root/arch/m68k/math-emu/fp_util.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /*
   2  * fp_util.S
   3  *
   4  * Copyright Roman Zippel, 1997.  All rights reserved.
   5  *
   6  * Redistribution and use in source and binary forms, with or without
   7  * modification, are permitted provided that the following conditions
   8  * are met:
   9  * 1. Redistributions of source code must retain the above copyright
  10  *    notice, and the entire permission notice in its entirety,
  11  *    including the disclaimer of warranties.
  12  * 2. Redistributions in binary form must reproduce the above copyright
  13  *    notice, this list of conditions and the following disclaimer in the
  14  *    documentation and/or other materials provided with the distribution.
  15  * 3. The name of the author may not be used to endorse or promote
  16  *    products derived from this software without specific prior
  17  *    written permission.
  18  *
  19  * ALTERNATIVELY, this product may be distributed under the terms of
  20  * the GNU General Public License, in which case the provisions of the GPL are
  21  * required INSTEAD OF the above restrictions.  (This clause is
  22  * necessary due to a potential bad interaction between the GPL and
  23  * the restrictions contained in a BSD-style copyright.)
  24  *
  25  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  26  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  27  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  28  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
  29  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  35  * OF THE POSSIBILITY OF SUCH DAMAGE.
  36  */
  37 
  38 #include "fp_emu.h"
  39 
  40 /*
  41  * Here are lots of conversion and normalization functions mainly
  42  * used by fp_scan.S
  43  * Note that these functions are optimized for "normal" numbers,
  44  * these are handled first and exit as fast as possible, this is
  45  * especially important for fp_normalize_ext/fp_conv_ext2ext, as
  46  * it's called very often.
  47  * The register usage is optimized for fp_scan.S and which register
  48  * is currently at that time unused, be careful if you want change
  49  * something here. %d0 and %d1 is always usable, sometimes %d2 (or
  50  * only the lower half) most function have to return the %a0
  51  * unmodified, so that the caller can immediately reuse it.
  52  */
  53 
  54         .globl  fp_ill, fp_end
  55 
  56         | exits from fp_scan:
  57         | illegal instruction
  58 fp_ill:
  59         printf  ,"fp_illegal\n"
  60         rts
  61         | completed instruction
  62 fp_end:
  63         tst.l   (TASK_MM-8,%a2)
  64         jmi     1f
  65         tst.l   (TASK_MM-4,%a2)
  66         jmi     1f
  67         tst.l   (TASK_MM,%a2)
  68         jpl     2f
  69 1:      printf  ,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM)
  70 2:      clr.l   %d0
  71         rts
  72 
  73         .globl  fp_conv_long2ext, fp_conv_single2ext
  74         .globl  fp_conv_double2ext, fp_conv_ext2ext
  75         .globl  fp_normalize_ext, fp_normalize_double
  76         .globl  fp_normalize_single, fp_normalize_single_fast
  77         .globl  fp_conv_ext2double, fp_conv_ext2single
  78         .globl  fp_conv_ext2long, fp_conv_ext2short
  79         .globl  fp_conv_ext2byte
  80         .globl  fp_finalrounding_single, fp_finalrounding_single_fast
  81         .globl  fp_finalrounding_double
  82         .globl  fp_finalrounding, fp_finaltest, fp_final
  83 
  84 /*
  85  * First several conversion functions from a source operand
  86  * into the extended format. Note, that only fp_conv_ext2ext
  87  * normalizes the number and is always called after the other
  88  * conversion functions, which only move the information into
  89  * fp_ext structure.
  90  */
  91 
  92         | fp_conv_long2ext:
  93         |
  94         | args: %d0 = source (32-bit long)
  95         |       %a0 = destination (ptr to struct fp_ext)
  96 
  97 fp_conv_long2ext:
  98         printf  PCONV,"l2e: %p -> %p(",2,%d0,%a0
  99         clr.l   %d1                     | sign defaults to zero
 100         tst.l   %d0
 101         jeq     fp_l2e_zero             | is source zero?
 102         jpl     1f                      | positive?
 103         moveq   #1,%d1
 104         neg.l   %d0
 105 1:      swap    %d1
 106         move.w  #0x3fff+31,%d1
 107         move.l  %d1,(%a0)+              | set sign / exp
 108         move.l  %d0,(%a0)+              | set mantissa
 109         clr.l   (%a0)
 110         subq.l  #8,%a0                  | restore %a0
 111         printx  PCONV,%a0@
 112         printf  PCONV,")\n"
 113         rts
 114         | source is zero
 115 fp_l2e_zero:
 116         clr.l   (%a0)+
 117         clr.l   (%a0)+
 118         clr.l   (%a0)
 119         subq.l  #8,%a0
 120         printx  PCONV,%a0@
 121         printf  PCONV,")\n"
 122         rts
 123 
 124         | fp_conv_single2ext
 125         | args: %d0 = source (single-precision fp value)
 126         |       %a0 = dest (struct fp_ext *)
 127 
 128 fp_conv_single2ext:
 129         printf  PCONV,"s2e: %p -> %p(",2,%d0,%a0
 130         move.l  %d0,%d1
 131         lsl.l   #8,%d0                  | shift mantissa
 132         lsr.l   #8,%d1                  | exponent / sign
 133         lsr.l   #7,%d1
 134         lsr.w   #8,%d1
 135         jeq     fp_s2e_small            | zero / denormal?
 136         cmp.w   #0xff,%d1               | NaN / Inf?
 137         jeq     fp_s2e_large
 138         bset    #31,%d0                 | set explizit bit
 139         add.w   #0x3fff-0x7f,%d1        | re-bias the exponent.
 140 9:      move.l  %d1,(%a0)+              | fp_ext.sign, fp_ext.exp
 141         move.l  %d0,(%a0)+              | high lword of fp_ext.mant
 142         clr.l   (%a0)                   | low lword = 0
 143         subq.l  #8,%a0
 144         printx  PCONV,%a0@
 145         printf  PCONV,")\n"
 146         rts
 147         | zeros and denormalized
 148 fp_s2e_small:
 149         | exponent is zero, so explizit bit is already zero too
 150         tst.l   %d0
 151         jeq     9b
 152         move.w  #0x4000-0x7f,%d1
 153         jra     9b
 154         | infinities and NAN
 155 fp_s2e_large:
 156         bclr    #31,%d0                 | clear explizit bit
 157         move.w  #0x7fff,%d1
 158         jra     9b
 159 
 160 fp_conv_double2ext:
 161 #ifdef FPU_EMU_DEBUG
 162         getuser.l %a1@(0),%d0,fp_err_ua2,%a1
 163         getuser.l %a1@(4),%d1,fp_err_ua2,%a1
 164         printf  PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0
 165 #endif
 166         getuser.l (%a1)+,%d0,fp_err_ua2,%a1
 167         move.l  %d0,%d1
 168         lsl.l   #8,%d0                  | shift high mantissa
 169         lsl.l   #3,%d0
 170         lsr.l   #8,%d1                  | exponent / sign
 171         lsr.l   #7,%d1
 172         lsr.w   #5,%d1
 173         jeq     fp_d2e_small            | zero / denormal?
 174         cmp.w   #0x7ff,%d1              | NaN / Inf?
 175         jeq     fp_d2e_large
 176         bset    #31,%d0                 | set explizit bit
 177         add.w   #0x3fff-0x3ff,%d1       | re-bias the exponent.
