \
 241                       + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
 242 #define LZMA_LEN_HIGH (LZMA_LEN_MID \
 243                        +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
 244 #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
 245 
 246 #define LZMA_NUM_STATES 12
 247 #define LZMA_NUM_LIT_STATES 7
 248 
 249 #define LZMA_START_POS_MODEL_INDEX 4
 250 #define LZMA_END_POS_MODEL_INDEX 14
 251 #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
 252 
 253 #define LZMA_NUM_POS_SLOT_BITS 6
 254 #define LZMA_NUM_LEN_TO_POS_STATES 4
 255 
 256 #define LZMA_NUM_ALIGN_BITS 4
 257 
 258 #define LZMA_MATCH_MIN_LEN 2
 259 
 260 #define LZMA_IS_MATCH 0
 261 #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
 262 #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
 263 #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
 264 #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
 265 #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
 266 #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
 267                        + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
 268 #define LZMA_SPEC_POS (LZMA_POS_SLOT \
 269                        +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
 270 #define LZMA_ALIGN (LZMA_SPEC_POS \
 271                     + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
 272 #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
 273 #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
 274 #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
 275 
 276 
 277 struct writer {
 278         uint8_t *buffer;
 279         uint8_t previous_byte;
 280         size_t buffer_pos;
 281         int bufsize;
 282         size_t global_pos;
 283         long (*flush)(void*, unsigned long);
 284         struct lzma_header *header;
 285 };
 286 
 287 struct cstate {
 288         int state;
 289         uint32_t rep0, rep1, rep2, rep3;
 290 };
 291 
 292 static inline size_t INIT get_pos(struct writer *wr)
 293 {
 294         return
 295                 wr->global_pos + wr->buffer_pos;
 296 }
 297 
 298 static inline uint8_t INIT peek_old_byte(struct writer *wr,
 299                                                 uint32_t offs)
 300 {
 301         if (!wr->flush) {
 302                 int32_t pos;
 303                 while (offs > wr->header->dict_size)
 304                         offs -= wr->header->dict_size;
 305                 pos = wr->buffer_pos - offs;
 306                 return wr->buffer[pos];
 307         } else {
 308                 uint32_t pos = wr->buffer_pos - offs;
 309                 while (pos >= wr->header->dict_size)
 310                         pos += wr->header->dict_size;
 311                 return wr->buffer[pos];
 312         }
 313 
 314 }
 315 
 316 static inline int INIT write_byte(struct writer *wr, uint8_t byte)
 317 {
 318         wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
 319         if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
 320                 wr->buffer_pos = 0;
 321                 wr->global_pos += wr->header->dict_size;
 322                 if (wr->flush((char *)wr->buffer, wr->header->dict_size)
 323                                 != wr->header->dict_size)
 324                         return -1;
 325         }
 326         return 0;
 327 }
 328 
 329 
 330 static inline int INIT copy_byte(struct writer *wr, uint32_t offs)
 331 {
 332         return write_byte(wr, peek_old_byte(wr, offs));
 333 }
 334 
 335 static inline int INIT copy_bytes(struct writer *wr,
 336                                          uint32_t rep0, int len)
 337 {
 338         do {
 339                 if (copy_byte(wr, rep0))
 340                         return -1;
 341                 len--;
 342         } while (len != 0 && wr->buffer_pos < wr->header->dst_size);
 343 
 344         return len;
 345 }
 346 
 347 static inline int INIT process_bit0(struct writer *wr, struct rc *rc,
 348                                      struct cstate *cst, uint16_t *p,
 349                                      int pos_state, uint16_t *prob,
 350                                      int lc, uint32_t literal_pos_mask) {
 351         int mi = 1;
 352         rc_update_bit_0(rc, prob);
 353         prob = (p + LZMA_LITERAL +
 354                 (LZMA_LIT_SIZE
 355                  * (((get_pos(wr) & literal_pos_mask) << lc)
 356                     + (wr->previous_byte >> (8 - lc))))
 357                 );
 358 
