root/lib/idr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. idr_alloc_u32
  2. idr_alloc
  3. idr_alloc_cyclic
  4. idr_remove
  5. idr_find
  6. idr_for_each
  7. idr_get_next_ul
  8. idr_get_next
  9. idr_replace
  10. ida_alloc_range
  11. ida_free
  12. ida_destroy
  13. ida_dump_entry
  14. ida_dump

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 #include <linux/bitmap.h>
   3 #include <linux/bug.h>
   4 #include <linux/export.h>
   5 #include <linux/idr.h>
   6 #include <linux/slab.h>
   7 #include <linux/spinlock.h>
   8 #include <linux/xarray.h>
   9 
  10 /**
  11  * idr_alloc_u32() - Allocate an ID.
  12  * @idr: IDR handle.
  13  * @ptr: Pointer to be associated with the new ID.
  14  * @nextid: Pointer to an ID.
  15  * @max: The maximum ID to allocate (inclusive).
  16  * @gfp: Memory allocation flags.
  17  *
  18  * Allocates an unused ID in the range specified by @nextid and @max.
  19  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
  20  * is exclusive.  The new ID is assigned to @nextid before the pointer
  21  * is inserted into the IDR, so if @nextid points into the object pointed
  22  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
  23  *
  24  * The caller should provide their own locking to ensure that two
  25  * concurrent modifications to the IDR are not possible.  Read-only
  26  * accesses to the IDR may be done under the RCU read lock or may
  27  * exclude simultaneous writers.
  28  *
  29  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
  30  * or -ENOSPC if no free IDs could be found.  If an error occurred,
  31  * @nextid is unchanged.
  32  */
  33 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
  34                         unsigned long max, gfp_t gfp)
  35 {
  36         struct radix_tree_iter iter;
  37         void __rcu **slot;
  38         unsigned int base = idr->idr_base;
  39         unsigned int id = *nextid;
  40 
  41         if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
  42                 idr->idr_rt.xa_flags |= IDR_RT_MARKER;
  43 
  44         id = (id < base) ? 0 : id - base;
  45         radix_tree_iter_init(&iter, id);
  46         slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
  47         if (IS_ERR(slot))
  48                 return PTR_ERR(slot);
  49 
  50         *nextid = iter.index + base;
  51         /* there is a memory barrier inside radix_tree_iter_replace() */
  52         radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
  53         radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
  54 
  55         return 0;
  56 }
  57 EXPORT_SYMBOL_GPL(idr_alloc_u32);
  58 
  59 /**
  60  * idr_alloc() - Allocate an ID.
  61  * @idr: IDR handle.
  62  * @ptr: Pointer to be associated with the new ID.
  63  * @start: The minimum ID (inclusive).
  64  * @end: The maximum ID (exclusive).
  65  * @gfp: Memory allocation flags.
  66  *
  67  * Allocates an unused ID in the range specified by @start and @end.  If
  68  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
  69  * callers to use @start + N as @end as long as N is within integer range.
  70  *
  71  * The caller should provide their own locking to ensure that two
  72  * concurrent modifications to the IDR are not possible.  Read-only
  73  * accesses to the IDR may be done under the RCU read lock or may
  74  * exclude simultaneous writers.
  75  *
  76  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
  77  * or -ENOSPC if no free IDs could be found.
  78  */
  79 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
  80 {
  81         u32 id = start;
  82         int ret;
  83 
  84         if (WARN_ON_ONCE(start < 0))
  85                 return -EINVAL;
  86 
  87         ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
  88         if (ret)
  89                 return ret;
  90 
  91         return id;
  92 }
  93 EXPORT_SYMBOL_GPL(idr_alloc);
  94 
  95 /**
  96  * idr_alloc_cyclic() - Allocate an ID cyclically.
  97  * @idr: IDR handle.
  98  * @ptr: Pointer to be associated with the new ID.
  99  * @start: The minimum ID (inclusive).
 100  * @end: The maximum ID (exclusive).
 101  * @gfp: Memory allocation flags.
 102  *
 103  * Allocates an unused ID in the range specified by @nextid and @end.  If
 104  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 105  * callers to use @start + N as @end as long as N is within integer range.
 106  * The search for an unused ID will start at the last ID allocated and will
 107  * wrap around to @start if no free IDs are found before reaching @end.