 178 9:      move.l  %d1,(%a0)+              | fp_ext.sign, fp_ext.exp
 179         move.l  %d0,(%a0)+
 180         getuser.l (%a1)+,%d0,fp_err_ua2,%a1
 181         move.l  %d0,%d1
 182         lsl.l   #8,%d0
 183         lsl.l   #3,%d0
 184         move.l  %d0,(%a0)
 185         moveq   #21,%d0
 186         lsr.l   %d0,%d1
 187         or.l    %d1,-(%a0)
 188         subq.l  #4,%a0
 189         printx  PCONV,%a0@
 190         printf  PCONV,")\n"
 191         rts
 192         | zeros and denormalized
 193 fp_d2e_small:
 194         | exponent is zero, so explizit bit is already zero too
 195         tst.l   %d0
 196         jeq     9b
 197         move.w  #0x4000-0x3ff,%d1
 198         jra     9b
 199         | infinities and NAN
 200 fp_d2e_large:
 201         bclr    #31,%d0                 | clear explizit bit
 202         move.w  #0x7fff,%d1
 203         jra     9b
 204 
 205         | fp_conv_ext2ext:
 206         | originally used to get longdouble from userspace, now it's
 207         | called before arithmetic operations to make sure the number
 208         | is normalized [maybe rename it?].
 209         | args: %a0 = dest (struct fp_ext *)
 210         | returns 0 in %d0 for a NaN, otherwise 1
 211 
 212 fp_conv_ext2ext:
 213         printf  PCONV,"e2e: %p(",1,%a0
 214         printx  PCONV,%a0@
 215         printf  PCONV,"), "
 216         move.l  (%a0)+,%d0
 217         cmp.w   #0x7fff,%d0             | Inf / NaN?
 218         jeq     fp_e2e_large
 219         move.l  (%a0),%d0
 220         jpl     fp_e2e_small            | zero / denorm?
 221         | The high bit is set, so normalization is irrelevant.
 222 fp_e2e_checkround:
 223         subq.l  #4,%a0
 224 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 225         move.b  (%a0),%d0
 226         jne     fp_e2e_round
 227 #endif
 228         printf  PCONV,"%p(",1,%a0
 229         printx  PCONV,%a0@
 230         printf  PCONV,")\n"
 231         moveq   #1,%d0
 232         rts
 233 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 234 fp_e2e_round:
 235         fp_set_sr FPSR_EXC_INEX2
 236         clr.b   (%a0)
 237         move.w  (FPD_RND,FPDATA),%d2
 238         jne     fp_e2e_roundother       | %d2 == 0, round to nearest
 239         tst.b   %d0                     | test guard bit
 240         jpl     9f                      | zero is closer
 241         btst    #0,(11,%a0)             | test lsb bit
 242         jne     fp_e2e_doroundup        | round to infinity
 243         lsl.b   #1,%d0                  | check low bits
 244         jeq     9f                      | round to zero
 245 fp_e2e_doroundup:
 246         addq.l  #1,(8,%a0)
 247         jcc     9f
 248         addq.l  #1,(4,%a0)
 249         jcc     9f
 250         move.w  #0x8000,(4,%a0)
 251         addq.w  #1,(2,%a0)
 252 9:      printf  PNORM,"%p(",1,%a0
 253         printx  PNORM,%a0@
 254         printf  PNORM,")\n"
 255         rts
 256 fp_e2e_roundother:
 257         subq.w  #2,%d2
 258         jcs     9b                      | %d2 < 2, round to zero
 259         jhi     1f                      | %d2 > 2, round to +infinity
 260         tst.b   (1,%a0)                 | to -inf
 261         jne     fp_e2e_doroundup        | negative, round to infinity
 262         jra     9b                      | positive, round to zero
 263 1:      tst.b   (1,%a0)                 | to +inf
 264         jeq     fp_e2e_doroundup        | positive, round to infinity
 265         jra     9b                      | negative, round to zero
 266 #endif
 267         | zeros and subnormals:
 268         | try to normalize these anyway.
 269 fp_e2e_small:
 270         jne     fp_e2e_small1           | high lword zero?
 271         move.l  (4,%a0),%d0
 272         jne     fp_e2e_small2
 273 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 274         clr.l   %d0
 275         move.b  (-4,%a0),%d0
 276         jne     fp_e2e_small3
 277 #endif
 278         | Genuine zero.
 279         clr.w   -(%a0)
 280         subq.l  #2,%a0
 281         printf  PNORM,"%p(",1,%a0
 282         printx  PNORM,%a0@
 283         printf  PNORM,")\n"
 284         moveq   #1,%d0
 285         rts
 286         | definitely subnormal, need to shift all 64 bits
 287 fp_e2e_small1:
 288         bfffo   %d0{#0,#32},%d1
 289         move.w  -(%a0),%d2
 290         sub.w   %d1,%d2
 291         jcc     1f
 292         | Pathologically small, denormalize.
 293         add.w   %d2,%d1
 294         clr.w   %d2
 295 1:      move.w  %d2,(%a0)+
 296         move.w  %d1,%d2
 297         jeq     fp_e2e_checkround
 298         | fancy 64-bit double-shift begins here
 299         lsl.l   %d2,%d0
 300         move.l  %d0,(%a0)+
 301         move.l  (%a0),%d0
 302         move.l  %d0,%d1
 303         lsl.l   %d2,%d0
 304         move.l  %d0,(%a0)
 305         neg.w   %d2
 306         and.w   #0x1f,%d2
 307         lsr.l   %d2,%d1
 308         or.l    %d1,-(%a0)
 309 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 310 fp_e2e_extra1:
 311         clr.l   %d0
 312         move.b  (-4,%a0),%d0
 313         neg.w   %d2
 314         add.w   #24,%d2
 315         jcc     1f
 316         clr.b   (-4,%a0)
 317         lsl.l   %d2,%d0
 318         or.l    %d0,(4,%a0)
 319         jra     fp_e2e_checkround
 320 1:      addq.w  #8,%d2
 321         lsl.l   %d2,%d0
 322         move.b  %d0,(-4,%a0)
 323         lsr.l   #8,%d0
 324         or.l    %d0,(4,%a0)
 325 #endif
 326         jra     fp_e2e_checkround
 327         | pathologically small subnormal
 328 fp_e2e_small2:
 329         bfffo   %d0{#0,#32},%d1
 330         add.w   #32,%d1
 331         move.w  -(%a0),%d2
 332         sub.w   %d1,%d2
 333         jcc     1f
 334         | Beyond pathologically small, denormalize.
 335         add.w   %d2,%d1
 336         clr.w   %d2
 337 1:      move.w  %d2,(%a0)+
 338         ext.l   %d1
 339         jeq     fp_e2e_checkround
 340         clr.l   (4,%a0)
 341         sub.w   #32,%d2
 342         jcs     1f
 343         lsl.l   %d1,%d0                 | lower lword needs only to be shifted
 344         move.l  %d0,(%a0)               | into the higher lword
 345 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 346         clr.l   %d0
 347         move.b  (-4,%a0),%d0
 348         clr.b   (-4,%a0)
 349         neg.w   %d1
 350         add.w   #32,%d1
 351         bfins   %d0,(%a0){%d1,#8}
 352 #endif
 353         jra     fp_e2e_checkround
 354 1:      neg.w   %d1                     | lower lword is splitted between
 355         bfins   %d0,(%a0){%d1,#32}      | higher and lower lword
 356 #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
 357         jra     fp_e2e_checkround
 358 #else
 359         move.w  %d1,%d2
 360         jra     fp_e2e_extra1
 361         | These are extremely small numbers, that will mostly end up as zero
 362         | anyway, so this is only important for correct rounding.
 363 fp_e2e_small3:
 364         bfffo   %d0{#24,#8},%d1
 365         add.w   #40,%d1
 366         move.w  -(%a0),%d2
 367         sub.w   %d1,%d2
 368         jcc     1f
 369         | Pathologically small, denormalize.