 359         if (cst->state >= LZMA_NUM_LIT_STATES) {
 360                 int match_byte = peek_old_byte(wr, cst->rep0);
 361                 do {
 362                         int bit;
 363                         uint16_t *prob_lit;
 364 
 365                         match_byte <<= 1;
 366                         bit = match_byte & 0x100;
 367                         prob_lit = prob + 0x100 + bit + mi;
 368                         if (rc_get_bit(rc, prob_lit, &mi)) {
 369                                 if (!bit)
 370                                         break;
 371                         } else {
 372                                 if (bit)
 373                                         break;
 374                         }
 375                 } while (mi < 0x100);
 376         }
 377         while (mi < 0x100) {
 378                 uint16_t *prob_lit = prob + mi;
 379                 rc_get_bit(rc, prob_lit, &mi);
 380         }
 381         if (cst->state < 4)
 382                 cst->state = 0;
 383         else if (cst->state < 10)
 384                 cst->state -= 3;
 385         else
 386                 cst->state -= 6;
 387 
 388         return write_byte(wr, mi);
 389 }
 390 
 391 static inline int INIT process_bit1(struct writer *wr, struct rc *rc,
 392                                             struct cstate *cst, uint16_t *p,
 393                                             int pos_state, uint16_t *prob) {
 394   int offset;
 395         uint16_t *prob_len;
 396         int num_bits;
 397         int len;
 398 
 399         rc_update_bit_1(rc, prob);
 400         prob = p + LZMA_IS_REP + cst->state;
 401         if (rc_is_bit_0(rc, prob)) {
 402                 rc_update_bit_0(rc, prob);
 403                 cst->rep3 = cst->rep2;
 404                 cst->rep2 = cst->rep1;
 405                 cst->rep1 = cst->rep0;
 406                 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
 407                 prob = p + LZMA_LEN_CODER;
 408         } else {
 409                 rc_update_bit_1(rc, prob);
 410                 prob = p + LZMA_IS_REP_G0 + cst->state;
 411                 if (rc_is_bit_0(rc, prob)) {
 412                         rc_update_bit_0(rc, prob);
 413                         prob = (p + LZMA_IS_REP_0_LONG
 414                                 + (cst->state <<
 415                                    LZMA_NUM_POS_BITS_MAX) +
 416                                 pos_state);
 417                         if (rc_is_bit_0(rc, prob)) {
 418                                 rc_update_bit_0(rc, prob);
 419 
 420                                 cst->state = cst->state < LZMA_NUM_LIT_STATES ?
 421                                         9 : 11;
 422                                 return copy_byte(wr, cst->rep0);
 423                         } else {
 424                                 rc_update_bit_1(rc, prob);
 425                         }
 426                 } else {
 427                         uint32_t distance;
 428 
 429                         rc_update_bit_1(rc, prob);
 430                         prob = p + LZMA_IS_REP_G1 + cst->state;
 431                         if (rc_is_bit_0(rc, prob)) {
 432                                 rc_update_bit_0(rc, prob);
 433                                 distance = cst->rep1;
 434                         } else {
 435                                 rc_update_bit_1(rc, prob);
 436                                 prob = p + LZMA_IS_REP_G2 + cst->state;
 437                                 if (rc_is_bit_0(rc, prob)) {
 438                                         rc_update_bit_0(rc, prob);
 439                                         distance = cst->rep2;
 440                                 } else {
 441                                         rc_update_bit_1(rc, prob);
 442                                         distance = cst->rep3;
 443                                         cst->rep3 = cst->rep2;
 444                                 }
 445                                 cst->rep2 = cst->rep1;
 446                         }
 447                         cst->rep1 = cst->rep0;
 448                         cst->rep0 = distance;
 449                 }
 450                 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
 451                 prob = p + LZMA_REP_LEN_CODER;
 452         }
 453 
 454         prob_len = prob + LZMA_LEN_CHOICE;
 455         if (rc_is_bit_0(rc, prob_len)) {
 456                 rc_update_bit_0(rc, prob_len);