 108  *
 109  * The caller should provide their own locking to ensure that two
 110  * concurrent modifications to the IDR are not possible.  Read-only
 111  * accesses to the IDR may be done under the RCU read lock or may
 112  * exclude simultaneous writers.
 113  *
 114  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 115  * or -ENOSPC if no free IDs could be found.
 116  */
 117 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
 118 {
 119         u32 id = idr->idr_next;
 120         int err, max = end > 0 ? end - 1 : INT_MAX;
 121 
 122         if ((int)id < start)
 123                 id = start;
 124 
 125         err = idr_alloc_u32(idr, ptr, &id, max, gfp);
 126         if ((err == -ENOSPC) && (id > start)) {
 127                 id = start;
 128                 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
 129         }
 130         if (err)
 131                 return err;
 132 
 133         idr->idr_next = id + 1;
 134         return id;
 135 }
 136 EXPORT_SYMBOL(idr_alloc_cyclic);
 137 
 138 /**
 139  * idr_remove() - Remove an ID from the IDR.
 140  * @idr: IDR handle.
 141  * @id: Pointer ID.
 142  *
 143  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
 144  * this function returns %NULL.
 145  *
 146  * Since this function modifies the IDR, the caller should provide their
 147  * own locking to ensure that concurrent modification of the same IDR is
 148  * not possible.
 149  *
 150  * Return: The pointer formerly associated with this ID.
 151  */
 152 void *idr_remove(struct idr *idr, unsigned long id)
 153 {
 154         return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
 155 }
 156 EXPORT_SYMBOL_GPL(idr_remove);
 157 
 158 /**
 159  * idr_find() - Return pointer for given ID.
 160  * @idr: IDR handle.
 161  * @id: Pointer ID.
 162  *
 163  * Looks up the pointer associated with this ID.  A %NULL pointer may
 164  * indicate that @id is not allocated or that the %NULL pointer was
 165  * associated with this ID.
 166  *
 167  * This function can be called under rcu_read_lock(), given that the leaf
 168  * pointers lifetimes are correctly managed.
 169  *
 170  * Return: The pointer associated with this ID.
 171  */
 172 void *idr_find(const struct idr *idr, unsigned long id)
 173 {
 174         return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
 175 }
 176 EXPORT_SYMBOL_GPL(idr_find);
 177 
 178 /**
 179  * idr_for_each() - Iterate through all stored pointers.
 180  * @idr: IDR handle.
 181  * @fn: Function to be called for each pointer.
 182  * @data: Data passed to callback function.
 183  *
 184  * The callback function will be called for each entry in @idr, passing
 185  * the ID, the entry and @data.
 186  *
 187  * If @fn returns anything other than %0, the iteration stops and that
 188  * value is returned from this function.
 189  *
 190  * idr_for_each() can be called concurrently with idr_alloc() and
 191  * idr_remove() if protected by RCU.  Newly added entries may not be
 192  * seen and deleted entries may be seen, but adding and removing entries
 193  * will not cause other entries to be skipped, nor spurious ones to be seen.
 194  */
 195 int idr_for_each(const struct idr *idr,
 196                 int (*fn)(int id, void *p, void *data), void *data)
 197 {
 198         struct radix_tree_iter iter;
 199         void __rcu **slot;
 200         int base = idr->idr_base;
 201 
 202         radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
 203                 int ret;
 204                 unsigned long id = iter.index + base;
 205 
 206                 if (WARN_ON_ONCE(id > INT_MAX))
 207                         break;
 208                 ret = fn(id, rcu_dereference_raw(*slot), data);
 209                 if (ret)
 210                         return ret;
 211         }
 212 
 213         return 0;
 214 }
 215 EXPORT_SYMBOL(idr_for_each);
 216 
 217 /**
 218  * idr_get_next_ul() - Find next populated entry.
 219  * @idr: IDR handle.
 220  * @nextid: Pointer to an ID.
 221  *
 222  * Returns the next populated entry in the tree with an ID greater than
 223  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 224  * to the ID of the found value.  To use in a loop, the value pointed to by
 225  * nextid must be incremented by the user.