 370         add.w   %d2,%d1
 371         clr.w   %d2
 372 1:      move.w  %d2,(%a0)+
 373         ext.l   %d1
 374         jeq     fp_e2e_checkround
 375         cmp.w   #8,%d1
 376         jcs     2f
 377 1:      clr.b   (-4,%a0)
 378         sub.w   #64,%d1
 379         jcs     1f
 380         add.w   #24,%d1
 381         lsl.l   %d1,%d0
 382         move.l  %d0,(%a0)
 383         jra     fp_e2e_checkround
 384 1:      neg.w   %d1
 385         bfins   %d0,(%a0){%d1,#8}
 386         jra     fp_e2e_checkround
 387 2:      lsl.l   %d1,%d0
 388         move.b  %d0,(-4,%a0)
 389         lsr.l   #8,%d0
 390         move.b  %d0,(7,%a0)
 391         jra     fp_e2e_checkround
 392 #endif
 393 1:      move.l  %d0,%d1                 | lower lword is splitted between
 394         lsl.l   %d2,%d0                 | higher and lower lword
 395         move.l  %d0,(%a0)
 396         move.l  %d1,%d0
 397         neg.w   %d2
 398         add.w   #32,%d2
 399         lsr.l   %d2,%d0
 400         move.l  %d0,-(%a0)
 401         jra     fp_e2e_checkround
 402         | Infinities and NaNs
 403 fp_e2e_large:
 404         move.l  (%a0)+,%d0
 405         jne     3f
 406 1:      tst.l   (%a0)
 407         jne     4f
 408         moveq   #1,%d0
 409 2:      subq.l  #8,%a0
 410         printf  PCONV,"%p(",1,%a0
 411         printx  PCONV,%a0@
 412         printf  PCONV,")\n"
 413         rts
 414         | we have maybe a NaN, shift off the highest bit
 415 3:      lsl.l   #1,%d0
 416         jeq     1b
 417         | we have a NaN, clear the return value
 418 4:      clrl    %d0
 419         jra     2b
 420 
 421 
 422 /*
 423  * Normalization functions.  Call these on the output of general
 424  * FP operators, and before any conversion into the destination
 425  * formats. fp_normalize_ext has always to be called first, the
 426  * following conversion functions expect an already normalized
 427  * number.
 428  */
 429 
 430         | fp_normalize_ext:
 431         | normalize an extended in extended (unpacked) format, basically
 432         | it does the same as fp_conv_ext2ext, additionally it also does
 433         | the necessary postprocessing checks.
 434         | args: %a0 (struct fp_ext *)
 435         | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2
 436 
 437 fp_normalize_ext:
 438         printf  PNORM,"ne: %p(",1,%a0
 439         printx  PNORM,%a0@
 440         printf  PNORM,"), "
 441         move.l  (%a0)+,%d0
 442         cmp.w   #0x7fff,%d0             | Inf / NaN?
 443         jeq     fp_ne_large
 444         move.l  (%a0),%d0
 445         jpl     fp_ne_small             | zero / denorm?
 446         | The high bit is set, so normalization is irrelevant.
 447 fp_ne_checkround:
 448         subq.l  #4,%a0
 449 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 450         move.b  (%a0),%d0
 451         jne     fp_ne_round
 452 #endif
 453         printf  PNORM,"%p(",1,%a0
 454         printx  PNORM,%a0@
 455         printf  PNORM,")\n"
 456         rts
 457 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 458 fp_ne_round:
 459         fp_set_sr FPSR_EXC_INEX2
 460         clr.b   (%a0)
 461         move.w  (FPD_RND,FPDATA),%d2
 462         jne     fp_ne_roundother        | %d2 == 0, round to nearest
 463         tst.b   %d0                     | test guard bit
 464         jpl     9f                      | zero is closer
 465         btst    #0,(11,%a0)             | test lsb bit
 466         jne     fp_ne_doroundup         | round to infinity
 467         lsl.b   #1,%d0                  | check low bits
 468         jeq     9f                      | round to zero
 469 fp_ne_doroundup:
 470         addq.l  #1,(8,%a0)
 471         jcc     9f
 472         addq.l  #1,(4,%a0)
 473         jcc     9f
 474         addq.w  #1,(2,%a0)
 475         move.w  #0x8000,(4,%a0)
 476 9:      printf  PNORM,"%p(",1,%a0
 477         printx  PNORM,%a0@
 478         printf  PNORM,")\n"
 479         rts
 480 fp_ne_roundother:
 481         subq.w  #2,%d2
 482         jcs     9b                      | %d2 < 2, round to zero
 483         jhi     1f                      | %d2 > 2, round to +infinity
 484         tst.b   (1,%a0)                 | to -inf
 485         jne     fp_ne_doroundup         | negative, round to infinity
 486         jra     9b                      | positive, round to zero
 487 1:      tst.b   (1,%a0)                 | to +inf
 488         jeq     fp_ne_doroundup         | positive, round to infinity
 489         jra     9b                      | negative, round to zero
 490 #endif
 491         | Zeros and subnormal numbers
 492         | These are probably merely subnormal, rather than "denormalized"
 493         |  numbers, so we will try to make them normal again.
 494 fp_ne_small:
 495         jne     fp_ne_small1            | high lword zero?
 496         move.l  (4,%a0),%d0
 497         jne     fp_ne_small2
 498 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 499         clr.l   %d0
 500         move.b  (-4,%a0),%d0
 501         jne     fp_ne_small3
 502 #endif
 503         | Genuine zero.
 504         clr.w   -(%a0)
 505         subq.l  #2,%a0
 506         printf  PNORM,"%p(",1,%a0
 507         printx  PNORM,%a0@
 508         printf  PNORM,")\n"
 509         rts
 510         | Subnormal.
 511 fp_ne_small1:
 512         bfffo   %d0{#0,#32},%d1
 513         move.w  -(%a0),%d2
 514         sub.w   %d1,%d2
 515         jcc     1f
 516         | Pathologically small, denormalize.
 517         add.w   %d2,%d1
 518         clr.w   %d2
 519         fp_set_sr FPSR_EXC_UNFL
 520 1:      move.w  %d2,(%a0)+
 521         move.w  %d1,%d2
 522         jeq     fp_ne_checkround
 523         | This is exactly the same 64-bit double shift as seen above.
 524         lsl.l   %d2,%d0
 525         move.l  %d0,(%a0)+
 526         move.l  (%a0),%d0
 527         move.l  %d0,%d1
 528         lsl.l   %d2,%d0
 529         move.l  %d0,(%a0)
 530         neg.w   %d2
 531         and.w   #0x1f,%d2
 532         lsr.l   %d2,%d1
 533         or.l    %d1,-(%a0)
 534 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 535 fp_ne_extra1:
 536         clr.l   %d0
 537         move.b  (-4,%a0),%d0
 538         neg.w   %d2
 539         add.w   #24,%d2
 540         jcc     1f
 541         clr.b   (-4,%a0)
 542         lsl.l   %d2,%d0
 543         or.l    %d0,(4,%a0)
 544         jra     fp_ne_checkround
 545 1:      addq.w  #8,%d2
 546         lsl.l   %d2,%d0
 547         move.b  %d0,(-4,%a0)
 548         lsr.l   #8,%d0
 549         or.l    %d0,(4,%a0)
 550 #endif
 551         jra     fp_ne_checkround
 552         | May or may not be subnormal, if so, only 32 bits to shift.
 553 fp_ne_small2:
 554         bfffo   %d0{#0,#32},%d1
 555         add.w   #32,%d1
 556         move.w  -(%a0),%d2
 557         sub.w   %d1,%d2
 558         jcc     1f
 559         | Beyond pathologically small, denormalize.
 560         add.w   %d2,%d1
 561         clr.w   %d2
 562         fp_set_sr FPSR_EXC_UNFL
 563 1:      move.w  %d2,(%a0)+
 564         ext.l   %d1
 565         jeq     fp_ne_checkround
 566         clr.l   (4,%a0)
 567         sub.w   #32,%d1
 568         jcs     1f
 569         lsl.l   %d1,%d0                 | lower lword needs only to be shifted
 570         move.l  %d0,(%a0)               | into the higher lword
 571 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 572         clr.l   %d0
 573         move.b  (-4,%a0),%d0
 574         clr.b   (-4,%a0)
 575         neg.w   %d1
 576         add.w   #32,%d1
 577         bfins   %d0,(%a0){%d1,#8}
 578 #endif
 579         jra     fp_ne_checkround
 580 1:      neg.w   %d1                     | lower lword is splitted between
 581         bfins   %d0,(%a0){%d1,#32}      | higher and lower lword
 582 #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
 583         jra     fp_ne_checkround
 584 #else
 585         move.w  %d1,%d2
 586         jra     fp_ne_extra1
 587         | These are extremely small numbers, that will mostly end up as zero
 588         | anyway, so this is only important for correct rounding.