 457                 prob_len = (prob + LZMA_LEN_LOW
 458                             + (pos_state <<
 459                                LZMA_LEN_NUM_LOW_BITS));
 460                 offset = 0;
 461                 num_bits = LZMA_LEN_NUM_LOW_BITS;
 462         } else {
 463                 rc_update_bit_1(rc, prob_len);
 464                 prob_len = prob + LZMA_LEN_CHOICE_2;
 465                 if (rc_is_bit_0(rc, prob_len)) {
 466                         rc_update_bit_0(rc, prob_len);
 467                         prob_len = (prob + LZMA_LEN_MID
 468                                     + (pos_state <<
 469                                        LZMA_LEN_NUM_MID_BITS));
 470                         offset = 1 << LZMA_LEN_NUM_LOW_BITS;
 471                         num_bits = LZMA_LEN_NUM_MID_BITS;
 472                 } else {
 473                         rc_update_bit_1(rc, prob_len);
 474                         prob_len = prob + LZMA_LEN_HIGH;
 475                         offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
 476                                   + (1 << LZMA_LEN_NUM_MID_BITS));
 477                         num_bits = LZMA_LEN_NUM_HIGH_BITS;
 478                 }
 479         }
 480 
 481         rc_bit_tree_decode(rc, prob_len, num_bits, &len);
 482         len += offset;
 483 
 484         if (cst->state < 4) {
 485                 int pos_slot;
 486 
 487                 cst->state += LZMA_NUM_LIT_STATES;
 488                 prob =
 489                         p + LZMA_POS_SLOT +
 490                         ((len <
 491                           LZMA_NUM_LEN_TO_POS_STATES ? len :
 492                           LZMA_NUM_LEN_TO_POS_STATES - 1)
 493                          << LZMA_NUM_POS_SLOT_BITS);
 494                 rc_bit_tree_decode(rc, prob,
 495                                    LZMA_NUM_POS_SLOT_BITS,
 496                                    &pos_slot);
 497                 if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
 498                         int i, mi;
 499                         num_bits = (pos_slot >> 1) - 1;
 500                         cst->rep0 = 2 | (pos_slot & 1);
 501                         if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
 502                                 cst->rep0 <<= num_bits;
 503                                 prob = p + LZMA_SPEC_POS +
 504                                         cst->rep0 - pos_slot - 1;
 505                         } else {
 506                                 num_bits -= LZMA_NUM_ALIGN_BITS;
 507                                 while (num_bits--)
 508                                         cst->rep0 = (cst->rep0 << 1) |
 509                                                 rc_direct_bit(rc);
 510                                 prob = p + LZMA_ALIGN;
 511                                 cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
 512                                 num_bits = LZMA_NUM_ALIGN_BITS;
 513                         }
 514                         i = 1;
 515                         mi = 1;
 516                         while (num_bits--) {
 517                                 if (rc_get_bit(rc, prob + mi, &mi))
 518                                         cst->rep0 |= i;
 519                                 i <<= 1;
 520                         }
 521                 } else
 522                         cst->rep0 = pos_slot;
 523                 if (++(cst->rep0) == 0)
 524                         return 0;
 525                 if (cst->rep0 > wr->header->dict_size
 526                                 || cst->rep0 > get_pos(wr))
 527                         return -1;
 528         }
 529 
 530         len += LZMA_MATCH_MIN_LEN;
 531 
 532         return copy_bytes(wr, cst->rep0, len);
 533 }
 534 
 535 
 536 
 537 STATIC inline int INIT unlzma(unsigned char *buf, long in_len,
 538                               long (*fill)(void*, unsigned long),
 539                               long (*flush)(void*, unsigned long),
 540                               unsigned char *output,
 541                               long *posp,
 542                               void(*error)(char *x)
 543         )
 544 {
 545         struct lzma_header header;
 546         int lc, pb, lp;
 547         uint32_t pos_state_mask;
 548         uint32_t literal_pos_mask;
 549         uint16_t *p;
 550         int num_probs;
 551         struct rc rc;
 552         int i, mi;
 553         struct writer wr;