 226  */
 227 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
 228 {
 229         struct radix_tree_iter iter;
 230         void __rcu **slot;
 231         void *entry = NULL;
 232         unsigned long base = idr->idr_base;
 233         unsigned long id = *nextid;
 234 
 235         id = (id < base) ? 0 : id - base;
 236         radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
 237                 entry = rcu_dereference_raw(*slot);
 238                 if (!entry)
 239                         continue;
 240                 if (!xa_is_internal(entry))
 241                         break;
 242                 if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
 243                         break;
 244                 slot = radix_tree_iter_retry(&iter);
 245         }
 246         if (!slot)
 247                 return NULL;
 248 
 249         *nextid = iter.index + base;
 250         return entry;
 251 }
 252 EXPORT_SYMBOL(idr_get_next_ul);
 253 
 254 /**
 255  * idr_get_next() - Find next populated entry.
 256  * @idr: IDR handle.
 257  * @nextid: Pointer to an ID.
 258  *
 259  * Returns the next populated entry in the tree with an ID greater than
 260  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 261  * to the ID of the found value.  To use in a loop, the value pointed to by
 262  * nextid must be incremented by the user.
 263  */
 264 void *idr_get_next(struct idr *idr, int *nextid)
 265 {
 266         unsigned long id = *nextid;
 267         void *entry = idr_get_next_ul(idr, &id);
 268 
 269         if (WARN_ON_ONCE(id > INT_MAX))
 270                 return NULL;
 271         *nextid = id;
 272         return entry;
 273 }
 274 EXPORT_SYMBOL(idr_get_next);
 275 
 276 /**
 277  * idr_replace() - replace pointer for given ID.
 278  * @idr: IDR handle.
 279  * @ptr: New pointer to associate with the ID.
 280  * @id: ID to change.
 281  *
 282  * Replace the pointer registered with an ID and return the old value.
 283  * This function can be called under the RCU read lock concurrently with
 284  * idr_alloc() and idr_remove() (as long as the ID being removed is not
 285  * the one being replaced!).
 286  *
 287  * Returns: the old value on success.  %-ENOENT indicates that @id was not
 288  * found.  %-EINVAL indicates that @ptr was not valid.
 289  */
 290 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
 291 {
 292         struct radix_tree_node *node;
 293         void __rcu **slot = NULL;
 294         void *entry;
 295 
 296         id -= idr->idr_base;
 297 
 298         entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
 299         if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
 300                 return ERR_PTR(-ENOENT);
 301 
 302         __radix_tree_replace(&idr->idr_rt, node, slot, ptr);
 303 
 304         return entry;
 305 }
 306 EXPORT_SYMBOL(idr_replace);
 307 
 308 /**
 309  * DOC: IDA description
 310  *
 311  * The IDA is an ID allocator which does not provide the ability to
 312  * associate an ID with a pointer.  As such, it only needs to store one
 313  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 314  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 315  * then initialise it using ida_init()).  To allocate a new ID, call
 316  * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
 317  * To free an ID, call ida_free().
 318  *
 319  * ida_destroy() can be used to dispose of an IDA without needing to
 320  * free the individual IDs in it.  You can use ida_is_empty() to find
 321  * out whether the IDA has any IDs currently allocated.
 322  *
 323  * The IDA handles its own locking.  It is safe to call any of the IDA
 324  * functions without synchronisation in your code.
 325  *
 326  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 327  * limitation, it should be quite straightforward to raise the maximum.
 328  */
 329 
 330 /*
 331  * Developer's notes:
 332  *
 333  * The IDA uses the functionality provided by the XArray to store bitmaps in
 334  * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
 335  * have been set.
 336  *
 337  * I considered telling the XArray that each slot is an order-10 node
 338  * and indexing by bit number, but the XArray can't allow a single multi-index
 339  * entry in the head, which would significantly increase memory consumption
 340  * for the IDA.  So instead we divide the index by the number of bits in the
 341  * leaf bitmap before doing a radix tree lookup.
 342  *
 343  * As an optimisation, if there are only a few low bits set in any given
 344  * leaf, instead of allocating a 128-byte bitmap, we store the bits
 345  * as a value entry.  Value entries never have the XA_FREE_MARK cleared
 346  * because we can always convert them into a bitmap entry.
 347  *
 348  * It would be possible to optimise further; once we've run out of a
 349  * single 128-byte bitmap, we currently switch to a 576-byte node, put
 350  * the 128-byte bitmap in the first entry and then start allocating extra
 351  * 128-byte entries.  We could instead use the 512 bytes of the node's
 352  * data as a bitmap before moving to that scheme.  I do not believe this
 353  * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
 354  * users of the IDA and almost none of them use more than 1024 entries.