 589 fp_ne_small3:
 590         bfffo   %d0{#24,#8},%d1
 591         add.w   #40,%d1
 592         move.w  -(%a0),%d2
 593         sub.w   %d1,%d2
 594         jcc     1f
 595         | Pathologically small, denormalize.
 596         add.w   %d2,%d1
 597         clr.w   %d2
 598 1:      move.w  %d2,(%a0)+
 599         ext.l   %d1
 600         jeq     fp_ne_checkround
 601         cmp.w   #8,%d1
 602         jcs     2f
 603 1:      clr.b   (-4,%a0)
 604         sub.w   #64,%d1
 605         jcs     1f
 606         add.w   #24,%d1
 607         lsl.l   %d1,%d0
 608         move.l  %d0,(%a0)
 609         jra     fp_ne_checkround
 610 1:      neg.w   %d1
 611         bfins   %d0,(%a0){%d1,#8}
 612         jra     fp_ne_checkround
 613 2:      lsl.l   %d1,%d0
 614         move.b  %d0,(-4,%a0)
 615         lsr.l   #8,%d0
 616         move.b  %d0,(7,%a0)
 617         jra     fp_ne_checkround
 618 #endif
 619         | Infinities and NaNs, again, same as above.
 620 fp_ne_large:
 621         move.l  (%a0)+,%d0
 622         jne     3f
 623 1:      tst.l   (%a0)
 624         jne     4f
 625 2:      subq.l  #8,%a0
 626         printf  PNORM,"%p(",1,%a0
 627         printx  PNORM,%a0@
 628         printf  PNORM,")\n"
 629         rts
 630         | we have maybe a NaN, shift off the highest bit
 631 3:      move.l  %d0,%d1
 632         lsl.l   #1,%d1
 633         jne     4f
 634         clr.l   (-4,%a0)
 635         jra     1b
 636         | we have a NaN, test if it is signaling
 637 4:      bset    #30,%d0
 638         jne     2b
 639         fp_set_sr FPSR_EXC_SNAN
 640         move.l  %d0,(-4,%a0)
 641         jra     2b
 642 
 643         | these next two do rounding as per the IEEE standard.
 644         | values for the rounding modes appear to be:
 645         | 0:    Round to nearest
 646         | 1:    Round to zero
 647         | 2:    Round to -Infinity
 648         | 3:    Round to +Infinity
 649         | both functions expect that fp_normalize was already
 650         | called (and extended argument is already normalized
 651         | as far as possible), these are used if there is different
 652         | rounding precision is selected and before converting
 653         | into single/double
 654 
 655         | fp_normalize_double:
 656         | normalize an extended with double (52-bit) precision
 657         | args:  %a0 (struct fp_ext *)
 658 
 659 fp_normalize_double:
 660         printf  PNORM,"nd: %p(",1,%a0
 661         printx  PNORM,%a0@
 662         printf  PNORM,"), "
 663         move.l  (%a0)+,%d2
 664         tst.w   %d2
 665         jeq     fp_nd_zero              | zero / denormalized
 666         cmp.w   #0x7fff,%d2
 667         jeq     fp_nd_huge              | NaN / infinitive.
 668         sub.w   #0x4000-0x3ff,%d2       | will the exponent fit?
 669         jcs     fp_nd_small             | too small.
 670         cmp.w   #0x7fe,%d2
 671         jcc     fp_nd_large             | too big.
 672         addq.l  #4,%a0
 673         move.l  (%a0),%d0               | low lword of mantissa
 674         | now, round off the low 11 bits.
 675 fp_nd_round:
 676         moveq   #21,%d1
 677         lsl.l   %d1,%d0                 | keep 11 low bits.
 678         jne     fp_nd_checkround        | Are they non-zero?
 679         | nothing to do here
 680 9:      subq.l  #8,%a0
 681         printf  PNORM,"%p(",1,%a0
 682         printx  PNORM,%a0@
 683         printf  PNORM,")\n"
 684         rts
 685         | Be careful with the X bit! It contains the lsb
 686         | from the shift above, it is needed for round to nearest.
 687 fp_nd_checkround:
 688         fp_set_sr FPSR_EXC_INEX2        | INEX2 bit
 689         and.w   #0xf800,(2,%a0)         | clear bits 0-10
 690         move.w  (FPD_RND,FPDATA),%d2    | rounding mode
 691         jne     2f                      | %d2 == 0, round to nearest
 692         tst.l   %d0                     | test guard bit
 693         jpl     9b                      | zero is closer
 694         | here we test the X bit by adding it to %d2
 695         clr.w   %d2                     | first set z bit, addx only clears it
 696         addx.w  %d2,%d2                 | test lsb bit
 697         | IEEE754-specified "round to even" behaviour.  If the guard
 698         | bit is set, then the number is odd, so rounding works like
 699         | in grade-school arithmetic (i.e. 1.5 rounds to 2.0)
 700         | Otherwise, an equal distance rounds towards zero, so as not
 701         | to produce an odd number.  This is strange, but it is what
 702         | the standard says.
 703         jne     fp_nd_doroundup         | round to infinity
 704         lsl.l   #1,%d0                  | check low bits
 705         jeq     9b                      | round to zero
 706 fp_nd_doroundup:
 707         | round (the mantissa, that is) towards infinity
 708         add.l   #0x800,(%a0)
 709         jcc     9b                      | no overflow, good.
 710         addq.l  #1,-(%a0)               | extend to high lword
 711         jcc     1f                      | no overflow, good.
 712         | Yow! we have managed to overflow the mantissa.  Since this
 713         | only happens when %d1 was 0xfffff800, it is now zero, so
 714         | reset the high bit, and increment the exponent.
 715         move.w  #0x8000,(%a0)
 716         addq.w  #1,-(%a0)
 717         cmp.w   #0x43ff,(%a0)+          | exponent now overflown?
 718         jeq     fp_nd_large             | yes, so make it infinity.
 719 1:      subq.l  #4,%a0
 720         printf  PNORM,"%p(",1,%a0
 721         printx  PNORM,%a0@
 722         printf  PNORM,")\n"
 723         rts
 724 2:      subq.w  #2,%d2
 725         jcs     9b                      | %d2 < 2, round to zero
 726         jhi     3f                      | %d2 > 2, round to +infinity
 727         | Round to +Inf or -Inf.  High word of %d2 contains the
 728         | sign of the number, by the way.
 729         swap    %d2                     | to -inf
 730         tst.b   %d2
 731         jne     fp_nd_doroundup         | negative, round to infinity
 732         jra     9b                      | positive, round to zero
 733 3:      swap    %d2                     | to +inf
 734         tst.b   %d2
 735         jeq     fp_nd_doroundup         | positive, round to infinity
 736         jra     9b                      | negative, round to zero
 737         | Exponent underflow.  Try to make a denormal, and set it to
 738         | the smallest possible fraction if this fails.
 739 fp_nd_small:
 740         fp_set_sr FPSR_EXC_UNFL         | set UNFL bit
 741         move.w  #0x3c01,(-2,%a0)        | 2**-1022
 742         neg.w   %d2                     | degree of underflow
 743         cmp.w   #32,%d2                 | single or double shift?
 744         jcc     1f
 745         | Again, another 64-bit double shift.