 554         struct cstate cst;
 555         unsigned char *inbuf;
 556         int ret = -1;
 557 
 558         rc.error = error;
 559 
 560         if (buf)
 561                 inbuf = buf;
 562         else
 563                 inbuf = malloc(LZMA_IOBUF_SIZE);
 564         if (!inbuf) {
 565                 error("Could not allocate input buffer");
 566                 goto exit_0;
 567         }
 568 
 569         cst.state = 0;
 570         cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
 571 
 572         wr.header = &header;
 573         wr.flush = flush;
 574         wr.global_pos = 0;
 575         wr.previous_byte = 0;
 576         wr.buffer_pos = 0;
 577 
 578         rc_init(&rc, fill, inbuf, in_len);
 579 
 580         for (i = 0; i < sizeof(header); i++) {
 581                 if (rc.ptr >= rc.buffer_end)
 582                         rc_read(&rc);
 583                 ((unsigned char *)&header)[i] = *rc.ptr++;
 584         }
 585 
 586         if (header.pos >= (9 * 5 * 5)) {
 587                 error("bad header");
 588                 goto exit_1;
 589         }
 590 
 591         mi = 0;
 592         lc = header.pos;
 593         while (lc >= 9) {
 594                 mi++;
 595                 lc -= 9;
 596         }
 597         pb = 0;
 598         lp = mi;
 599         while (lp >= 5) {
 600                 pb++;
 601                 lp -= 5;
 602         }
 603         pos_state_mask = (1 << pb) - 1;
 604         literal_pos_mask = (1 << lp) - 1;
 605 
 606         ENDIAN_CONVERT(header.dict_size);
 607         ENDIAN_CONVERT(header.dst_size);
 608 
 609         if (header.dict_size == 0)
 610                 header.dict_size = 1;
 611 
 612         if (output)
 613                 wr.buffer = output;
 614         else {
 615                 wr.bufsize = MIN(header.dst_size, header.dict_size);
 616                 wr.buffer = large_malloc(wr.bufsize);
 617         }
 618         if (wr.buffer == NULL)
 619                 goto exit_1;
 620 
 621         num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
 622         p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
 623         if (p == NULL)
 624                 goto exit_2;
 625         num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
 626         for (i = 0; i < num_probs; i++)
 627                 p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
 628 
 629         rc_init_code(&rc);
 630 
 631         while (get_pos(&wr) < header.dst_size) {
 632                 int pos_state = get_pos(&wr) & pos_state_mask;
 633                 uint16_t *prob = p + LZMA_IS_MATCH +
 634                         (cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
 635                 if (rc_is_bit_0(&rc, prob)) {
 636                         if (process_bit0(&wr, &rc, &cst, p, pos_state, prob,
 637                                         lc, literal_pos_mask)) {
 638                                 error("LZMA data is corrupt");
 639                                 goto exit_3;
 640                         }
 641                 } else {
 642                         if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) {
 643                                 error("LZMA data is corrupt");
 644                                 goto exit_3;
 645                         }
 646                         if (cst.rep0 == 0)
 647                                 break;
 648                 }
 649                 if (rc.buffer_size <= 0)
 650                         goto exit_3;
 651         }
 652 
 653         if (posp)
 654                 *posp = rc.ptr-rc.buffer;
 655         if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos)
 656                 ret = 0;
 657 exit_3:
 658         large_free(p);
 659 exit_2:
 660         if (!output)
 661                 large_free(wr.buffer);
 662 exit_1:
 663         if (!buf)
 664                 free(inbuf);
 665 exit_0:
 666         return ret;
 667 }
 668 
 669 #ifdef PREBOOT
 670 STATIC int INIT __decompress(unsigned char *buf, long in_len,
 671                               long (*fill)(void*, unsigned long),
 672                               long (*flush)(void*, unsigned long),
 673                               unsigned char *output, long out_len,
 674                               long *posp,
 675                               void (*error)(char *x))
 676 {
 677         return unlzma(buf, in_len - 4, fill, flush, output, posp, error);
 678 }
 679 #endif

/* [<][>][^][v][top][bottom][index][help] */