 355  * Those that do use more than the 8192 IDs that the 512 bytes would
 356  * provide.
 357  *
 358  * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
 359  * equivalent, it will still need locking.  Going to RCU lookup would require
 360  * using RCU to free bitmaps, and that's not trivial without embedding an
 361  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 362  * bitmap, which is excessive.
 363  */
 364 
 365 /**
 366  * ida_alloc_range() - Allocate an unused ID.
 367  * @ida: IDA handle.
 368  * @min: Lowest ID to allocate.
 369  * @max: Highest ID to allocate.
 370  * @gfp: Memory allocation flags.
 371  *
 372  * Allocate an ID between @min and @max, inclusive.  The allocated ID will
 373  * not exceed %INT_MAX, even if @max is larger.
 374  *
 375  * Context: Any context.
 376  * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
 377  * or %-ENOSPC if there are no free IDs.
 378  */
 379 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
 380                         gfp_t gfp)
 381 {
 382         XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
 383         unsigned bit = min % IDA_BITMAP_BITS;
 384         unsigned long flags;
 385         struct ida_bitmap *bitmap, *alloc = NULL;
 386 
 387         if ((int)min < 0)
 388                 return -ENOSPC;
 389 
 390         if ((int)max < 0)
 391                 max = INT_MAX;
 392 
 393 retry:
 394         xas_lock_irqsave(&xas, flags);
 395 next:
 396         bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
 397         if (xas.xa_index > min / IDA_BITMAP_BITS)
 398                 bit = 0;
 399         if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 400                 goto nospc;
 401 
 402         if (xa_is_value(bitmap)) {
 403                 unsigned long tmp = xa_to_value(bitmap);
 404 
 405                 if (bit < BITS_PER_XA_VALUE) {
 406                         bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
 407                         if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 408                                 goto nospc;
 409                         if (bit < BITS_PER_XA_VALUE) {
 410                                 tmp |= 1UL << bit;
 411                                 xas_store(&xas, xa_mk_value(tmp));
 412                                 goto out;
 413                         }
 414                 }
 415                 bitmap = alloc;
 416                 if (!bitmap)
 417                         bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
 418                 if (!bitmap)
 419                         goto alloc;
 420                 bitmap->bitmap[0] = tmp;
 421                 xas_store(&xas, bitmap);
 422                 if (xas_error(&xas)) {
 423                         bitmap->bitmap[0] = 0;
 424                         goto out;
 425                 }
 426         }
 427 
 428         if (bitmap) {
 429                 bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
 430                 if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 431                         goto nospc;
 432                 if (bit == IDA_BITMAP_BITS)
 433                         goto next;
 434 
 435                 __set_bit(bit, bitmap->bitmap);
 436                 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
 437                         xas_clear_mark(&xas, XA_FREE_MARK);
 438         } else {
 439                 if (bit < BITS_PER_XA_VALUE) {
 440                         bitmap = xa_mk_value(1UL << bit);
 441                 } else {
 442                         bitmap = alloc;
 443                         if (!bitmap)
 444                                 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
 445                         if (!bitmap)
 446                                 goto alloc;
 447                         __set_bit(bit, bitmap->bitmap);
 448                 }
 449                 xas_store(&xas, bitmap);
 450         }
 451 out:
 452         xas_unlock_irqrestore(&xas, flags);
 453         if (xas_nomem(&xas, gfp)) {
 454                 xas.xa_index = min / IDA_BITMAP_BITS;
 455                 bit = min % IDA_BITMAP_BITS;
 456                 goto retry;
 457         }
 458         if (bitmap != alloc)
 459                 kfree(alloc);
 460         if (xas_error(&xas))
 461                 return xas_error(&xas);
 462         return xas.xa_index * IDA_BITMAP_BITS + bit;
 463 alloc:
 464         xas_unlock_irqrestore(&xas, flags);
 465         alloc = kzalloc(sizeof(*bitmap), gfp);
 466         if (!alloc)
 467                 return -ENOMEM;
 468         xas_set(&xas, min / IDA_BITMAP_BITS);
 469         bit = min % IDA_BITMAP_BITS;
 470         goto retry;
 471 nospc:
 472         xas_unlock_irqrestore(&xas, flags);
 473         return -ENOSPC;
 474 }
 475 EXPORT_SYMBOL(ida_alloc_range);
 476 
 477 /**
 478  * ida_free() - Release an allocated ID.