 746         move.l  (%a0),%d0
 747         move.l  %d0,%d1
 748         lsr.l   %d2,%d0
 749         move.l  %d0,(%a0)+
 750         move.l  (%a0),%d0
 751         lsr.l   %d2,%d0
 752         neg.w   %d2
 753         add.w   #32,%d2
 754         lsl.l   %d2,%d1
 755         or.l    %d1,%d0
 756         move.l  (%a0),%d1
 757         move.l  %d0,(%a0)
 758         | Check to see if we shifted off any significant bits
 759         lsl.l   %d2,%d1
 760         jeq     fp_nd_round             | Nope, round.
 761         bset    #0,%d0                  | Yes, so set the "sticky bit".
 762         jra     fp_nd_round             | Now, round.
 763         | Another 64-bit single shift and store
 764 1:      sub.w   #32,%d2
 765         cmp.w   #32,%d2                 | Do we really need to shift?
 766         jcc     2f                      | No, the number is too small.
 767         move.l  (%a0),%d0
 768         clr.l   (%a0)+
 769         move.l  %d0,%d1
 770         lsr.l   %d2,%d0
 771         neg.w   %d2
 772         add.w   #32,%d2
 773         | Again, check to see if we shifted off any significant bits.
 774         tst.l   (%a0)
 775         jeq     1f
 776         bset    #0,%d0                  | Sticky bit.
 777 1:      move.l  %d0,(%a0)
 778         lsl.l   %d2,%d1
 779         jeq     fp_nd_round
 780         bset    #0,%d0
 781         jra     fp_nd_round
 782         | Sorry, the number is just too small.
 783 2:      clr.l   (%a0)+
 784         clr.l   (%a0)
 785         moveq   #1,%d0                  | Smallest possible fraction,
 786         jra     fp_nd_round             | round as desired.
 787         | zero and denormalized
 788 fp_nd_zero:
 789         tst.l   (%a0)+
 790         jne     1f
 791         tst.l   (%a0)
 792         jne     1f
 793         subq.l  #8,%a0
 794         printf  PNORM,"%p(",1,%a0
 795         printx  PNORM,%a0@
 796         printf  PNORM,")\n"
 797         rts                             | zero.  nothing to do.
 798         | These are not merely subnormal numbers, but true denormals,
 799         | i.e. pathologically small (exponent is 2**-16383) numbers.
 800         | It is clearly impossible for even a normal extended number
 801         | with that exponent to fit into double precision, so just
 802         | write these ones off as "too darn small".
 803 1:      fp_set_sr FPSR_EXC_UNFL         | Set UNFL bit
 804         clr.l   (%a0)
 805         clr.l   -(%a0)
 806         move.w  #0x3c01,-(%a0)          | i.e. 2**-1022
 807         addq.l  #6,%a0
 808         moveq   #1,%d0
 809         jra     fp_nd_round             | round.
 810         | Exponent overflow.  Just call it infinity.
 811 fp_nd_large:
 812         move.w  #0x7ff,%d0
 813         and.w   (6,%a0),%d0
 814         jeq     1f
 815         fp_set_sr FPSR_EXC_INEX2
 816 1:      fp_set_sr FPSR_EXC_OVFL
 817         move.w  (FPD_RND,FPDATA),%d2
 818         jne     3f                      | %d2 = 0 round to nearest
 819 1:      move.w  #0x7fff,(-2,%a0)
 820         clr.l   (%a0)+
 821         clr.l   (%a0)
 822 2:      subq.l  #8,%a0
 823         printf  PNORM,"%p(",1,%a0
 824         printx  PNORM,%a0@
 825         printf  PNORM,")\n"
 826         rts
 827 3:      subq.w  #2,%d2
 828         jcs     5f                      | %d2 < 2, round to zero
 829         jhi     4f                      | %d2 > 2, round to +infinity
 830         tst.b   (-3,%a0)                | to -inf
 831         jne     1b
 832         jra     5f
 833 4:      tst.b   (-3,%a0)                | to +inf
 834         jeq     1b
 835 5:      move.w  #0x43fe,(-2,%a0)
 836         moveq   #-1,%d0
 837         move.l  %d0,(%a0)+
 838         move.w  #0xf800,%d0
 839         move.l  %d0,(%a0)
 840         jra     2b
 841         | Infinities or NaNs
 842 fp_nd_huge:
 843         subq.l  #4,%a0
 844         printf  PNORM,"%p(",1,%a0
 845         printx  PNORM,%a0@
 846         printf  PNORM,")\n"
 847         rts
 848 
 849         | fp_normalize_single:
 850         | normalize an extended with single (23-bit) precision
 851         | args:  %a0 (struct fp_ext *)
 852 
 853 fp_normalize_single:
 854         printf  PNORM,"ns: %p(",1,%a0
 855         printx  PNORM,%a0@
 856         printf  PNORM,") "
 857         addq.l  #2,%a0
 858         move.w  (%a0)+,%d2
 859         jeq     fp_ns_zero              | zero / denormalized
 860         cmp.w   #0x7fff,%d2
 861         jeq     fp_ns_huge              | NaN / infinitive.
 862         sub.w   #0x4000-0x7f,%d2        | will the exponent fit?
 863         jcs     fp_ns_small             | too small.
 864         cmp.w   #0xfe,%d2
 865         jcc     fp_ns_large             | too big.
 866         move.l  (%a0)+,%d0              | get high lword of mantissa
 867 fp_ns_round:
 868         tst.l   (%a0)                   | check the low lword
 869         jeq     1f
 870         | Set a sticky bit if it is non-zero.  This should only
 871         | affect the rounding in what would otherwise be equal-
 872         | distance situations, which is what we want it to do.
 873         bset    #0,%d0
 874 1:      clr.l   (%a0)                   | zap it from memory.
 875         | now, round off the low 8 bits of the hi lword.
 876         tst.b   %d0                     | 8 low bits.
 877         jne     fp_ns_checkround        | Are they non-zero?
 878         | nothing to do here
 879         subq.l  #8,%a0
 880         printf  PNORM,"%p(",1,%a0
 881         printx  PNORM,%a0@
 882         printf  PNORM,")\n"
 883         rts
 884 fp_ns_checkround:
 885         fp_set_sr FPSR_EXC_INEX2        | INEX2 bit
 886         clr.b   -(%a0)                  | clear low byte of high lword
 887         subq.l  #3,%a0
 888         move.w  (FPD_RND,FPDATA),%d2    | rounding mode
 889         jne     2f                      | %d2 == 0, round to nearest
 890         tst.b   %d0                     | test guard bit
 891         jpl     9f                      | zero is closer
 892         btst    #8,%d0                  | test lsb bit
 893         | round to even behaviour, see above.
 894         jne     fp_ns_doroundup         | round to infinity
 895         lsl.b   #1,%d0                  | check low bits
 896         jeq     9f                      | round to zero
 897 fp_ns_doroundup:
 898         | round (the mantissa, that is) towards infinity
 899         add.l   #0x100,(%a0)
 900         jcc     9f                      | no overflow, good.
 901         | Overflow.  This means that the %d1 was 0xffffff00, so it
 902         | is now zero.  We will set the mantissa to reflect this, and
 903         | increment the exponent (checking for overflow there too)
 904         move.w  #0x8000,(%a0)
 905         addq.w  #1,-(%a0)
 906         cmp.w   #0x407f,(%a0)+          | exponent now overflown?
 907         jeq     fp_ns_large             | yes, so make it infinity.
 908 9:      subq.l  #4,%a0
 909         printf  PNORM,"%p(",1,%a0
 910         printx  PNORM,%a0@
 911         printf  PNORM,")\n"
 912         rts
 913         | check nondefault rounding modes
 914 2:      subq.w  #2,%d2
 915         jcs     9b                      | %d2 < 2, round to zero
 916         jhi     3f                      | %d2 > 2, round to +infinity
 917         tst.b   (-3,%a0)                | to -inf
 918         jne     fp_ns_doroundup         | negative, round to infinity
 919         jra     9b                      | positive, round to zero
 920 3:      tst.b   (-3,%a0)                | to +inf
 921         jeq     fp_ns_doroundup         | positive, round to infinity
 922         jra     9b                      | negative, round to zero
 923         | Exponent underflow.  Try to make a denormal, and set it to
 924         | the smallest possible fraction if this fails.