 479  * @ida: IDA handle.
 480  * @id: Previously allocated ID.
 481  *
 482  * Context: Any context.
 483  */
 484 void ida_free(struct ida *ida, unsigned int id)
 485 {
 486         XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
 487         unsigned bit = id % IDA_BITMAP_BITS;
 488         struct ida_bitmap *bitmap;
 489         unsigned long flags;
 490 
 491         BUG_ON((int)id < 0);
 492 
 493         xas_lock_irqsave(&xas, flags);
 494         bitmap = xas_load(&xas);
 495 
 496         if (xa_is_value(bitmap)) {
 497                 unsigned long v = xa_to_value(bitmap);
 498                 if (bit >= BITS_PER_XA_VALUE)
 499                         goto err;
 500                 if (!(v & (1UL << bit)))
 501                         goto err;
 502                 v &= ~(1UL << bit);
 503                 if (!v)
 504                         goto delete;
 505                 xas_store(&xas, xa_mk_value(v));
 506         } else {
 507                 if (!test_bit(bit, bitmap->bitmap))
 508                         goto err;
 509                 __clear_bit(bit, bitmap->bitmap);
 510                 xas_set_mark(&xas, XA_FREE_MARK);
 511                 if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
 512                         kfree(bitmap);
 513 delete:
 514                         xas_store(&xas, NULL);
 515                 }
 516         }
 517         xas_unlock_irqrestore(&xas, flags);
 518         return;
 519  err:
 520         xas_unlock_irqrestore(&xas, flags);
 521         WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
 522 }
 523 EXPORT_SYMBOL(ida_free);
 524 
 525 /**
 526  * ida_destroy() - Free all IDs.
 527  * @ida: IDA handle.
 528  *
 529  * Calling this function frees all IDs and releases all resources used
 530  * by an IDA.  When this call returns, the IDA is empty and can be reused
 531  * or freed.  If the IDA is already empty, there is no need to call this
 532  * function.
 533  *
 534  * Context: Any context.
 535  */
 536 void ida_destroy(struct ida *ida)
 537 {
 538         XA_STATE(xas, &ida->xa, 0);
 539         struct ida_bitmap *bitmap;
 540         unsigned long flags;
 541 
 542         xas_lock_irqsave(&xas, flags);
 543         xas_for_each(&xas, bitmap, ULONG_MAX) {
 544                 if (!xa_is_value(bitmap))
 545                         kfree(bitmap);
 546                 xas_store(&xas, NULL);
 547         }
 548         xas_unlock_irqrestore(&xas, flags);
 549 }
 550 EXPORT_SYMBOL(ida_destroy);
 551 
 552 #ifndef __KERNEL__
 553 extern void xa_dump_index(unsigned long index, unsigned int shift);
 554 #define IDA_CHUNK_SHIFT         ilog2(IDA_BITMAP_BITS)
 555 
 556 static void ida_dump_entry(void *entry, unsigned long index)
 557 {
 558         unsigned long i;
 559 
 560         if (!entry)
 561                 return;
 562 
 563         if (xa_is_node(entry)) {
 564                 struct xa_node *node = xa_to_node(entry);
 565                 unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
 566                         XA_CHUNK_SHIFT;
 567 
 568                 xa_dump_index(index * IDA_BITMAP_BITS, shift);
 569                 xa_dump_node(node);
 570                 for (i = 0; i < XA_CHUNK_SIZE; i++)
 571                         ida_dump_entry(node->slots[i],
 572                                         index | (i << node->shift));
 573         } else if (xa_is_value(entry)) {
 574                 xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
 575                 pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
 576         } else {
 577                 struct ida_bitmap *bitmap = entry;
 578 
 579                 xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
 580                 pr_cont("bitmap: %p data", bitmap);
 581                 for (i = 0; i < IDA_BITMAP_LONGS; i++)
 582                         pr_cont(" %lx", bitmap->bitmap[i]);
 583                 pr_cont("\n");
 584         }
 585 }
 586 
 587 static void ida_dump(struct ida *ida)
 588 {
 589         struct xarray *xa = &ida->xa;
 590         pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
 591                                 xa->xa_flags >> ROOT_TAG_SHIFT);
 592         ida_dump_entry(xa->xa_head, 0);
 593 }
 594 #endif

/* [<][>][^][v][top][bottom][index][help] */