 925 fp_ns_small:
 926         fp_set_sr FPSR_EXC_UNFL         | set UNFL bit
 927         move.w  #0x3f81,(-2,%a0)        | 2**-126
 928         neg.w   %d2                     | degree of underflow
 929         cmp.w   #32,%d2                 | single or double shift?
 930         jcc     2f
 931         | a 32-bit shift.
 932         move.l  (%a0),%d0
 933         move.l  %d0,%d1
 934         lsr.l   %d2,%d0
 935         move.l  %d0,(%a0)+
 936         | Check to see if we shifted off any significant bits.
 937         neg.w   %d2
 938         add.w   #32,%d2
 939         lsl.l   %d2,%d1
 940         jeq     1f
 941         bset    #0,%d0                  | Sticky bit.
 942         | Check the lower lword
 943 1:      tst.l   (%a0)
 944         jeq     fp_ns_round
 945         clr     (%a0)
 946         bset    #0,%d0                  | Sticky bit.
 947         jra     fp_ns_round
 948         | Sorry, the number is just too small.
 949 2:      clr.l   (%a0)+
 950         clr.l   (%a0)
 951         moveq   #1,%d0                  | Smallest possible fraction,
 952         jra     fp_ns_round             | round as desired.
 953         | Exponent overflow.  Just call it infinity.
 954 fp_ns_large:
 955         tst.b   (3,%a0)
 956         jeq     1f
 957         fp_set_sr FPSR_EXC_INEX2
 958 1:      fp_set_sr FPSR_EXC_OVFL
 959         move.w  (FPD_RND,FPDATA),%d2
 960         jne     3f                      | %d2 = 0 round to nearest
 961 1:      move.w  #0x7fff,(-2,%a0)
 962         clr.l   (%a0)+
 963         clr.l   (%a0)
 964 2:      subq.l  #8,%a0
 965         printf  PNORM,"%p(",1,%a0
 966         printx  PNORM,%a0@
 967         printf  PNORM,")\n"
 968         rts
 969 3:      subq.w  #2,%d2
 970         jcs     5f                      | %d2 < 2, round to zero
 971         jhi     4f                      | %d2 > 2, round to +infinity
 972         tst.b   (-3,%a0)                | to -inf
 973         jne     1b
 974         jra     5f
 975 4:      tst.b   (-3,%a0)                | to +inf
 976         jeq     1b
 977 5:      move.w  #0x407e,(-2,%a0)
 978         move.l  #0xffffff00,(%a0)+
 979         clr.l   (%a0)
 980         jra     2b
 981         | zero and denormalized
 982 fp_ns_zero:
 983         tst.l   (%a0)+
 984         jne     1f
 985         tst.l   (%a0)
 986         jne     1f
 987         subq.l  #8,%a0
 988         printf  PNORM,"%p(",1,%a0
 989         printx  PNORM,%a0@
 990         printf  PNORM,")\n"
 991         rts                             | zero.  nothing to do.
 992         | These are not merely subnormal numbers, but true denormals,
 993         | i.e. pathologically small (exponent is 2**-16383) numbers.
 994         | It is clearly impossible for even a normal extended number
 995         | with that exponent to fit into single precision, so just
 996         | write these ones off as "too darn small".
 997 1:      fp_set_sr FPSR_EXC_UNFL         | Set UNFL bit
 998         clr.l   (%a0)
 999         clr.l   -(%a0)
1000         move.w  #0x3f81,-(%a0)          | i.e. 2**-126
1001         addq.l  #6,%a0
1002         moveq   #1,%d0
1003         jra     fp_ns_round             | round.
1004         | Infinities or NaNs
1005 fp_ns_huge:
1006         subq.l  #4,%a0
1007         printf  PNORM,"%p(",1,%a0
1008         printx  PNORM,%a0@
1009         printf  PNORM,")\n"
1010         rts
1011 
1012         | fp_normalize_single_fast:
1013         | normalize an extended with single (23-bit) precision
1014         | this is only used by fsgldiv/fsgdlmul, where the
1015         | operand is not completly normalized.
1016         | args:  %a0 (struct fp_ext *)
1017 
1018 fp_normalize_single_fast:
1019         printf  PNORM,"nsf: %p(",1,%a0
1020         printx  PNORM,%a0@
1021         printf  PNORM,") "
1022         addq.l  #2,%a0
1023         move.w  (%a0)+,%d2
1024         cmp.w   #0x7fff,%d2
1025         jeq     fp_nsf_huge             | NaN / infinitive.
1026         move.l  (%a0)+,%d0              | get high lword of mantissa
1027 fp_nsf_round:
1028         tst.l   (%a0)                   | check the low lword
1029         jeq     1f
1030         | Set a sticky bit if it is non-zero.  This should only
1031         | affect the rounding in what would otherwise be equal-
1032         | distance situations, which is what we want it to do.
1033         bset    #0,%d0
1034 1:      clr.l   (%a0)                   | zap it from memory.
1035         | now, round off the low 8 bits of the hi lword.
1036         tst.b   %d0                     | 8 low bits.
1037         jne     fp_nsf_checkround       | Are they non-zero?
1038         | nothing to do here
1039         subq.l  #8,%a0
1040         printf  PNORM,"%p(",1,%a0
1041         printx  PNORM,%a0@
1042         printf  PNORM,")\n"
1043         rts
1044 fp_nsf_checkround:
1045         fp_set_sr FPSR_EXC_INEX2        | INEX2 bit
1046         clr.b   -(%a0)                  | clear low byte of high lword
1047         subq.l  #3,%a0
1048         move.w  (FPD_RND,FPDATA),%d2    | rounding mode
1049         jne     2f                      | %d2 == 0, round to nearest
1050         tst.b   %d0                     | test guard bit
1051         jpl     9f                      | zero is closer
1052         btst    #8,%d0                  | test lsb bit
1053         | round to even behaviour, see above.
1054         jne     fp_nsf_doroundup                | round to infinity
1055         lsl.b   #1,%d0                  | check low bits
1056         jeq     9f                      | round to zero
1057 fp_nsf_doroundup:
1058         | round (the mantissa, that is) towards infinity
1059         add.l   #0x100,(%a0)
1060         jcc     9f                      | no overflow, good.
1061         | Overflow.  This means that the %d1 was 0xffffff00, so it
1062         | is now zero.  We will set the mantissa to reflect this, and
1063         | increment the exponent (checking for overflow there too)
1064         move.w  #0x8000,(%a0)
1065         addq.w  #1,-(%a0)
1066         cmp.w   #0x407f,(%a0)+          | exponent now overflown?
1067         jeq     fp_nsf_large            | yes, so make it infinity.
1068 9:      subq.l  #4,%a0
1069         printf  PNORM,"%p(",1,%a0
1070         printx  PNORM,%a0@
1071         printf  PNORM,")\n"
1072         rts
1073         | check nondefault rounding modes
1074 2:      subq.w  #2,%d2
1075         jcs     9b                      | %d2 < 2, round to zero
1076         jhi     3f                      | %d2 > 2, round to +infinity
1077         tst.b   (-3,%a0)                | to -inf
1078         jne     fp_nsf_doroundup        | negative, round to infinity
1079         jra     9b                      | positive, round to zero
1080 3:      tst.b   (-3,%a0)                | to +inf
1081         jeq     fp_nsf_doroundup                | positive, round to infinity
1082         jra     9b                      | negative, round to zero
1083         | Exponent overflow.  Just call it infinity.
1084 fp_nsf_large:
1085         tst.b   (3,%a0)
1086         jeq     1f
1087         fp_set_sr FPSR_EXC_INEX2
1088 1:      fp_set_sr FPSR_EXC_OVFL
1089         move.w  (FPD_RND,FPDATA),%d2
1090         jne     3f                      | %d2 = 0 round to nearest
1091 1:      move.w  #0x7fff,(-2,%a0)
1092         clr.l   (%a0)+
1093         clr.l   (%a0)
1094 2:      subq.l  #8,%a0
1095         printf  PNORM,"%p(",1,%a0
1096         printx  PNORM,%a0@
1097         printf  PNORM,")\n"
1098         rts
1099 3:      subq.w  #2,%d2
1100         jcs     5f                      | %d2 < 2, round to zero
1101         jhi     4f                      | %d2 > 2, round to +infinity
1102         tst.b   (-3,%a0)                | to -inf
1103         jne     1b
1104         jra     5f
1105 4:      tst.b   (-3,%a0)                | to +inf
1106         jeq     1b
1107 5:      move.w  #0x407e,(-2,%a0)
1108         move.l  #0xffffff00,(%a0)+
1109         clr.l   (%a0)
1110         jra     2b
1111         | Infinities or NaNs
1112 fp_nsf_huge:
1113         subq.l  #4,%a0
1114         printf  PNORM,"%p(",1,%a0
1115         printx  PNORM,%a0@
1116         printf  PNORM,")\n"
1117         rts
1118 
1119         | conv_ext2int (macro):
1120         | Generates a subroutine that converts an extended value to an
1121         | integer of a given size, again, with the appropriate type of
1122         | rounding.
1123 
1124         | Macro arguments:
1125         | s:    size, as given in an assembly instruction.
1126         | b:    number of bits in that size.
1127 
1128         | Subroutine arguments:
1129         | %a0:  source (struct fp_ext *)
1130 
1131         | Returns the integer in %d0 (like it should)
1132 
1133 .macro conv_ext2int s,b
1134         .set    inf,(1<<(\b-1))-1       | i.e. MAXINT
1135         printf  PCONV,"e2i%d: %p(",2,#\b,%a0
1136         printx  PCONV,%a0@
1137         printf  PCONV,") "
1138         addq.l  #2,%a0
1139         move.w  (%a0)+,%d2              | exponent
1140         jeq     fp_e2i_zero\b           | zero / denorm (== 0, here)
1141         cmp.w   #0x7fff,%d2
1142         jeq     fp_e2i_huge\b           | Inf / NaN
1143         sub.w   #0x3ffe,%d2
1144         jcs     fp_e2i_small\b
1145         cmp.w   #\b,%d2
1146         jhi     fp_e2i_large\b
1147         move.l  (%a0),%d0
1148         move.l  %d0,%d1
1149         lsl.l   %d2,%d1
1150         jne     fp_e2i_round\b
1151         tst.l   (4,%a0)
1152         jne     fp_e2i_round\b
1153         neg.w   %d2
1154         add.w   #32,%d2
1155         lsr.l   %d2,%d0
1156 9:      tst.w   (-4,%a0)
1157         jne     1f
1158         tst.\s  %d0
1159         jmi     fp_e2i_large\b
1160         printf  PCONV,"-> %p\n",1,%d0
1161         rts
1162 1:      neg.\s  %d0
1163         jeq     1f
1164         jpl     fp_e2i_large\b
1165 1:      printf  PCONV,"-> %p\n",1,%d0
1166         rts
1167 fp_e2i_round\b:
1168         fp_set_sr FPSR_EXC_INEX2        | INEX2 bit
1169         neg.w   %d2
1170         add.w   #32,%d2
1171         .if     \b>16
1172         jeq     5f
1173         .endif
1174         lsr.l   %d2,%d0
1175         move.w  (FPD_RND,FPDATA),%d2    | rounding mode
1176         jne     2f                      | %d2 == 0, round to nearest
1177         tst.l   %d1                     | test guard bit
1178         jpl     9b                      | zero is closer
1179         btst    %d2,%d0                 | test lsb bit (%d2 still 0)
1180         jne     fp_e2i_doroundup\b
1181         lsl.l   #1,%d1                  | check low bits
1182         jne     fp_e2i_doroundup\b
1183         tst.l   (4,%a0)
1184         jeq     9b
1185 fp_e2i_doroundup\b:
1186         addq.l  #1,%d0
1187         jra     9b
1188         | check nondefault rounding modes
1189 2:      subq.w  #2,%d2
1190         jcs     9b                      | %d2 < 2, round to zero
1191         jhi     3f                      | %d2 > 2, round to +infinity
1192         tst.w   (-4,%a0)                | to -inf
1193         jne     fp_e2i_doroundup\b      | negative, round to infinity
1194         jra     9b                      | positive, round to zero
1195 3:      tst.w   (-4,%a0)                | to +inf
1196         jeq     fp_e2i_doroundup\b      | positive, round to infinity
1197         jra     9b      | negative, round to zero
1198         | we are only want -2**127 get correctly rounded here,
1199         | since the guard bit is in the lower lword.
1200         | everything else ends up anyway as overflow.
1201         .if     \b>16
1202 5:      move.w  (FPD_RND,FPDATA),%d2    | rounding mode
1203         jne     2b                      | %d2 == 0, round to nearest
1204         move.l  (4,%a0),%d1             | test guard bit
1205         jpl     9b                      | zero is closer
1206         lsl.l   #1,%d1                  | check low bits
1207         jne     fp_e2i_doroundup\b
1208         jra     9b
1209         .endif
1210 fp_e2i_zero\b:
1211         clr.l   %d0
1212         tst.l   (%a0)+
1213         jne     1f
1214         tst.l   (%a0)
1215         jeq     3f
1216 1:      subq.l  #4,%a0
1217         fp_clr_sr FPSR_EXC_UNFL         | fp_normalize_ext has set this bit
1218 fp_e2i_small\b:
1219         fp_set_sr FPSR_EXC_INEX2
1220         clr.l   %d0
1221         move.w  (FPD_RND,FPDATA),%d2    | rounding mode
1222         subq.w  #2,%d2
1223         jcs     3f                      | %d2 < 2, round to nearest/zero
1224         jhi     2f                      | %d2 > 2, round to +infinity
1225         tst.w   (-4,%a0)                | to -inf
1226         jeq     3f
1227         subq.\s #1,%d0
1228         jra     3f
1229 2:      tst.w   (-4,%a0)                | to +inf
1230         jne     3f
1231         addq.\s #1,%d0
1232 3:      printf  PCONV,"-> %p\n",1,%d0
1233         rts
1234 fp_e2i_large\b:
1235         fp_set_sr FPSR_EXC_OPERR
1236         move.\s #inf,%d0
1237         tst.w   (-4,%a0)
1238         jeq     1f
1239         addq.\s #1,%d0
1240 1:      printf  PCONV,"-> %p\n",1,%d0
1241         rts
1242 fp_e2i_huge\b:
1243         move.\s (%a0),%d0
1244         tst.l   (%a0)
1245         jne     1f
1246         tst.l   (%a0)
1247         jeq     fp_e2i_large\b
1248         | fp_normalize_ext has set this bit already
1249         | and made the number nonsignaling
1250 1:      fp_tst_sr FPSR_EXC_SNAN
1251         jne     1f
1252         fp_set_sr FPSR_EXC_OPERR
1253 1:      printf  PCONV,"-> %p\n",1,%d0
1254         rts
1255 .endm
1256 
1257 fp_conv_ext2long:
1258         conv_ext2int l,32
1259 
1260 fp_conv_ext2short:
1261         conv_ext2int w,16
1262 
1263 fp_conv_ext2byte:
1264         conv_ext2int b,8
1265 
1266 fp_conv_ext2double:
1267         jsr     fp_normalize_double
1268         printf  PCONV,"e2d: %p(",1,%a0
1269         printx  PCONV,%a0@
1270         printf  PCONV,"), "
1271         move.l  (%a0)+,%d2
1272         cmp.w   #0x7fff,%d2
1273         jne     1f
1274         move.w  #0x7ff,%d2
1275         move.l  (%a0)+,%d0
1276         jra     2f
1277 1:      sub.w   #0x3fff-0x3ff,%d2
1278         move.l  (%a0)+,%d0
1279         jmi     2f
1280         clr.w   %d2
1281 2:      lsl.w   #5,%d2
1282         lsl.l   #7,%d2
1283         lsl.l   #8,%d2
1284         move.l  %d0,%d1
1285         lsl.l   #1,%d0
1286         lsr.l   #4,%d0
1287         lsr.l   #8,%d0
1288         or.l    %d2,%d0
1289         putuser.l %d0,(%a1)+,fp_err_ua2,%a1
1290         moveq   #21,%d0
1291         lsl.l   %d0,%d1
1292         move.l  (%a0),%d0
1293         lsr.l   #4,%d0
1294         lsr.l   #7,%d0
1295         or.l    %d1,%d0
1296         putuser.l %d0,(%a1),fp_err_ua2,%a1
1297 #ifdef FPU_EMU_DEBUG
1298         getuser.l %a1@(-4),%d0,fp_err_ua2,%a1
1299         getuser.l %a1@(0),%d1,fp_err_ua2,%a1
1300         printf  PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1
1301 #endif
1302         rts
1303 
1304 fp_conv_ext2single:
1305         jsr     fp_normalize_single
1306         printf  PCONV,"e2s: %p(",1,%a0
1307         printx  PCONV,%a0@
1308         printf  PCONV,"), "
1309         move.l  (%a0)+,%d1
1310         cmp.w   #0x7fff,%d1
1311         jne     1f
1312         move.w  #0xff,%d1
1313         move.l  (%a0)+,%d0
1314         jra     2f
1315 1:      sub.w   #0x3fff-0x7f,%d1
1316         move.l  (%a0)+,%d0
1317         jmi     2f
1318         clr.w   %d1
1319 2:      lsl.w   #8,%d1
1320         lsl.l   #7,%d1
1321         lsl.l   #8,%d1
1322         bclr    #31,%d0
1323         lsr.l   #8,%d0
1324         or.l    %d1,%d0
1325         printf  PCONV,"%08x\n",1,%d0
1326         rts
1327 
1328         | special return addresses for instr that
1329         | encode the rounding precision in the opcode
1330         | (e.g. fsmove,fdmove)
1331 
1332 fp_finalrounding_single:
1333         addq.l  #8,%sp
1334         jsr     fp_normalize_ext
1335         jsr     fp_normalize_single
1336         jra     fp_finaltest
1337 
1338 fp_finalrounding_single_fast:
1339         addq.l  #8,%sp
1340         jsr     fp_normalize_ext
1341         jsr     fp_normalize_single_fast
1342         jra     fp_finaltest
1343 
1344 fp_finalrounding_double:
1345         addq.l  #8,%sp
1346         jsr     fp_normalize_ext
1347         jsr     fp_normalize_double
1348         jra     fp_finaltest
1349 
1350         | fp_finaltest:
1351         | set the emulated status register based on the outcome of an
1352         | emulated instruction.
1353 
1354 fp_finalrounding:
1355         addq.l  #8,%sp
1356 |       printf  ,"f: %p\n",1,%a0
1357         jsr     fp_normalize_ext
1358         move.w  (FPD_PREC,FPDATA),%d0
1359         subq.w  #1,%d0
1360         jcs     fp_finaltest
1361         jne     1f
1362         jsr     fp_normalize_single
1363         jra     2f
1364 1:      jsr     fp_normalize_double
1365 2:|     printf  ,"f: %p\n",1,%a0
1366 fp_finaltest:
1367         | First, we do some of the obvious tests for the exception
1368         | status byte and condition code bytes of fp_sr here, so that
1369         | they do not have to be handled individually by every
1370         | emulated instruction.
1371         clr.l   %d0
1372         addq.l  #1,%a0
1373         tst.b   (%a0)+                  | sign
1374         jeq     1f
1375         bset    #FPSR_CC_NEG-24,%d0     | N bit
1376 1:      cmp.w   #0x7fff,(%a0)+          | exponent
1377         jeq     2f
1378         | test for zero
1379         moveq   #FPSR_CC_Z-24,%d1
1380         tst.l   (%a0)+
1381         jne     9f
1382         tst.l   (%a0)
1383         jne     9f
1384         jra     8f
1385         | infinitiv and NAN
1386 2:      moveq   #FPSR_CC_NAN-24,%d1
1387         move.l  (%a0)+,%d2
1388         lsl.l   #1,%d2                  | ignore high bit
1389         jne     8f
1390         tst.l   (%a0)
1391         jne     8f
1392         moveq   #FPSR_CC_INF-24,%d1
1393 8:      bset    %d1,%d0
1394 9:      move.b  %d0,(FPD_FPSR+0,FPDATA) | set condition test result
1395         | move instructions enter here
1396         | Here, we test things in the exception status byte, and set
1397         | other things in the accrued exception byte accordingly.
1398         | Emulated instructions can set various things in the former,
1399         | as defined in fp_emu.h.
1400 fp_final:
1401         move.l  (FPD_FPSR,FPDATA),%d0
1402 #if 0
1403         btst    #FPSR_EXC_SNAN,%d0      | EXC_SNAN
1404         jne     1f
1405         btst    #FPSR_EXC_OPERR,%d0     | EXC_OPERR
1406         jeq     2f
1407 1:      bset    #FPSR_AEXC_IOP,%d0      | set IOP bit
1408 2:      btst    #FPSR_EXC_OVFL,%d0      | EXC_OVFL
1409         jeq     1f
1410         bset    #FPSR_AEXC_OVFL,%d0     | set OVFL bit
1411 1:      btst    #FPSR_EXC_UNFL,%d0      | EXC_UNFL
1412         jeq     1f
1413         btst    #FPSR_EXC_INEX2,%d0     | EXC_INEX2
1414         jeq     1f
1415         bset    #FPSR_AEXC_UNFL,%d0     | set UNFL bit
1416 1:      btst    #FPSR_EXC_DZ,%d0        | EXC_INEX1
1417         jeq     1f
1418         bset    #FPSR_AEXC_DZ,%d0       | set DZ bit
1419 1:      btst    #FPSR_EXC_OVFL,%d0      | EXC_OVFL
1420         jne     1f
1421         btst    #FPSR_EXC_INEX2,%d0     | EXC_INEX2
1422         jne     1f
1423         btst    #FPSR_EXC_INEX1,%d0     | EXC_INEX1
1424         jeq     2f
1425 1:      bset    #FPSR_AEXC_INEX,%d0     | set INEX bit
1426 2:      move.l  %d0,(FPD_FPSR,FPDATA)
1427 #else
1428         | same as above, greatly optimized, but untested (yet)
1429         move.l  %d0,%d2
1430         lsr.l   #5,%d0
1431         move.l  %d0,%d1
1432         lsr.l   #4,%d1
1433         or.l    %d0,%d1
1434         and.b   #0x08,%d1
1435         move.l  %d2,%d0
1436         lsr.l   #6,%d0
1437         or.l    %d1,%d0
1438         move.l  %d2,%d1
1439         lsr.l   #4,%d1
1440         or.b    #0xdf,%d1
1441         and.b   %d1,%d0
1442         move.l  %d2,%d1
1443         lsr.l   #7,%d1
1444         and.b   #0x80,%d1
1445         or.b    %d1,%d0
1446         and.b   #0xf8,%d0
1447         or.b    %d0,%d2
1448         move.l  %d2,(FPD_FPSR,FPDATA)
1449 #endif
1450         move.b  (FPD_FPSR+2,FPDATA),%d0
1451         and.b   (FPD_FPCR+2,FPDATA),%d0
1452         jeq     1f
1453         printf  ,"send signal!!!\n"
1454 1:      jra     fp_end

/* [<][>][^][v][top][bottom][index][help] */